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No bird soars too high if he soars with his own wings

William Blake
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Summary

Background

Different tests for dynamic postural control; i.e., the ability to maintain a stable base while
completing a movement, are frequently used to assess functional and athletic performance.
Current tests primarily target either the lower extremities or the trunk and the upper
extremities. In addition, these tests have variable demands on functional mobility, which is
defined as the combination of the range of motion (ROM) of multiple joints used to
accomplish ecological tasks. Currently there are no tests of dynamic postural control that
simultaneously impose three-dimensional mobility demands on the trunk, lower and upper
extremities. The purpose of this thesis was to develop a new test of dynamic postural control
to target these shortcomings and to establish 1) validity; 2) reliability; 3) the influence of
potential covariates such as anthropometry, age, sex and level of physical activity; and 4) the

influence on overhead athletic performance.
Methods

The thesis is based on four different research projects that used an observational design
with a total of 222 participants; these projects represent the development of the hand reach
star excursion balance tests (HSEBT). Standardized testing procedures were developed by a
group of experts, based on: 1) starting position; 2) task; 3) measurement; and 4) ending
position, which served as content validity. In study I, criterion-related and construct validity
were explored. Specifically, the magnitudes of joint movements used to assume maximum
HSEBT reach positions were quantified using motion capture (Qualisys Oqus 400 cameras,
Qualisys AB, Gothenburg, Sweden) and compared to joint movements in the comparable
star excursion balance test (SEBT) and normative ROM values. Criterion-related (concurrent)
validity was established by comparing reach measurements calculated from motion capture
data to those visually obtained using Bland Altman and correlational analysis. Construct
validity was assessed by correlating outcome measurements (reach, composite scores and
area calculations) from the HSEBT with the comparable SEBT. In study I, inter-rater and test-
retest reliability was assessed from the outcome measurements of three experienced testers

using intraclass correlation coefficients (ICC), with the calculation of stability measurements

Vil
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(standard error or measurement and coefficient of variation) and minimal detectable
change. The influence of anthropometry, age, sex and level of physical activity was explored
in study Ill. Stepwise linear regression was used to determine the influence of these factors
on reach measurements. Independent samples t-tests were used to determine between-
group (age, sex and level of physical activity) differences with calculation of effect sizes and
group difference comparisons to minimal detectable change values (study Il). The influence
of HSEBT reach measurements on athletic performance (overhead team handball throwing)
in an elite female population was explored for both throwing velocity, calculated from
motion capture data, and accuracy, via mean radial error calculated from video records,

using Pearson correlational analysis.
Main results

The HSEBT elicited significantly greater joint movements than the SEBT in 18 out of 22 joint
movement comparisons. The magnitude of these joint movements was comparable to the
ranges of normative ROM values for 8 out of 22 joint movements. Excellent correlations
were observed between visually observed and calculated reach measurements from motion
capture data for 18 out of 20 tests (r 2 0.90) with a shared variance that ranged from 81 to
97%. For the remaining two tests good correlations were observed (r = .79 and .89). The
fixed biases observed (range = 2.2 to 12.8 cm, -6.0 to 11.2° and 23.7%) can be partially
explained by the methods used to calculate reach measurements. Different composite and
area scores for the HSEBT and SEBT had variable correlations (range r = .269 to .823), with a
wider range of observed values for the individual reaches (range r = -.182 to .822). The
strongest correlations were observed for the anterior composite, area and reach
measurement comparisons (range r = .515 to .823). In Study Il moderate to high test-retest
reliability was observed for 19 out of 20 reaches (range ICC = 0.80 to 0.96). The inter-rater
reliability was high for all reaches (range ICC = 0.90 to 0.98). Minimal detectable change
values ranged from 0.9-7.9 cm and 4.7-7.2° for all reaches. Wingspan (study IlI) explained
34.6 and 11.7% of the variance of two HSEBT reaches. When normalized (% of wingspan) the
same reaches were influenced by age, sex and level of physical activity with significant
between-group differences, and moderate effect sizes (range d = .50 to .72). In addition, one

non-normalized reach was influenced by age and level of physical activity (range d = .55 to

Vil
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.75). HSEBT reach measurements are not correlated with throwing velocity (range r = -.530

to .395), but with mean radial error for some reaches (range r =.149 to .666) (study IV).
Conclusions

The HSEBT is a valid and reliable measure of dynamic postural control that measures
different aspects of dynamic postural control compared to the SEBT, especially in the lateral
and posterior directions. Greater joint movements of the lower extremity, trunk and
shoulder joint are elicited by the HSEBT than the SEBT, making it a useful addition to tests of
functional mobility. Reach specific normalization to wingspan is indicated, and age, sex and
level of physical activity should be accounted for when performing between-individual and
group comparisons for specific HSEBT reaches. No beneficial effect of increased HSEBT reach
measurements on throwing performance could be established in elite female team handball

players.



Summary

Sammendrag pa norsk

Bakgrunn

Ulike tester for dynamisk postural kontroll brukes ofte til 3 vurdere fysisk og idrettslig
prestasjonsevne. Navaerende tester er primaert rettet mot enten underekstremitetene eller
truncus sammen med overekstremitetene. | tillegg har disse testene ulike krav til funksjonell
mobilitet, kombinasjonen av leddutslag (ROM) til flere ledd som sammen benyttes for a
gjiennomfgre en oppgave eller bevegelse. Per i dag er det ingen tester for dynamisk postural
kontroll som stiller samtidige krav til tredimensjonale leddutslag i truncus, over- og
underekstremitetene. Formalet med denne avhandlingen var & utvikle en ny test for
dynamisk postural kontroll for a dekke disse behovene og etablere 1) validitet; 2) reliabilitet;
3) hvordan antropometriske malinger, alder, kjgnn og niva av fysisk aktivitet pavirker

utfallsmal; og 4) hvordan utfallsmal pavirker idrettslig prestasjonsevne (handballkast).

