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Abstract 
Purpose: Wearable microsensor technology allows for measurements of physical 

activity in team sports. To use this technology with confidence, it is critical to determine 

its reliability. Therefore, the purpose of this study was to assess the reliability and 

sensitivity of a commercially available microsensor technology to measure physical 

activity demands in handball.  

Methods: A total of twenty-two elite and sub-elite handball players (age, 22.6 ± 3.7 

years; body mass, 84.0 ± 14.2 kg; height, 184.4 ± 12.0 cm; mean ± SD) were included 

in the present study. The subjects were instrumented with two devices (Optimeye S5, 

Catapult Sports, Melbourne, Australia), and participated either in a laboratory 

assessment (n =10) or field assessment (n = 12). The laboratory assessment consisted of 

seven different handball specific movement tasks, whereas the field assessment was 

conducted in twelve handball-training sessions. Various variables were extracted from 

the manufacture’s software (Catapult Sprint, Catapult Sports, Melbourne, Australia) 

including Inertial movement analysis (IMA) magnitude and counts, and tri-axial 

accelerometer data (Player Load). The reliability between devices and sensitivity was 

established using coefficient of variation (CV) and smallest worthwhile different 

(SWD).  

Results: Laboratory assessment: IMA magnitude showed a good reliability (2.9%) in 

well-controlled movement tasks. The CV increased (4.4 to 8.2%) in more chaotic 

movement tasks. Field assessment: IMA counts showed a good reliability (CV 2.4%) 

when displayed as total counts. However, the CV increased when categorized in low 

(2.9%), medium (5.5%) and high (5.6%) intensity bands. Medium/high band 

(combined) showed a CV of 3.9%. The CV for low, medium/high and total counts was 

less than the SWD. Furthermore, it was observed a good reliability of Player Load 

(0.9%), which was less than the SWD.   

Conclusion:  The reliability of IMA counts was good, given that data were expressed as 

low, medium/high and total counts. It was observed a good reliability for Player Load. 

The CV of the aforementioned variables was well below the SWD, suggesting that 

Optimeye microsensors and its software are sensitive to detect “real and worthwhile” 

differences in handball activity. 

 Keywords: Team sport, accelerometer, gyroscope, measurement error 
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1. Introduction 

Measuring the physical activity demands in training and games is today common 

practice in professional team sports (Aughey, 2011; Bradley et al., 2013; Povoas et al., 

2012; Wisbey, Montgomery, Pyne, & Rattray, 2010). This can provide valuable 

information to coaches, sport scientists and medical staff. Game analysis can lead to a 

better understanding of the physical performance and game demands, which can help to 

improve the practice of training and the physical development of players (Cunniffe, 

Proctor, Baker, & Davies, 2009; Di Salvo et al., 2007; Michalsik, Madsen, & Aagaard, 

2014). Furthermore, insight in the specific activity level can assist the weekly or day-

by-day load management (Pyne, Spencer, & Mujika, 2014; Scott, Lockie, Knight, 

Clark, & Janse de Jonge, 2013). An improved periodization can optimize the 

performance in training and games, and may help the detection of injury, fatigue and 

overtraining (Cummins, Orr, O'Connor, & West, 2013).  

In recent years, there has been an increased interest around the use of wearable 

microsensor technology, such as accelerometers, gyroscopes and magnetometers to 

measure the physical activity demands in team sports (Chambers, Gabbett, Cole, & 

Beard, 2015; Dellaserra, Gao, & Ransdell, 2014). This technology has been used by 

various team sports in training and games (Boyd, Ball, & Aughey, 2013; Cormack, 

Smith, Mooney, Young, & O'Brien, 2014; Montgomery, Pyne, & Minahan, 2010). By 

using specific software algorithms the technology can detect important activities and 

facets of the play (Gabbett, Jenkins, & Abernethy, 2010; Gastin, McLean, Spittle, & 

Breed, 2013; Polley, Cormack, Gabbett, & Polglaze, 2015). However, to confidently 

use this technology in the field is it critical to establish the reliability. Currently there is 

limited information about the reliability of such technology, as only a small quantity of 

research studies have been published to date.  

The purpose of this study was therefore to assess the reliability of a commercial 

available microsensor technology to measure the physical activity demands in team 

sports such as handball. Furthermore, the sensitivity of such technology to detect “real 

and worthwhile” differences in handball activity was examined.  
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The present study has the following research question:  

Is the Optimeye S5 (Catapult Sports, Melbourne, Australia) reliable and sensitive 

enough to measure the physical activity demands in elite handball based on Inertial 

movement analysis (IMA) and tri-axial accelerometer data (Player Load)? 
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2. Theory 

2.1 How to measure physical activity in team sports? 

The literature describes physical activity “as any bodily movement produced by skeletal 

muscles that results in energy expenditure” (Caspersen, Powell, & Christenson, 1985).  

This is a general definition that can be categorized in a variety of ways. In this context 

will physical activity be associated with the activity demands in team sports.  

2.1.1 Physical activity demands  
The activity (or movement) demands in team sports are highly complex (Gray & 

Jenkins, 2010; Karcher & Buchheit, 2014; Stolen, Chamari, Castagna, & Wisloff, 

2005). Sports such as handball, basketball, football codes and rugby codes are very 

different in nature, however there is still a major resemblance in their general activity 

patterns. As such, the activity is intermittent and multidirectional (Ben Abdelkrim, El 

Fazaa, & El Ati, 2007; Faude, Koch, & Meyer, 2012; Michalsik, Aagaard, & Madsen, 

2013). It consists of high-intensity running interspersed with periods of low intensity or 

recovery (Cunniffe et al., 2009; Di Salvo et al., 2007; Michalsik et al., 2014). In 

addition, the activity involves brief and explosive movement actions, as well as 

collisions between players, which are repeated frequently within confined spaces 

(Dawson, Hopkinson, Appleby, Stewart, & Roberts, 2004; Gabbett et al., 2010; 

Rampinini, Impellizzeri, Castagna, Coutts, & Wisloff, 2009). Therefore, is it very 

challenging to measure physical activity demands in team sports. 

2.1.2 Methods to measure physical activity  
In general, the physical activity demands in team sports can be measured externally or 

internally (Halson, 2014). As such, measures of external activity demands describe the 

physical stress (“stimuli”) generated by the player (Impellizzeri, Rampinini, & Marcora, 

2005). On the other hand, measures of internal activity demands describe the 

physiological and psychological stress (“response”) experienced by the player based on 

a given external “stimuli” (Halson, 2014). These measures can compliment each other, 

as they measure different aspect of physical activity. Using a combination of such 

measures may therefore provide a better knowledge of the activity demands in team 

sports. With respect to the purpose, the study will focus only on methods that are used 

to measure external activity demands.  
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Traditionally, time-motion analysis has been a favoured method to measure the external 

activity demands in team sports. This method uses different systems (or technologies) 

such as notational video systems, semi-automatic camera systems, global positioning 

system (GPS) and local positioning system (LPS) to track player movements (Carling, 

Bloomfield, Nelsen, & Reilly, 2008). These systems have their well-described practical 

advantages and disadvantages as tools to measure activity in team sports (Barris & 

Button, 2008; Carling et al., 2008; Larsson, 2003).  

