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FIGURE CAPTIONS 

 

Figure 1.  Chemical and anatomical body composition models. 4-C, 3-C and 2-C refer to four, three 

and two-component models respectively. 

Figure 2.  Comparison of subcutaneous adipose tissue (SAT) thickness measurements: 140 distances 

measured in swine carcass by means of ultrasound (dUS; f = 7.5 MHz) compared to vernier calliper 

measurements (dVC; resolution: 0.01 mm). Correlation coefficient was 0.998 and regression 

coefficient was 0.98 using c = 1540 m/s and 1.00  for c = 1510 m/s. Data from Horn and Müller 
[48]

. 

Figure 3.  Semi-automatic image evaluation: The edge detection algorithm for subcutaneous adipose 

tissue (SAT) thickness determination enables selecting areas of interest, distances (dUS) measurement 

series, color-coding of distance values, and statistical evaluations 
[48]

.
 
In this example of a SAT-layer 

above the triceps muscle, with the transducer held parallel to the humerus, 119 dUS values ranging 

from 2.3 mm to 4.3 mm were automatically detected by the algorithm; the median was 3.4 mm (c = 

1470 m/s). Layers and interfaces: A: gel, B: gel-epidermis, C: dermis, D: dermis-SAT, E: SAT, F: 

SAT-fascia of muscle, G: muscle. 

Figure 4.  A skinfold map illustrating extreme leanness in elite adult male (dark) and female (light) 

endurance athletes of similar skinfold total.  Measurements in mm. 

Figure 5.  Average skinfold depth across seven or eight sites, according to athletic group. Upper chart: 

males; lower chart: females.  Data calculated from summary presented in Kerr and Stewart 
[77]

. 

Abbreviations: mid dist = middle distance track runners; long dist = long distance runners; Scot long 

dist = Scottish long distance runners; SASI mid dist = South Australian Sports Institute middle 

distance track runners; SASI sprint = sprint runners; SASI jump = jumpers. 

Figure 6.  Selected skinfold ratios in extremely lean male and female endurance athletes, and mean 

values from 106 male and 33 female athletes
[80]

.  
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ABSTRACT 

 

Quantifying human body composition has played an important role in monitoring all athlete 

performance and training regimens, but especially so in gravitational, weight class and aesthetic sports 

wherein the tissue composition of the body profoundly affects performance or adjudication. Over the 

past century, a myriad of techniques and equations have been proposed, but all have some inherent 

problems, whether in measurement methodology or in the assumptions they make. To date, there is no 

universally applicable criterion or “gold standard” methodology for body composition assessment.  

Having considered issues of accuracy, repeatability and utility, the multi-component model might be 

employed as a performance or selection criterion, provided the selected model accounts for variability 

in the density of FFM in its computation. However, when profiling change in interventions, single 

methods whose raw data are surrogates for body composition (with the notable exception of the BMI) 

remain useful. 
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INTRODUCTION 

 

Body composition is an important health and performance variable. In weight-sensitive sports, many 

athletes use extreme methods to reduce mass rapidly or maintain a low body mass in order to gain a 

competitive advantage. As a consequence, athletes with very low body mass, extreme mass changes 

due to dehydration or eating disorders, extremely low percent body fat (% fat), or insufficient bone 

mineral density are becoming common issues in many sports
[1,2]

. Deliberately induced underweight or 

short term mass reduction may lead to severe medical problems with sometimes fatal consequences
[1]

. 

The weight-sensitive sports in which extreme dieting, low % body fat, frequent mass fluctuation and 

eating disorders have been reported, can be summarized in three groups: 

 Gravitational sports – in which mass restricts performance due to mechanical (gravitational) 

reasons. Among these are long distance running, ski jumping, high jumping and road cycling. 

 Weight class sports – in which unhealthy short term mass reduction behaviour, associated with 

extreme dehydration, can be observed because the athletes anticipate an advantage when they are 

classified in a lower weight category. This group includes the sports of wrestling, judo, boxing, 

taekwondo, weight lifting and lightweight rowing. 

 Aesthetic sports – in which athletes or their coaches expect higher scores when their body mass 

and shape conform to a perceived body ideal. This group includes particularly the judged female 

sports of rhythmic and artistic gymnastics, figure skating, diving and synchronized swimming. 

 

Body fat may act as ballast in biomechanical terms, but adipose tissue is a vital endocrine organ in 

terms of general health.  The different biomechanical and health imperatives present a conflict for 

athletes, for whom risks of eating disorders are exacerbated. To our knowledge, few of the 

international sport federations have considered implementation of programs aimed to discourage 

athletes from extreme dieting or from rapid mass loss by means of dehydration. The International Ski 

Federation (FIS) has changed regulations 
[3,4,5]

 in order to improve the low mass problem, but more 

can be achieved in this area.  An important step on the path toward maintaining an athlete‟s health and 

performance, by means of rule changes, is the ability to assess the athlete‟s body composition with 

accuracy, precision and reliability. 

 

Understanding and quantifying human body composition has formed a central part of medical 

research for the best part of a century.  While progress has been significant with landmark studies and 

the use of new and combined analytical methods, unassailable ethical and methodological limitations 

have precluded the identification of an absolute standard against which methods can be compared in 

humans.  As a consequence, while accurate assessment of body fatness has been a major goal of body 

composition research over the past 50 years, much of the work to validate new and old methods is 
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indirect.  Despite considerable advances in methods, today there is still no gold standard for body fat 

assessment with accuracy better than 1%. 

 

Quantification of fat has been the prime focus of attention, but many coaches and scientists working 

with elite athletes recognize that knowledge of the amount and distribution of lean tissues like bone 

and muscle can be just as important in determining sports performance. For example, the relationship 

between muscle cross-sectional area and force/power generation is well known and so change in 

muscle size (relative to body mass) becomes an important assessment parameter during preparation 

for high level competition. Making sense of the myriad of techniques for estimating each of the tissue 

components requires a clear framework by which these may be properly compared. 

 

During the development and integration of such multi-component methods, the last three decades 

have also been witness to a dramatic increase in research on elite athletes from a whole range of 

sports.  As training methods have become more sophisticated, each athletic group has become more 

specialized, modifying its typical physique imperatives away from general morphological norms.  As 

a consequence, many of the assumptions on which some techniques rely are no longer valid for 

athletes.  For example, elite athletes who had undergone resistance training were estimated to have 

negative 12% fat using densitometry 
[6]

 and to have negative fat on the torso using DXA
[7]

.  

Furthermore, athletes are reluctant to interrupt what for many is a full time occupation for the sake of 

body composition assessment, thereby making the more involved laboratory techniques less 

appealing.  These factors all conspire against the scientist seeking to make accurate measurements on 

athletes, with the inevitable consequence that data may be misleading, misinterpreted, or perhaps used 

inappropriately.  This reality has forced researchers to consider acceptable surrogate measures for 

fatness, such as a sum of skinfolds, without recourse to quantifying tissue mass.  