Metode

Totalt deltok 222 forskningsdeltakere i utviklingen av hand reach star excursion balance test
(HSEBT) i fire forskjellige forskningsprosjekter (studie I-1V). Standardiserte testprosedyrer ble
utviklet av en gruppe eksperter basert pa: 1) startstilling; 2) oppgave; 3) maling; og 4)
sluttstilling som dannet innholdsvaliditeten til HSEBT. | studie | ble kriterie- og
konstruktvaliditeten utforsket. Naermere bestemt ble stgrrelsen og kombinasjonen av de
ulike leddutslagene som ble benyttet for & oppna maksimale HSEBT utfallsmal kvantifisert fra
bevegelsesdata (Qualisys Oqus 400-kameraer, Qualisys AB, Goteborg, Sverige). Videre ble
disse leddutslagene sammenlignet med de brukt for & oppna maksimale star excursion
balance test (SEBT) utfallsmal og med normative verdier. Kriterievaliditeten (samtidig
validitet) ble etablert ved & sammenligne utfallsmal beregnet ut fra bevegelsesdata mot de
som ble visuelt malt ved hjelp av Bland Altman og korrelasjonsanalyse. Konstruktvaliditeten
ble vurdert ved & korrelere utfallsmal (individuelle tester, sammensatte scores og
arealberegninger) fra HSEBT mot SEBT. | studie Il ble inter-rater og test-retest reliabilitet
etablert fra utfallsmalingene til tre erfarne testere ved bruk av intra-klasse
korrelasjonskoeffisient (ICC), standardfeilen til malingen (SEM), variasjonskoeffisienten (CV)
og minste reelle endring (MDC). Pavirkningen av antropometriske malinger, alder, kjgnn og

fysisk aktivitet pa utfallsmalingene ble utforsket med en trinnvis linezer regresjon i studie Ill.
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Videre ble gruppeforskjeller (alder, kjgsnn og ulike nivaer av fysisk aktivitet) analysert med
uavhengig t-tester, beregning av effektstgrrelser og sammenlignet med minste reelle
endring (etablert studie Il). HSEBT sin innflytelse pa idrettslig prestasjonsevne (overarmskast
i handball hos kvinnelige elitespillere) ble utforsket for hastighet, beregnet fra
bevegelsesdata, og ngyaktighet, mean radial error beregnet fra video, ved hjelp av Pearsons

korrelasjonsanalyse.

Resultat

HSEBT fremkalte signifikant stgrre leddutslag enn SEBT i 18 av de 22 leddbevegelsene som
ble sammenlignet og stgrrelsen til disse var sammenlignbare med normative verdier for 8 av
22 leddutslag. Utmerkede korrelasjoner ble observert mellom visuelt observerte og
kalkulerte utfallsmalinger fra bevegelsesdata for 18 av 20 tester (r = 0.90), med en delt
varians fra 81 til 97%. For de resterende to testene ble det observert gode korrelasjoner
(variasjonsbredde r = .79 og .89). De observerte fikserte skjevhetene (variasjonsbredde 2.2 til
12.8 cm, -6.0 til 11.2° og 23.7%) mellom observerte og kalkulerte utfallsmal kan delvis
forklares av de metodene som ble benyttet for & beregne utfallsmalene fra bevegelsesdata.
De ulike sammensatte scorene og arealberegningene fra utfallsmalinger for HSEBT og SEBT
hadde variable korrelasjoner (variasjonsbredde r = .269 til .823) hvor en bredere distribusjon
ble observert for individuelle tester (variasjonsbredde r = -.182 til .822). De sterkeste
korrelasjonene ble observert for de fremre sammensatte scorene, omradeberegningen og
individuelle testene (variasjonsbredde r = .515 til .823). | studie Il ble moderat til hgy test-
retest reliabilitet observert for 19 ut av 20 tester (variasjonsbredde ICC = 0.80 til 0.96). Inter-
rater reliabiliteten var hgy for alle testene (variasjonsbredde ICC = 0.90 til 0.98). Verdier for
minimal reell endring varierte fra 0.9-7.9 cm og 4.7-7.2° for alle tester. Vingespenn forklarte
34.6 og 11.7% av variansen for to HSEBT tester (studie Ill). Etter normalisering (% av
vingespenn) pavirket alder, kjgnn og fysisk aktivitet de samme testene med signifikante
forskjeller i utfallsmalene mellom gruppene med moderate effektstgrrelser
(variasjonsbredde d = .50 til .72). Videre ble en ikke-normalisert test pavirket av alder og niva
av fysisk aktivitet (variasjonsbredde d = .55 til .75). HSEBT tester korrelerer ikke med
kasthastighet (variasjonsbredde r = -.530 til .395), men med mean radial error for noen

tester (variasjonsbredde r = .149 til .666) (studie IV).
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Konklusjon

HSEBT er en valid og reliabel test for dynamisk postural kontroll som maler andre aspekter
av dynamisk postural kontroll enn SEBT, spesielt i de laterale og posteriore testene. Stgrre
leddutslag i underekstremitetene, truncus og skulderleddene er observert i HSEBT enn i
SEBT. Dette gjgr ogsa HSEBT til et nyttig tillegg til tester av funksjonell mobilitet.
Normalisering av noen tester til vingespenn er indikert, og alder, kjgnn og fysisk aktivitet bgr
tas med i betraktningen nar man skal sammenligne mellom individer og grupper. Ingen
gunstig effekt av gkte HSEBT utfallsmal pd kastprestasjon i en populasjon av kvinnelige

handballspillere pa eliteniva ble observert.
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Abbreviations

4H3C — Four hops and three contacts

APSI| — Anterior to posterior stability index
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FRT — Functional reach test

DPSI — Dynamic postural stability index
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LOG — Line of gravity
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MLSI — Medial to lateral stability index
ROM — Range of motion

SEBT - Star excursion balance test

SEM - Standard error of measurement

SFMA — Selective functional movement assessment
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Introduction

Introduction

Dynamic postural control is the ability to maintain a stable base while completing a
movement (Pollock, Durward, Rowe, & Paul, 2000). This includes movements of the center
of mass (COM) within a stationary or moving base of support (BOS). Based on this broad
definition a myriad of different tests are used to assess dynamic postural control (Almeida,
Monteiro, Marizeiro, Maia, & de Paula Lima, 2017; Glave, Didier, Weatherwax, Browning, &
Fiaud, 2016; Gribble, Hertel, & Plisky, 2012; Haitz, Shultz, Hodgins, & Matheson, 2014; Katz-
Leurer, Fisher, Neeb, Schwartz, & Carmeli, 2009; Padua et al., 2009; Wikstrom, Tillman,
Smith, & Borsa, 2005), which can be grouped into 1) reaching; 2) landing; and 3) hopping
tests. These tests require a variable degree of functional mobility, which for the current
thesis is defined as the combination of range of motion (ROM) of multiple joints used to

accomplish ecological tasks.