Time-motion analysis are mostly known to measure displacement, or so-called “running 

based activities”. As such, one of the most used activity measure has been distance or 

time spent within specific speed bands, with special attention on high-speed running 

(Bradley et al., 2009; Coutts, Quinn, Hocking, Castagna, & Rampinini, 2010; Mohr, 

Krustrup, & Bangsbo, 2003). In recent years, it has become more common to measure 

activities such as accelerations, decelerations and repeated sprint efforts (Varley & 

Aughey, 2013; Varley, Gabbett, & Aughey, 2014). Time-motion analysis systems have 

been established as reliable and valid to measure speed and distance in general (Coutts 

& Duffield, 2010; Di Salvo, Collins, McNeill, & Marco, 2006; Duffield, Reid, Baker, & 

Spratford, 2010; Frencken, Lemmink, & Delleman, 2010; Ogris et al., 2012). However, 

the aforementioned studies have reported that the reliability and validity for most of 

these systems decreases with faster and/or less linear activities, especially if performed 

within confined spaces. Moreover, time-motion analysis fails to measure important 

“non-running based activities” such as agility actions (e.g., changes of direction; CoD), 

jump efforts and player contact (e.g., collisions and tackles). These activities can be 

registered via notational frequency analysis (Mohr et al., 2003). However, this is time-

consuming, and more importantly, it cannot measure the magnitude and the direction of 

these activity events. The failure to precisely measure “non-running based activities” 

may result in an underestimation of the “true” physical activity demands in team sports, 

specifically in sports such as handball where these activities are performed frequently 

(Karcher & Buchheit, 2014). A wearable microsensor technology has therefore been 

introduced in team sports to measure the “non-running based activity”. This technology 

can compliment existing time-motion analysis, and together they may better measure 

the overall external physical activity demands in team sports. The following sections 

will describe this microsensor technology in detail.  
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2.2 Microsensor technology  
Microsensor (or inertial sensor) technology includes accelerometers, gyroscope and 

magnetometers. To understand how these microsensors measure physical activity in 

team sports, it is essential to understand their operation principles. The following is a 

general description, as the manufacturer did not reveal specifics about the microsensor 

technology that was used the present study. 

2.2.1 Accelerometers 
Accelerometers are motion sensors that can detect linear acceleration along one or 

several axes (Yang & Hsu, 2010). Aminian and Najafi (2004) explain that these sensors 

consist of a movable proof mass (or seismic mass) that is connected to a “frame” 

(accelerometer case) via a “beam”, which can be associated with a spring structure. Due 

to external acceleration1, the proof mass will cause a deformation of the “spring” with 

respect to the “frame” (Aminian & Najafi, 2004). The magnitude of this deformation is 

proportional to the external acceleration (Kavanagh & Menz, 2008), and can be 

measured via a specific “sensing scheme” within the sensor (Godfrey, Conway, 

Meagher, & OLaighin, 2008). The type of “sensing scheme” varies between different 

types of accelerometers, which have their well-described practical advantages and 

disadvantages (Godfrey et al., 2008; Kavanagh & Menz, 2008). For example, some 

accelerometers cannot detect gravity, whereas other accelerometers cannot separate 

between the applied acceleration in space and the gravitational acceleration (Kavanagh 

& Menz, 2008). 

2.2.2 Gyroscopes 
Gyroscopes are motion sensors that can detect angular velocity about one or several 

axes (Yang & Hsu, 2010). They use a vibrating mechanical element to detect angular 

velocity, via the “transfer of energy between two vibration modes … caused by the 

Coriolis” acceleration (Aminian & Najafi, 2004). The “Coriolis effect is an apparent 

force that arises in a rotational reference frame and is proportional to the angular rate of 

rotation” (Aminian & Najafi, 2004). The angular velocity is measured with a specific 

“sensing scheme”, which vary between different types of gyroscopes. Additionally, a 

gyroscope can estimate change in orientation (rotational angles) by integrating the 

angular velocity (Luinge & Veltink, 2005).  
                                                 
1 External acceleration refers to the applied acceleration in space and/or gravitational acceleration 
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Accelerometers and gyroscope are often used together, as they have complimentary 

features (Luinge & Veltink, 2005). For example, together they can provide more precise 

acceleration data, as the inclination with respect to gravity is know.  

2.2.3 Magnetometers 
A magnetometer is a sensor that detects the earth’s magnetic field; specifically “it can 

measure orientation relative to the magnetic north direction” (Aminian & Najafi, 2004). 

It is therefore often described as an electronic compass. A magnetometer is technical 

not a “true” microsensor, but is sometimes used together with an accelerometer and a 

gyroscope. For example, it can be used to correct the orientation to the gyroscope.   

2.3 The use of microsensor technology in team sports  
In team sports, microsensors are integrated within micro-electro-mechanical system 

(MEMS) devices that also include GPS sensors and heart rate compatibility (Chambers 

et al., 2015; Dellaserra et al., 2014). These devices are very practical to use in practice. 

As such, they contain a built-in microprocessor that offers automatic feedback in real 

time via telemetry. Moreover, the microsensor technology is available both outdoors 

and indoors, and does not require any stationary receivers or cameras to function 

(Chambers et al., 2015). The device is worn on the players’ upper back in a custom-

made vest or within the jersey. These devices will herby be referred as wearable 

tracking devices. 

To date, there are several different manufactures of wearable tracking devices for team 

sports. Some of the commercial available device models include MinimaxX and 

Optimeye (Catapult Sports, Melbourne, Australia), SPI-ProX and SPI-HPU (GPSports, 

Canberra, Australia), VX (VX Sport, Lower Hutt, New Zealand) and Viper pod 

(STATSports, UK, Ireland). In addition to their hardware technology, these 

manufactures have developed specific algorithms within the software to automatically 

convert the raw inertial data (input) into meaningful and standardized variables (output), 

which can be used to assess physical activity demands. In general, these variables can 

be categorized into so-called workload or event detection variables.  
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2.3.1 Workload variables 
Workload variables have been used as a general measure of the physical activity (or 

exertion). These variables aims to measure both the “running based activity” and the 

“non-running based activity”. Two commonly used variables are Player Load (Catapult 

Sports, Melbourne, Australia) and Body Load (GPSports, Canberra, Australia). The 

following will only contain a description of the Player Load variable. 

Player Load can be described as a resultant vector magnitude derived from tri-axial 

accelerometer data. This variable has been used to measure physical activity demands in 

various team sports (Boyd et al., 2013; Cormack et al., 2014; Montgomery et al., 2010; 

Polley et al., 2015; Young, Hepner, & Robbins, 2012). For example, it has been 

reported to discriminate between training and game, playing positions and level of 

competition in Australian football (Boyd et al., 2013). In addition, Player Load has been 

observed to detect differences between periods in lacrosse games (Polley et al., 2015). 

Such findings may indicate that Player Load is a useful measure to assess differences in 

team sport activity profiles. 

Previous research has documented a strong correlation between Player Load and total 

distance in Australian football (Gallo, Cormack, Gabbett, Williams, & Lorenzen, 2015) 

and field hockey (Polglaze, Dawson, Hiscock, & Peeling, 2015). This may indicate high 

sensitivity to “running based activity”, possibly due to the vertical acceleration from 

heel strikes. In this respect, there are several formula variations of Player Load that can 

be used to assess different aspects of physical activity demands in team sports. A 

commonly used variable is Player Load 2D (Player Load2D), which omits the vertical 

accelerometer axis to possibly better represent “non-running based activities”. As such, 

this variable has been associated with agility demands in Australian football (Davies, 

Young, Farrow, & Bahnert, 2013) and collision demands in rugby league (Gabbett, 

2015). Furthermore, previous research has separated the contributions of the individual 

axes to Player Load (Y, X and Z) for more detailed activity analysis (Cormack, 

Mooney, Morgan, & McGuigan, 2013; Cormack et al., 2014; Page, Marrin, Brogden, & 

Greig, 2015). For example, it has been reported an association between reduction in the 

vertical accelerometer data and jump performance in Australian football (Cormack et 

al., 2013), suggesting that the individual axes of Player Load may be used to detect 

neuromuscular fatigue. With respect to the aforementioned studies, the different 
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formula variations of Player Load may be considered as valuable as measures of activity 

in team sports.   

