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Abstract 

The aim of the study was to investigate the associations between bicycling and carotid arterial stiffness, 

independent of objectively measured moderate-and-vigorous physical activity. This cross-sectional 

study included 375 adolescents (age 15.7± 0.4 years) from the Danish site of the European Youth Heart 

Study. Total frequency of bicycle usage was assessed by self-report and carotid arterial stiffness was 

assessed using B-mode ultrasound. After adjusting for pubertal status, body height and objectively 

measured physical activity and other personal lifestyle and demographic factors, boys using their 

bicycle every day of the week displayed a higher carotid arterial compliance [Std. beta 0.47 (95% CI 

0.07 to 0.87)] and distension [Std. beta 0.38 (95% CI -0.04 to 0.81). Boys using their bicycle every day 

of the week furthermore displayed a lower Young’s Elastic Modulus [Std. beta -0.48 (95% CI -0.91 to -

0.06]. Similar trends were observed when investigating the association between commuter bicycling 

and carotid arterial stiffness. These associations were not observed in girls. Our observations suggest 

that increasing bicycling in adolescence may be beneficial to carotid arterial health among boys. 
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Introduction 

Early modification of CVD risk factors, such as low physical activity (PA) levels, is of importance to 

prevent adverse CVD outcomes later in life (Sattelmair, 2011). Several studies have observed an 

inverse association between PA and metabolic CVD risk factors in childhood and adolescence 

(Andersen, 2011a; Ried-Larsen, Grontved, Froberg, Ekelund, & Andersen, 2013), and it is thus 

important to understand the means by which the PA level can be increased early in life. One way of 

increasing the PA level, is to promote the use of active transportation such as bicycling. Observational 

studies have reported inverse association of bicycling with all-cause mortality and cardiovascular 

disease in adults and with overweight, low cardiorespiratory fitness  and metabolic CVD risk factors  in 

children and adolescents  (Cooper, 2006; Cooper, 2008; Ostergaard, 2012; Andersen, Schnohr, Schroll, 

& Hein, 2000; Matthews, 2008; Andersen, 2011b; Andersen, 2011a; Cooper, 2006; Ostergaard, 

Borrestad, Tarp, & Andersen, 2012).  

Carotid arterial stiffness has been suggested to be predictive of stroke in adults independent of 

conventional CVD risk factors (Yang, 2012). The independent predictive value of arterial stiffness 

suggests an added value beyond conventional CVD risk factors and could thus act as a stronger 

intermediate CVD endpoint compared to conventional CVD risk markers (Laurent, 2006). Carotid 

arterial stiffness can be measured non-invasively using ultrasound techniques and could therefore prove 

useful for the understanding of early CVD detection (Urbina, Khoury, Martin, D'Alessio, & Dolan, 

2009). Low PA is associated with adverse arterial health in childhood and adolescence (Abbott, 

Harkness, & Davies, 2002; Hopkins, 2009; Reed, 2005; Schack-Nielsen, Molgaard, Larsen, Martyn, & 

Michaelsen, 2005; Stone, Rowlands, Middlebrooke, Jawis, & Eston, 2009; Pahkala, 2008; Sakuragi, 

2009; Ried-Larsen, 2013). However, to our knowledge no studies have evaluated the association 

between bicycling and carotid arterial stiffness independent of other habitual moderate-vigorous PA 
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level. If providing consistent evidence to support the health benefits of bicycling early in life, 

independent of engagement in other PA, increasing bicycling could be recognized as an important 

target for intervention. The potential health benefits of promoting bicycling is large since in many 

countries only a small proportion of youth use the bicycle as a mean of transportation and during 

leisure time (Department for transport, 2013). Therefore, the aim of the study was to examine whether 

there is an association between the frequency of bicycle use and carotid arterial stiffness independent of 

other moderate-and-vigorous physical activities in a population-based sample of adolescent boys and 

girls.  

 

Material and methods 

Participants and design 

This was a cross-sectional study using data from the Danish site of the European Youth Heart Study 

(EYHS). EYHS is an international population-based mixed longitudinal study that addresses biological, 

environmental, demographic and lifestyle correlates and correlates of cardiovascular disease risk 

factors in children and adolescents. A description of the EYHS protocol and the sampling procedures 

has been reported elsewhere (Riddoch, 2005). Ultrasonography was added to the protocol in 2009-2010 

when a random sample of 709 fifteen-year old children was invited to take part in the study. 

