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Abstract

Background: Supplementation with large doses of antioxidants, such as vitamin C and E, has been shown to blunt
some adaptations to endurance training. The effects of antioxidant supplementation on adaptations to strength
training is sparsely studied. Herein we investigated the effects of vitamin C and E supplementation on acute stress
responses to exercise and adaptation to traditional heavy load strength training.

Methods: In a double blind placebo-controlled design, twenty-eight, young, trained males and females were

randomly assigned to receive either vitamin C and E (C: 1000 mg, E: 235 mg, per day) or placebo supplements, and
underwent strength training for 10 weeks. After five weeks, a subgroup conducted a strength training session to
investigate acute stress responses. Muscle samples were obtained to investigate changes in stress responses and in
proteins and mRNA related to the heat shock proteins (HSPs) or antioxidant enzymes.

Results: The acute responses to the exercise session revealed activation of the NFkB pathway indicated by
degradation of IkBa in both groups. Vitamin C and E supplementation had, however, no effects on the acute stress
responses. Furthermore, ten weeks of strength training did not change muscle aB-crystallin, HSP27, HSP70, GPx1 or

mnSOD levels, with no influence of supplementation.

Conclusions: Our results showed that although vitamin C and E supplementation has been shown to interfere
with training adaptations, it did not affect acute stress responses or long-term training adaptations in the HSPs or

antioxidant enzymes in this study.
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Background

Increased muscle strength and mass by strength training
are important for both physical performance and good
health [1]. Adaptations to strength training includes
both structural and biochemical changes in the muscle.
The biochemical adaptations include changes in systems
that deal with stress and support restitution after exer-
cise, such as the heat shock proteins (HSPs) and the en-
dogenous antioxidants. HSPs have the ability to protect
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against various cellular stressors by preventing protein
damage and restoring the function of already damaged/
unfolded proteins [2]. As a response to high intensity
strength exercise, HSPs bind to and accumulate in dam-
aged structures [3, 4]. This accumulation of HSPs corre-
lates with the decline in force generating capacity [4, 5],
which suggests that increased HSPs levels in muscle could
potentially improve the recovery process and restore
muscle function. Increased basal levels of HSPs have been
observed after 5-11 weeks of strength training in both
lower and upper body muscles [6, 7]. Increased intracellu-
lar HSP by training could potentially increase the rate of
regeneration and training adaptations.
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In addition to the HSPs, eukaryotic cells have devel-
oped its own antioxidant enzyme system to support op-
timal redox regulation. Such systems include glutathione
peroxidases (GPx) and superoxide dismutases (SOD),
which both have the ability to reduce H,O, to a less
harmful molecule. These enzymes has previously been
shown to increase by both endurance and strength train-
ing [8-10]. Many athletes use antioxidant supplements
[11] in the belief they could further protect against exer-
cise induced stress and thus improve recovery. However,
recent studies indicate that antioxidant supplementation
have the ability to blunt training adaptations in skeletal
muscle [12, 13]. A proposed mechanism for the observed
interference between antioxidant supplementation and
training adaptations has been related to changes in redox
status in the muscle, which in turn might affect cell signal-
ing [14]. One potential target for antioxidant supplemen-
tation is the stress- and redox-sensitive NF«kB pathway,
which upon stimulation activates transcription of a range
of stress related proteins, such as HSPs and endogenous
antioxidants [15—17]. Consequently, supplementation with
large doses of antioxidants could potentially reduce the
physiological up-regulation of cellular defensive systems
(HSPs and endogenous antioxidant enzymes) upon regular
exercise stress. Vitamin C supplementation alone has been
shown to increase basal protein levels of HSP70 in skeletal
muscle, and blunt HSP70 protein expression in human
lymphocytes exposed to oxidative stress [18]. Further-
more, ingestion of vitamin C and E decreases HSP70
mRNA levels after endurance exercise [19]. On the other
hand, antioxidant supplementation has been shown to
blunt the upregulation of SOD2 and GPxI mRNAs in-
duced after a period of endurance and strength training
[20]. Undesirable effects of antioxidant supplementation
on protein levels of GPx1 or mnSOD after endurance
training was, however, not observed in two later studies
[21-23]. Nevertheless, the apparent interference between
antioxidant supplements and HSPs and endogenous anti-
oxidants, could potentially affect the training induced ad-
aptations in these important proteins.