The currently available tests of dynamic postural control appear to assess either the lower
extremities or the trunk and the upper extremities separately. To the best of my knowledge
there are currently no tests that concurrently target joint movements of the trunk, upper
and lower extremities and thereby assess the kinetic chain, which is “the combination of
several successively arranged joints constituting a complex motor unit” (Steindler, 1977).
Multi-directional hand reaches can be developed to impose joint movement demands on the
kinetic chain and find application in various overhead sports (i.e. throwing), where different
joint movements have been established as important contributors to performance (Roach &
Lieberman, 2014). Furthermore, hand reaches can be applied to address proximal influences
of the trunk and the lower extremities in patients with shoulder dysfunction (Crosbie,
Kilbreath, Hollmann, & York, 2008; Hirashima, Kudo, Watarai, & Ohtsuki, 2007; Kibler &
Sciascia, 2016), explore the lumbo-pelvic rhythm in multiple planes of motion in patients
with low back pain (LBP) (Laird, Gilbert, Kent, & Keating, 2014; Laird, Kent, & Keating, 2016;
Zawadka et al., 2018), and assess lower extremity joint-specific dysfunction (Kivlan, Carcia,
Clemente, Phelps, & Martin, 2013). The general aims of this thesis were to develop a new
test of dynamic postural control based on multidirectional hand reaches, establish the

validity and reliability of the outcome measurements, and to determine the influence of
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other factors such as anthropometrical measures, level of physical activity, sex and age on

outcome measurements.
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Background

Postural control

Postural control is a requirement for the maintenance of postures and the execution of
purposeful human movement (Pollock et al., 2000), where the postural control system,
including the sensory system, central nervous system and musculo-skeletal system, acts to
create a stable posture against gravity that serves as a reference for perception and
interaction with the external environment (Latash, 2008; Massion, 1994). Postural control is
a complex motor skill that covers a myriad of postures and movements and is defined as the
ability to maintain, achieve or restore a state of balance during any posture or activity
(Pollock et al., 2000; Winter, 1995). Balance — the ability to maintain center of gravity (COG)
within the base of support (BOS) (Pollock et al., 2000) — is therefore an operational part of
dynamic postural control. Pollock and co-workers refer to the ability to sense when balance
is threatened, with the COG moving toward BOS boundaries, and to counteract this with
muscular actions as both balance and postural control (Pollock et al., 2000). Furthermore,
stability is closely associated with postural control and balance, since stability is based on
how much the line of gravity (LOG) can move and the magnitude of external forces that can
be counteracted before becoming unbalanced. Thus, better stability is defined as the ability
to have a greater displacement of LOG and to counteract greater forces before becoming
unbalanced (Pollock et al., 2000). Consequently, postural control, balance and stability are
often used as interchangeable terms (Krkeljas, 2018; Pollock et al., 2000). Since postural
control is a mechanism of balance regulation that includes stability, postural control will be

used throughout this thesis.

The systems framework for postural control described by Horak identifies six resources for
effective postural control (Horak, 2006). These are biomechanical constraints, movement
strategies, sensory strategies, orientation in space, control of dynamics and cognitive
processing. Consequently, testing of postural control is multifactorial and should reflect 1)
the ability to configure linked body segments based on their mechanical properties and the

internal and external forces acting on these segments to maintain the center of mass (COM)
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within the BOS; 2) integration of sensory information (visual, proprioceptive, vestibular and
cutaneous); and 3) anticipatory and reactive postural adjustments under static, dynamic or
perturbed conditions (Massion, 1994; Pollock et al., 2000; Winter, Patla, & Frank, 1990).
Such tests are used to assess the presence of impairments, functional limitations and injury
risk factors in different populations (Winter et al., 1990). Since postural control is involved in
the maintenance of postures and purposeful human movement, tests have to cover a wide
range of postures and movements. Thus, a categorization of postural control tests to
determine which aspects of postural control are addressed is helpful (Clark, Saxion,
Cameron, & Gerber, 2010; Pollock et al., 2000; Winter et al., 1990). The two most common
test categories are static and dynamic (Pollock et al., 2000; Winter et al., 1990), with and
without perturbations (expected and unexpected). Since the difference between static and
dynamic postural control is not clearly established (Krkeljas, 2018) a division of tests into
three descriptive categories is helpful: 1) maintain a position with minimal movement
(Gribble & Hertel, 2003; Pollock et al., 2000; Winter et al., 1990); 2) maintain a stable base
while completing a prescribed movement (movement of COM within a stationary or moving
BOS) (Gribble & Hertel, 2003; Hinman, 2000; Pollock et al., 2000; Winter et al., 1990); and 3)
reaction to external disturbances/perturbations that are anticipated or not (Pollock et al.,
2000; Winter et al., 1990). Based on the magnitude of joint movements that have to be
controlled, the first and second categories can be considered static and dynamic postural
control tests respectively, to which perturbations (the third category) can be applied.
Recently, tests that target dynamic postural control have gained popularity since a higher
degree of specificity to functional and athletic tasks can be obtained (Riemann & Caggiano,

1999; Sell, 2012).

Dynamic postural control tests

Dynamic postural control tests that do not require expensive equipment and advanced
analysis have a greater chance of clinical application and can therefore be defined as applied
tests. Currently there is a myriad of different applied dynamic postural control tests
(Almeida et al., 2017; Glave et al., 2016; Gribble et al., 2012; Haitz et al., 2014; Katz-Leurer et
al., 2009; Padua et al., 2009; Wikstrom et al., 2005) where the systems framework for

postural control (Horak, 2006) can be used to assess the neuromuscular demands addressed
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by different tests. Specifically, for the purpose of this thesis, the biomechanical constraints
(degrees of freedom, strength and limits of stability (LOS)) will be addressed. Degrees of
freedom can refer to the number of joints that have to be dynamically controlled. In
addition, it could be argued that the magnitude of joint movements to be controlled is also
important, since many athletic and functional tasks require larger joint movements. In this
thesis, joint mobility demands are used to describe magnitude, the number of joint
movements, and their combinations imposed by different tests. The magnitude of joint
movements are compared to normative range of motion (ROM) values (Greene & Heckman,
1994). The assessment of strength includes both force regulation (magnitude, rate and
duration) and type of contraction (concentric, eccentric, isometric), while LOS are discussed

based on the BOS (size, dynamic or static).