Participation rate was 59% (N= 399) and the present study reports on 375 participants with complete 

data on exposure and outcome. The study was approved by the Regional Scientific Ethical Committee 

for Southern Denmark and data were collected according the Helsinki declaration. All participants gave 

a written informed consent. 
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Bicycling 

The frequency of total bicycle (including commuter bicycling) use and travel mode when commuting 

was determined using a computerized questionnaire including the question; “How often do you ride 

your bike?”. The response options were; 1) “Hardly or never”, 2) “One or two time a week”, 3) “Nearly 

every day” or 4) “Every day”. As there were very few respondents in categories one (boys/girls: 21/15) 

and two (boys/girls: 22/29) these were combined into one category; “Less than three times a week” in 

order to preserve statistical power. Information on mode of commuting to school was obtained from the 

question: "How do you usually travel to school?" with the response options: 1) by car or motorcycle, 2) 

by bus or train, 3) by bicycle or 4) by foot. To preserve statistical power, the response options one and 

two were grouped into the category; passive transport. 

 

Carotid arterial properties 

The carotid arterial properties were measured using ultrasonography (Model Logic e, 12L-RS probe (5-

13 MHz, 12 MHz used) GE Medical) according to guidelines (Touboul, 2007; Laurent, 2006). The 

arterial properties were recorded at the lateral and posterior position of the common carotid artery, 10 

mm and 20 mm (for arterial stiffness measures) proximal to the beginning of the carotid bulb on both 

the right and the left common carotid artery. Carotid IMT (cIMT) was obtained at the far wall of the 

artery. Prior to the assessments, the participants rested in a supine position for 10 minutes in a quiet 

temperature controlled room. 

Images from eight cardiac cycles were stored offline for quantification of carotid artery 

diameters and the cIMT. The analyses were performed by a blinded trained reader, using commercially 

available analysis software (Vascular Research Tools 5, Medical Imaging Applications, LLC). Peak-
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systolic (DS), end-diastolic (DD) arterial diameter and cIMT were obtained from both positions. The 

mean of both positions and both sides was used in the subsequent analysis.  

Brachial systolic and diastolic blood pressure (BP) were obtained from the right arm at the end 

of the examination in a supine position (Welch Allyn Vital Signs monitor 300 series, Kivex, 

Hoersholm Denmark) using an appropriate cuff size. Brachial pulse pressure (PP) was calculated as 

systolic minus diastolic BP. All examinations were performed by a single trained operator. Intra-reader 

coefficients of variation were 5.7 %, 4.5% and 4.5% for cIMT, systolic and diastolic diameter, 

respectively.   

The compliance coefficient (CC), the distensibility coefficient (DC), and Young’s elastic 

modulus (YEM) were calculated as follows (van de Laar, 2010; Yang, 2012); 

  

1) CC = π ∗ (DS2 − DD2)/(4 ∗ PP) in mm2/kPa 

2) DC = (2*(DS-DD)*DD+(DS-DD)2)/(PP*DD2) in 10-3/kPa 

3) YEM = DD/(cIMT ∗ DC) in 103*kPa 

 

For YEM (intrinsic wall stiffness) higher values mean stiffer carotid arteries. For CC (buffering 

capacity) or DC (elastic properties of the artery) higher values means lower stiffness of the carotid 

arteries. 

 

Blood pressure 

Resting brachial BP was assessed with a paediatric and adult neonatal vital signs monitor (Dinamap 

model XL; Critikron, Tampa, FL, USA). Five measurements were taken at 2-minute intervals. The 
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mean of the final three measurements were used in the analyses. Prior to measurements individuals 

rested for 5 minutes while seated. Mean arterial pressure was calculated as diastolic BP*((systolic BP- 

diastolic BP)/3). 

 

Physical activity 

Moderate-and-vigorous PA (expressed as minutes per day) was assessed objectively using the 

Actigraph GT3X accelerometer-based activity monitor (using 10 second epochs). The moderate-and-

vigorous PA cut-point was set to 500 count/10 seconds (3000 counts per minute) (Freedson, Pober, & 

Janz, 2005). Data reduction and post processing procedures have been described in detail elsewhere 

(Ried-Larsen, 2013).  

 

Other covariates 

Body height, weight and waist circumference were assessed using standard anthropometric procedures 

were employed. These have been described in detail elsewhere (Andersen, 2006; Riddoch, 2005). 

Information on soft drink, fruit and vegetable intake (servings/week), TV-viewing and smoking status 

(yes/no) were obtained using a computerized questionnaire (Riddoch, 2005; Grontved, 2012). Family 

history of CVD (paternal and maternal) (yes/no) and paternal and maternal educational level were 

obtained using self-report by the parents. Parental educational level was defined according to the 

International Standard Classification of Education (ISCED-A) (UNESCO 2011). As the details 

obtained of the description of education were insufficient to accurately classify the educational level, 

the ISCED level 0, 1 and 2; 3, 4 and 5, and 6, 7 and 8 were grouped. The highest parental educational 

level of the mother or father was used in the analysis. Biological maturity was assessed subjectively 

according to Tanner’s classification (Malina, Bouchard, & Bar-Or, 2004).  
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Statistics 