2.3.2 Event detection variables 
Event detection variables are used to register the frequency and distinguish between 

different “non-running based activity” events. Such variables are often derived from 

accelerometer, gyroscope and magnetometer data. Although, it should be noted that 

magnetometer data are not actually used within the algorithms, but applied to correct 

the gyroscope’s orientation.     

A collision and/or tackle detection variable has been used in Australian football and 

rugby codes to detect events of physical contact during training and games (Gabbett et 

al., 2010; Gastin, McLean, Breed, & Spittle, 2014). Specifically, this variable has been 

used to detect and categorize between mild, moderate and heavy collision/tackle events 

(Gabbett et al., 2010). This can provide valuable insights in performance and load 

profile analysis in contact sports. However, this variable is to date only available for the 

aforementioned sports and will therefore not be discussed any further. 

A new technological developed by Catapult Sports (Catapult Sports, Melbourne, VIC, 

Australia) offers specific variables that aim to describe a player’s agility pattern. This 

technology is termed “Inertial movement analysis” (IMA). In addition to estimate the 

frequency, IMA may also calculate the magnitude and the direction of an agility action. 

It can potentially classify events within intensity, and distinguish between forward, 

backward, and left and right lateral events. IMA related variables could be useful to 

detect important facets of play and to distinguish between individual players’ agility 

patterns. There are no published studies to date that have used this variable to analyse 

the activity patterns in team sports.  

IMA may also detect jump efforts, which can be considered as relevant for handball 

analysis. However, this variable requires that the players land on their feet. As handball 

players often land on their back, this variable will not be discussed further. 
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2.4 Reliability of microsensor technology used in team sports  
The usefulness of microsensors can be determined by its precision. The precision of the 

observed value of a measure can be associated with the degree of measurement error (or 

variation), which “makes the observed value … differ from the true value” (Hopkins, 

2000). Measurement error is typically categorized between random error and systematic 

bias. Systematic bias can refers to the general trend of variation (positive or negative), 

whereas random error is a randomized selected variation (positive and negative) 

(Hopkins, 2000). Random error can further be classified between technical error and 

biological error. In this context, random error refers to the inhered variation in the 

device, while biological variation may be caused by variation in the device-setup.       

Reliability and validity are described as important aspect of precision. Reliability is 

defined as the consistency of a measure (Atkinson & Nevill, 1998). A good reliability is 

critical to evaluate the value of a single measure and to detect “real” differences in a 

measure (Atkinson & Nevill, 1998; Hopkins, 2000). Validity is defined as the 

“agreement between the observed value and the true or criteria value of a measure” 

(Hopkins, 2000). Reliability and validity are both related, but usually studied separately. 

With respect to the present purpose, the focus of this study is the assessment of 

reliability.  

2.4.1 Design of reliability studies  
The reliability of microsensors can either be assessed within devices (i.e., test and retest 

trials) or between devices. Research has often examined the reliability via a calibration 

device (e.g., mechanical apparatus) (Esliger & Tremblay, 2006; Krasnoff et al., 2008). 

This type of procedure provides a highly controlled assessment and is considered to be a 

“gold standard” to assess the technical error in the device. However, such procedures 

lacks of specificity to applied situations. Research has therefore investigated reliability 

also via human trials. Human trials are typically categorized in assessments consisting 

of laboratory-based activities (Powell & Rowlands, 2004) or more practical field based 

activities (Fulton, Pyne, & Burkett, 2009). Although human trials are conducted in more 

practical settings, they are vulnerable to biological variation. It is therefore critical to be 

precise to determine the source of error.  
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2.4.2 Review of the literature  
The following sections will summarise the available research that has examined the 

reliability of commercially available microsensor technology used to measure the 

physical activity demands in team sports. This refers to both the hardware and its 

software algorithms (or variables). 

Boyd, Ball, and Aughey (2011) were the first to assess the reliability of MinimaxX 

microsensors and its Player Load calculations. The assessment consisted of static tests 

and dynamic tests (0.5 and 3.0 g) via a calibration device. In was observed a coefficient 

of variation (CV) of 1.01% within devices and 1.10% between devices in static tests. 

The CV in dynamic tests was reported as 0.91% to 1.05% (0.5 and 3.0 g) within 

devices, and 1.04 to 1.02% (0.5 and 3.0 g) between devices. Additionally, the reliability 

between devices (CV 1.94%) was also established in Australian football games. As 

such, MinimaxX microsensors were suggested to be a reliable tool to measure physical 

activity demands in Australian football based on Player Load.       

Johnston et al. (2012) examined the reliability between MinimaxX microsensors for 

calculating Player Load in a team sport running circuit. The circuit consisted of 

standing, walking, jogging, fast running and sprinting, along with some agility 

demands. It was reported a CV of 4.9%. Player Load was therefore recommended to be 

a reliable measure of activity in team sports.   

The reliability of Player Load has also been investigated during incremental treadmill 

running (7-16 km/t) (Barrett, Midgley, & Lovell, 2014). It was observed a CV of 5.9% 

within MinimaxX microsensors. Furthermore, the reliability of the individual axes to 

Player Load showed 9.1% antero-posterior axis, 12.0% medio-lateral axis and 6.3% 

vertical axis. Based on the findings, it was concluded that caution should been taken for 

comparing Player Load data between devices.   

Recently, the reliability of SPI-Pro microsensors was evaluated via a calibration device 

for measuring raw resultant tri-axial accelerometer data (Kelly, Murphy, Watsford, 

Austin, & Rennie, 2015). It was reported a CV of 1.87 to 2.21% within four devices. 

Additionally, it was observed excellent reliability between devices, based on no 
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significant difference between raw peak gravitational acceleration (p < 0.5). The SPI-

Pro microsensors was therefore suggested to be a reliable tool for use in the field.   

2.5 Summary  
Measuring the physical activity demands is today common practice in professional team 

sports. However, based on a complex activity profile, it is difficult to measure the 

external physical activity demands. Microsensor technology such as accelerometer, 

gyroscope and magnetometer has therefore in recent years been introduced to 

compliment traditional time-motion analysis to measure “non-running based activity”. 

These microsensors are integrated within wearable tracking devices that contain 

additionally sensor technology (e.g., GPS). These microsensors have several practical 

benefits, such as that the devices are transportable and are easy to use. They can offer 

automatic feedback in real time, and are available indoors and outdoors. This 

technology uses advanced mathematical algorithms with their software to convert raw 

data into meaningful activity variables, which is typically categorized in so-called 

workload and event detection variables. Among these, Player Load and IMA may 

provide valuable insights in physical activity demands in team sports such as handball.     

The reliability of this microsensor technology is critical to determined and interprets the 

data correctly. To the authors’ knowledge, there are to date only four published research 

studies on its reliability. The reliability has been studied via calibration devices and 

human trials, in both a laboratory and field setting. Among the available research, three 

studies have assessed the reliability of MinimaxX devices and its Player Load variable 

(and individual axes). One study has examined the reliability of SPI-Pro microsensors 

for measuring raw accelerometer data. To date, there are no studies that have assessed 

the reliability of this microsensor technology in a handball environment. Moreover, no 

studies have evaluated the reliability of Optimeye microsensors and IMA variables. It is 

therefore warrant for more research of this commercially available microsensor 

technology.      
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3. Methods 

3.1 Study design 
The present study assessed the between-device reliability of a microsensor technology 

integrated within a commercial available wearable tracking device (Optimeye S5, 

version 6.109, Catapult Sports, Melbourne, Australia). This was established via two 

different assessments. The laboratory assessment examined the reliability in handball 

specific movement tasks. The field assessment determined the reliability in handball-

training sessions that included typical team training drills. The research was completed 

accordance to the Helsinki declaration. All subjects were verbally informed about the 

purpose and procedures of the study, and signed consent forms prior to participation 

(see appendix II and III). Data storage was granted by the Norwegian Social Science 

Data Service (see appendix IV). 