 

The choice of body composition technique often depends on the intended purpose for which data are 

to be used, as well as the available technology. In regard to high performance sport, assessment of 

body composition may define a performance or selection criterion, be used to assess the effectiveness 

of an exercise or dietary intervention, or be used to monitor the health status of an athlete. Individual 

body composition goals should be identified by trained health care personnel (e.g. athletic trainer, 

physiologist, nutritionist, or physician) and body composition data should be treated in the same 

manner as other personal and confidential medical information. 
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In addition to the published journal articles, books and book chapters written by the authors of this 

review, several online databases (including Medline and Sports Discus) were searched to provide the 

most current publications to inform this review paper.  

 

REVIEW OF TECHNIQUES 

Though many techniques exist for describing the constituent components of the body, in practice the 

techniques in current use fall into Reference, Laboratory and Field method categories, which include 

both the Chemical (Molecular) or Anatomical (Tissue/Systems) approaches (Figure 1). Within these 

approaches, we must also understand that techniques can be categorized as being Direct – for example 

via cadaver dissection, Indirect – where a surrogate parameter is measured to estimate tissue or 

molecular composition, or Doubly Indirect – where one indirect measure is used to predict another 

indirect measure (i.e. via regression equations).  The use of regression equations also means that these 

approaches are sample-specific. Hawes and Martin 
[8]

 refer to these categories as levels of validation. 

 

Insert Figure 1 near here 

 

In both the Chemical and Anatomical approaches, we may also employ multi-component models 

(Figure 1). Thus, it has been common for authors to refer to 2-component models (fat mass [FM] and 

fat free mass [FFM]), 3-component models (fat, bone mineral and lean content), or 4-component 

models (adipose, bone, muscle and other tissues). 

 

A review of body composition methods must also consider the implications of techniques that merely 

sample the body as opposed to those which attempt to assess the whole body. Several commonly 

employed methods (e.g. skinfolds, ultrasound) sample the subcutaneous adipose tissue (SAT) at 

standardized sites and assume that there is some fixed and direct relationship between this 

compartment and fat depots deep within the body. Furthermore, it is assumed in these methods, that 

the standardized sites provide a representative estimate of the total subcutaneous fat in the body. 

 

Finally, mention must be made regarding individual versus group results. Some techniques that 

supposedly assess body composition (e.g. body mass index [BMI]) are often cited as being 

significantly correlated with important health indicators, or values from other assessment procedures. 

Readers are cautioned to understand that demonstration of a strong association at the population level 

is not the same as a technique providing accurate, precise and reliable body composition data for an 

individual. 
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Reference methods 

 

The reference methods are, by definition, the most accurate techniques for assessing body 

composition and have often been employed as criterion against which other techniques are compared. 

Nevertheless, these reference methods may have limited applicability for monitoring athletes. 

Limitations include feasibility (eg. cadaver dissection), time and financial costs involved (eg. MRI 

scanning), a lack of published normative data (e.g. multi-component models), and unnecessary 

radiation exposure (eg. CT scanning). There are also questions regarding sensitivity (acuteness) of 

some of the accepted reference methods. A summary of the important features of these techniques is 

provided in Table I. 

 

Insert Table I near here 

 

Cadaver dissection 

Human body composition analysis is unique in that validated measures can be ascertained only via 

cadaver dissection. Even so, this approach does have several limitations (Table I). Aside from the use 

of porcine carcasses to validate DXA, time, cost and for cadavers, inescapable ethical barriers, limit 

the use of this technique. Results from the Brussels Cadaver Study were employed to test several 

assumptions related to the anthropometry field method of body composition analysis 
[9,10,11]

. Since the 

cadaver dissection method cannot be utilized for individual analysis, practitioners have turned to other 

reference, laboratory and field methods for estimating body composition. 

 

Multi-component models 

The best reference methods for estimation of body fat are the multi-component models. Both their 

precision and accuracy are in the order of 1-2%. Elaborate 6-, 5-, 4- and 3-component models are 

available for body fat estimation
[12]

.  The 4-component model using body density, body water and 

bone mineral is the most often used method and is, at present, the leading reference method for body 

composition.  Wang et al., 
[12]

 presented 13 different 4-component equations, each with different 

assumptions for the various components. The 4-component equation is always in the form of: 

Fat Mass = C1 BV – C2 TBW + C3M – C4 BM 

Where: BV is body volume, TBW is total body water, M is bone mineral and BM is body mass. 

The most practical multi-component model measures body density and body water and can estimate 

fatness within standard errors of estimate (SEEs) of 2.0-2.5% (3-component model). Precision of 

multi-component models is high 
[12,13,14]

. Technical errors of estimating body volume, body water and 

bone mineral have been combined to yield a % fat error of about 1%. Accuracy is in the order of 2% 



10 
 

[15]
, and even better when a 5-component model is used 

[12]
. However, when body water estimations 

are not accurately assessed, as in the case of Clasey et al., 
[16]

, then larger errors in the multi-

component models are apparent. Compared to the data by Wang et al., 
[17]

 for example, the variation 

(SD
2
) between water variability (variance) is 3.2 times greater in the Clasey et al., 

[16]
 sample. This 

variability exceeds the biological variation in water/FFM content under usual hydration conditions, 

thereby signifying a large technical contribution. Multi-component assessment models are time 

consuming and require access to expensive and sophisticated technology which often places them out 

of reach for practical applications in sport. 

 

Medical imaging – MRI and CT 

MRI is a highly sophisticated and costly technique which has become the premier medical imaging 

technique during recent years. It requires a powerful main (usually superconducting) magnet, a 

magnetic field gradient system, which is essential for signal localization, and a radio frequency 

system, which is used for signal generation and processing. Like other tomographic imaging 

techniques, MRI scanning results in a data array (MRI image) which represents the spatial distribution 

of some measured physical quantity. The values of the image pixels depend on various parameters of 

the tissue under study: MRI produces images of internal physical and chemical characteristics of an 

object from externally measured nuclear magnetic resonance (NMR) signals. The effects of these 

tissue characteristics on the NMR signal can be enhanced or suppressed by using appropriate data 

acquisition protocols. MRI's flexibility in data acquisition can result in quite different images for the 

same anatomical region, depending on the parameter setting.   The soft tissue contrast, which depends 

largely on the design of the pulsing sequence, exceeds that of CT and of US. No ionizing radiation is 

involved, so the method is not invasive, although the confined space of the scanner may induce 

claustrophobia.  It is beyond the scope of this review to describe MRI in detail, and readers are 

referred to Runge et al.
[18]

  or Liang and Lauterbur 
[19]

 for further information. 

 

Despite its sophistication, this technique requires powerful software for analysis involving setting 

thresholds for different tissues.  Most software in clinical use is designed for diagnostic purposes, not 

for quantifying tissue dimensions beyond the organ level.  Whole body scans are possible, but need to 

be acquired as a series of stacks and subsequently integrated. Currently, the pixel size of 2 mm x 2 

mm in slices used in total body scans limits the accuracy of measurement, particularly in lean athletes. 

Difficulties in discriminating boundaries between tissue layers further limits sensitivity. 