Associations between the frequency of bicycle use and measures of Carotid arterial stiffness were 

analyzed using analysis of co-variance with group differences presented as standardized values (95% 

confidence intervals). The statistical models were adjusted for biological development, body height and 

moderate-and-vigorous PA (model 1). The previous reported independent association between 

moderate-and-vigorous PA and carotid arterial stiffness (Ried-Larsen, 2013) stress the importance of 

adjusting for moderate-and-vigorous PA. Since bicycling is almost completely underestimated (app.by 

97%, unpublished data) when using waist-worn accelerometers, it was possible to adjust for overall 

accelerometer-based moderate-and-vigorous PA. Then we included other personal- and lifestyle factors 

(current smoking status, fruit, vegetable and soft drink consumption, parental educational level, TV-

viewing and family history of cardiovascular disease) (model 2). We then included waist circumference 

as a measure of central adiposity or mean arterial pressure as they may confound or mediate the 

associations between bicycling and arterial stiffness (Sakuragi, 2009; van de Laar, 2010; Andersen, 

2011a; Cooper, 2008). Due to modification by sex (p<0.1 for interaction) the analyses are presented in 

strata of sex.  As we have previously published data on commuter mode and CVD risk in children we 

were interested in the contribution of commuter mode to arterial stiffness (Andersen, 2011a; Cooper, 

2008; Ostergaard, 2012; Ostergaard, 2012). Therefore this was investigated secondarily. Due to the low 

number of passive commuters (N boys=16 and girls=20), thus low power, the analysis were adjusted 

for body height only. 

Information on PA was missing for 50 participants (12.5% of the sample). We therefore 

imputed the missing values for these individuals using the multiple linear imputation approach ("mi 

impute" in STATA) including all covariates from model 2. Beta coefficients and the standard errors 
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from 30 datasets were used. The estimates were adjusted for missing-data uncertainty. Participants with 

imputed data did not differ from the participants with full PA data regarding age, sex distribution, BMI 

or frequency of bicycle use (full PA data set) (data not shown).  

As the study was observational and due to the explorative nature of the study, corrections 

for multiple testing were not performed (Bender & Lange, 2001). Standard checks of model 

assumptions were performed. All statistical analyses were performed in STATA 11.2 (STATA Corp. 

Fort Valton TX) with alpha=0.05 (two-sided).  

 

Results 

The characteristics of the included sample are described in Table 1 (N=375). Neither drop-outs, nor 

subjects with incomplete data on exposures or outcomes differed from the included sample in terms of 

BMI, smoking status, biological development or parental education at the baseline assessment 

performed six years earlier (data not shown). Objectively measured moderate-and-vigorous PA was 

significantly lower in boys, but not in girls, who reported a higher frequency of bicycle use. Boys had 

higher carotid compliance, distension and lower values of Young’s elastic modules compared to girls 

(p<0.05 for gender differences).   
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Table 1: Population characteristics among Danish adolescents from the European Youth Heart Study. 
          
 Frequency of bicycle use (boys)  Frequency of bicycle use (girls) 
 <3 

times/week 
Nearly 
every 
day 

Everyday P  <3 
times/week 

Nearly 
every 
day 

Everyday P 

          
N 50 33 86   46 45 115  
Age 15.9 (0.4) 15.6 

(0.4) 
15.6 (0.4) <0.001  15.7 (0.4) 15.6 

(0.4) 
15.9 (0.4) 0.17 

Parental education 
(%low/%middle/%high) † 

5/38/57 7/45/48 6/29/65 0.57  13/50/37 7/38/55 5/32/63 0.57 

Familial history of CVD (%no/yes) 88/12 94/6 96/4 0.16  82/18 91/9 90/10 0.16 

Current smoker (% no/yes) 86/14 90/10 90/10 0.80  89/11 96/4 84/16 0.80 

Tanner stage (%3/%4/%5) 14/63/23 23/71/6 22/61/17 0.34     0.43 
Sugar sweetened drinks 
(servings/week) 

3.6 (2.5) 3.9 (2.3) 3.9 (2.6) 0.70  3.9 (2.5) 3.6 (2.3) 4.3 (2.5) 0.31 

Fruit- and vegetables (servings/week) 12.3 (6.6) 13.3 
(5.7) 

13.3 (6.7) 0.62  12.5 (6.5) 12.7 
(5.8) 

14.4 (6.3) 0.11 

Moderate-and-vigorous physical 
activity (min/day) 

49 (25) 42 (14) 33 (17) <0.001  26 (12) 23 (14) 27 (15) 0.29 

Carotid compliance (mm3*kPa-1) 1.48 (0.36) 1.63 
(0.24) 

1.65 
(0.41) 

0.04  1.48 (0.29) 1.43 
(0.26) 

1.40 
(0.28) 