3.2 Microsensor technology2  
3.2.1 Optimeye S5 

The Optimeye S5 contains a built-in r 2-16 g tri-axial accelerometer, 200-2000 deg·s-1 

tri-axial gyroscope and tri-axial magnetometer, which samples at a frequency of 100 

Hz. The microsensors were calibrated by the manufacture prior to and after completion 

of the study. No meaningful drift was reported in any of the devices. The Optimeye 

device is also featured with a fifth-generation microprocessor with 1 GB flash memory 

to record and store data, and a USB interface to upload data. The device weighs 66.8 g 

and is 96 x 52 x 13 mm in dimension, and is powered by an internal battery with five 

hours of life (charged via USB interface).  

All subjects were instrumented with two devices, as illustrated in figure 3.1. Both 

devices were worn in a custom-made vest (Catapult Sports, Melbourne, Australia), 

placed in a pouch on the posterior side of the upper trunk. The two devices were taped 

together with sports tape to align the accelerometer, gyroscope and magnetometer axes. 

The devices switched position between the sessions, so each device produced data in 

both sites. A total of seven pars of devices were randomly assigned to the subjects. The 

same subject used the same two devices during all testing. 

                                                 
2 Information is based on the guidelines defined in manuals from the manufacture (Catapult-Sports, 2013a, 2013b).  



19 

 

Figure 3.1 The OptimEye S5 device (left). Two devices were taped together (middle), and fitted in a 
custom-made vest (right) during data collection in a laboratory and field assessment. 

3.2.2 Inertial movement analysis  
IMA uses raw accelerometer and gyroscope data to create a non-gravitational 

acceleration vector (or data) based on advance Kalman filtering algorithms. Further, 

IMA aims to detect certain acceleration event and calculate its magnitude and direction. 

Specifically, such acceleration event will be referred as an IMA event, and defined as an 

instant one-step movement effort (e.g., sudden CoD). Based on specific algorithms, the 

start and end point of such an event is identified in the acceleration curve. The 

magnitude of an event (IMA magnitude) is calculated as the area under the curve, based 

on the sum of antero-posterior and medio-lateral accelerations. This value is measured 

in terms of delta velocity (m·s-1), which is a measure of impulse. Furthermore, the 

direction of an event (IMA direction) is calculated based on the angle of the applied 

acceleration, and is measured in degrees (±180°). This value is calculated relative to the 

device’s orientation at the time of the step.  

Based on IMA magnitude, the manufacture’s software (version 5.14, Catapult Sprint, 

Catapult Sports, Melbourne, Australia) can count the number of IMA events that occurs 

during activity (IMA counts). To exclude running based activity from the estimate, only 

IMA events ≥ 1.5 m·s-1 were included. Further, these IMA counts can be categorized 

into narrow intensity bands such as low 1.5 to 2.5 m·s-1, medium 2.5 to 3.5 m·s-1 and 

high > 3.5 m·s-1 (default bands). IMA counts can also be categorized within specific 

directional bands, based on IMA direction. These include forward (-45 to 45q), 

backward (-135 to 135q), left lateral (-135 to -45q) and right lateral (45 to 135q) counts. 

Figure 3.2 gives an overview of the specific IMA variables used in the present study. 
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Figure 3.2 IMA counts can be divided into low, medium and high intensity based on IMA magnitude, or 
divided into forward, backward, left lateral and right lateral direction based on IMA direction. The figure 
is modified from Catapult Sports (2013a)       

 

3.2.3 Player Load  
Player Load is a resultant vector magnitude derived from tri-axial accelerometer data. It 

is “expressed as the square root of the sum of the squared instantaneous rate of change 

in acceleration in each of the three vectors (X, Y and Z axis) and divided by 100” (Boyd 

et al., 2011). The calculation utilize a scaling factor of “100” to make the output data 

more practical applicable to use. It is reported in arbitrary units (au). See following 

equation. 

𝑃𝑙𝑎𝑦𝑒𝑟 𝐿𝑜𝑎𝑑 = √(𝑎𝑌1 − 𝑎𝑌−1)2 + (𝑎𝑋1 − 𝑎𝑋−1)2 + (𝑎𝑍1 − 𝑎𝑍−1)2

100  

Note: aY = antero-posterior acceleration; aX = medio-lateral acceleration; aZ = vertical acceleration.  

 

Formula variations of Player Load included Player Load2D and individual axes: antero-

posterior (Player LoadY), medio-lateral (Player LoadX) and vertical (Player LoadZ).  
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3.3 Laboratory assessment 
3.3.1 Subjects 
Five male and five female handball players (age, 21.2 ± 1.3 years; body mass, 73.9 ± 

12.3 kg; height, 175.1 ± 7.4 cm; mean ± SD) participated in this assessment. All 

subjects competed in the elite (n = 5) or first division (n = 5) in Norway. Only outfield 

players were included.  

3.3.2 Data collection  
The assessment was performed on an indoor court. Subjects were tested separately on 

two different days (1-10 days between tests), where the same protocol was completed in 

both sessions. The subjects underwent a warm-up of 10 minutes, consisting of dynamic 

stretching and sport specific running exercises (i.e., jogging, changes of direction and 

accelerations). The intensity was regulated individually. Furthermore, familiarisation 

trials were undertaken prior to each movement task until the subject was confident in 

executing the tasks, typically 2 to 5 trials.  

The subjects completed a total of seven different movement tasks (Figure 3.3). Four of 

the tasks consisted of an explosive, single one-step movement action (one-step action) 

that was performed in different force directions. These efforts can be described as a start 

action (T1), stop action (T2), left CoD (T3) and right CoD (T4). Furthermore, three 

movement tasks consisted of repeated lateral CoD (T5), start and stop actions (T6), and 

multidirectional CoD (T7). The subjects were instrumented to complete the movement 

tasks with a clear and explosive foot-strike of maximal intensity. Facing direction is 

illustrated in Figure 3.3. Each task was repeated four times, and the subjects were given 

two minute of recovery between trials.  

3.3.3 Data analysis 
The manufacture’s software was used to control the devices via telemetry during 

testing. Each trial was marked as a distinct period in the software. Raw inertial data was 

uploaded to computer via a USB interface, and processed in the manufacturer’s 

software. IMA data were expressed as IMA magnitude and IMA direction, and the 

values were viewed graphically in the software and registered manually. Only IMA 

magnitude values ≥ 1,5 m·s-1 evident in one of the two devices were included. IMA 

direction data were changed to be only positive values.  



22 

 

 

Figure 3.3 Illustration of the movement tasks. Well-controlled one-step actions: start action (T1), stop 
action (T2), left CoD (T3) and right CoD (T4). Chaotic movement patterns: lateral CoD (T5), start-stop 
action (T6) and multidirectional CoD (T7).  
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3.4 Field assessment 
3.4.1 Subjects 
Twelve male handball players (age, 23.8 ± 4.6 years; body mass, 92.4 ± 9.7 kg; height, 

192.3 ± 9.1 cm) from an elite handball team in Norway participated in this assessment. 