 

CT is also capable of high resolution internal images of the body, but involves a high radiation dose 

because its image acquisition is based on X-rays which are configured in a perpendicular plane to the 

supine participant.  The X-ray tube and detector follow a rotational path-enabling image 
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reconstruction following the measured attenuation relative to air and water, quantified in Hounsfield 

units.  Tissues vary in their radiographic density; skeletal muscle has a much higher range than 

adipose tissue, enabling easy distinction and quantification of each.  However, whole body scanning 

in living humans is not feasible due to an unjustifiably high radiation dose, and most studies rely on 

interpolation between slices of measured composition.  Both MRI and CT produce tissue distances, 

areas and volumes which, if related to multi-component models of body composition, require 

assumptions to relate to mass via assumed density and/or chemical composition. As a consequence of 

the several limitations associated with MRI and CT, neither represents a practical method for 

everyday body composition assessment. 

 

Laboratory methods 

 

The laboratory methods are used extensively for assessing body composition of athletes (though 

perhaps not to the same degree as field methods), but there exists wide variation in their accuracy and 

precision. A summary of the important features of these techniques is provided in Table II. 

 

Insert Table II near here 

 

Dual energy x-ray absorptiometry (DXA) 

For over two decades, DXA has been the diagnostic method of choice for osteoporosis and has been 

used increasingly in the quantification of soft tissue.  It achieves this by passing filtered X-ray beams 

at two different photon energies through the participant which are attenuated differentially by the 

material in their path.  With the participant lying on the scanning table, the process maps the mass and 

composition of each pixel in terms of bone mineral, fat and fat-free soft tissue.  FM is determined by 

the ratio of soft tissue attenuation at the two energies, and in-vivo elemental composition supports the 

underlying physical concept of this being accurate 
[17]

.  DXA has been criticized because it assumes 

segment constancy in tissue composition; however, both water and lipid content of skin, adipose, 

muscle and bone tissue exhibit regional variation 
[20]

.  Despite a low radiation dose (which varies 

according to the scanner type and beam configuration, and consequentially requires a pregnancy test 

in women of child-bearing age), this method is viewed as a laboratory reference method and 

contributes to the bone mineral assessment for multi-component models.  DXA‟s utility and 

widespread proliferation in current practice has rested on the convenience of acquiring regional 

composition data without recourse to the more costly and scarce medical imaging techniques. 

However, we must caution against using DXA on multiple occasions (perhaps no more than four 

times per annum), not only due to the cumulative radiation dose (including all other sources from 

medical imaging), but also due to the error of measurement which limits the ability to detect small 
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composition changes over time. Although effective doses associated with DXA measurements are low 

when compared to  X-ray imaging, we do not encourage frequent or indiscriminate DXA testing. 

 

Multi-component models as a reference method to validate DXA are now extensive 
[15]

 with SEE for 

predicting % fat falling between 2-3%, representing a major advance in laboratory and clinical 

practice for estimating body composition.  The theoretical basis and the assumptions DXA makes in 

deriving composition estimates are discussed in detail in the review of Pietrobelli and colleagues 
[21]

.  

These relate to beam hardening (due to the depth of tissue encountered by the X-ray beam) and errors 

of estimating fat quantity in the approximately 40% of scan pixels which contain bone (estimated by 

the measured composition of neighbouring pixels with no bone).  With the more recent fan-beam 

scanners, magnification errors may also limit accuracy in larger subjects. 

 

For athletes, DXA measurement has several advantages over other reference and laboratory 

techniques, due to its speed and convenience, and because the measurement is minimally influenced 

by water fluctuation.  However, measurement of athletes who are excessively small, large or lean may 

introduce errors greater than for subjects of standard size and composition. Individuals greater than 

~192 cm may be too tall for the scan bed, while the soft tissue of very obese people may migrate 

beyond the available width of the scan area.  The more recent scanners can accommodate individuals 

of 120 kg, but strength athletes may exceed the mass permitted by older models. 

 

DXA has been used to derive regional and total fat estimates which outperformed densitometry 

relative to a 4-component model 
[22]

.  This led some authors to use it as a reference method in 

preference to densitometry, yielding FM and FFM predictions from other methods.  In a study of male 

athletes, SEE predicting DXA-derived FM from skinfolds was 1.7 kg, although the seven leanest 

athletes showed negative fat on the torso 
[7]

.  The high muscle mass and low FM of these individuals 

appear to fall beyond the calibrated range. Of some considerable concern then, is the ever-increasing 

access to DXA by commercial sports organisations that seek to measure incrementally lean and 

muscular individuals, meaning the scope for misinterpretation of data is also increasing. 

 

DXA has been compared with CT and neutron activation analysis for assessing skeletal muscle mass 

with SEE of 1.6 kg and 4.4 kg respectively 
[23]

. Further validation studies by Wang et al., 
[24]

 and Kim 

et al., 
[25]

 concluded that skeletal muscle mass could be accurately predicted by DXA.  However, 

Tothill et al., 
[26]

 showed considerable regional differences between machine manufacturers and pencil 

versus fan beam configurations for estimating fat and bone mineral.  While apparent bilateral 

composition differences are likely to result from positioning and regional division lines falling at pixel 

boundaries, observed variations in fat estimation also relate to different assumptions of the fat 
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distribution model used in the software. Further, some fan beam scanners have significantly 

overestimated the leg muscle mass derived by CT in elderly individuals 
[27]

, and the effect is likely to 

be exacerbated amongst athletes. 

 

In summary, DXA, though a reasonably precise whole-body method, is not reliable in producing 

accurate fat estimates of lean athletes, although its assessment of total and regional FFM is generally 

acceptable if total scanned mass equates to scale mass.  Inter-manufacturer differences in hardware 

and software algorithms preclude straightforward or meaningful comparisons between apparatus. 

 

Densitometry 

Body density measurements, using either underwater weighing (UWW) or air displacement 

plethysmography (ADP) to estimate % fat, are based on the 2-component model.  This divides the 

body into FM and FFM, assumes a constant density of each, then relates the measured whole body 

density to a % body fat 
[28,29]

.  Lipid is the only constituent of the body whose specific gravity is less 

than that of water (1.0) and its buoyant force is opposed by all other, denser constituents. Variations in 

water and bone mineral content of the FFM among populations and individuals affect its density and 

therefore, limit the utility of this approach as a reference method 
[30]

.  

 

UWW requires a participant (on a submersible seat suspended from a load cell) to exhale maximally 

during submersion.  Calculating body density relies on dividing body mass by the measured volume. 

Although less subject involvement is required using plethysmography, both methods require 

estimation of residual lung volume with additional equipment and expertise.  In UWW, this is 

routinely performed using oxygen dilution 
[31]

 and should be done in the water because hydrostatic 

pressure affects measured lung volumes. 