0.29 

Carotid distensibility (%*kPa-1) 49.9 (13.0) 53.2 
(9.6) 

54.4 
(13.8) 

0.14  52.2 (10.7) 52.0 
(10.1) 

49.6 
(10.0) 

0.23 

Young’s elastic modules (kPa*mm-1) 0.24 (0.07) 0.21 
(0.05) 

0.21 
(0.05) 

0.08  0.22 (0.05) 0.21 
(0.05) 

0.23 
(0.05) 

0.40 

Diastolic diameter 6.2 (0.4) 6.2 (0.4) 6.2 (0.4) 0.61  6.0 (0.3) 5.9 (0.3) 6.0 (0.3) 0.38 
Pulse pressure (mmHg) 57.1 (10.1) 52.8 

(8.6) 
53.7 (8.5) 0.05  47.8 (7.5) 49.1 

(9.1) 
48.8 (6.8) 0.67 

Mean arterial pressure (mmHg) 79.7 (7.6) 76.7 
(6.1) 

76.7 (7.5) 0.06  79.8 (6.6) 77.2 
(5.7) 

77.6 (6.5) 0.09 

Systolic BP (mmHg) 119.3 (11.7) 114.1 
(10.2) 

116.8 
(12.4) 

0.17  110.4 (11.4) 111.9 
(10.0) 

108.5 
(7.9) 

0.10 

Diastolic BP (mmHg) 62.1 (7.9) 59.7 
(6.5) 

60.2 (6.2) 0.24  63.9 (6.5) 63.6 
(6.1) 

62.3 (6.0) 0.22 

Waist circumference (cm) 76.6 (11.5) 72.9 
(6.1) 

71.6 (6.6) 0.004  73.3 (9.1) 70.8 
(8.1) 

71.1 (6.6) 0.004 

Body Mass Index (kg/m2) 21.9 (3.7) 20.4 
(2.7) 

20.1 (2.4) 0.002  21.9 (3.9) 20.6 
(4.6) 

21.3 (2.9) 0.002 

Data is mean (SD), frequencies (%) or median (interquartile range), p-value is for trend across categories of bicycle frequency 
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Associations between total bicycling and carotid arterial stiffness 

The associations between the frequency of bicycle use and carotid arterial properties and function are 

described in Table 2. In boys, participants using the bicycle every day of the week had higher values 

(~0.4 SD) of the carotid compliance coefficient, distensibility coefficient and lower values (~ -0.4 SD) 

of Young’s elastic modules in the crude models (Table 1, model 1), when compared to those using the 

bicycle less than three times per week. In the crude model bicycling was only marginally associated 

with higher values of the carotid distensibility coefficient (p=0.06). Adjusting for objectively measured 

moderate-and-vigorous physical activity did not affect the association between bicycling and the 

carotid compliance coefficient, however estimates in the analysis of Young’s elastic modules decreased 

by ~0.10 SD and the association with the distensibility coefficient became stronger and significant 

(Table 1, model 2). No associations between bicycling and measures of carotid stiffness were observed 

in girls (Table 1). 

Inclusion of the remaining covariates did not change this materially (model 3). However, the 

difference in carotid distensibility coefficient became borderline significant (p=0.08). Waist 

circumference and mean arterial pressure (both independently associated with both exposure and 

outcome) were entered separately into model 3 (Table 2, model 4 and 5). The inclusion did not 

materially affect the association using the compliance or distensibility coefficient as outcomes. When 

including Young’s Elastic Modulus as outcome, the associations were slightly attenuated.  

When analyzing the difference in carotid arterial systolic diastolic diameter and Brachial pulse 

pressure across the categories of bicycling, boys using the bicycle nearly every day or every day had a -

-5.0 mmHg (95% CI: -9.2 to -0.85) and -4.6 mmHg (95% CI: -8.0 to -1.18) lower pulse pressure, 

respectively, compared to boys using the bicycle less than three times per week (adjusted for biological 

maturity, body height and objectively measured moderate-and-vigorous PA). There was no association 
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of frequency of bicycle use and larger diastolic arterial diameters in boys (supplement 1). No 

differences between pulse pressures or diastolic arterial diameter across groups of bicycling were 

observed in girls (Supplement 1). 
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Table 2 Associations between the frequency of bicycle usage and measures of carotid arterial stiffness  
        
 < 3 times/week Nearly every day Every day  
        
Model   Beta (95% CI) P Beta (95% CI) P P for trend 
        

Young’s elastic modules 
Boys        

1 Reference  -0.34 (-0.77 to 0.11) 0.14 -0.40 (-0.74 to -0.06) 0.02 0.03 
2 Reference  -0.37 (-0.82 to 0.08) 0.11 -0.50 (-0.86 to -0.13) 0.01 0.02 
3 Reference  -0.32 (-0-81 to 0.18) 0.20 -0.48 (-0.91 to -0.06) 0.03 0.03 
4 Reference  -0.25 (-0.74 to 0.25) 0.32 -0.39 (-0.82 to 0.04) 0.07 0.08 
5 Reference   -0.38 (-0.88 to 0.11) 0.12 -0.55 (-0.97 to -0.14) 0.01 0.04 