All playing positions were included. The subjects had a minimum of three organized 

training sessions and one match per week during the experimental period. 

3.4.2 Data collection  
A total of twelve handball-training sessions were included. Data were collected 

throughout the first half of the in-season period (October to December, 2014). Three 

different indoor courts were used. All sessions were performed as planned by the coach, 

without any intervention from the analyst. The analyst tracked the device signal from a 

courtside position via telemetry. The training drills, intensity and volume of each 

session were adjusted to the game schedule. The training drills were classified as 

following:  

x Warm-ups: General and handball specific running exercises, and soccer play. 

x Technical drills: Individual skills development (i.e., passing, shooting, 

marking), with or without external pressure. Plus goalkeeper specific drills.   

x Tactical drills: Situations to simulate technical decision making via a reduction 

of court size, using one goal (i.e., 5 vs. 3, 6 vs. 4, 6 vs. 6 etc.). Both defensive 

and offensive focus. 

x Transition games: High intensity work on a full-court sized court with two goals 

(i.e., 1 vs. 1, 2 vs. 1, 4 vs. 2 etc.). 

x Match practice: Match simulation, 7 vs. 7 full-court size with two goals. 

3.4.3 Data analysis 
A separate period was created for each drill in the manufacture’s software. Rest periods 

and interchanges were excluded. The analyses consisted therefore of only active 

periods, which accounted for 63.8 ± 7.2 min. Start and end time point of each period 

was aligned to 0.01 s to minimise bias. Raw inertial data was uploaded to a computer 

via a USB interface, and processed in the software. IMA and Player Load data were 

downloaded via a custom designed report. IMA data was expressed as IMA counts and 
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categorized into intensity and direction bands. Player Load was expressed in original 

formula, in addition to its associated variables. 

3.5 Statistical analysis 
IMA and Player Load data were analysed using a customized spreadsheet (Hopkins, 

2011). Descriptive data were presented as mean ± SD. The reliability between devices 

was established using the typical error of measurement (TE), expressed in absolute 

terms and as a percentage (CV). The uncertainty was expressed as 90% confidence 

interval (CI). The CV was rated as good (CV < 5%), moderate (CV 5 to 10%) or poor 

(CV > 10%), based on previous recommendations (Duthie, Pyne, & Hooper, 2003; 

Jennings, Cormack, Coutts, Boyd, & Aughey, 2010). Data presented as CV were log-

transformed to reduce bias from potentially non-uniformity error (Hopkins, Marshall, 

Batterham, & Hanin, 2009). Measures of angles have an absolute reference point, and 

are not appropriate to log-transformation (Hopkins, 2011). IMA direction values were 

therefore not presented as CV.  

Intraclass correlation coefficient (ICC) was calculated to evaluate the relationship 

between devices from the field assessment. The correlations were interpreted as 

following: < 0.1 trivial, 0.10-0.29 small, 0.30-0.49 moderate, 0.50-0.69 large, 0.70-0.89 

very large, and > 0.90 nearly perfect (Hopkins, 2002). 

The smallest worthwhile difference (SWD) was calculated as the 0.2 x between-subject 

SD, and was used as a measure to identify “real” differences (Pyne, 2003). As such, 

Optimeye microsensors were considered capable to detect “real and worthwhile” 

differences if the CV was less than the SWD, and thus rated as a “useful” tool to 

measure physical activity demands in handball.  
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4. Results 

4.1 Laboratory assessment 
The reliability statistics for IMA magnitude and IMA direction are presented in Table 

4.1. The CV for IMA magnitude was good (CV < 5%) in well-controlled movement 

tasks (T1-4), which was less then the SWD. The CV increased in more chaotic 

movement tasks (T5-7). In the multidirectional CoD task, it was observed a CV that was 

less than the SWD. The CV from lateral CoD and start-stop actions was greater than the 

SWD. IMA direction calculations are not presented in CV, due to its impracticability 

(see Section 3.5). An illustration of between-device variation for IMA magnitude and 

IMA direction calculations are presented in Figure 4.1.  
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Figure 4.1 The variation between two microsensors for IMA magnitude (m·s-1) and IMA direction 
(degrees; deg) values from handball-specific movement tasks: one-step action (a; n = 319 IMA events), 
lateral CoD (b; n = 1136 IMA events), start-stop action (c; 859 IMA events) and multidirectional CoD (d; 
n = 1296 IMA events).  
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4.2 Field assessment 
The reliability statistics for IMA count variables are displayed in Table 4.2 and 4.3. The 

CV for total IMA counts was good (CV < 5%), which was less then the SWD (Table 

4.2). The CV increased slightly when IMA counts were categorized into intensity bands. 

The CV for low, high and medium/high (combined) intensity counts was less then the 

SWD. IMA counts of medium intensity showed a CV greater than the SWD.      

IMA counts categorized within direction bands showed a moderate reliability (CV 5 to 

10%; Table 4.3). The CV for forward, backward and left lateral counts were greater 

than the SWD. Right lateral counts showed a CV slightly less than the SWD. The CV 

increased substantial when forward, backward, left lateral and right lateral counts were 

categorised further into intensity bands, with a CV ranging from 5.3 to 22.6%. The CV 

for these variables was greater than the SWD, except for the right CoD events of low 

and medium/high intensity.    

The reliability statistics for Player Load and its associated variables are displayed in 

Table 4.4. All variables showed good reliability (CV < 5%), with the CV being less then 

the SWD. Furthermore, it was demonstrated a nearly perfect (ICC = 0.99) and perfect 

(ICC = 1.00) relationship between devices for total IMA counts and Player Load, 

respectively (Figure 4.2). These data shows a range of low, medium and high intensity 

training sessions in handball.  

Table 4.2 Reliability between microsensors for accumulated IMA counts in handball training. 

  Device 1 Device 2 TE CV 90% CI SWD 

Intensity bands (n)  Mean ± SD Mean ± SD (Abs) (%) (%) (%) 

Low 406.2 ± 96.1 427.5 ± 97.6 11.8 2.9 2.6 - 3.3 4.6 

Medium 117.4 ± 31.0 123.3 ± 32.1 6.4 5.5 4.9 - 6.4 5.2 

High 65.7 ± 25.9 72.6 ± 28.8 4.2 5.6 5.0 - 6.5 7.9 

Medium/High 183.1 ± 53.7 195.8 ± 57.7 7.3 3.9 3.5 - 4.5 5.9 

Total 589.3 ± 141.6 623.4 ± 145.8 13.9 2.4 2.1 - 2.8 4.7 

Note: TE, typical error of measurement (abs; absolute); CV, coefficient of variation; CI, confidence interval; SWD, 
smallest worthwhile difference. n  = 83. 
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Table 4.3 Reliability between microsensors for accumulated IMA counts in handball training. 