We have previously shown that vitamin C and E
supplementation did not have an effect on HSP levels
in response to 11 weeks of endurance training [24]. To
our knowledge, adaptation mechanisms in the HSPs, and
GPx1 and mnSOD, in response to heavy load strength
training in combination with vitamin C and E supplemen-
tation has not been investigated yet in humans. Thus, the
aim of the present study was to investigate the effect of
vitamin C and E supplementation on both acute exercise
induced mRNA expression and long-term training adapta-
tions in protein levels of HSPs and endogenous antioxi-
dants during a period of heavy-load strength training.

Despite an increase in muscle mass over 10 weeks of
training, we have reported that vitamin C and E
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supplementation blunted hypertrophy related signaling
to the strength training session investigated in the
present study [25]. Based on these results, we hypothe-
sized that vitamin C and E supplementation would be
able to blunt the stress induced by exercise, measured
as reduced activation of NF«B pathway, and expression
of HSPs (CRYAB and HSPBI) or antioxidant enzymes
(SOD2 and GPxI). Further, we hypothesized that vita-
min C and E supplementation would blunt the long
term (10 weeks) training induced increases in the heat
shock proteins (aB-crystallin, HSP27 and HSP70) and
endogenous antioxidant enzymes (GPx1 and mnSOD).

Methods

Participants

Eighteen male and ten female participants (n = 28; age
25 + 5 years, height 175 + 8 cm, body weight 74 + 13 kg)
completed the study. All participants were physical active,
accustomed to strength training, conducting regularly
strength training 1-4 times per week before the start of
the study. Physical activity prior to the study was reported
with a questionnaire. All participants gave written in-
formed consent before entering the study, and were in-
formed about potential risks related to the experiment.
The study was approved by the Regional Ethics Commit-
tee of Southern Norway (2010/1352) and was performed
in accordance with the Helsinki Declaration.

Experimental design

The detailed experimental design and limitations of the
present study has already been described [26]. Results
on muscle mass and more strength measurements have
been published previously [25]. In a randomized double
blinded manner, participants were allocated to receive
either a vitamin C and E or a placebo supplement based
on baseline maximal strength tests (IRM) and sex.

Supplements
The vitamin C and E and placebo pills were produced
by Petefa AB (Vistra Frolunda, Sweden) under Good
Manufacturing Practice (GMP) requirements. Each vita-
min pill contained 250 mg of ascorbic acid and 58.5 mg
DL-alpha-tocopherol acetate. The placebo pills had the
same shape and appearance as the vitamins pills. All
supplements were stored in similar unlabeled boxes, and
were consumed orally with an artificially favored sucrose
(30 g) drink to mask any potential taste from the pills.
The participants ingested 2 pills (total 500 mg of vita-
min C and 117 mg vitamin E) 1-3 h before every train-
ing session and 2 pills in the first hour after training. On
non-training days, the participants ingested 2 pills in the
morning and 2 pills in the evening. The intake of pills
was confirmed with an online training diary. Thus, daily
dosage was 1000 mg of vitamin C and 235 mg vitamin
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E. The total supplemental dosage of vitamin C was ~13
times higher and ~23 times higher for vitamin E than
the recommended daily dietary allowance in the Nordic
countries.

Beside the supplementation given in the study, the
participants were asked to not take any form of nutri-
tional supplement or medication that could affect the
strength training adaptations, such as NSAIDs. They
were also asked not to drink more than 2 glasses of juice
and 4 cups of coffee or tea per day. Juices rich in antiox-
idants, such as grape juice, were completely avoided.