Since tests of dynamic postural control include a broad range of movements from different
postures (Almeida et al., 2017; Glave et al., 2016; Gribble et al., 2012; Haitz et al., 2014, Katz-
Leurer et al., 2009; Padua et al., 2009; Wikstrom et al., 2005) there is no “gold standard”
test, but many different tests and outcome measurements with different neuromuscular
demands. Based on the similarities of movements tested, the dynamic postural control tests
can be grouped as follows: 1) reaching; 2) hopping; and 3) landing (Table 1). In the following

sections these test categories are described.

Reaching tests

Reaching tests include the star excursion balance test (SEBT), Y-reach balance test (YBT),
seated reach test (SRT), functional reach test (FRT), closed kinetic chain upper extremity
stability test (CKCUEST) and upper quarter Y-balance reach test (UQYBT). The primary
outcome measurements of these tests are either maximum foot (Gribble et al., 2012) or
hand reach in centimetres (cm) (Field-Fote & Ray, 2010; Gorman, Butler, Plisky, & Kiesel,
2012; Radtka, Zayac, Goldberg, Long, & Ixanov, 2017; Thompson & Medley, 2007), except for
the CKCUEST, which is a count of reaches in 15 seconds (Tarara, Fogaca, Taylor, & Hegedus,
2016) (Table 1). Greater reach distances or number of reaches are considered to indicate

better dynamic postural control.

The foot reaches are the SEBT and the YBT. The SEBT consists of eight maximum foot

reaches in different directions at floor height for each foot (Gribble et al., 2012; Hertel,
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2008). The YBT, which consists of three foot reaches on each foot, was developed from the
SEBT because of the 1) redundancy of measurements of the eight different SEBT reaches
(Hertel, Braham, Hale, & Olmsted-Kramer, 2006); 2) sensitivity of specific reaches for
identifying patients with chronic ankle instability (Hubbard, Kramer, Denegar, & Hertel,
2007a); 3) differences in muscle activation patterns of the hip (Hubbard, Kramer, Denegar, &
Hertel, 2007b); and 4) ability of the anterior, posteromedial and posterolateral reach to
predict injury (Plisky, Rauh, Kaminski, & Underwood, 2006; Gribble et al., 2012). Both
absolute (cm) and normalized (% leg length) measures are used to quantify reach
performance. In addition, the positions of arms, trunk, pelvis and knee relative to the second
toe have been used to qualitatively evaluate SEBT and YBT reaches (Ness, Taylor, Haberl,

Reuteman, & Borgert, 2015; Piva et al., 2006).

The other four reaching tests are hand reaches measured from different starting positions:
standing (FRT), sitting (SRT) and a push-up position (UQYBT and CKCUEST). Specifically, the
FRT is a unilateral arm reach (shoulder flexed to 90 degrees, elbow extended and wrist in
neutral position) at shoulder height measured in cm (Duncan, Weiner, Chandler, &
Studenski, 1990). Other hand reach tests at shoulder height include the lateral (Brauer,
Burns, & Galley, 1999) and the multidirectional reach test (forward, lateral and backward
hand reaches) (Newton, 2001), which was developed to complement the FRT. A seated
variation of the FRT, the SRT, quantifies reaches in the anterior, lateral (Field-Fote & Ray,
2010; Thompson & Medley, 2007), anterolateral and posterolateral direction (Radtka et al.,
2017) and is mostly used to assess patients with neurological injuries (Field-Fote & Ray,
2010; Katz-Leurer et al., 2009; Lynch, Leahy, & Barker, 1998). The UQYBT is made up of hand
reaches performed from a three-point plank position in the YBT reach directions with the
upper extremity tested placed in the center of a testing mat or Y-balance test kit. These arm
reaches are commonly normalized to arm length and greater measurements are considered
to indicate both better mobility and stability (Gorman, Butler, Plisky, et al., 2012). Additional
equipment, such as force plates, has been used to quantify complementary measurements
such as COP measures in different hand (Brauer et al., 1999; Duncan et al., 1990; Field-Fote
& Ray, 2010) and foot reaches (Bastien et al., 2014b; Pionnier, Decoufour, Barbier, Popineau,

& Simoneau-Buessinger, 2016).
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All of the aforementioned reach tests are easy to administer and require minimal
equipment, such as a yard stick (Duncan et al., 1990), testing mat, tape measure (Gribble et
al., 2012) or a Y-balance test kit (Plisky et al., 2009). Different types of reliability (inter-, intra-
and test-retest) have been reported for all reaching tests with mostly fair to excellent
intraclass correlation coefficients (ICC) based on established criteria (Portney & Watkins,
1993). Furthermore, standard error of measurement (SEM) and coefficient of variation (CV)
are fairly consistently reported, while minimal detectable change (MDC) is only reported for
the SEBT (Hyong & Kim, 2014; Munro & Herrington, 2010) and the YBT (Freund, Stetts,
Oostindie, Shepherd, & Vallabhajosula, 2018; Kenny, Palacios-Derflingher, Owoeye,
Whittaker, & Emery, 2018; van Lieshout et al., 2016) (Appendix I).

Overall the neuromuscular demands of these reach tests are rather low. Generally, the force
demands are low (i.e. FRT), with the SEBT and the YBT having the greatest force demands.
The BOS is different between tests and ranges from small (YBT and SEBT) to large (SRT,
UQYBT and CKCUEST). The magnitudes of joint movements elicited by the different tests are
mostly low in comparison to established normative ROM values (Greene & Heckman, 1994)
except for some ankle joint movements for both the YBT and SEBT (Aminaka & Gribble,
2008; Doherty et al., 2015; Fullam, Caulfield, Coughlan, & Delahunt, 2014; Hoch, Staton, &
McKeon, 2011; Kang et al., 2015; Robinson & Gribble, 2008). However, no comparisons can
be made for the other reach tests due to the absence of kinematic studies. The SEBT and YBT
impose joint mobility demands on the lower extremity, while the FRT, SRT, UQYBT and

CKCUEST impose variable demands on the trunk and upper extremities.