 

ADP follows a similar approach  by measuring body volume, but in a sealed air capsule, rather than 

under water.  By comparison, ADP is rapid, does not require water confidence, and is suitable for a 

wider range of individuals.  Currently, the available ADP technology is referred to as the BodPod 

(Life Measurement Inc., Concord, California, USA).  In this system a measuring chamber and a 

reference chamber (beneath the seat) are linked by a flexible airtight diaphragm which is perturbed to 

induce small pressure changes between both chambers.  Using Poisson‟s Law, the pressure-volume 

relationship at a fixed temperature is used to calculate the volume of the participant in the measuring 

chamber. After the system has been calibrated with a known volume, the participant is weighed 

wearing swimwear and cap, then occupies the measuring chamber for ~2 min for volumetric 

measurement.  Breathing normally during measurement, the participant is then prompted to execute a 

breathing manoeuvre for residual gas calculation.  Adjustments for thoracic gas volume and skin 

surface area are necessary because of the behaviour of the air inside the chamber.  
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Despite its advantages over UWW in participant acceptability and throughput, several methodological 

issues require consideration.  Moisture on the skin or hair affects compressibility of air next to the 

body surface, leading to an underestimation of % body fat. The behaviour of air close to the skin 

surface is predicted by a surface area artefact, based on estimated body surface area.  Such estimates 

may under- or over-estimate an athlete‟s true surface area. Clothing is also important with swimwear 

recommended; wearing gym apparel reduces test-retest reliability and leads to an underestimate of 

fatness 
[32]

.  Peeters and Claessens 
[33] 

also demonstrated that a lycra cap compresses the hair less 

effectively than a silicon cap, not fully eliminating the effect of isothermal air trapped in scalp hair, 

which also results in an underestimation of fatness.  While such issues of participant presentation are 

easily addressed, more problematic may be locating the capsule, which requires a separate room, with 

closely regulated temperature and humidity.  Changes in ambient pressure through windows or doors 

may cause the system to require re-calibration.   

 

Variations in % body fat have been reported for gender between UWW and ADP 
[34]

.  Compared with 

results from UWW, ADP underestimated % body fat (in absolute terms) by 8% in lean female athletes 

[35]
, underestimated % body fat at lower fat values and overestimated at the higher fat values in boys 

[36]
, and under-predicted % body fat by an average 2% in male college football players 

[37]
. In 

summary, despite the popularity of densitometry techniques over many decades, both UWW and ADP 

techniques adopt the 2-component model that assumes density of FFM to be constant. This 

assumption is clearly violated in many groups of athletes. Therefore, caution is essential when 

interpreting body fat results from these methods, especially for lean athletes. 

 

Hydrometry (body water) 

Except in the very obese, water is the largest single component of the body, typically accounting for 

50-70% of total mass. The water content of different tissues varies, but lean tissue is generally 70-

80% water, while adipose tissue is generally about 20% water 
[38]

. There is, however, not agreement 

on this and the Institute of Medicine 
[39] 

used a value of 10% for the water content of adipose tissue.  

 

Total body water can be used to estimate both FM and FFM assuming a constant hydration of 72-

73%. Variation in hydration levels among subjects is the main limitation of this method for the 

athletic population. Body water can be used to estimate fatness within 3% and when combined with 

body density, to within 2%. The primary approach for body water measurement is the deuterium 

dilution method, which was well described by Schoeller et al., 
[40]

. However, body water assessment 

relies on purchase of deuterium oxide (a stable isotope), expert measurement skills and expensive 

laboratory equipment, so is not generally available for wide-spread body composition assessments. 
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An understanding of hydration status has implications for all body composition assessment 

techniques. Although the rate of turnover of body water is typically about 2-3 L/day, it can be much 

higher than this, with losses through faeces reaching 1 L/h during acute infectious diarrhoea and sweat 

losses in excess of 3 L/h being sustained for relatively short periods during physical activity in hot 

environments. Daily fractional turnover can, therefore, reach 30-50% of total body water. Acute 

changes in body water can confound the use of standard methodologies for the assessment of body 

composition. For a 70 kg individual with 14 kg of fat (20%), a loss of 10% of body water will 

increase the fraction of fat to 21.5%. All measures of body composition should, therefore, be made 

under standardized conditions of hydration status (e.g. after fasting, prior to an exercise bout, with an 

empty bladder). Euhydration, however, is difficult to define as it is a dynamic state. 

 

The literature indicates that a number of methods have been used to determine hydration status. Body 

mass changes, urinary indices (volume, colour, protein content, specific gravity and osmolarity), 

blood borne indices (haemoglobin concentration, haematocrit, plasma osmolarity and sodium 

concentration, plasma testosterone, adrenaline, noradrenaline, cortisol and atrial natiuetic), 

bioelectrical impedance analysis (BIA), and pulse rate and systolic blood pressure response to 

postural change are discussed. The urinary measures of colour, specific gravity and osmolarity may be 

more sensitive at indicating moderate levels of hypohydration than are blood measures of haematocrit 

and serum osmolarity and sodium concentration. 

 

All methods, however, are subject to errors as a result of recent fluid intake; acute ingestion of a bolus 

of water can produce relatively dilute urine even in a hypohydrated individual. Currently, no „gold 

standard‟ hydration status marker exists, particularly for the relatively modest levels of hypohydration 

that frequently occur during exercise. The choice of marker for any particular situation will be 

influenced by the sensitivity and accuracy with which hydration status needs to be established, 

together with the technical and time requirements, and the expense involved. 

 

Ultrasound (US) 

Ultrasound imaging is based on the pulse-echo technique. A short US pulse is applied and travels with 

the speed of sound (c) in the given tissue. Most diagnostic US machines use c = 1540 m/s for 

calculating the distance from the source to the boundary between two tissues having different acoustic 

impedances: d = c T/2 (T is the echo time). For 2D imaging US beams are sent sequentially into the 

tissue for creating an image in which the brightness of the screen (B-mode) corresponds to the echo 

intensity in the plane of the scan. Diffraction limits spatial resolution approximately to the wavelength 

used. Frequencies between 3-22 MHz are generally employed, corresponding to wavelengths in soft 
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tissue of 0.5-0.07 mm. Maximum resolution is limited because attenuation of sound increases with 

higher frequency. 

 

High accuracy of US fat thickness measurements in humans was described in 1965 
[41]

 and 1966 
[42]

 

and many studies then followed 
[43]

. The precision of SAT measurements was found to be excellent 

(technical error in both intra- and inter-observer studies was less than 0.15 mm at all sites investigated 

except for triceps [0.6 mm]) 
[44]

. Ishida et al., 
[45]

 found B-mode US to be a highly reliable method for 

measurement of both fat and muscle thickness. US imaging has also been suggested for visceral fat 

mass evaluation 
[46]

. An US approach for precise and accurate measurement of skin thickness has 

recently been described by Moore et al., 
[47]

. Considerable skill and anatomical knowledge may be 

needed to identify correctly the interfaces of the tissues of interest. For SAT thickness measurements, 

however, the adipose tissue layer is comparatively easy to find as it forms a continuous layer 

underneath the skin which is bounded by the muscle fascia at the deep edge. 

 

Recently, Horn and Müller 
[48]

 compared US (f = 7.5 MHz) SAT measurements in excised pig tissue 

using a semi-automatic image evaluation procedure with vernier caliper measurements (0.01 mm 

resolution); the correlation was very high (r = 0.998; n = 140) (Figure 2) and SEE was 0.21 mm. The 

regression coefficient was 0.98 when (standard) sound velocity of 1540 m/s was used and 1.00 was 

obtained for 1510 m/s, indicating a lower speed of sound in fat. However, thickness measurement 

error due to sound speed deviation is small (e.g. 3% for a speed deviation of 50 m/s). 

 

Insert Figure 2 near here 

 

In this technique, it is important for the investigator to control visually the output of automatic edge 

detection algorithms so as to prevent erroneous image interpretations. An example for SAT 

measurements using recently developed semi-automatic evaluation software 
[48]

 is shown in Figure 3. 