        
Girls        

1 Reference  -0.07 (-0.45 to 0.33) 0.73 0.09 (-0.23 to 0.42) 0.58 0.46 
2 Reference  -0.07 (-0.49 to 0.35) 0.73 0.15 (-0.20 to 0.49) 0.41 0.30 
3 Reference  -0.19 (-0.65 to 0.27) 0.41 0.07 (-0.32 to 0.47) 0.72 0.50 
4 Reference  -0.04 (-0.47 to 0.38) 0.83 0.09 (-0.27 to 0.46) 0.61 0.50 
5 Reference   -0.13 (-0.57 to 0.31) 0.56 0.06 (-0.32 to 0.44) 0.77 0.57 

        
Carotid distensibility coefficient 

Boys        
1 Reference  0.22 (-0.32 to 0.67) 0.34 0.34 (-0.01 to 0.68) 0.06 0.06 
2 Reference  0.24 (-0.22 to 0.69) 0.31 0.40 (0.02 to 0.77) 0.04 0.03 
3 Reference  0.21 (-0.28 to 0.71) 0.40 0.38 (-0.04 to 0.81) 0.08 0.08 
4 Reference  0.15 (-0.35 to 0.75) 0.57 0.30 (-0.14 to 0.73) 0.17 0.12 
5 Reference   0.25 (-0.25 to 0.75) 0.32 0.43 (-0.001 to 0.85) 0.05 0.05 

        
Girls        

1 Reference  -0.05 (-0.46 to 0.37) 0.82 -0.27 (-0.61 to 0.08) 0.13 0.10 
2 Reference  -0.04 (-0.46 to 0.37) 0.83 -0.27 (-0.61 to 0.08) 0.13 0.10 
3 Reference  0.07 (-0.39 to 0.52) 0.78 -0.20 (-0.60 to 0.19) 0.31 0.20 
4 Reference  0.001 (-0.45 to 0.47) 0.98 -0.24 (-0.63 to 0.15) 0.23 0.15 
5 Reference   0.07 (-0.40 to 0.54) 0.77 -0.21 (-0.61 to 0.18) 0.29 0.17 

        
Carotid compliance coefficient 

Boys        
1 Reference  0.32 (-0.10 to 0.76) 0.17 0.44 (0.11 to 0.79) 0.01 0.01 
2 Reference  0.32 (-0.13 to 0.76) 0.16 0.44 (0.08 to 0.81) 0.02 0.01 
3 Reference  0.31 (-0.17 to 0.78) 0.21 0.47 (0.07 to 0.87) 0.02 0.02 
4 Reference  0.33 (-0.15 to 0.80) 0.18 0.50 (0.09 to 0.92) 0.02 0.02 
5 Reference   0.33 (-0.15 to 0.81) 0.21 0.47 (0.06 to 0.87) 0.02 0.02 

        
Girls        

1 Reference  -0.18 (-0.58 to 0.23) 0.39 -0.20 (-0.54 to 0.13) 0.23 0.25 
2 Reference  -0.14 (-0.56 to 0.27) 0.52 -0.18 (-0.52 to 0.17) 0.29 0.34 
3 Reference  -0.16 (-0.59 to 0.27) 0.47 -0.27 (-0.65 to 0.10) 0.15 0.15 
4 Reference  -0.16 (-0.61 to 0.29) 0.49 -0.25 (-0.63 to 0.14) 0.21 0.21 
5 Reference   -0.14 (-0.57 to 0.30) 0.54 -0.27 (-0.65 to 0.11) 0.16 0.15 

        
Carotid Intima Media thickness 

Boys        
1 Reference  -0.05 (-0.48 to 0.39) 0.83 0.17 (-0.17 to 0.51) 0.34 0.28 
2 Reference  0.01 (-0.44 to 0.46) 0.96 0.28 (-0.08 to 0.65) 0.13 0.10 
3 Reference  0.03 (-0.46 to 0.51) 0.92 0.32 (-0.10 to 0.73) 0.13 0.11 
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4 Reference  0.06 (-0.43 to 0.56) 0.80 0.37 (-0.05 to 0.79) 0.09 0.07 
5 Reference   0.001 (-0.49 to 0.51) 0.97 0.33 (-0.11 to 0.74) 0.16 0.12 