Hopping tests

The different hopping tests used to assess dynamic postural control are mostly single or
multiple lower extremity hops performed in one or more direction. Specifically, single (single
leg hop) or multiple hops in the same or different directions (multiple hops, triple hop, 6-
meter timed hop, cross-over hop and the four hops and three contacts) are used. Only one
hop test targets upper extremity axial loading: the one-arm hop test (Falsone, Gross,
Guskiewicz, & Schneider, 2002) (Table 1). The primary quantitative outcome measurements
for most of the hopping tests are either time or distance, with greater distance or shorter

time considered to indicate better dynamic postural control. A floor-based photocell system
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(i.e. Optogait) is used to quantify not only distance but also contact time in the four hops
three contacts test (Mani, Brechue, Friesenbichler, & Maffiuletti, 2017). Qualitative
assessments have been used more in hopping than in reaching tests. Specifically, a count of
balance errors is used in the multiple hop test (Eechaute, Vaes, & Duquet, 2009; Riemann &
Caggiano, 1999), while postural orientation error (POE) (Nae, Creaby, Nilsson, Crossley, &
Ageberg, 2017), peak knee valgus (Ramirez, Negrete, & Kolber, 2018) and flexion (von Porat,

Holmstrom, & Roos, 2008) have been used for the single leg hop test.

Hopping tests are comparable to the reach tests in that they are easy to administer, require
minimal equipment, and the reliability (inter-rater and test-retest) of quantitative
measurements is good to excellent based on established criteria (Portney & Watkins, 1993)
(Appendix I1) . Similar to reach tests, SEM is reported in a consistent manner, while CV is only
reported for the single leg hop (Augustsson et al., 2006). In contrast, MDC values have been
established for four different hop tests (single leg, triple, 6-m timed and cross-over hop
tests) (Haitz et al., 2014; Munro & Herrington, 2011; Reid, Birmingham, Stratford, Alcock, &
Giffin, 2007) (see Appendix Il for details).

The neuromuscular demands for the hopping tests are greater than those for the reaching
tests based on force demands and BOS. Both greater magnitude and rate of force are
required for better outcomes. In fact, some of the hopping tests are used to assess
horizontal lower extremity power (Brughelli, Cronin, Levin, & Chaouachi, 2008). The BOS is
small and dynamic for all hopping tests, and it can be argued that jumps in the forward
direction have a greater BOS since the LOG can move further to LOS than hops in medial and
lateral directions. The joint mobility demands are fairly low and only ankle dorsiflexion
approaches normative data (Augustsson et al.,, 2006). Furthermore, primarily lower
extremity joint movements have to be controlled, with the exception of the one-arm hop
test (Falsone et al.,, 2002). Thus, hopping tests mostly target lower extremity dynamic

postural control.

Landing tests

Landing is quantified following various bilateral and unilateral jumps in the forward, medial
and lateral directions from different heights and horizontal distances (Table 1). Landing tests

differ from both reach and hop tests because outcome measurements require advanced
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equipment (e.g. force plates), processing and analysis of data. This may explain why simpler
qualitative assessments such as the POE (Nae et al., 2017) and the landing error scoring
system (LESS) (Padua et al., 2009) are more frequently applied to landing than to reach and
hop tests (Table 1). However, force plates have become less expensive, with many sports
teams and rehabilitation clinics currently using this type of technology. Currently there are
three primary outcome measurements in which one or more components of the force data
are used: 1) time to stabilization (TTS); 2) dynamic postural stability index (DPSI); and 3)
vertical ground reaction force (VGRF). Specifically, the TTS is calculated in three different
directions: vertical (TTS V), anterior to posterior (TTS AP), medial to lateral (TTS ML) (Colby,
Hintermeister, Torry, & Steadman, 1999; Krkeljas, 2018; Ross, Guskiewicz, & Yu, 2005) and
from a resultant vector based on the anterior to posterior and medial to lateral force signals
(Ross, Guskiewicz, Gross, & Yu, 2008). Two different methods to calculate the TTS
measurements are currently used (Colby et al., 1999; Krkeljas, 2018; Ross et al., 2008; Ross
et al., 2005) to quantify the time taken for a force signal to return to within the range of
normal variation based on a static reference trial. A shorter time is considered to indicate
better dynamic postural control. In contrast, DPSI quantifies variations in the force signal for
a given time frame in the vertical, medial to lateral, and anterior to posterior directions, and
for the overall signal (Wikstrom, Arrigenna, Tillman, & Borsa, 2006; Wikstrom et al., 2005).
Smaller values represent better dynamic postural control (Table 1). The force signal, in terms
of the vertical ground reaction force (VGRF), is also analysed in a simpler manner than for
the TTS and DPSI measurements, since the magnitude of absolute and normalized VGRF
(Read, Oliver, Croix, Myer, & Lloyd, 2016; Troester, Jasmin, & Duffield, 2018), time to VGRF
(Read et al., 2016), and impulse (Troester et al., 2018) are used as outcome measurements.
Smaller values are considered to represent better dynamic postural control (Table 1). Since
TTS and DSPI measurements are based on variations in force signals over time they contain
more information (continuous measurement) about dynamic postural control than the

different discrete PVGRF measurements.

The most consistently used outcome measurements appear to be the TTS and VGRF. Test-
retest reliability is most frequently reported and ranges from poor to excellent (Appendix
). Of the different outcome measurements, the DPSI appears to have the best test-retest

reliability (good to excellent), with one notable exception (poor) for the medio-lateral
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direction in the forward jump landing (Wikstrom et al., 2005). In addition, better reliability of
the DPSI measurements compared to the TTS measurements were observed when
calculated from the same data (Wikstrom et al., 2005). However, the DPSI has only been
used for two different landing tasks, with three studies reporting on reliability (Sell, 2012;
Wikstrom, Tillman, Kline, & Borsa, 2006; Wikstrom et al., 2005). Overall, the reliability of

landing tests appears to be not as good as the reliability of the reach and hop tests.

The neuromuscular demands associated with landing tasks are comparable to those of the
hopping tests. However, the eccentric force requirement dominates. The magnitudes of the
joint movements associated with these tests are low in comparison to normative data
(Greene & Heckman, 1994) and limited to lower extremity joint movements. Similar to the

hopping tests, the BOS is dynamic with jump direction-specific demands.