 

Insert Figure 3 near here 

 

Many thickness measurements can be obtained from a single US image, resulting in a very low 

standard error of the mean (SEM). Accuracy demands beyond the capability of US are of little 

relevance because of accuracy limitations due to the tissue's plasticity. 

 

It is another advantage of US that many measurements can easily be made in the vicinity of a given 

site where thickness varies greatly and mean values can be used instead of single point measurements.  

US is well suited to analyse fat patterning and total SAT may be determined by combining a series of 

US measurements with body surface area measurement techniques like laser scanning. It should be 
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expected that estimates of total body fat or total subcutaneous FM based on US method will result in 

higher accuracies when compared to skinfolds, BIA, and backscattered light techniques. However, 

appropriate protocols for estimates based on US have not yet been standardized. 

 

Due to the high accuracy of SAT measurements at given sites, US can be used to calibrate other 

imaging techniques like MRI or CT. It could be used for optimizing the image segmentation protocol, 

which is always a crucial problem in MRI and CT image analysis. Pixel size in MRI whole body 

scans is typically 2 by 2 mm and SAT thickness can be below 1 mm in lean athletes - therefore high 

errors at certain sites are to be expected for such scans. A literature survey on accuracy of MRI is 

given by Ross and Janssen 
[49]

 and comparative studies of MRI and US for visceral and subcutaneous 

fat evaluation were published by Koda et al. 
[50]

.  

 

In summary, it can be expected that US thickness measurements in adipose, muscle and other tissues 

will gain a leading role because of the high measurement accuracy. Future studies are needed, though, 

to establish standard measurement sites and protocols. Small, transportable US machines are also 

available which will enable application in the field. 

 

3D photonic scanning 

3D photonic scanning enables profiling of the body in unprecedented ways. Its development over the 

past 25 years for the clothing and automotive industries has included approaches using structured 

light, class 1 (eye-safe) lasers or millimetre wave technologies.  These have made contributions to 

epidemiological research and, more recently, sport science.  

 

Photonic scanning data have shown men and women to be fundamentally distinct in BMI-shape 

relationships 
[51]

,  have quantified the effect of age in varying shape at a given body size 
[52]

 and have 

explored the contrasting shapes of those of different ethnicity, at a similar level of BMI 
[53]

.  3D 

scanning has also been validated for assessing body volume and subsequent % fat prediction 

following appropriate accounting for lung volumes 
[54]

.  However, application of such a protocol 

requires subjects to breathe out fully whilst being scanned, which might be limiting for some 

individuals as it is for UWW.  A study of military personnel found good agreement between % fat 

derived from 3D scanning (Cyberware) with in-house software and DXA (GE Lunar Prodigy) 
[55]

, 

although the strategy for assessing the lung volume to subtract from scan volume before calculation of 

% fat was not stated.  In this respect, 3D and DXA scanning share the commonality of „undisclosed 

algorithms‟ for arriving at fatness and thereby, unquantified error, which future research must address. 

 

The requirement for participants to wear form-fitting clothing, which can be a severe limitation in 

obesity or body image research, is no impediment for research with athletes, many of whom are 
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required to wear such clothing in training and competition.  To date, no study assessing body fatness 

in athletes via 3D scanning has been undertaken because of the limited availability of scanning 

facilities.  However, recent access to this technology by elite athletes has enabled quantification of 

body segments amongst rowers, yielding data (such as segmental volumes) which quantify variability 

and effect sizes relative to controls from the general population 
[56]

. These findings are clearly 

significant for talent identification and could not have been assessed using conventional 

anthropometry.  

 

In summary, this novel approach does not attempt to quantify minimum weight or fatness, but is a 

potentially useful adjunct to existing measures, which may be pertinent in weight-restricted sports.  

Alone, the method measures body volume with some accuracy, but incorporates the same assumptions 

and limitations as densitometry when estimating FM and FFM. Nevertheless, the rapid profiling 

enables great numbers of athletes to be surveyed within the limitations of time and cost. Finally, its 

combination with other measurement modalities such as US and DXA will undoubtedly represent a 

major advance in future body composition research. 

 

Field methods 

 

Field methods are most often employed for monitoring body composition in both sports and health 

applications, but with varying degrees of validity. A summary of the important features of these 

techniques is provided in Table III. 

 

Insert Table III near here 

 

Anthropometry 

The acquisition of surface dimensional measurements as surrogates of composition was pioneered by 

Jindrich Matiegka 
[57]

 and subsequently applied to Olympic athletes at the 1928 Amsterdam games 

and thereafter, notably at the 1960 Rome games to characterize somatotype, proportions and size 

variability among sports 
[58]

. To date, well over 100  body fat prediction equations have been 

developed from skinfold measurements 
[59]

 and their inconsistent outcomes result from the differences 

in populations sampled, and lack of rigour in standardizing the technique.  For instance, varying the 

skinfold site by as little as 1 cm produces significantly different results when experienced 

practitioners measure the same participant 
[60]

.  Precise definitions for measurement sites, in addition 

to a standardized technique are, therefore, of fundamental importance for this method. 

 

To this end, 1986 saw a national standardization conference in Airlie, Virginia (USA) which resulted 

in a manual 
[59]

.  Simultaneously in Glasgow (UK), the International Society for the Advancement of 
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Kinanthropometry (ISAK) was formed, which subsequently established an exam-based certification 

scheme for practitioners and instructors, and a closely-defined protocol 
[61]

. Both manuals represent 

significant progress in the quality of data derived from anthropometric measures, usually quantified 

by statistics of replicate measures.  ISAK instructional courses often result in a seven-fold reduction 

in intra-tester error.  However, high precision with a single measurer can mask systematic differences 

between measurers and crucially, only under the ISAK scheme is inter-tester error also quantified. 

 

Fatness has been predicted from skinfolds, circumferences and skeletal width, usually validated 

against densitometry.  In some cases SEE of the skinfold method was estimated to be less than 3% 

when variation in the reference method was taken into account, though in generalized equations 
[62]

 

this value approached 5%, which is an unacceptably large error.  While many generalized equations 

have been cross-validated for specific samples, their use in determining fatness in athletes relies on 

conforming to the assumptions both of anthropometry and densitometry.Out of 18 such equations 

only three were found to be reliable for use in athletes 
[63]

.   

 

A cross-validated skinfold equation for USA high school wrestlers was produced in order to 

standardize the approach to establishing minimum weight.  Produced on 860 wrestlers across five 

universities, the study tested the validity of 16 equations, the best of which estimated the 

densitometry-derived minimum weight with an SEE of 2.4 kg based on the sum of three skinfolds 
[64]

. 

The results indicate that the equations developed by Lohman 
[65]

  with three skinfolds, Thorland with 

seven skinfolds and Behnke 
[66]

 with a combination of skinfolds, circumferences and skeletal widths, 

all predicted minimum weight with a total error of 2.5 kg.  This approach involved young adult 

wrestlers, but could be generalized to other athletic groups, if a large validation study were performed.  

However, such a study would need to ensure that the reference method was obtained via a multi-

component model, because of the known violation of the assumed density of the FFM using 

densitometry alone.   