        
Girls        

1 Reference  0.23 (-0.18 to 0.64) 0.27 0.35 (0.009 to 0.69) 0.04 0.05 
2 Reference  0.13 (-0.28 to 0.55) 0.55 0.33 (-0.02 to 0.69) 0.06 0.05 
3 Reference  0.01 (-0.44 to 0.46) 0.95 0.32 (-0.10 to 0.73) 0.13 0.10 
4 Reference  0.01 (-0.44 to 0.47) 0.96 0.27 (-0.12 to 0.66) 0.17 0.11 
5 Reference   0.04 (-0.41 to 0.40) 0.85 0.20 (-0.11 to 0.68) 0.16 0.10 

        
        
Estimates are standardized values (95% confidence intervals (CI)) 
Model 1 is adjusted for biological development and body height 
Model 2 is adjusted is further adjusted for moderate-and-vigorous physical activity  
Model 3 is additionally adjusted for  current smoking status, the intake of fruit, vegetable and soft drink consumption, parental 
educational level, TV-viewing and family history of cardiovascular disease 
Model 4 is model 3 additionally adjusted for waist circumference 
Model 5 is model 3 additionally adjusted for mean arterial pressure 
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Associations between commuter mode to school and carotid arterial stiffness 

The associations between commuter mode and arterial stiffness are shown in Table 3. As for overall 

frequency of bicycling, no associations were observed among girls. Boys using their bicycle as mean of 

commuting had higher carotid compliance and lower values of Young’s Elastic Modules compared to 

passive commuters. However, effect sizes for the distensibility coefficient only reached borderline 

significance (p=0.08). Boys walking to school had a tendency towards a better buffering capacity and 

lower arterial wall stiffness compared to passive commuters. Including the remaining confounders from 

model 3 in the main analysis (excluding moderate-vigorous physical activity) did attenuate the 

estimates slightly in boys. The effect sizes for bicycle vs. passive commuters were -0.50 (95% CI -1.14 

to 0.14), 0.50 (95% CI -0.10 to 1.12) and 0.39 (95% CI -0.25 to 1.03) for Young’s elastic modules, 

compliance and distensibility coefficient, respectively. No differences between the crude and fully 

adjusted model were observed in girls (data not shown). 
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Table 3 Associations between commuter mode and measures of carotid arterial stiffness  
        
 Passive Walking Bicycling  
        
Model   Beta (95% CI) P Beta (95% CI) P P for trend 
        
Boys (N=172) (N=16)  (N=44)  (N=112)   

Young’s elastic modules Reference  -0.45 (-1.03 to 0.12) 0.12 -0.54 (-1.07 to -0.02) 0.045 0.07 
Carotid distensibility coefficient Reference  0.43 (-0.14 to 1.01) 0.14 0.47 (-0.06 to 0.99) 0.08 0.15 

Carotid compliance coefficient Reference  0.44 (-0.12 to 0.99) 0.12 0.59 (0.08 to 1.01) 0.02 0.03 
Carotid Intima Media Thickness Reference  -0.48 (-1.04 to 0.07) 0.09 -0.18 (0.69 to 0.33) 0.48 0.73 

        
Girls (N=211) (N=20)  (N=48)  (N=143)   

Young’s elastic modules Reference  0.04 (-0.50 to 0.57) 0.89 -0.01 (-0.48 to 0.47) 0.97 0.87 
Carotid distensibility coefficient Reference  0.08 (-0.45 to 0.61) 0.76 0.06 (-0.41 to 0.54) 0.79 0.87 

Carotid compliance coefficient Reference  0.10 (-0.42 to 0.63) 0.69 0.14 (-0.34 to 0.61) 0.57 0.60 
Carotid Intima Media Thickness Reference  0.11 (-0.42 to 0.65) 0.67 0.34 (-0.14 to 0.82) 0.16 0.08 

        
Estimates are standardized values (95% confidence intervals) 
The models are adjusted for body height and biological development 
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Discussion 

The main finding of this study was that boys using their bicycle every day of the week displayed a 

better buffering capacity, lower intrinsic arterial stiffness and, to a lower degree, arterial elasticity 

compared to those using their bicycle less than three times per week. These associations were 

independent of important socio-demographic confounders and distending blood pressure. We did not 

observe any differences in buffering capacity, arterial elasticity or intrinsic wall stiffness across 

categories of bicycling in girls. Secondly, we observed that boys bicycling to school had a better 

buffering capacity and lower intrinsic arterial wall stiffness compared to passive commuters, although 

slightly attenuated in the fully adjusted model.  