Neuromuscular demands of current dynamic postural control tests

The dynamic postural control tests summarized in Table 1 have different neuromuscular
demands. Specifically, greater force demands are imposed in hopping and landing tests in
comparison to reaching tests (i.e. SEBT). Furthermore, the landing tests primarily have
eccentric force demands, while hopping tests have both concentric and eccentric modes of
muscular activation. Test-specific BOS characteristics of the different tests such as size (small
vs. large), and whether the tests are static (standing in one place) or dynamic (changing from
one place to another) influence stability and thereby the ability to control posture. In
addition, the different dynamic postural control tests require control of different
movements, but the magnitudes of these joint movements are rarely presented, except for
the SEBT, YBT (Aminaka & Gribble, 2008; Doherty et al., 2015; Fullam et al., 2014; Hoch et
al., 2011; Kang et al., 2015; Robinson & Gribble, 2008) and for some hopping tests
(Augustsson et al., 2006). The reported mobility demands of these tests when compared to
normative ROM data (Greene & Heckman, 1994) are mostly low. Furthermore, it appears
that no single test imposes simultaneous mobility demands on the trunk, lower and upper
extremity joints; tests tend to focus on the lower extremities (i.e. SEBT, YBT, hopping and
landing tests) or trunk and upper extremities alone (i.e. UQYBT). Thus, tests that
simultaneously impose joint mobility demands on the trunk and the upper and lower

extremities should be further explored.

10
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Mobility

How much a joint or series of joints can move in a given plane and direction is defined as
joint flexibility (Gleim & McHugh, 1997; S. Hall, 2007; McGinnis, 2005; Watkins, 2010), while
joint mobility is defined as the ease of movement through a range of motion (ROM)
(McGinnis, 2005). The American Physical Therapy Association defines joint mobility as the
capacity of a joint to move passively, taking into account the joint surfaces and surrounding
tissues (American Physical Therapy, 2001). Based on these definitions it is difficult to
differentiate between joint flexibility and mobility, which has led to these terms being used
somewhat interchangeably. Joint mobility or flexibility measurements are traditionally
obtained using goniometry (Greene & Heckman, 1994; Moore, 1949) and normative data
have been established (Greene & Heckman, 1994). However, such goniometric
measurements have some inherent shortcomings since only information about uniplanar
and unidirectional movements of specific joints is obtained, without information about their
role in the kinetic chain. Furthermore, the neuromuscular control demands are low since
one isolated joint movement is performed either actively or passively. Based on the principle
of specificity, such measurements have limited transfer to athletic and functional tasks,
which require combinations of joint movements of variable magnitudes depending on the
requirements of the task to be executed. Tests of functional mobility, defined as the
combination of the ROM of multiple joints used to accomplish activities of daily living and
athletic performance, can address these shortcomings. Such functional mobility tests require
dynamic postural control, but their main purpose is to impose joint mobility demands, and

specifically target the magnitude of joint movements.

Functional mobility tests

Based on the definition described previously, and to ensure construct validity, a functional
mobility test should: 1) elicit a combination of different joint movements that contribute to
the measurement; 2) be specific or similar to ecological movements; and 3) quantify the
magnitude and/or the quality of movement. However, functional mobility is also used to
describe activities of daily living and living independence. Thus, functional mobility tests that
target factors such as walking (e.g. Timed Up and Go test, 10-meter walk test, 6-minute walk

test) and functional independence (e.g. Functional independence measure and community
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balance and mobility scale) do not fulfil the previously described criteria and will not be
discussed. However, the following tests do fulfil the criteria: 1) SEBT and YBT; 2) UQYBT; 3)
functional movement screen (FMS); 4) selective functional movement assessment (SFMA);

and 5) weight bearing lunge test (WBLT) (Table 1).

Star excursion and Y-balance reach test

The SEBT and YBT are considered tests of dynamic postural control, as described previously;
however, they can also be regarded as tests of functional mobility. Kinematic analyses of
different SEBT reaches have established that three-dimensional trunk and lower extremity
joint movements of variable magnitudes are used to assume the different maximum reach
positions (Aminaka & Gribble, 2008; Doherty et al., 2015; Fullam et al., 2014; Hoch et al.,
2011; Kang et al., 2015; Robinson & Gribble, 2008). When the elicited joint movements are
compared to normative ROM data (Greene & Heckman, 1994) only ankle dorsiflexion and
eversion approach normative ROM values. In fact, ankle dorsiflexion is correlated with
normalized (Basnett et al., 2013), but not absolute SEBT reach measurements (Gribble &
Hertel, 2003). Furthermore, increased foot mobility has been reported to increase

normalized reach measurements (Wassinger, Rockett, Pitman, Murphy, & Peters, 2014).

Upper Quarter Y-balance reach test

The UQYBT described previously was developed to target both upper extremity and trunk
stability and mobility. Gorman and co-authors claim that the different reaches maximally
challenge both mobility and stability (Gorman, Butler, Plisky, et al., 2012). However, this
statement has not been substantiated through studies that have explored COM, COP or

kinematic measurements.

Functional movement screen (FMS)

Based on the aforementioned criteria, both the deep squat and the in-line lunge of the FMS
can be considered tests of functional mobility. These are two of seven tests that are
subjectively graded and make up the FMS (Cook, Burton, & Hoogenboom, 2006a, 2006b).
Lower extremity kinematic analysis of participants able to complete the squat without

compensation (FMS score: 3) showed they used greater ankle dorsiflexion, knee and hip
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flexion in the deep squat position than those who were unable to complete the movement
(FMS score: 1) (Butler, Plisky, Southers, Scoma, & Kiesel, 2010). Furthermore, the maximum
excursions of these joint movements during the squat for the participants graded as normal
(FMS score: 3) were comparable to normative ROM values (Butler et al., 2010; Greene &
Heckman, 1994). Reliability of the overall FMS score is good (Bonazza, Smuin, Onks, Silvis, &
Dhawan, 2017; Cuchna, Hoch, & Hoch, 2016), while the squat test by itself has moderate to
conflicting and moderate evidence of inter-rater and intra-rater reliability, respectively

(Moran, Schneiders, Major, & Sullivan, 2016) (Appendix 1V).

The deep squat is also a part of the selective functional movement assessment (SFMA),
which is a category and criterion-based qualitative test battery to assess movement
dysfunction in patients with known musculoskeletal dysfunctions (Glaws, Juneau, Becker, Di
Stasi, & Hewett, 2014). Moderate to good and poor to good categorical intra-rater and inter-
rater reliability have been reported, respectively (Glaws et al., 2014). As for the criterion-
based overall score, poor to good and poor intra-rater and inter-rater reliability have been
reported (Glaws et al., 2014) (Appendix IV). In addition, other scoring systems have been
used for the deep squat. Specifically, the squat movement competency scale has good to
excellent reliability (Edwards & Liberatore, 2018). However, neither the SFMA grading
systems nor the squat movement competency scale have been compared to lower extremity
joint kinematics. Thus, it appears that the criterion-based grading of the deep overhead

squat is the best assessment strategy.