  Device 1 Device 2 TE CV 90% CI SWD 

Direction bands*  Mean ± SD Mean ± SD (Abs) (%) (%) (%) 

Forward (n)             

Low 46.8 ± 14.8 50.9 ± 15.3 5.3 11.6 10.2 - 13.4 6.2 

Medium 16.7 ± 7.3 19.4 ± 8.2 3.1 22.4 19.6 - 26.1 8.6 

High 15.1 ± 9.6 19.8 ± 12.5 3.1 22.6 19.8 - 26.4 12.8 

Medium/High 31.8 ± 15.7 39.1 ± 18.9 4.1 13.4 11.8 - 15.5 9.8 

Total 78.6 ± 26.4 90.0 ± 30.0 6.9 8.8 7.8 - 10.2 6.7 

Backward (n)             

Low 60.3 ± 21.7 58.2 ± 21.0 5.6 10.6 9.3 - 12.3 7.2 

Medium 23.0 ± 7.2 22.3 ± 7.6 2.6 13.0 11.5 - 15.1 6.5 

High 14.2 ± 6.2 13.7 ± 5.6 1.9 14.8 13.0 - 17.2 8.4 

Medium/High 37.3 ± 11.4 36.0 ± 11.1 3.5 9.4 8.3 - 10.9 6.1 

Total 97.6 ± 29.7 94.2 ± 28.9 7.8 8.5 7.5 - 9.9 6.1 

Left lateral (n)             

Low 151.3 ± 49.9 153.9 ± 51.1 10.1 7.5 6.6 - 8.7 6.6 

Medium 40.4 ± 15.5 40.9 ± 15.6 3.9 10.7 9.4 - 12.4 7.7 

High 18.7 ± 9.4 19.5 ± 10.3 1.9 13.3 11.7 - 15.4 10.3 

Medium/High 59.1 ± 23.4 60.4 ± 24.6 4.6 8.7 7.7 - 10.1 8.0 

Total 210.4 ± 68.8 214.3 ± 70.9 13.1 7.0 6.2 - 8.1 6.6 

Right lateral (n)             

Low 147.8 ± 45.0 164.5 ± 48.6 9.1 5.8 5.2 - 6.7 6.0 

Medium 37.3 ± 13.4 40.7 ± 13.9 3.3 10.5 9.2 - 12.1 7.0 

High 17.7 ± 10.0 19.6 ± 11.0 2.0 16.6 14.6 - 19.2 11.3 

Medium/High 55.0 ± 21.6 60.4 ± 23.2 3.7 7.3 6.4 - 8.4 7.8 

Total 202.8 ± 61.8 224.9 ± 66.1 10.5 5.3 4.7 - 6.1 6.0 

Note: TE, typical error of measurement (abs; absolute); CV, coefficient of variation; CI, confidence interval; SWD, 
smallest worthwhile difference. n = 83. 
*IMA counts were categorized within direction bands and divided further into intensity bands.  
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Table 4.4 Reliability between microsensors for accumulated Player Load and associated variables in 
handball training. 

  Device 1 Device 2 TE CV 90% CI SWD 

Variables* (au)  Mean ± SD Mean ± SD (Abs) (%) (%) (%) 

Player Load  410.6 ± 79.0 426.6 ± 81.2 4.1 0.9 0.8 - 1.0 3.8 

Player Load2D  258.7 ± 48.0 262.1 ± 48.3 2.7 1.0 0.9 - 1.1 3.7 

Player LoadY 154.4 ± 27.9 154.1 ± 27.7 0.7 0.4 0.4 - 0.5 3.6 

Player LoadX 173.6 ± 35.1 178.5 ± 35.6 3.1 1.6 1.4 - 1.9 4.0 

Player LoadZ  272.8 ± 56.5 289.7 ± 59.2 3.8 1.1 1.0 - 1.3 4.1 

Note: TE, typical error of measurement (abs; absolute); CV, coefficient of variation; CI, confidence interval; SWD, 
smallest worthwhile difference. n = 83.  
*2D, antero-posterior and medio-lateral axes; Y, antero-posterior axis; X, medio-lateral axis; Z, vertical axis.      
 
 

 
Figure 4.2 The relationship between two microsensors for accumulated IMA counts (a) and Player Load 
(b) in handball training. n = 83.  
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5. Discussion 

The aims of this investigation were to evaluate the between-device reliability and 

sensitivity of Optimeye microsensors to measure physical activity demands in handball 

based on IMA and Player Load. To the authors’ knowledge, this is the first study to 

establish the reliability of IMA. The main findings showed that IMA count were a 

reliable variable, given that data were expressed as total counts or within low and 

medium/high (combined) intensity bands. Furthermore, it was demonstrated a good 

level of reliability for Player Load and its associated variables. The CV of the 

aforementioned variables was well below the SWD, suggesting that Optimeye 

microsensors and its software are capable to detect “real and worthwhile” differences in 

handball activity.     

5.1 Reliability of IMA  
5.1.1 IMA magnitude and IMA direction 
The laboratory assessment showed a good to moderate reliability for IMA magnitude 

values. The literature has listed intensity and type of activity (or movement) as potential 

factors to affect the reliability of raw inertial signals (Welk, 2005). This may partially 

account for the variation that was observed between devices. However, the CV 

appeared to increase in more chaotic movement tasks (T5-7), possibly due to certain 

“outliers” in the data set (Figure 4.1). These “outliers” (or large variations) were a result 

of inconsistency in data filtering between devices. As such, a device could detect one 

large IMA event, whereas the other device could detect two small consecutive IMA 

events. This may appear in situations where events of foot-strike impacts within the 

same movement pattern (e.g., instant left to right CoD) occur close together. This 

finding represents a critical shortcoming for IMA event detection algorisms, as team 

sports are highly chaotic in nature. Such variations in IMA magnitude (and IMA 

direction) values will logically affect the precision of IMA counts. As mention 

previously, no CV data were presented for IMA direction and will therefore not be 

discussed.       
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5.1.2 IMA counts  
It was established a good reliability of total IMA counts in the field assessment. 

Furthermore, nearly perfect relationships between devices suggest that IMA counts are 

consistent regardless of the device used. However, it was observed a decreased 

reliability when IMA counts were categorized in more narrow intensity bands such as 

low, medium and high. Such a challenge is also reported in GPS analysis, when 

categorizing running activity within multiple speed bands (Scott, Scott, & Kelly, 2015). 

To ensure a more precise assessment, some research studies have therefore classified 

running activity into broader speed bands that only include low and high speed (Coutts 

et al., 2010; Jennings, Cormack, Coutts, & Aughey, 2012). Similarly, based on the 

present data the author recommends that IMA counts should be categorized in low and 

high (combined medium and high) intensity bands, to reduced variation between 

devices. However, the threshold of these bands may need to be adjusted to the 

individual sport, level of competition and sex. To minimise the influence of running 

activity, it is critical that these thresholds are appropriate. Therefore, there is a need for 

further research to determine appropriate band settings.  

A categorization of IMA counts within direction bands could provide detailed insights 

in the players’ agility patterns. However, this is a very challenging task given the 

chaotic nature of team sports and the individual variation of player movement 

characteristics. The present data showed only a moderate reliability of forward, 

backward, and left and right lateral counts. The reliability decreased further when these 

were separated into intensity bands. Caution should therefore be taken when 

interpreting IMA counts with respect to direction bands. Improvements are required for 

this IMA variable to be applicable in elite sports.  
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5.2 Reliability of Player Load  
5.2.1 Player Load 
Similar to the present study, previous research has observed good between-device 

reliability of Player Load when MinimaxX microsensors were tested via a calibration 

device and in Australian football games (Boyd et al., 2011). However, the present study 

showed a slightly lower CV, about 1%, compared to the aforementioned study when 

devices were tested in a field setting. As both studies used a similar device set-up, it can 

be speculated that the lasted version of the Optimeye device contains superior 

microsensors. The Optimeye microsensors showed far greater reliability compared to 

Johnston et al. (2012) and Barrett et al. (2014) that used MinimaxX microsensors to 

calculate Player Load during treadmill running (CV 5.9%) and in team sport movements 

(CV 4.9%), respectively. However, it should be acknowledged that Johnston et al. 

(2012) used a different device set-up than the present study, as two devices were fitted 

in separate vests. This may possibly explain some of the variation that was observed 

between devices. Barrett et al. (2014) assessed the reliability within devices, and some 

of the difference may therefore be due to biological variation between the test and retest 

trials. 