Training

The exercise consisted of strength training with heavy
loads (6-11RM) for 10 weeks. The first six weeks the
loads were 3 x 9-11RM, and 3-4 x 6-8RM the last four
weeks. Sets were separated by a 1-1.5 min break. The
exercise program included exercises for all major muscle
groups in a 4-split exercise program (two upper- and
two lower body sessions per week), with a seven upper
and six lower body exercises. The exercise program was
designed with the main goal to stimulate both maximal
strength and muscle growth. The adherence and control
of exercise and supplementation was monitored and
logged using an online training diary. For variation and
motivation participants were allowed to do alternative
exercise forms (e.g. cycling or cross country skiing) once
per week in addition to the planned training sessions.

Acute exercise session

After 4—6 weeks, ten male and five female participants
(m = 15; age 26 + 7 years, height 177 + 7 cm, body
weight 73 + 13 kg) volunteered to an acute exercise ex-
periment. The exercise session consisted of 4x10RM of
leg press and knee-extension, with 1 min rest between
sets and 3 min rest between exercises. Muscle biopsies
were collected from m. vastus lateralis before and 100
and 150 min after the standardized exercise session using
a modified Bergstrom technique (described in the Muscle
tissue sampling and pre-analytic handling). Participants
ingested the supplements, vitamin C and E or placebo, to-
gether with a standardized breakfast (3 g oat per kg body
weight boiled in water with 5 g sucrose) two hours before
the exercise session. A second dose of supplements was
taken immediately after the exercise session.

Muscle tissue sampling and pre-analytic handling

Muscle biopsies from the mid-portion of the right m.
vastus lateralis were collected before and after the train-
ing intervention. The post training insertion was prox-
imally located to the pre-training site (approximately
3 cm). For the participants that also took part in the
mid-way, acute session experiments, the biopsies were
collected from the left m. vastus lateralis. One insertion
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was made for the pre sample, and a new insertion was
made proximally from this for the post exercise samples.
The two post samples were collected from the same in-
sertion site, at two different directions. The first was
sampled proximally and the second distally from the in-
sertion site. The procedure was conducted under local
anesthesia (Xylocain adrenalin, 10 mg/ml + 5 pg/ml,
AstraZeneca PLC, London, UK). Approximately 200 mg
(2-3 x 50-150 mg) of muscle tissue was obtained with
a modified Bergstrom-technique. Tissue intended for
homogenization and protein measurements was quickly
washed in physiological saline, and fat, connective tis-
sue, and blood were removed and discarded before the
sample was weighed and quickly frozen in isopentane
cooled on dry ice. Tissue intended for mRNA analyses
were placed in RNAlater (AM7020, Ambion, Life tech-
nologies, Carlsbad, CA, USA). All muscle samples were
stored at —80 °C for later analyses.

Protein immunoblot

Muscle tissue was homogenized using a commercial
homogenization buffer (78510, T-PER/Tissue Protein
Extraction Reagent, Thermo Scientific, Rockford, IL,
USA) with a cocktail of protease and phosphatase inhibi-
tors (1861281, Halt protein and phosphatase inhibitor
cocktail, Thermo Scientific)c and EDTA (1861274,
Thermo Scientific). Quantification of protein extracts
was assessed with the BioRad DC protein micro plate
assay (0113, 0114, 0115, Bio-Rad, CA, USA). A filter
photometer (Expert 96, ASYS Hitech, Cambridge, UK)
was used to measure the colorimetric reaction and sam-
ple protein concentration was calculated by the provided
software (Kim, ver. 5.45.0.1, Daniel Kittrich, Prague,
Czech Republic).