Our findings support the beneficial effects of PA on arterial stiffness (Nettlefold, McKay, 

Naylor, Bredin, & Warburton, 2012; Ried-Larsen, 2013; Sakuragi, 2009; Schack-Nielsen, 2005) and 

we have extended the data by separating the effects of bicycling from other moderate-and-vigorous 

physical activities. Several observational studies suggest that commuter bicycling is associated with 

lower levels of metabolic CVD risk factors in children and adolescents (Andersen, 2011a; Cooper, 

2006; Cooper, 2008; Ostergaard, 2012). However, these studies have not been able to separate the 

effects attributable to bicycling from other PA modes that could potentially affect CVD risk. As the 

Actigraph activity monitors (using the vertical axis) almost does not register moderate-and-vigorous 

physical during cycling, effect estimates from previous studies linking accelerometer-based PA to 

metabolic CVD risk factors could be grossly underestimated in countries with a high proportion of 

bicycling. In this study, objectively measured PA derived from the vertical axis acted as a negative 

confounder in the sample of boys.  
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Only a few randomized controlled trials have shown beneficial effects on metabolic CVD risk 

factor levels of bicycling in adults (Hendriksen, Zuiderveld, Kemper, & Bezemer, 2000; Moller, 

Ostergaard, Gade, Nielsen, & Andersen, 2011; Oja, 1991), we are only aware of one study assessing 

the effects of cycling exercise on carotid compliance. Thijssen et al. did not observe an effect of an 8-

week cycling intervention on carotid compliance (Thijssen, de Groot, Smits, & Hopman, 2007). 

However, the study was conducted in an elderly sample (~70 years) and consisted of only three training 

sessions per week. This is equivalent to the low frequency usage quartile in our study and possibly 

explaining the discrepancies to our observations.  

To the best of our knowledge, only two experimental trials promoting bicycling to decrease 

metabolic CVD risk factor levels in childhood have been conducted but neither assessed the effect on 

vascular arterial outcomes. In a smaller randomized controlled trial, we observed an improvement in a 

CVD risk factor profile among children (n=43) after an eight week intervention promoting commuter 

bicycling (Ostergaard, 2012). In another trial (n=53), Børrestad et al. observed improvements in cardio 

respiratory fitness in children who started bicycling to school (Borrestad, Ostergaard, Andersen, & 

Bere, 2012). This is in line with our observations, that bicycling to school was associated with a better 

buffering capacity. Thus, promotion of both the total bicycling frequency and commuter bicycling 

could carry important health benefits. However, more experimental studies are needed to elucidate the 

effects of bicycling on arterial health in childhood. 

As we did not observe any markedly attenuation by adjustment for mean arterial pressure or 

adiposity it is likely the mechanism responsible for the associations could relate to differences in 

hemodynamics across the groups of bicyclists. Green et al. observed an increase in blood flow and 

changed flow pattern in the upper limbs during lower limb cycling at higher, but not lower intensities 
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(Green, 2002; Green, 2005). This is supported by Thijssen et al. who observed a difference in the 

haemodynamic response between rhythmic (cycling and walking) and bilateral knee kicking (Thijssen, 

2009). The observations suggest that lower limb cycling movements at higher intensities, such as 

bicycling, exerts a global effect on the hemodynamic patterns. Even though this linkage has not been 

established for the carotid artery, it is likely that the global effect could induce changes in arterial 

stiffness in this region of the arterial tree. Repeated changes in flow pattern and shear stress could 

decrease vasoconstrictor tone through reductions in resting sympathetic outflow, thus increasing the 

buffering capacity (Green, Spence, Halliwill, Cable, & Thijssen, 2011). In contrast repeated cycles of 

exercise may increase vascular tone and induce arterial remodeling (Green, 2011). Both theories could 

explain our observations, if the increase in exercise induced vascular tone is transient.   

As in a previous study we observed modification by sex in the associations between moderate-

and-vigorous PA and arterial stiffness (Ried-Larsen, 2013). Data in adults suggests that high intensity 

exercise is required in order to improve arterial function or decrease arterial stiffness (van de Laar, 

2010; Green, Maiorana, O'Driscoll, & Taylor, 2004). Thus, a possible explanation could be sex specific 

preferences in bicycling intensity (or energy expenditure) with boys exerting a higher intensity during 

bicycling than girls. Unfortunately we do not have data to explore this possibility. Previous studies 

have reported inconsistency in sex specific cycling intensities (Ostergaard, 2012; Hendriksen, 2000; 

Oja, 1991) and it is therefore possible that the intensity during bicycling for boys is higher than for 

girls, and these differences could explain the modification by sex in our sample. An alternative 

explanation relates to menstrual phase. Hayashi et al. observed a 25% variability of carotid arterial 

compliance across the menstrual cycle in ten healthy women (Hayashi, 2006). Thus, our observations 

may have been confounded by lack of control of the phase in the menstrual cycle as there is some 
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evidence to support that a high PA level is associated with lower levels of estrogen in the luteal phase 

(De Souza, 1998; De Souza, 2010). Unfortunately, we did not obtain information on menstrual cycle. 