 

While circumferences can estimate body fatness (SEE > 3%), they represent variability in frame size 

and muscularity in addition to fat.  However, combining skinfolds and circumferences does not 

increase the prediction of body fat over skinfolds alone 
[64]

.  Similarly, the use of skeletal breadths to 

estimate body fatness has an SEE > 4% and offers no improvement over skinfolds in assessing either 

fatness or estimating minimal weight. Another approach which has been widely reported in the 

obesity literature is the use of anterior-posterior abdominal thickness or „sagittal abdominal diameter‟. 

This dimension has been particularly associated with identifying visceral fat accumulation 
[67]

, 

metabolic syndrome 
[68]

, cardiovascular risk 
[69]

 and shape change during weight loss 
[70]

.  While this 

might not initially seem a strong candidate for use in athletes, it is possible that abdominal dimensions 

could provide a framework for a normal anticipated shape once normative data have been established.      
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An alternative to converting skinfolds to body fat and minimum weight is the approach promoted by 

Marfell-Jones 
[71]

 who highlighted the value of using skinfolds as a valid proxy for adiposity. 

Individual and sum of skinfolds can be compared to published norms for Olympic or world class 

athletes 
[72,73,74,75,76]

.  The rationale for proposing the skinfold thickness as a valid measure in its own 

right without conversion to FM or % body fat, centres on the avoidance of a series of assumptions 

which are known to be invalid – especially so in an athletic sample. These include assumptions of 

constant skin (dermis and epidermis) thickness, uniform subcutaneous adipose tissue compressibility, 

constant relative adipose tissue distribution, constant fat-fraction of adipose tissue, constant internal to 

external distribution of fat and above all, the assumed constancy of the FFM density.  The resulting 

error in accurately estimating % body fat necessarily includes the additional errors of the reference 

method (usually densitometry), which have been identified to be greater amongst athletic groups.  

 

Various regimens have summed values from different measurement sites in an attempt to capture a 

representative surface adiposity.  While it is clear that certain sites such as the thigh and the iliac crest 

tend to be larger than others, such a pattern may alter with increasing leanness.  This introduces a 

further level of complexity (explaining why generalized formulae may not be valid for athletes) and 

affords the opportunity to track skinfold patterns, means or ratios with leanness.  The first of these is 

best depicted in a radial plot known as the skinfold map (Figure 4) where the profile can be used for 

tracking individual change or comparing an individual to group data.   

 

Insert Figure 4 near here 

 

Using the data presented by Kerr and Stewart 
[77]

, the average skinfold magnitude across sites assessed 

by ISAK-qualified practitioners varies considerably by sport and is generally lower in males than 

females as depicted in Figure 5. 

 

Insert Figure 5 near here 

 

Using the same approach and comparing these grouped athlete profiles with those of a cohort of adult 

anorexic patients 
[78]

, we discover that female gymnasts have lower, but all other female athletes 

slightly higher, scores.  It is important to recognize the probability of individuals displaying different 

thresholds of minimum skinfolds before health or performance deteriorate – so applying group data to 

individuals requires caution. 

 

As is the case for extreme obesity, in extreme leanness, the sexual dimorphism becomes less apparent 

– in other words, the characteristic fat patterning associated with males and females becomes less 
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distinct with reduced variability in skinfold magnitude across sites.  Nevertheless, some 

distinctiveness remains, with the male profile having the highest value at the subscapular site, while 

the female profile is highest at the thigh. This can be seen in greater detail by considering skinfold 

ratios.  These have been used extensively in tracking fat patterning during childhood growth, but may 

have a role in identifying minimum fatness in athletes.  Figure 6 depicts the leanest of an athletic 

sample for selected skinfold ratios (the same individuals as in Figure 4) and also the equivalent mean 

values for 106 male and 33 female elite athletes from a range of sports 
[79]

.   

 

Insert Figure 6 near here 

 

A number of interesting observations can be made from Figure 6, including that subscapular:triceps, 

thigh:abdominal and triceps:biceps skinfold ratios all appear to exhibit a difference between the 

leanest and mean values, thereby suggestive of a „physique gradient‟ of fat patterning.  On the 

contrary, the abdominal:medial calf ratio displays no such gradient, although gender differences 

appear preserved.  The abdominal:iliac crest ratio appears to depict neither a physique gradient, nor 

sexual dimorphism.  While caution may be advised in the use of ratios as opposed to absolute values 

as a result of error propagation, ratios appear ubiquitously throughout exercise science for monitoring 

athletes, and a combination of absolute and ratio scores (in conjunction with health and performance 

measures), might best serve scientists seeking to use skinfolds to establish a system of flagging 

inappropriately low body fat levels and alerting athletes, coaches and medical staff accordingly.   

 

In summary, anthropometry provides a simple and highly portable field method for estimating body 

composition via surrogate measures for fatness and muscularity. Provided the measurer is well trained 

and follows a standard protocol, the assumptions of the technique are acknowledged, and the data 

treatments are not confounded with additional sources of error (conversion to %FM/FFM), 

anthropometric techniques have widespread utility for monitoring athlete body composition. 

 

Bioelectrical impedance analysis (BIA) 

The total volume of a conductor can be estimated from its length (L) and the resistance (R) to a single 

frequency electric current (L
2
/R). This principle has been applied to body composition assessment 

using BIA. The key assumptions are that the conductor is cylindrical in shape and that the current is 

distributed throughout the conductor uniformly 
[81]

.   

 

Multifrequency bioimpedance can be used to quantify distribution of extra- and intra-cellular water 

with important applications to the medical field in the areas of fluid balance and monitoring various 

patient groups including hemodialysis and other renal disease patients 
[82]

. The work of Wabel et al., 

[83]
 indicates the extensive use of BIA spectroscopy in the management of fluid balance to prevent 
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both fluid overload and dehydration. Applications to the dehydrated athletic population have yet to be 

developed. 

 

Though BIA has been used widely to estimate body composition, and many equations have been 

reviewed 
[81]

, its accuracy is limited in estimating body water and body fatness. In a careful 

comparison between BIA and skinfolds among wrestlers, where several laboratories followed 

diligently the same measurement protocol, both methods predicted percent body fat (from 

densitometry) with an SEE of 3.5% 
[84]

.  This indicates clearly the accuracy limits with these 

measurement techniques, and the SEE values are obtainable only „within‟ specific groups, but not for 

mixed groups of athletes. When individual body composition of an athlete is to be assessed, one 

should consider that, for example, 3% deviation from an assumed true value of 8% would result in % 

body fat values between 5-11%. This is far from the accuracy necessary for proper interpretation of 

health and performance optimization. While other studies using anthropometry have lower errors than 

this, a further limitation of the BIA method for athletes lies in the measurement pre-requisites which 

include abstaining from exercise.  

 

Body mass index (BMI) and mass index (MI) 

Several indices expressing mass relative to some power function of height have been suggested and 

tested for maximum correlation with mass and minimum correlation with height 
[85,86,87]

. One that is 

widely used is the BMI (Quetelet's index) which relates body mass (m; in kg) and height (h; in m): 

BMI = m/h
2
. Anthropometric values of height, body mass and sitting height can easily be measured 

with high accuracy, but these indices measure ponderosity, not fatness. Interpretation of mass with 

respect to stature („relative body mass‟) is not a simple task. The WHO Expert Committee on Physical 

Status 
[88]

  stated:  “Problems arise, however, in adults whose shape differ from the norm ... Care 

should therefore be taken in groups and individuals with unusual leg length to avoid classifying them 

inappropriately as thin or overweight.”   