Boyd et al. (2011) showed a nearly perfect relationship between devices for the Player 

Load calculation, using the Pearson correlation coefficient (r = 0.99). This is 

comparable to the results of the present study. Previous research has also observed a 

nearly perfect relationship (ICC = 0.93) within devices in a laboratory setting (Barrett et 

al., 2014). These findings indicate that Player Load can be used with confidence in the 

field regardless of what devices that are being used.   

5.2.2 Formula variations 
This study is the first to assess the between-device reliability of Player Load2D and the 

individual axes (Y, X and Z) of Player Load. The present findings suggest that these 

variables can be confidently used in the field. In this respect, previous research has only 

demonstrated poor to moderate level of within-device reliability for the individual 

Player Load axes (Barrett et al., 2014). Once again, this may be explained by a variation 

between test and retest trials. Although the aforementioned study investigated the 

reliability within devices, it was reported that the highest CV was in the medio-lateral 
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axis similar to the present study. The observed variation between the axes can possibly 

be explained by the device-set up used in the present study (Section 5.4).   

5.3 Usefulness of microsensors to measure activity in handball 
5.3.1 SWD 
The CV of total IMA counts was well below the SWD. This was also apparent for IMA 

counts within low and medium/high (combined) intensity bands. These findings support 

the use of IMA as a useful measure of activity in handball. For example, if a difference 

of eight medium/high counts were evident between two training sessions, this would be 

considered as “real and worthwhile” as the difference is greater than both the CV and 

the SWD. However, the CV of IMA counts within direction bands was slightly below or 

greater then the SWD, and greater when divided further into intensity bands. These data 

may therefore be considered as less useful, due to the fact that interpretation of a “real 

and worthwhile” difference can only be made when the difference is more than the CV 

(Pyne, 2003). 

In agreement with previous research of Australian football (Boyd et al., 2011), the CV 

of Player Load was well below the SWD. This was also evident for Player Load2D and 

the individual axes. Player Load and associated variables may therefore be considered 

as sensitive to measure physical activity demands in team sports. 

Previous research of time-motion analysis in team sports has reported a CV greater than 

the SWD, specifically for high-intensity activities in confined spaces (Jennings et al., 

2010). With respect to the explosive and multidirectional nature of handball (Karcher & 

Buchheit, 2014), it may therefore be challenging to detect meaningful outcomes using 

time-motion analysis. This provides further support for the application of microsensors 

in professional handball.      

5.3.2 Generalization of the findings  

The cohort of this study is representative for elite handball. However, the literature 

specifies that microsensors should be tested in activities that represent the type and the 

intensity of those executed in the target population (Welk, 2005). The best practise 

would therefore involve an assessment in real game situations, similar to the study of 

Boyd et al. (2011). However, handball players land or fall frequently on their back, and 
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using two devices would possibly affect their focus in games. The study therefore aimed 

to assess the reliability in training sessions, which were considered as best available 

alternative for the Optimeye devices to be tested in conditions representative for elite 

handball demands.   

5.4 Limitations of the study 
In addition to assess reliability between Optimeye microsensors, it would also be of 

interest to examine the reliability within devices in handball activity. However, it is 

challenging to assess the inherent (or technical) error in the device, as repeated trials are 

difficult to complete (Hopkins, 2000). Using a calibration device is probably the only 

acceptable alternative. However, this option is less specific to team sport activity.     

The devices were taped together during data collection and their positions were 

switched between sessions. This was considered as the best alternative to minimise 

variations between devices. Descriptive data showed that the device placed distally to 

the body recorded slightly higher values for most IMA and Player Load variables. A 

similar observation has also been reported by previous research (Boyd et al., 2011). 

Therefore, the device placement could account for some of the observed variation 

(systematic bias) in this study.  

5.5 Future directions 
To use IMA variables with full confidence it is critical to also investigate its validity. 

Although there are some available validity studies of IMA, these have only assessed the 

raw acceleration signals (Wundersitz, Gastin, Richter, Robertson, & Netto, 2014; 

Wundersitz, Gastin, Robertson, Davey, & Netto, 2015). Therefore, there is a need for 

more studies to assess the validity of the IMA event detection algorithms.  

5.6 Practical applications 
The Optimeye microsensors can be confidently used to assess differences in players’ 

activity profiles based on IMA counts and Player Load variables. However, IMA should 

only be expressed as total counts, or within broad intensity bands (i.e., low and high). 

Although low variation between devices, this should be taken into account when 

interpreting data.  
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6. Conclusion 

The present study showed that Optimeye microsensors and its software are reliable to 

register IMA counts, given that data were expressed as total counts or within low and 

medium/high (combined) intensity bands. This technology was also reliable to measure 

Player Load and its associated variables. The CV of these variables was well below the 

SWD, suggesting that Optimeye microsensors are sensitive to detect “real and 

worthwhile” differences in handball activity. These findings may also be extended to 

other team sports where the SWD is greater than 3.9 and 1.6% for IMA and Player Load 

variables, respectively. Although good reliability was determined between devices, the 

data should be interpreted with caution since the validity of these variables is currently 

unclear, especially for IMA variables.  
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I Reliability statistics from field assessment 

 

 

Table x Reliability between microsensors for accumulated Player Load and associated variables in 
handball training. 

  Absolute   

Variables* TE 90% CI SWD ICC 

Player Load  4.14 3.68 - 4.76 16.02 1.00 

Player Load·min-1 0.06 0.05 - 0.07 0.20 1.00 

Player Load2D  2.65 2.35 - 3.05 9.63 1.00 

Player LoadY 0.72 0.64 - 0.83 5.56 1.00 

Player LoadX 3.05 2.71 - 3.50 7.08 0.99 

Player LoadZ  3.80 3.37 - 4.37 11.57 1.00 

Note: TE, typical error of measurement (abs; absolute); CV, coefficient of variation; CI, confidence interval; SWD, 
smallest worthwhile difference. n = 83.  
*2D, antero-posterior and medio-lateral axes; Y, antero-posterior axis; X, medio-lateral axis; Z, vertical axis.      
 

 

Table x Reliability between microsensors for accumulated IMA counts in handball training. 

  Absolute    

Intensity bands TE 90% CI SWD ICC 

Low 11.76 10.43 - 13.51 19.37 0.99 

Medium 6.41 5.69 - 7.36 6.31 0.96 

High 4.17 3.70 - 4.79 5.47 0.98 

Medium/High 7.30 6.48 - 8.39 11.15 0.98 

Total 13.93 12.36 - 16.00 28.74 0.99 

Note: TE, typical error of measurement (abs; absolute); CV, coefficient of variation; CI, confidence interval; SWD, 
smallest worthwhile difference. n  = 83. 
 

 

 



50 

 

Table x Reliability between microsensors for accumulated IMA counts in handball training. 