An alternative explanation includes sex differences in volume of bicycling. As we only obtained 

measures on frequency of bicycle use we cannot test this alternative hypothesis. However, we did 

include a question of the time spent on active commuting including the four levels 1 “<5 min”, 2 “5-15 

min”, 3”15-30 min” and 4”>30 min” (the latter two were collapsed into one category due few 

respondents in category 4 (N=2). In a sex stratified post hoc analysis we did not observe a modification 

of the association between arterial stiffness and commuter bicycling by the duration of commuter 

bicycling moderated (data not shown). This indicates, at least for commuter bicycling, that the time 

spend per trip does not influence the estimate. The majority of respondents reporting bicycling every 

day, also used their bike as a mean of commuting (Nboys=65%/Ngirls=51%, p<0.001). It could be 

speculated that the total volume, expressed by number of trips/week rather than duration/trip could 

explain our observations. However, the analysis should be interpreted with caution due to low 

statistical power and the risk of information bias.   

Strengths of this study include objectively measured PA and the age homogeneous sample. 

Although, we are confident that the observed difference between the groups of bicycling usage are 

independent of moderate-and-vigorous PA it is possible that differences in light intensity PA, overall 

sedentary behavior, and other PA not registered by the accelerometer, could have confounded our 

observations as these modes have been associated with adverse metabolic profiles (Atkin, 2013). 

However, previous observations from the Amsterdam Growth and Health Longitudinal Study only 

noted an association between vigorous, and not light, PA and Carotid arterial stiffness (van de Laar, 

2010). Similarly, as our observations were independent of TV-viewing time and since we did not 

observe any differences in objectively measured sedentary time (<17 count/10 sec.) or light PA ([17-



21 
 

499 counts/sec]) across groups of bicycle usage (data not shown), we do not believe that confounding 

by these parameters could explain our observations.  

There are some limitations to the study. First, the usage of bicycling was assessed using self-

report and is thus prone to recall bias. However, as the participants were not aware of their arterial 

properties, the biases are probably non-differential. Second, the large drop-out could induce a selection 

bias. The drop-outs from childhood to adolescence did not differ from the participants of the study 

sample in their baseline reporting of commuter bicycling (overall bicycling was not assessed at 

baseline), BMI or parental educational status six years earlier. Finally, in a post hoc sensitivity analysis, 

the estimates were weighed according to the probability of participating at follow-up. The estimates 

were weighted according to overweight, parental educational status and smoking status at baseline 

(using the pweight option in Stata). However, this procedure did not affect the effect estimates. Taken 

together, we do not suspect that selection bias explains our observations. Third, we used brachial BP 

for calculation of PP which may overestimate pulse-pressure in the central arteries, especially in young 

people (Boutouyrie, 1999). This may therefore overestimate our measure of arterial stiffness. This bias 

would be random as the cohort was homogeneous according to age. Brachial artery pulse-pressure 

amplifications may, however, differ across gender and CVD risk (Agnoletti, 2012; Regnault, 2012) and 

could potentially introduce a differential bias if the size of the amplification is related to bicycling and 

the confounding factors in this sample. Fourth, we do not have information of the duration of or 

intensity during and volume of bicycling, thus it is unclear to which extent the differences between the 

groups of bicycling is explained by differences in intensity and/or overall energy expenditure during 

bicycling. Fifth, as the assessment of the dietary intake was measured crudely this could potentially 

confound our observations. Sixth, the analysis of commuter mode was only adjusted for body height 

and biological maturation due to power concerns. Therefore, the associations could be confounded and 
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the observations should be interpreted with caution. Lastly, due to the cross-sectional design, we cannot 

exclude the possibility of unknown and residual confounding or infer causality.  

 

Perspectives 

The observations from our study may have important preventive and clinical implications. As a 

frequent use of the bicycle was associated with lower carotid arterial stiffness in boys independent of 

moderate-and-vigorous PA this suggests, at least in boys, that bicycling could be important to facilitate 

in order to prevent CVD later in life. As we furthermore observed that the boys bicycling to school had 

a better buffering capacity, promoting commuter bicycling in childhood could carry important health 

benefits.  

Though the association was not apparent in girls, previous research indicates that bicycling is as 

effective for decreasing metabolic CVD risk factors levels in girls as well as in boys (Andersen, 2011a; 

Cooper, 2006; Ostergaard, 2012). It is therefore reasonable to promote bicycling in both sexes. More 

accurate information on bicycle use (including distribution, volume and intensity) is needed to explore 

whether the sex difference could be ascribed differences in use. 

Strategies promoting total bicycling as commuter bicycling could prove important to decrease 

CVD risk later in life. However, these strategies should be policy founded as safety and supportive 

infrastructure is pivotal in succeeding. Further evidence from prospective observational studies and 

randomized controlled trials are needed to inform policy makers about the needed volume of and 

intensities while bicycling and the environmental circumstances were bicycle promotion is effective. 
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