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Abstract: 
Electromyographic (EMG) signals play a key role in many clinical and biomedical applications. They 
can be used for identifying patients with muscular disabilities, assessing lower-back pain, kinesiology 
and motor control. There are three common applications of the EMG signal: (1) to determine the 
activation timing of the muscle; (2) to estimate the force produced by the muscle and (3) to analyze 
muscular fatigue through analysis of the frequency spectrum of the signal. We have developed an 
EMG tool that was incorporated in an existing web-based biosignal acquisition and processing 
framework. This tool can be used on a post-processing environment and provides not only frequency 
and time parameters, but also an automatic detection of starting and ending times for muscular 
voluntary contractions using a threshold-based algorithm with the inclusion of the Teager– Kaiser 
energy operator. The algorithm for the muscular voluntary contraction detection can also be 
reported after a real-time acquisition, in order to discard possible outliers and simultaneously 
compare activation times in different muscles. This tool covers all known applications and allows a 
careful and detailed analysis of the EMG signal for both clinicians and researchers. The detection 
algorithm works without user interference and is also user-independent. It manages to detect 
muscular activations in an interactive process. The user simply has to select the signal’s time interval 
as input, and the outcomes are provided afterwards. 
 
RESEARCH HIGHLIGHTS 

• An interactive analysis tool for electromyographic (EMG) signals has been developed.  
• The tool gives the user control over signal processing algorithms, enabling human–computer 

interaction and provides visual information from the signals and processing results.  
• This tool differs from the existing ones due to the inclusion of an automatic detection 

algorithm for the muscular voluntary contraction—threshold-based method with the 
inclusion of the Teager–Keaser energy operator.  

• It allows a careful and detailed analysis of EMG signals both for clinicians and researchers.  
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1. INTRODUCTION  
 