Extracted proteins were analyzed by western blotting.
Equal amounts of protein were loaded per well (15 ug)
and separated by 4-12% SDS gradient gels under dena-
turized conditions. Proteins were transferred onto PVDF
membranes (162-0177, Immuno-blot, Bio-Rad or iBlot
Gel transfer stacks, IB4010, Invitrogen, Carlsbad, CA,
USA) before blocked in a 5% fat free skimmed milk and
0.1% TBS-t solution (TBS, 170-6435, Bio-Rad; Tween 20,
437082Q, VWR International, Radnor, PA, USA; Skim
milk, 1.15363, Merck, Darmstadt, Germany). Blocked
membranes were incubated in antibodies against GPx1
(ab22604, Abcam, Cambridge, UK), mnSOD (ab16956,
Abcam), IkBa (ab32518, Abcam), HSP70 (ADI-SPA-810,
Enzo Life Sciences, Farmingdale, NY, USA) or oB-
crystallin (ADI-SPA-222, Enzo Life Sciences), followed by
incubation in an appropriate secondary antibody (31430,
Thermo Scientific; 7074, Cell Signaling Technology, Dan-
vers, MA, USA). Between stages, membranes were washed
in 0.1% TBS-t solution. Bands were visualized using a
HRP-detection system (34076, Super Signal West Dura
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Extended Duration Substrate, Thermo Scientific). Chemi-
luminescence was measured using a CCD image sensor
(Image Station 2000R or Image Station 4000R, Eastman
Kodak Inc., Rochester, NY, USA) and band intensities were
calculated with the Carestream molecular imaging soft-
ware (Carestream Health Inc., Rochester, NY, USA). All
samples were run as duplicates and mean values were
used for statistical analyses.

ELISA

HSP27 in the cytosolic and cytoskeletal fractions was
measured as previously described in detail [5]. Briefly,
HSP27 was detected using a in house-made double
antibody sandwich ELISA. By using capture antibodies
(25 ng/well; ADI-SPA-800, Enzo Life Sciences) and de-
tection antibodies against HSP27 (ADI-SPA-803, Enzo
Life Sciences), HSP27 was determined by using a filter
photometer (Expert 96, ASYS Hitech) measuring optical
density at 450 nm.

RT-qPCR

Total RNA was extracted from muscle biopsies (1 = 14)
from the acute study by homogenization in TRIzol re-
agent (15596, Invitrogen, Life Technologies). DNase I di-
gestion was performed using RNase free-DNase from
Qiagen (79254, Qiagen Inc., Germantown, MD, USA) in
order to prevent genomic DNA contamination. Quanti-
tative Reverse Transcription PCR (RT-qPCR) analysis
was performed in an Applied Biosystems 7500 Real-
Time PCR System (Applied Biosystems, Foster City, CA,
USA) by using Power SYBR Green RNA-to-Ct™ 1-step
Kit (4389986, Applied Biosystems) supplemented with
forward and reverse primer in a total volume of 20 pl.
The Reverse Transcription step was performed at 48 °C
for 30 min in the presence of RNase inhibitor by using
6 ng of total RNA Thermocycling conditions were ac-
cording to the recommendations of the manufacturer.
Ct values for gene expression were calculated according
to the comparative Ct method [27]. Relative quantifica-
tion was performed by simultaneous quantification of
GAPDH and 18S gene expression. The primers used for
RT-qPCR analyses can be found as Additional file 1.

Statistics

All values are presented as means + standard deviations
(SD). A two-way ANOVA was used to evaluate the effects
of training (time) and supplementation (interaction), and a
Holm-Sidak multiple comparisons test was chosen for
post hoc analyses. In general, figures display individual
data points, mean and standard deviations. The level of
significance was set to P < 0.05. Graphpad Prism 6
(GraphPad Software Inc., La Jolla, CA, USA) was used for
the statistical analyses.

Page 4 of 8

Results

Acute response to exercise

The p65 NF«B translocation suppressor IkBa was de-
creased in the placebo group at 100 and 150 min after the
standardized strength training session (P < 0.05; Fig. 1),
whereas no statistically significant changes were observed
in the vitamin C + E group. However, no differences were
observed between groups at any time points post exercise.
The gene expression (mRNA content) of the small HSPs
aB-crystallin (CRYAB) and HSP27 (HSPB1) was not dif-
ferent post exercise at any time point compared to before
the exercise session for any of the groups (Fig. 2a-b). This
was also true for the expression of mnSOD (SOD2) and
GPx1 mRNA, with no statistically significant changes post
exercise or between groups (Fig. 2c-d).