 

Therefore, leg length or sitting height (as an indirect measure for leg length) should also be measured 

when ponderosity is to be assessed. A recently introduced extension of the BMI formula termed mass 

index (MI)
 [3,4,5]

 has the advantage of considering the individual‟s sitting height. In the general MI 

formula, the stature (h), sitting height (s), and body mass (m) determine the value of this index for 

„relative body mass, with C being the individual Cormic Index (C = s/h): 

        
  

 
 
 

 
 

   
  

 
  
 
 

 
 

      
     

The value of 0.53 forC , which is a value in the middle of the Cormic index continuum, represents 

„mean sitting height‟. The exponent k weights the impact of the Cormic index. The unit of MI is  
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kgm
-2

, as for the BMI, which is just the special case for k set to zero; in this specific case we get:  

BMI = MI0 (no consideration of individual leg length). For k=2, the general equation reduces to 

(MI2= 0.53
2
 m/s

2
) in which body height (h) does not appear. The choice of k=2 is in accordance with 

anthropometric data published by Norgan
[89]

 when a measure which is independent of C (and thus 

independent of leg length) is desired. However, the slope of the regression line in Norgan‟s 

publication is based on group mean values for BMI and C, which is not necessarily equal to the mean 

of the slopes of regression lines within individual groups. For k =1 we get (MI1 = 0.53 m/hs). Non-

integer values for k can also be used. Further studies are necessary to identify the best value of k for 

appropriate consideration of individual leg length. 

 

 

 

It has to be pointed out that no weight-corrected-for-body-dimension index can distinguish between 

fat and muscle mass of an individual. This inability of BMI to assess fatness or adiposity has been 

reported in the literature 
[90]

. Despite this limitation, the use of MI instead of BMI may permit 

diagnosis of underweight and assessment of „optimum body weight‟ for high performance in sports on 

a finer scale. Sitting height or leg length is as easy to measure as stature
 [91]

 and should be included in 

all basic data sets of athletes and patients. In young athletes, this will also assist in understanding 

problems associated with individual growth. 

 

SUMMARY AND CONCLUSION 

 

In summary, all of the techniques in common use have some inherent problems, whether in 

methodology, interpreting the data, or in the assumptions they make. Limitations in both the 2-

component model (accuracy) and multi-component model (practicality) highlight the desire for an 

economical laboratory or field approach to body composition assessment that is both accurate and 

objective. In the absence of such a criterion technique, there is scope for several of the reviewed 

methods to play a useful role under certain circumstances. For example, where the body composition 

assessment is used as a performance or selection criterion, then technique accuracy and reliability are 

of paramount importance. The multi-component model might be employed here provided the selected 

model accounts for the variability of the density of FFM in its computation. In this case, health care 

and high-performance support staff must give due consideration to the technical error of 

measurement, and not apply an absolute criterion or threshold value for selection unilaterally. This is 

of particular importance when extremely lean athletes are examined. 

 

However, if the athlete‟s body composition is being monitored to assess the effectiveness of an 

exercise or dietary intervention, the use of some laboratory or field method may be more practical. 
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Depending on the availability of technology and operator training, laboratory techniques such as 

DXA, ADP and US could be employed. Similarly, field methods such as anthropometry offer a cost-

effective means of monitoring SAT, provided the operator has the necessary training. Clearly, BIA 

and the BMI are not supported for assessing or monitoring body composition, nor are those methods 

that make assumptions about the density of FFM in their computation. 

 

Recent developments in US imaging have made possible accurate and reliable estimates of fat 

thickness in multiple sites of the body. However, interpretation of the obtained scan image is a 

difficult task and further research is necessary in this field. Many coaches and sport scientists 

anticipate the future development of a minimum sum of fat thickness, which corresponds to a 

minimum whole body % fat, for the establishment of participation standards for all athletic groups. 

While the available body composition methods do not permit this at present, some of the emerging 

medical imaging technologies may achieve the required accuracy to make this a reality in the future. 

 

Regardless of the method favoured, it is imperative that coaches, athletes and scientists appreciate the 

importance necessarily attached to the presentation of an athlete for measurement. Their adherence to 

fundamental pre-requisites such as fasting, no exercise in the past 12-24 hours and standardization of 

hydration influences crucially the body composition data on which decisions are predicated.  For 

instance, glycogen supercompensation can make a noticeable difference to skinfold compressibility, 

increase conductivity as a result of water storage, and add to fat-free soft tissue registered by a DXA 

scan.  Altering fluid or electrolyte balance, which is an inevitable consequence of training and 

competition, will adversely affect measured body composition in several techniques, so 

standardization of athlete presentation prior to measuring is of paramount importance and should be 

the aspiration of national laboratories for high performance testing.  
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Table I. Features of body composition reference methods 

Method Level
1
 Approach Comp

2
 Outcome  

Measures 

Assumptions / cautions Advantages  Limitations 

Cadaver 

dissection 

D Anatomical 5 Tissue masses: 

 Skin 

 Adipose 

 Bone 

 Muscle 

 Other 

 Limited number of dissected 

specimens cannot be representative 

of the range of body types and 

compositions among athletes 

 May be used to validate other 

indirect methods 

 Small numbers of cadavers 

 None were athletic 

 Limited range of structures 

 Long and tedious method 

 Loss of body fluid 

 Cannot be used for individual 

analysis 

Multicomponent 

models 

D Chemical 3-6  Fat mass 

 Body density 

 Total body water 

 Bone mineral 

 Protein 

 Bone mineral includes other mineral 

in other tissues 

 Constant proportion of protein to 

water 

 Assume constant densities of each 

component 

 Most  appropriate reference method 

to date 

 Accommodates variability of both 

bone mineral and water content 

which invalidates the two component 

model. 

 Long analysis process 

 Expensive technology 

 Lack of published normative data 

Medical imaging: 

MRI and CT3 

D Anatomical 4 Tissue thickness/ 

area/volume: 

 Adipose 

 Bone 

 Muscle 

 Other 

 Both machines designed primarily 

for diagnostic use rather than 

quantifying tissue dimensions 

 Relating anatomical dimensions to 

tissue masses requires assumptions 

about tissue densities 

 More assumptions and vast 

computing power required for in 

assessing deep fat depots 

 No exposure to ionizing radiation 

with MRI 

 Expensive technology 

 Long analysis process 

 High exposure to ionizing radiation 

with CT 

 Confined space of some apparatus 

may induce claustrophobia 

 Lack of published normative data 

 

Note: 1.  Levels of analysis; D = direct, I = indirect, DI = doubly indirect 

 2.  Comp = number of components. 

 3.  MRI = magnetic resonance imaging, CT = computed tomography 



Table II. Features of body composition laboratory methods 

Method Level
1
 Approach Comp

2
 Outcome  

Measures 

Assumptions / cautions Advantages  Limitations 

DXA3 D Chemical 3 Component mass:  