In our daily activities, motor neurons carry electrical signals from the peripheral and central nervous 
system causing muscles to contract ( Bronzino,  2000). Electromyography (EMG) is the registration 
and interpretation of action potentials generated in the muscle during contractions and represents 
neuromuscular activities. Detection of EMG signals with powerful and advanced methodologies is 
becoming a very important requirement in biomedical engineering. The main implementation of 
EMG signal analysis is in clinical diagnosis and biomedical applications. The field of management and 
rehabilitation of motor disabilities is identified as one of the most important application areas. EMG 
signals are used diagnostically by gait laboratories and by trained clinicians in tasks of biofeedback or 
ergonomic assessment. EMG is also an important biosignal to analyze in biomechanics, motor 
control, neuromuscular physiology, movement disorders, postural control and physical therapy ( 
Reaz et al.,  2006). Many clinical applications, such as gait analysis and coordination studies, require 
accurate detection of when, and for how long, muscles are activated. Generally, visual inspection is 
considered to provide highly accurate event detection, because all details of the signal can be 
assessed by the clinical specialists. Besides the accuracy in the detection, the speed of the algorithm 
can be an important consideration for specific applications (Merlo et al.,  2003). However, for long 
acquisitions of repetitive movements the visual inspection can be time consuming, becoming an 
impracticable method for the biosignal analysis. Therefore, the use of an accurate algorithm for 
activation detection will benefit the user. There are several methods for analyzing the EMG signal. 
The most commonly used methods are in the time and frequency domain. In the time-domain 
analysis of EMG, the histogram is a valuable feature since it can provide information about the 
frequency with which the EMG signal reaches various amplitudes ( Zardoshti-Kermani et al.,  1995). 
Also important are the mean, maximum value, standard deviation (STD), root mean square (RMS) 
and total area of the overall signal ( Bilodeau et al.,  1992;  Tkach et al.,  2010). However, one of the 
most important parameters to extract from this type of biosignal is the activations. When the subject 
uses his muscles to perform a determined activity, the EMG signal varies. The detection of muscular 
voluntary contractions is an important EMG processing feature in many applications such as in the 
field of biomechanics of the human body, in the field of medicine and clinical diagnosis, in the 
development of rehabilitation devices and so on ( Vannozzi et al.,  2010). There are several onset 
detection algorithms developed for EMG signals. One of the most widely used algorithms is the EMG 
amplitude thresholding, introduced by Hodges and Bui. This technique is characterized by simple and 
fast implementation ( Zhou and Zhang,  2014). However, the simplicity of threshold methods has 
drawbacks when the amplitude of the signal varies or when it is affected by noise. Besides threshold 
methods, there are other methods to detect when a muscular activation occurred, such as the 
generalized likelihood ratio, described in  Micera et al. ( 1998). This showed better results than the 
threshold methods at a low computational cost. Other approaches have emerged as an answer to 
the problems when detecting EMG activations from signals with high levels of noise, such as the 
wavelet transforms method presented in  Vannozzi et al. ( 2010) or the Teager–Kaiser energy 
operator (TKEO) ( Solnik et al.,  2010). Frequency domain analysis of EMG can also provide valuable 
information concerning certain characteristics of muscular activity in the human body. It has been 
shown, for example, that the mean power frequency of the EMG power spectrum can be used to 
estimate the muscle fiber types (I or II) content of a given muscle ( Bilodeau et al.,  1992). According 
to  Alty and Georgakis ( 2011), the most commonly used spectral variables in EMG fatigue analysis 
studies are the mean and median frequency. There are currently several EMG analysis frameworks 
available: Noraxon— Superior Evidence-Based Biomechanics ( Noraxon,  2014), Motion Lab Systems 
Software—EMG Analysis ( Motion-Labs,  2014), EMGWorks Software ( Joe,  2014), MindWare—EMG 
Analysis tool ( MindWare,  2014), B&L Engineering—EMG Analyzer Software ( B&L Engineering,  
2014). These are some examples of EMG processing tools that can be found in the literature which 
provides time and frequency analysis such as our tool. However, they do not allow the automatic 
detection of muscle activation. The user has to manually identify each activation in order to get the 
information of interest. EMG analysis is of the utmost importance in several applications where the 



muscular activity assessment is needed. Since the majority of EMG analysis tools require manual 
EMG activation detection, the development of an automatic muscular onset detection tool for this 
type of biosignal processing would help the scientific community. Our main goal was to develop an 
EMG analysis tool with the inclusion of an automatic detection algorithm for muscular voluntary 
contractions. The developed tool also surpasses the currently available tools in what portability is 
concerned, since it can be executed in a web environment. This tool also provides time and 
frequency parameters from an EMG signal. The algorithm performance was assessed by visual 
inspection, where in this case in particular, all activations performed were correctly identified. 
However, further usability tests should be undertaken in order to validate our tool. Besides, as a 
mean to assess our algorithm’s performance, we will test it with signals from different subjects (each 
subject might perform many different activities) in order to validate the algorithms robustness. In the 
following section, the EMG analysis tool is explained in more detail. This includes the acquisition 
system used to test the tool, the application platform where the EMG tool was inserted and a 
description of the algorithm implementation. The activation detection algorithm is used for two  
different approaches— Fig. 1: (1) in a rapid assessment environment where the activation starting 
time is displayed before finishing an EMG acquisition. This allows to discard possible outliers when 
dealing with many EMG acquisitions; (2) in a post-processing environment where the user may study 
more carefully each EMG signal with a variety of time and frequency parameters. Two applications 
using this tool are stated and the results are then assessed using visual inspection. Finally, we discuss 
some improvements that can be made and conclude the work. 
 
 
2. EMG ANALYSIS TOOL  
We developed an interactive tool which runs in a web environment, and can therefore be easily 
accessed from anywhere with an Internet connection. The tool gives the user control over signal 
processing algorithms, enabling human– computer interaction and provides visual information from 
the signals and processing results. The EMG detection is processed very fast, and the user can have 
immediate feedback over several features of the signal, which will be described. 
 