Adaptation to training

After 10 weeks of strength training, no changes were ob-
served in protein content of the HSPs oB-crystallin,
HSP27 or HSP70 for any of the groups (Fig. 3). The
same were observed for GPx1 and mnSOD, with no
changes for any of the groups (Fig. 4). For the subpopu-
lation who volunteered for the acute study, we were able
to add a mid-training time-point. For these participants,
no changes in any of the HSPs was observed between

IkBa
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Fig. 1 Relative changes in IkBa for the vitamin C and E- (filled
circles; n = 7) and placebo group (open circles; n = 8) acutely after
(+100 and 150 min) a standarized high intensity strength training
session. Strippled line indicates baseline values. Panel shows
representative protein immunoblots. Note that the bands from the
pre-sample are rearranged to fit the panel. #: different from

pre (P < 0.05)
.
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pre- to mid training or mid- to post training interven-
tion (Fig. 3 b, d, f). At the mid-training time-point, the
placebo group had significant higher HSP70 content
(P = 0,035) compared to the group receiving vitamin C
and E supplementation. However, these results must be
interpreted with caution due to few participants (n = 7)
included in this analysis.

Discussion

By means of a double blind randomized placebo-
controlled trial, we investigated the effects of vitamin C
and E supplementation on the acute stress response to
exercise and long-term strength training adaptations in
HSPs and endogenous antioxidant enzymes in recre-
ationally strength trained males and females. The acute
stress response was indicated by the significant reduc-
tions of IkBa levels, suggesting increased activity in the
NF«B pathway [28]. Contrary to our initial hypothesis,
vitamin C and E supplementation did not blunt the IkBa
response or the concomitant changes in HSP (CRYAB
and HSPBI) and endogenous antioxidant (SOD2 and
GPx1) mRNA levels in response to a session of heavy-
load strength exercise. Despite an increase in muscle
strength and mass in upper- and lower body exercises in
both groups [25], no changes were observed in protein

levels in the investigated HSPs (aB-crystallin, HSP27 or
HSP70) or endogenous antioxidants (GPx1 and mnSOD)
after 10 weeks of heavy load strength training.

Heat shock proteins

The acute exercise bout conducted midway into the
training period did not induce statistically significant
upregulation of the investigated HSP genes after the
standardized exercise bout. This occurred even though
the NFkB pathway was activated as indicated by the
significant degradation of IxkBa in both groups after ex-
ercise. In unstressed muscle cells IkBa is bound to
NF«B. Upon stress, IkBa is degraded and released, thus
promoting nuclear export of NFkB [28]. Activation of
this pathway, per se and in combination with HSF1 and
AP-1 activation, has been associated with increased HSP
protein expression after isometric contractions [29]. Con-
sequently, activation of NFkB pathway demonstrate that
the standardized strength exercise stimulated sufficient
strain on the investigated muscles, which normally would
increase HSP mRNA. The lack of significant changes in
HSP mRNA levels must, however, be interpreted with cau-
tion because the statistical power in these specific analyses
was poor (low number of biopsies available for mRNA
analysis).
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There is always the risk that we missed any effects of
the supplements on the acute exercise response by in-
vestigating a quite narrow time point after the standard-
ized exercise session. Therefore, changes in basal levels
of HSPs from before to after the training period might
better reflect the chronic effects of antioxidant supple-
mentation. However, our participants did not change the
basal levels of HSPs at all over the 10 week long training
period. This is in contrast to former strength training
studies where increased HSP protein content is observed
in previously untrained participants [6, 7]. The explan-
ation could be that our participants were moderately
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Fig. 4 Relative changes in protein levels for GPx1 (a) and mnSOD
(b) for the vitamin C and E- (filled circles; n = 16) and placebo group
(open circles; n = 12) after 10 weeks of strength training. Strippled
line indicates baseline values. Panel shows representative protein
immunoblots. Panel shows representative protein immunoblots.
Note that the bands are rearranged to fit this panel

trained prior to participating in the study, and, most
likely, already had achieved high protein levels of HSPs.
Indeed, the initial training status has an influential role
for further increases in several HSPs [6, 30]. Thus, they
had less potential to further increase their muscle HSP
content. Nevertheless, vitamin C and E supplementation
had no effect on basal levels of the investigated HSPs
over the 10-week training and supplementation period
in our participants. However, it is important to point out
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that we did not observe any training effects on HSP
levels. This will make it difficult to observe any potential
effects of the supplements. We cannot rule out that anti-
oxidant supplementation would have any detrimental ef-
fects on untrained participants where increases in HSP
levels would most likely occur in response to heavy
strength training.