Joint kinematic measurements of the in-line lunge have not yet been reported.
Consequently, joint movement requirements of the in-line lunge cannot be established, and
comparisons to normative ROM data are not possible. Since kinematic analyses of forward
lunges have been reported, such data can be used as a general representation of the joint
movements required to perform the in-line lunge. However, a forward lunge differs from an
in-line lunge in that it is not performed on a line and the step length is usually longer (Cook
et al., 2006a). The forward lunge elicits less ankle dorsiflexion, knee and hip flexion (Farrokhi
et al., 2008; Riemann, Congleton, Ward, & Davies, 2013; Riemann, Lapinski, Smith, & Davies,
2012) than the squat (Butler et al., 2010), where shorter step-lengths result in increased
ankle dorsiflexion and decreased hip flexion, while knee flexion remains relatively

unchanged (Riemann et al., 2013). As previously described, the overall reliability of the FMS
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is good (Bonazza et al., 2017; Cuchna et al., 2016), while the in-line lunge test has conflicting
and moderate evidence for inter-rater and intra-rater reliability, respectively (Moran et al.,
2016) (Appendix IV). Overall, it appears that the squat assessed by the FMS scoring system is

a better test of functional mobility test than the in-line lunge test.

Selective functional movement assessment (SFMA)

In addition to the squat described previously, the SFMA also consists of multi-segmental
flexion, extension and rotation tests (Glaws et al., 2014), which can be considered functional
mobility tests. However, neither criterion nor category assessment of these tests have been
compared to kinematic data. This is surprising considering that the purpose of the different
tests is to identify movement dysfunction based on observation of the execution of the
tests. Kinematic analysis of movements similar to these tests have been reported and show
that multiple joints and segments contribute to the maximum reach position (Alghtani,
Jones, Theobald, & Williams, 2015; Esola, McClure, Fitzgerald, & Siegler, 1996; Leardini,
Biagi, Merlo, Belvedere, & Benedetti, 2011; Lee & Wong, 2002; Song, Jo, Sung, & Kim, 2012;
Sung, 2014; Sung, Yoon, & Lee, 2010; Tafazzol, Arjmand, Shirazi-Adl, & Parnianpour, 2014).
However, these studies report trunk and/or hip movements without any quantitative or
qualitative outcome measurement in flexion (Alghtani et al., 2015; Esola et al., 1996;
Tafazzol et al., 2014), extension (Leardini et al., 2011; Lee & Wong, 2002), axial rotation
(Leardini et al., 2011; Lee & Wong, 2002; Song et al., 2012; Sung, 2014; Sung et al., 2010) and
lateral flexion tests (Laird et al., 2016; Tojima, Ogata, Inokuchi, & Haga, 2016). The trunk
movements elicited by these tests are comparable to established normative values (Greene
& Heckman, 1994). The categorical inter- and intra-rater reliability of the SFMA tests ranges
from poor to excellent. Furthermore, the criterion inter- and intra-rater reliability have been
reported to be poor and poor to good respectively (Glaws et al., 2014) (Appendix IV). Based
on the lack of reliability and the lack of kinematic analysis with comparisons to the
categorical and criterion-based scoring systems, these tests appear not to be good tests of

functional mobility.

Weight bearing lunge test (WBLT)

Dorsiflexion mobility is primarily targeted by the WBLT (Bennell et al., 1998). Since the

support foot is allowed to be in contact with ground, the BOS is large, which increases
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stability and thereby might favour joint mobility in comparison to the SEBT. Outcome
measurements (degrees and cm) have been found to be highly correlated with kinematic
data (Hall & Docherty, 2017). In addition, dorsiflexion ROM values obtained from the test
correspond to normative reference values (Greene & Heckman, 1994; Powden, Hoch, &
Hoch, 2015). The test has been reported to have good to excellent intra- and inter-rater
reliability (Powden et al., 2015) (Appendix V). The WBLT appears to be a good test of
functional mobility, especially since the torque applied to the ankle in standing is much

greater than what can be applied using traditional methods (Bennell et al., 1998).

Neuromuscular demands of current functional mobility tests

The functional mobility tests summarized in Table 1 have a static BOS that varies in size from
large (UQYBT) to small (SEBT and YBT). Furthermore, the force demands are different since a
unilateral squat has a greater force demand than a bilateral squat, which in turn has greater
force demands than the SFMA multi-segmental mobility tests. Similar to the dynamic
postural control tests there is no single test that imposes joint mobility demands on the
trunk, lower and upper extremity joint movements simultaneously. Specifically, lower
extremity joint mobility demands are imposed by the overhead deep squat, in-line lunge,

SEBT, YBT and WBLT, while the SFMA and UQYBT target the trunk and upper extremities.
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Background

The dynamic postural control continuum

The 27 dynamic postural control and functional mobility tests described in Table 1 are
organized in Figure 1 based on BOS and force demands. Specifically, the BOS can be
described based on size (small vs. large), and whether it is static (standing in one place) or
dynamic (changing from one place to another), while force demands can be described from
low to high. Such an organization creates a continuum based on the biomechanical
constraints associated with dynamic postural control. Also, such an organization highlights
the absence of a “gold standard”, since there is little overlap between tests. However, it is
important to note that this represents one way to present a continuum of dynamic postural
control. In fact, similar continuums have previously been described based on balance (Glave
et al., 2016) and sensorimotor measures (Hertel, 2008). Specifically, the continuum was
defined as follows: the horizontal BOS axis was divided into two major categories, static and
dynamic (grey), which ranged from small to large. The vertical axis represents force demands
from low to high (Figure 1). Reaching tasks and functional mobility tests have static BOSs of
different sizes with increasing force demands (i.e. deep overhead squat to SEBT). Landing
and hopping tests have dynamic BOSs with landing tests considered to have lower force
demands since eccentric muscle action is primarily targeted in one single action, whereas
hopping tests have mostly repetitive concentric and eccentric force demands. Both hopping
and landing tasks were differentiated based on their direction, with the BOS considered
smaller for medial to lateral movements than for anterior to posterior movements. It can be
hypothesized that there are lower dynamic postural control demands in tests with lower
force demands and supported by a large static BOS, than in tests with higher force demands
and a small BOS. A diagonal line (ascending left to right) was placed in Figure 1 to visualize

this hypothetical relationship.
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Static BOS Dynamic BOS