 
2.1. Acquisition system  
The EMG signals were acquired with a Bioplux (Plux, Lisbon, POR) system that allows the real-time 
and combined acquisition of eight EMG signals. This device collects and digitalizes signals from 
sensors transmitted via Bluetooth to the computer where signals are shown in real-time. The signals 
are sampled at 1 kHz, which is the maximum frequency allowed by our acquisition device, with a 12 
bit resolution and recorded in a text or HDF5 format. This device also provides a channel for the 
connection of a reference electrode, an essential requirement to correctly monitor EMG signals  
( PLUX,  2014). The electrodes were placed in the arm and a simple task, such as open and close the 
hand was executed three times, in order to provide three distinct activations. 
 
 
2.2. Acquisition and visualization framework  
In order to allow users to analyze EMG recordings immediately after the signal acquisition, we 
incorporated the developed EMG processing algorithm in an existing web-based biosignal acquisition 
and processing framework ( Gomes et al.,  2012). This enables the simultaneous acquisition and real 
time visualization of eight analog sensor channels. The signal acquisition and management tool, 
where the EMG processing tools were incorporated, was based on a client–server model. 
In the server side, a python engine manages connections to the Bluetooth port, allowing the 
communication with the acquisition devices, saves data and responds to the clients requests. 
According to  Gomes et al. ( 2012), the data management is done using a biosignal data structure based 
on the HDF5 file system ( HDF-Group,  2014). This allows the storage of very large datasets with easy 
and fast access, since this is a hierarchical data format which facilitates data querying. There is 



graphical user interface based on HTML5 and CSS. To enable interactivity, JavaScript functions were 
developed to create a communication channel between client and server. For this communication, we 
used the standardized websockets protocol. The client application offers several functionalities related 
to biosignal acquisition and processing. The user has the possibility to set up the acquisition variables, 
such as the selected device, the sampling frequency, the channels to acquire and the sensor types. 
During the acquisition, the user is able to see the acquisition data streaming in real-time, being able to 
manipulate the graphs. 

After the acquisition is concluded, the user can save the acquired data in the specified data 
structure, or in a simple tab separated text file. In this step, not only the raw acquired data is saved, 
but also the data mining presented in Gomes et al. ( 2012). With the saved files, users are then able 
to visualize the acquired data in post-acquisition mode. The visualization is done by layers, and the 
user has access to higher detail data when visualizing small portions of the signal. This allows an easy 
navigation through the entire signal, through zooming and panning operations that are leveraged by 
the speed of our tool. When analyzing large acquisitions, the visualization tool displays the 
subsampled data resulted from the data mining process also described in our earlier work. The client-
side graphical interface was created aiming at speed and efficiency. Thus, all the signal channels are 
displayed using the scalable vector graphics (SVG) technology, and not a standard, off-the-shelf 
drawing library for HTML5. This approach involves the manipulation of low-level programming of the 
drawing routines, instead of calling standard display methods already developed on top of HTML5 
canvas. Since SVG is XML based, every SVG element can be attached with JavaScript handlers. Each 
SVG drawn shape is remembered as an object, which can be changed later, and re-rendered by the 
browser, while for canvas elements, there is no memory, which implies that with any change in the 
data, the browser needs to repeat the drawing process from the beginning. Since the signal 
acquisition and visualization application is executed in a web browser, the proposed tool is highly 
portable, and has potential to be accessed from anywhere with an Internet connection. Besides the 
wireless data transmission using Bluetooth technology and biosignal visualization in real-time, our 
base framework enables users to run the analysis of EMG records on the acquired data. In this EMG 
analysis tool, it is possible to simultaneously visualize the portion of the signal being analyzed and the 
processing results in an interactive process. The user is able to select only the part of the signal that 
must be analyzed, and receives the signal processing results for that interval. In this visualization 
tool, an ECG analysis has already been implemented ( Chorão et al.,  2012), providing the user a 
higher variety of signal processing analysis. Besides these two signal analysis functionalities, our 
biosignals framework also features a video synchronization feature, which can be very useful even in 
EMG studies. This feature allows users to synchronize a video from the recorded activity with the 
acquired biosignals, and playback the acquisition and the video simultaneously. Using this 
functionality, data analysis is leveraged since the biosignals can be associated with a record of the 
subjects activities, providing the researcher with a useful way to analyze these data. 
 