Endogenous antioxidants

So far, limited number of studies has investigated adap-
tations in antioxidant enzymes in human skeletal mus-
cles after strength training. The acute exercise bout
conducted in the middle of the training period resulted
in degradation of IkBa, which indicates NFxB-activation.
As mentioned, this is one of the signaling pathways in-
ducing increased endogenous antioxidant expression
[15, 17]. Thus, we would expect an increased mRNA
levels of GPx1, SODI or SOD2 after the exercise session.
This was, however, not the case, but as previously men-
tioned the analyses of acute changes in mRNA expression
levels suffered from poor statistical power. Nevertheless,
the lack of altered acute expression levels from exercise
was consistent with the observations of unaltered basal
protein levels of GPx1 and mnSOD over 10 weeks of
training. As for the HSPs, vitamin C and E supplementa-
tion did not affect mRNA levels of GPx1, SODI (CuZn-
SOD) nor SOD2 (mnSOD) after the acute exercise
session, or the basal protein level of GPx1 and mnSOD
over 10 weeks of training. In contrast to our results, Ris-
tow et al. [20] reported blunting effects from vitamin C
and E supplementation on mRNA levels of GPx1, SODI
and SOD2 after 4 weeks of circuit training (combination
of strength- and endurance training). However, these re-
sults seem trivial, since expression of these genes would
most likely increase acutely after a high intensity exercise
session rather than in the basal rested state. One likely
explanation to the unaltered protein levels of the inves-
tigated antioxidant enzymes in the present study would
be that the participants had well developed antioxidant
systems. However, markers of oxidative damage in-
crease also in well trained individuals after a single
bout of strength training [31], meaning that these en-
zymes are capable to increase even in the well trained.
However, large and systematic alterations in redox sta-
tus is needed, most likely by more frequent and higher
intensity training [32].

Limitations

A limitation in the present study was the limited num-
ber of participants recruited to the acute experiment
(n = 15). Thus, we must interpret results from this part
of the study with some caution. Especially the mRNA
analyses which has poor statistical power due to very few
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samples, ranging from four to six samples/participants.
However, we choose to include these results as they might
help shed some light to the effects on vitamin C and E
supplementations on the presented mRNA and protein
expression.

We choose to investigate the degradation of IkBa as
a marker for activation of the NFxB pathway. This
pathway is one of several that can activate or increase
the expression of HSP or the endogenous antioxidants.

Conclusions

Vitamin C and E supplementation did not affect the
acute gene expression of the investigated HSPs and en-
dogenous antioxidant enzymes after high-load resistance
exercise. Nor did antioxidant supplementation affect basal
protein levels of HSPs or endogenous antioxidants over
10 weeks of strength training in trained individuals.
Although supplementation with high doses of vitamin
C and E did not interfere with adaptations in the stress
related proteins investigated in this study, the training
effects on these proteins was also lacking. Therefore, it
is difficult to delineate the precise effects of the supple-
ments. However, others and we have shown interference
with other training adaptations in skeletal muscle. Con-
sequently, athletes should critically evaluate possible
pros and cons when considering the use of antioxidant
supplements.

Additional file

Additional file 1: Table S1. Human primer sequences used for the
RT-gPCR analyses. The genes listed encodes to following proteins:
CRYAB = aB-crystallin; HSPBT = HSP27 protein 1; SOD2 = superoxide
dismutase 2 or mnSOD; GPx1 = glutathione peroxidase 1. (DOCX 55 kb)
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