  Absolute   

Direction bands* TE 90% CI SWD ICC 

Forward (n)         

Low 5.27 4.67 - 6.05 3.01 0.88 

Medium 3.14 2.79 - 3.61 1.55 0.84 

High 3.11 2.76 - 3.57 2.24 0.92 

Medium/High 4.05 3.59 - 4.65 3.48 0.95 

Total 6.92 6.14 - 7.95 5.65 0.94 

Backward (n)         

Low 5.63 5.00 - 6.47 4.28 0.93 

Medium 2.63 2.34 - 3.03 1.48 0.88 

High 1.85 1.64 - 2.13 1.18 0.90 

Medium/High 3.49 3.10 - 4.01 2.25 0.91 

Total 7.78 6.90 - 8.94 5.86 0.93 

Left lateral (n)         

Low 10.06 8.93 - 11.56 10.11 0.96 

Medium 3.86 3.43 - 4.44 3.11 0.94 

High 1.93 1.72 - 2.22 1.97 0.96 

Medium/High 4.58 4.07 - 5.27 4.80 0.96 

Total 13.13 11.65 - 15.08 13.98 0.97 

Right lateral (n)         

Low 9.10 8.08 - 10.46 9.37 0.96 

Medium 3.31 2.94 - 3.80 2.73 0.94 

High 2.01 1.78 - 2.31 2.10 0.96 

Medium/High 3.72 3.30 - 4.27 4.49 0.97 

Total 10.52 9.34 - 12.09 12.80 0.97 

Note: TE, typical error of measurement (abs; absolute); CV, coefficient of variation; CI, confidence interval; SWD, 
smallest worthwhile difference. n = 83. 
*IMA counts were categorized within direction bands and divided further into intensity bands.  
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II Information to subjects – laboratory assessment (Norwegian)  

 

Forespørsel om deltakelse i forskningsprosjektet: 

“ Wearable microsensor technology to measure the physical 

activity demands in handball” 
Bakgrunn og hensikt  

Dette er en forespørsel til deg om å delta i en forskningsstudie for å undersøke 

reliabiliteten av et akselerometer basert trackingsystem, designet for lagidrett. Studien 

er en del av et forskningsprosjekt ved Norges idrettshøgskole, hvor hensikten er å 

kartlegge bevegelseskarakteristikk og fysiologisk belastning under trening og kamp i 

norsk håndball. Prosjektet gjennomføres i samarbeid med Norges Håndballforbund og 

informasjonen vil kunne brukes til å forbedre planlegging av trening og 

belastningsstyring. Systemets nøyaktighet er imidlertid vesentlig for hvordan data kan 

tolkes. Vi ønsker derfor å undersøke inter-enhet reliabiliteten av systemet, i forhold til 

håndballspesifikke bevegelser. For å delta som forsøksperson må du være regelmessig 

fysisk aktiv og ha erfaring fra lagidrett.  

Hva innebærer studien? 

Deltagelse i prosjektet vil kreve at du møter opp og deltar på to separate testdager ved 

Norges idrettshøgskole. Varighet av forsøket er beregnet til omtrent 60 min, og består 

av ulike eksplosive agility bevegelser, hvor deltagere bruker en spesiallaget vest, 

integrert med to elektroniske transmittere. Tidspunkt avtales individuelt.  

Mulige ulemper og risiko 

Testene utføres ved maksimal intensitet, noe som vil oppleves anstrengende. Dette kan 

forårsake noe ubehag, men ikke mer enn hva du er kjent med fra å ha drevet med 

lagidrett. Studien innebære dermed få ulemper for deg.  

Hva skjer med prøvene og informasjonen om deg?  

Prøvene tatt av deg og informasjonen som registreres om deg skal kun brukes slik som 

beskrevet i hensikten med studien. Alle opplysninger vil bli behandlet uten navn og 

fødselsnummer, eller andre direkte gjenkjennende opplysninger. En tallkode knytter deg 

til dine data gjennom en navneliste, som kun autorisert personell har tilgang til. Det 
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betyr at alle data vil bli behandlet anonymt. Data vil presenteres eller publiseres på 

gruppenivå, slik at det ikke vil være mulig å identifisere deg i resultatene. 

Frivillig deltagelse 

Dersom du ønsker å delta, undertegner du samtykkeerklæringen. Du kan senere når som 

helst og uten å oppgi noen grunn trekke ditt samtykke til å delta i studien. Dersom du 

ønsker å trekke deg eller har spørsmål til studien, kan du kontakte masterstudent 

Benjamin R. Holme (tlf. 41283881) eller veileder Matthew Spencer (tlf. 98404378). 

 

Samtykke til deltagelse i studien 

Jeg er villig til å delta i studien 

 

 (signert av prosjektdeltaker, dato) 

 

Jeg bekrefter å ha gitt informasjon om studien 

 

(signert, rolle i studien, dato) 
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III  Information to subjects – field assessment (Norwegian)  

 

Forespørsel om deltakelse i forskningsprosjektet: 

“ Wearable microsensor technology to measure the physical 

activity demands in handball” 
Bakgrunn og hensikt  

Dette er en forespørsel til deg om å delta i en forskningsstudie for å undersøke 

reliabiliteten av et akselerometer basert trackingsystem, designet for lagidrett. Studien 

er en del av et større forskningsprosjekt ved Norges idrettshøgskole, hvor hensikten er å 

kartlegge bevegelseskarakteristikk og fysiologisk belastning under trening og kamp i 

norsk håndball. Prosjektet gjennomføres i samarbeid med Norges Håndballforbund og 

informasjonen vil kunne brukes til å forbedre planlegging av trening og 

belastningsstyring. Systemets nøyaktighet er vesentlig for hvordan data kan tolkes. Vi 

ønsker derfor også å undersøke inter-enhet reliabiliteten av systemet, i forhold til 

håndballspesifikke bevegelsesmønstre. For å delta som forsøksperson må du spille 

håndball aktivt ved norsk elite nivå. 

Hva innebærer studien? 

Deltagelse i prosjektet vil kreve at du bruker en spesiallaget vest under drakten, 

integrert med en eller to elektroniske transmittere under henholdsvis kamp og trening. 

Du vil bli overvåket i et minimum av åtte treninger og fire kamper. Treningshverdagen 

vil foregå som normalt, studien ønsker ikke å påvirke rammene rundt trening og kamp. 

Tidspunkt for overvåking avtales med lagets hovedtrener, slik det passer inn.  

Mulige ulemper og risiko 

Det er få ulemper assosiert ved å delta i studien. Vesten som benyttes er tettsittende og 

designet som en sports bh, transmitter lokalisert øverst på ryggen. Det er risiko for å 

oppleve noe ubehag av transmitteren(e) ved dueller og fall, men dette er noe vi ikke har 

hatt problem med tidligere. 

Som deltagere i studien vil du kunne få innblikk i din eksterne belastning under trening 

og kamp. Dette vil gi deg god kontroll over totalbelastning og legge til rette for 

fornuftig belastningsstyring.  
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Hva skjer med prøvene og informasjonen om deg?  

Prøvene tatt av deg og informasjonen som registreres om deg skal kun brukes slik som 

beskrevet i hensikten med studien. Alle opplysninger vil bli behandlet uten navn og 

fødselsnummer, eller andre direkte gjenkjennende opplysninger. En tallkode knytter deg 

til dine data gjennom en navneliste, som kun autorisert personell har tilgang til. Det 

betyr at alle data vil bli behandlet anonymt. Data vil presenteres eller publiseres på 

gruppenivå, slik at det ikke vil være mulig å identifisere deg i resultatene. 

Frivillig deltagelse 

Dersom du ønsker å delta, undertegner du samtykkeerklæringen. Du kan senere når som 

helst og uten å oppgi noen grunn trekke ditt samtykke til å delta i studien. Dersom du 

ønsker å trekke deg eller har spørsmål til studien, kan du kontakte masterstudent 

Benjamin R. Holme  (tlf. 41283881) eller veileder Matthew Spencer (tlf. 98404378). 

 

Samtykke til deltagelse i studien 

Jeg er villig til å delta i studien 

 

(signert av prosjektdeltaker, dato) 

 

Jeg bekrefter å ha gitt informasjon om studien 

 

(signert, rolle i studien, dato) 
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IV      Approval of data storage – Norwegian Social Science Data Service (Norwegian) 

 

 