 
2.3. EMG activation detection  
EMG analyses require detection of different muscular contractions. In our work, this is achieved 
using an EMG algorithm that detects both starting and ending times of the existing muscular 
contractions. The detection was an adaptation of the threshold-based method ( Hodges and Bui,  
1996) with the inclusion of the TKEO. As it was already reported, the addition of TKEO as a step in 
conditioning surface EMG signals increases the detection accuracy of EMG burst boundaries ( Solnik 
et al.,  2010). The algorithm for events detection has several phases. The first operation consists in 
filtering the acquired signal to extract outliers resulted from noise or artifacts introduced by the 
movement of the subject. For this purpose, a band pass filter was applied between 10 and 300 Hz. 
According to  Merletti et al. ( 2009), to efficiently filter surface EMG signals without loss of 
information, a high-pass filter with a 10–20 Hz cutoff frequency and a low-pass filter with 400–450 Hz 
cutoff frequency should be used. However, these cutoff frequencies did not produce the expected 
results in our signals. Therefore, we had to adapt these frequencies, and finally got to the range 10–



300 Hz for our band pass filter. After filtering, the muscular detection activation signal (TKEO 
operator) at each time point j was calculated from the filtered emg signal with the following formula: 
 
TKEO[j] = emg[j]2 − (emg[j + 1] × emg[j − 1]).   (1) 
 
A smooth filter was applied over the activation signal to smooth variations, thereby allowing more 
stability in the detection of the muscle activations instants. The activations operator (TKEO) was then 
compared with a threshold that was set to 8. The threshold value indicated by  Solnik et al. ( 2010) 
should be: T = μ + hσ , where μ and σ stands mean and STD of the EMG signal, respectively, and h is a 
preset variable defining the level of the threshold. The value 8 was chosen after several values had 
been tested and which resulted in lower detection efficiency, however, as future work we intend to 
allow the user to edit this value before processing the algorithm. The final output of the algorithm 
generates a unitary signal where the operator assumes values above the threshold and zero values in 
the remaining moments. With this final signal, the start and end instants of each muscular activation 
were calculated. All signal processing algorithms were written in Python and SciPy, a Python package 
for scientific computing. The application platform was created using JavaScript and HTML browser-
supported languages. 
 
 
2.4. Rapid assessment  
This section describes the algorithm on a rapid assessment environment. The user executes a real-
time EMG acquisition and before saving the recording, the algorithm outputs are shown. This allows 
the user to compare different EMG signals at the same time, understand which muscles are activated 
first and discard possible outliers. An example is shown in Fig. 2 for three EMG sensors placed in 
different positions in the arm. The algorithm in this rapid assessment environment detects the first 
muscle voluntary contraction and displays the starting time of that activation with its maximum 
voluntary contraction. 

Figure 2 shows the pop-up message used to finalize and save a signal acquisition with the 
algorithm outputs. The results are ordered according to starting time in seconds. The maximum 
voluntary contraction is also displayed in mV and each EMG signal can be labeled to facilitate its 
investigation. However, to have a better understanding of each EMG signal a post-processing analysis 
is suggested, where more time and frequency parameters are displayed. Figure 1 shows the 
architecture of our tool. 
 