 Fat (lipid) 

 Bone mineral 

 Other fat free soft 

tissue 

 Interpolation for soft tissues in areas 

where bone is detected 

 Assumes magnification errors and 

beam hardening are insignificant 

 

 Whole body approach 

 Cost and time efficiency 

 Minimal subject action needed 

 Small radiation dose 

 Minimal operator training 

 Regional compartment analysis 

 Independent of hydration status 

 Good precision 

 Validation against porcine models 

 Calculation algorithms differ 

between manufacturers and are not 

published 

 Pencil versus fan beam differences 

in  accuracy 

 Limited scan bed size 

 Cannot scan if pregnant  

 Regional legislative  requirements 

differ 

Densitometry- 

 (UWW) 

 

 

D 

 

Chemical 

 

0 

 

Whole body density  UWW requires estimation of 

residual volume and other entrapped 

air spaces 

 Whole body approach  UWW requires considerable subject 

involvement 

 Requirement to remain still 

throughout and issues of water 

confidence create difficulties for 

measuring children 

 Estimation of entrapped air spaces is 

problematic 

 Body density does not provide 

information about individual tissue 

components 

Densitometry- 

(UWW) 

 

 

I Chemical 2  % Fat 

 % Fat-free 

 

 Uses invalid assumptions regarding 

the density of fat-free tissues 

 Whole body approach 

 Simple calculation 

 Method not supported in strength 

trained individuals and other 

populations including osteoporotic, 

children and athletes 

Densitometry- 

(ADP) 

I Chemical 2  % Fat 

 % Fat-free 

 ADP makes assumptions about the 

thermal air properties within the 

chamber 

 ADP requires estimate of other 

entrapped air spaces  

 Uses invalid assumptions regarding 

the density of fat-free tissues  

 ADP is easier to administer, is more 

time efficient and requires less 

participant action and/or discomfort 

than UWW 

 Does not require water confidence 

 Simple calculation 

 Requirement to remain still 

throughout creates difficulties for 

measuring children 

 Method not supported in strength 

trained individuals and other 

populations including osteoporotic, 

children and athletes 

Hydrometry- 

(Body water) 

D Chemical 0  % water  The tracer is distributed 

homogeneously equally across all 

components and is not metabolised 

 

 Whole body approach 

 Minimal subject action needed 

 Can use saliva, urine or blood to 

estimate the dilution 

 Easy to administer 

 Time to reach equilibrium  (3-4 

hours) 

 Expensive  

 Acute ingestion of a large bolus of 

fluid affects the assessment 



Hydrometry- 

(Body water) 

D Chemical 2  % Fat 

 % Fat-free 

 Uses invalid assumptions regarding 

the hydration of fat-free tissues  

 Easy to administer  Method not supported in people with 

cardiac, kidney disease and those 

with oedema and other fluid 

retention problem 

Ultrasound D Anatomical 3 Tissue layer thickness 

 Skin 

 Adipose 

 Muscle 

 No image distortion 

 Correct speed of sound used for 

given tissue 

 Correct detection of tissue layer 

boundaries 

 High accuracy and precision 

 Applicable in the field 

 Non-invasive and no ionising 

radiation 

 No tissue compression 

 Tissue thickness from 1 mm to 300 

mm measureable 

 Many thickness measurements from 

each image 

 Rapid data acquisition 

 Minimal subject involvement 

 Low cost compared to MRI or CT 

 

 Samples the subcutaneous fat 

deposit only 

 Considerable skill necessary 

 Method is not standardised yet 

 Ultrasound technique includes 

inherent artefacts 

3D photonic 

scanning 

D Anatomical 0  Body surface area 

 Body volume 

 Shape parameters 

 Clothing tightness does not affect the 

body’s contour or profile 

 Always overestimates body volume 

due to hair or clothing 

 Minimum subject involvement 

 Rapid data acquisition (10-15 s) 

 Some clothing colours and textures 

affect image quality 

 Hirsuitism affects body volume 

3D photonic 

scanning 

I Chemical 2  % Fat 

 % Fat-free 

 Uses invalid assumptions regarding 

the density of FM and FFM 

 As above  Method not supported in strength 

trained individuals and other 

populations including osteoporotic, 

children and athletes 

 

Note: 1.  Levels of analysis; D = direct, I = indirect, DI = doubly indirect 

 2.  Comp = number of components. 

 3.  DXA = dual energy X-ray absorptiometry, UWW = underwater weighing, ADP = air displacement plethysmography, 3D = three dimensional 



Table III. Features of body composition field methods 

Method Level
1
 Approach Comp

2
 Outcome  

Measures 

Assumptions / cautions Advantages  Limitations 

Anthropometry- 

(Skinfolds) 

I Anatomical 1  Skinfold sum 

 Skinfold ratios 

 Consistent fat patterning 

 Fixed subcutaneous to internal fat 

relationship 

 Constant skinfold compressibility 

 Constant skin to adipose fraction 

 Lipid fraction of adipose tissue 

 Water content of adipose tissue 

 Reliable scores with trained 

technicians 

 Results can be compared with norms 

 Legitimate for test re-test on 

individuals 

 Low cost, convenient data collection 

 Samples the subcutaneous fat 

deposit only 

 Can be intrusive for some 

individuals 

 Some sites difficult to achieve  

 Standardization of method essential 

Anthropometry- 

(Skinfolds 

equations) 

DI Anatomical 2  % Fat 

 % Fat-free 

 Aggregates the limitations of both 

dependent and independent variables 

in the prediction equation   

 Method has some applicability with 

some populations 

 Numerous equations available which 

can cause confusion 

 Method not supported in extreme 

populations (e.g. the obese) 

 Equations are population-specific 

and need to be cross-validated for 

the sample in question 

BIA I Chemical 2  Total body water 

 % Fat 

 % Fat-free 

 Assumes subject compliance to 

testing prerequisites  

 Assumes geometric similarity 

between individuals 

 Assumes tissue resistivity is similar 

between individuals 

 Input data (age, height, weight, 

athletic status) accounts for high (up 

to 85%) of variance in the dependent 

variable 

 

 Precision high 

 Minimal subject involvement 

 No ionising radiation 

 Minimum subject involvement 

 Rapid data acquisition 

 Apparent sophistication 

 Accuracy poor 

 Results affected by hydration status 

 Trunk underrepresented / limbs 

overrepresented in value 

 Several different models have 

electrodes places at various positions 

on the body (arm to leg, leg to leg, 

arm to arm) 

BMI and MI I Anatomical 0 Index of relative 

weight (ponderosity) 

 Assumes weight change is related 

solely to adiposity 

 Fat free mass to height  proportion is  

constant 

 Assumes constant body segment 

proportions 

 Precision high 

 Minimal subject involvement 

 Minimum subject involvement 

 Rapid data acquisition 

 Great variability in fat content 

among individuals with the same 

BMI 

 Frame size, proportions and 

muscularity independently influence 

BMI 

 Mass and stature exhibit 

considerable diurnal variability 

 

 

Note: 1.  Level of analysis; D = direct, I = indirect, DI = doubly indirect 

 2.  Comp = number of components. 

 3.  BIA = bioelectrical impedance analysis, BMI = body mass index, MI = mass index 
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