 
2.5.  Post-processing 
The EMG signal can be analyzed in all its extension. However, the user may choose to analyze only a 
particular time interval of the signal. The EMG analysis tool is composed of time and frequency 
parameters. The time parameters are displayed for the overall signal and individual activations 
detected. The outcomes can also be presented in percentage. If that is of the user interest a ‘Convert 
to %’ button is displayed before processing the signal. A new input section will be displayed so that 
the user can include the maximum activation in mV. Also, some visual representations are presented. 
All of this information is allied to the biosignals visualization tool to allow for a more detailed data 
inspection (Fig. 3). 

The time parameters for the selected time interval is visible in Fig. 3. These parameters are: 
mean (Mean); maximum value found in the signal (Max); minimum value found in the signal (Min); 
STD; RMS; total area (Area). The activations analysis is also presented. This analysis uses the 
activation detection algorithm explained in Section 2.3. The number of activations found in the 
overall signal is shown (Nr Act.) which are in agreement with the number of executed activations. If 
the user want more information regarding the activations, he can select the activation of interest 
from the drop-down list (Get info from Act. Nr). This includes the starting time of the activation 
(Start) in seconds, the ending time of the activation (End) in seconds, the maximum value of the 



contraction selected (Max), the mean (Mean), STD, the RMS and the total area (Area) of the 
contraction selected. For this signal in particular, starting and ending times of all activations are in 
agreement with visual inspection. The algorithm results for all activations are shown in Table 1 and 
the starting and ending times can be compared with the signal visualization displayed in Fig. 3. It is 
also important to note that all of the information is automatically saved in a file allowing the user to 
later access the information for statistical purposes. As it had been reported in  Gomes et al. ( 2012), 
we used the HDF5 file format, since this is an easily accessible format and has little access times if we 
are aiming at dealing with long-term EMG acquisitions which might contain a large number of 
muscular activations to detect. 

A different case study was performed in order to prove that this algorithm can be used in 
other situations. A female world-class swimmer and Olympic medalist was tested during breaststroke 
swimming at 60% of maximal effort. She swam 25 m and for a specified time window she performed 
12 stroke cycles. The algorithm was tested in one muscle—the tibialis anterior. The tool proved once 
again its effectiveness, since the algorithm accurately detected the 12 movements and the starting 
and ending times were in agreement with visual inspection. Still, more usability tests need to be 
executed in order to strengthen our tool and our algorithm detection. The frequency parameters are 
shown in Fig. 4. It includes the mean, median and maximum power frequency in mV and the total 
power in mV 2. The visualization tools available are the histogram shown in Fig. 5 and the power 
spectral density (PSD) in Fig. 6. According to  Zardoshti-Kermani et al. ( 1995) and  Alty and Georgakis 
( 2011), these are important features to study in EMG signals. This graphical information complement 
the user’s analysis by allowing verification of the noise effects in the signal. The histogram’s shape 
and statistical information can be used to assess the data distribution, and the PSD will allow 
determining the power spectral over the different frequencies. 
   
 
3. DISCUSSION  
 
We have successfully developed an EMG analysis tool that can be used both by researchers and 
clinicians. The findings over the two different applications described are that the algorithm 
accurately detected all activations performed. Time and frequency parameters can be obtained from 
the processed signal as well as individual information of each activation detected. Still, more usability 
tests should be performed in order to strengthen our tool and our activation detection algorithm. 
Feedback from users regarding the functionalities in the developed tool will be important for future 
improvements. We also compared our results with the Noraxon software. The mean and maximum 
values of the time domain and the mean and median frequency values of the frequency domain were 
the only metrics that could be compared, and although we had to manually identify each activation 
with the Noraxon software, the results were in agreement with our tool. 

Despite our good results, our tool also presents some limitations: the threshold cannot be 
modified and was set at 8; the signal is filtered with a band pass filter from 10 to 300 Hz and we can 
only process one signal at a time. 

Like any algorithm, and given that a threshold-based method was used, the developed tool 
may fail to identify a voluntary contraction. Therefore, the inclusion of different algorithms for the 
muscular contraction detection should be addressed, in order to strengthen this tool by providing 
different approaches for EMG analysis. For this, adaptive threshold methods are a possible approach 
to avoid errors in the analysis. We believe that this tool can also be improved by allowing the user to 
set up his preferences in signal filtering, before processing EMG data and running the activations 
detection algorithm. We also intend, as a first approach, to provide the user with the possibility to 
edit the threshold weight factor before processing the signal, since the algorithm accuracy depends 
on this factor, and may vary according to the type of exercise that was performed. Later we intend to 
provide automatic threshold detection by using a calibration process where the user should provide 
a known EMG signal with manual annotations of the activation timings. With these manual 
annotations, the tool should test different threshold values and select the value that enables to 



correctly determine the activation timings. A future development should also be the inclusion of 
accelerometry data as a mean to minimize the influence of movement artifacts from the EMG data ( 
Luca et al.,  2010). In the post-processing circumstances, a single signal must be processed at a time, 
and we intend to expand this processing to all signals simultaneously to allow the comparison of all 
the processing results at the same time. Last but not least, to facilitate the researcher’s analysis, we 
intend to display the detected activations by drawing its starting and ending times in the visualization 
tool along with the signal. With these future improvements, we will overcome the current limitations 
of the presented tool, meaning our goal is to present a versatile tool for automatic activation 
detections allowing the user to previously set its preferences according to the type of protocol that is 
using with EMG signals. 
 
 
4.  CONCLUDING REMARKS 
In this work, we developed an interactive analysis tool for EMG signals that differs from the existing 
ones in the literature due to the inclusion of an automated detection algorithm for muscular 
voluntary contractions. This tool runs in a web environment and enables human–computer 
interaction by providing the user access to visual information from the signals and processed results. 
Taking into account the described features, we conclude that it offers a flexible, detailed and 
accurate way of analyzing EMG signals. The analysis tool takes only a few seconds to perform the 
EMG activations detection. Its flexibility and possibility of a personalized and detailed analysis make 
it suitable for both clinicians and researchers. Its user-friendliness makes it pleasant to use and easy 
to learn, two very important characteristics in any software project according to  Holzinger ( 2005). 
The zooming capabilities and synchronization with a biosignals visualization tool makes it highly 
interactive and provides a better and faster data discovery. For future work, we intend to add new 
important features for the EMG analysis, different types of activation detection algorithms (e.g. 
double-threshold detector  Bonato et al.,  1998 or adaptive threshold methods), simultaneously run 
the activations detection algorithm for all measured EMG signals and allow for individual preferences 
in the signal filtering steps before applying the activation detection operations. We also aim to 
perform more tests with the developed algorithms, not only for accuracy and speed performance, 
but also concerning the possibility of adding noise to the EMG signals and analyze the influence in 
the detected activations. 
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Figure 1. Architecture diagram for the EMG analysis tool. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. Rapid assessment for EMG algorithm activation detection. The algorithm outputs are 
displayed before saving the acquired signals. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  



Figure 3. Time parameters of an EMG signal for the overall signal—statistical parameters; and for 
each activation found—activation analysis. The EMG tool was incorporated in parallel with the 
visualization biosignals environment. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 1. Results for each activation detected. 
 

Act. Nr 1 2 3  
Start (s) 1.981 4.940 8.206  
End (s) 2.893 6.009 9.147 
Max (mV) 0.600 0.587 0.437  
Mean (mV) 0.001 0.001 0.001  
STD (mV) 1.392 1.376 1.385  
RMS (mV) 1.486 1.483 1.484  
Area (mV2) 1353.549 1587.130 1399.509  

 
 
 
 
Figure 4. Frequency Parameters of the selected signal. 
 

 
 
 
 
 
 
 
 



Figure 5. Histogram. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 6. Power spectral density. 

 