Force demand

A
QO"““’A\ . DIS
A
ov®

OAHT
T
MSF
MSR

) o

Large Small Large Small

Figure 1. Continuum of dynamic postural control tests. The vertical axis represents force
demand from low to high and the horizontal axis represents the size of the BOS. The vertical
axis divides the horizontal axis into two categories of static (grey) and dynamic BOS (white).
These two categories are divided into subcategories of large and small BOS. Based on these
criteria all tests identified in the thesis of dynamic postural control and functional mobility
were identified. The diagonal line ascending from left to right represents demand for
dynamic postural control. Abbreviations: BOS = Base of support; CKCUEST = Closed kinetic
chain upper extremity stability test; UQYBT = Upper quarter Y-balance test; SRT = Seated
reach test; WBLT = Weight bearing lunge test; DS = Deep squat; MSE = Multi-segmental
extension; MSF = Multi-segmental flexion;, MSR = Multi-segmental rotation; SEBT = Star
excursion balance test; OAHT = One arm hop test; DJS = Drop jump and stick; DJ = Drop jump;
FIL = Forward jump landing; 75%Hop = Forward hop at 75% of maximum distance; LIL=
Lateral jump landing; DFJL = Diagonal forward jump landing; FDL = Forward drop landing;
LDL = Lateral drop landing; MDL = Medial drop landing; MH = Multiple hop,; SLH = Single leg
hop; TH = Triple hop; 6MTH = 6-m timed hop; COH = Cross over hop; 4H3C = Four hops, three
contacts

Shortcomings of current tests

The continuum of dynamic postural control tests allows for a comparison between tests and
identification of the shortcomings of current tests. The joint mobility demands imposed on
the kinetic chain, described as “the combination of several successively arranged joints
constituting a complex motor unit” (Steindler, 1977) are variable. It is apparent that the tests
on the static half of the continuum — WBLT, SEBT and the deep overhead squat — impose
joint mobility demands primarily on the lower extremities, with the exception of the

shoulder joints in the deep overhead squat. The multi-segmental tests (flexion, extension,

21



Background

lateral flexion and rotation), as well as the UQYBT, predominantly impose joint mobility
demands on the trunk and the upper extremities, while both the SRT and FR have low joint
mobility demands. Overall, tests on the static half of the continuum impose greater
demands on the magnitude of joint movements. The exceptions are hopping tests, where

ankle dorsiflexion approaches normative data (Augustsson et al., 2006).

Further analyses of the continuum show that most of the tests have largely unidimensional
joint mobility demands in the sagittal (squat, WBLT, in-line lunge, multi-segmental flexion,
hop and landing tests), frontal (SEBT: medial and lateral reach) or transverse plane (multi-
segmental rotation). One notable exception is the multiplanar SEBT (Doherty et al., 2015;
Kang et al., 2015; Robinson & Gribble, 2008). Thus, no test or test batteries of dynamic
postural control that impose uni- or multi-dimensional joint mobility demands on the kinetic
chain are currently available. In fact, such kinetic chain tests have been advocated (Kibler,
Press, & Sciascia, 2006; Kibler & Sciascia, 2016), which might allow for a better
understanding of how different joints and regions interact and influence each other

(Wainner, Whitman, Cleland, & Flynn, 2007).

Hand reaches can be used to impose joint mobility demands on the kinetic chain. One hand
reach test would not be sufficient to target the many degrees of freedom of the ankle, knee,
hip, trunk and shoulder joints. Therefore, multiple hand reach tests have to be developed. In
order to impose demands on both magnitude and different joint movement combinations,
hand(s) reaching at different vertical targets (i.e. overhead, shoulder and floor height) have

to be used.

Test development

As a part of any test development it is important that the fundamental test properties of

validity and reliability are considered.

Content validity

Three practitioners — Ola Eriksrud, Jessica Parnevik-Muth and Ali Ghelem — made up the
group of experts that developed the HSEBT. Their clinical and practical experience ranged

from 15 to 22 years, and all group members contributed equally to the development. The

22



Background

objective of the group was to develop a test of dynamic postural control and functional
mobility that would impose joint mobility demands on the kinetic chain reflective of the
theoretical basis (i.e. definitions of dynamic postural control and functional mobility).

Content (or logical validity) then evolved from the planning and creation of the test.

Joint movements

The kinetic chain joint movements (degrees of freedom) to be targeted by the test were
three-dimensional joint movements of the ankle-foot complex, knee, hip, trunk and shoulder
joints. Specifically, the trunk was defined as the thoracic and lumbar spine, while the
shoulder joint represented both the glenohumeral joint and scapulothoracic articulation,
which is known to have a close and highly coordinated interaction (Crosbie et al., 2008).
Furthermore, the interaction of multiple joints of the foot complex (Lundberg, Goldie, Kalin,
& Selvik, 1989; Lundberg, Svensson, Bylund, Goldie, & Selvik, 1989) was regarded as one
segment and defined as the ankle joint. The other upper extremity joints; the elbow,
forearm, wrists and fingers, as well as the cervical spine, were not targeted by the test. A

summary of joint movements targeted by the test is presented in Table 2.

Task and reach directions

In order to impose joint mobility demands on the aforementioned joint movements, hand
reaches from standing were chosen. Current standing reach tests, as described previously,
have low mobility demands (Brauer et al., 1999; Duncan et al., 1990). However, the
backward reach introduced by Newton (Newton, 2001) imposes hip and trunk extension
joint mobility demands, while hand reaches to ground level do the same for lower extremity
and trunk flexion joint movements (Kivlan et al., 2013). Both overhead reaches and reaches
to the ground can be considered ecological movements, which elicit coordinated joint
movement contributions (Stapley, Pozzo, Cheron, & Grishin, 1999). Considering that hand
reaches in different directions describe different LOS (Newton, 2001) and that one purpose
was to impose mobility demands on the joint movements identified in Table 2, multiple
reaches beyond merely forward and backward reaches were developed. For this purpose,
the SEBT reach directions served as a reference (Gribble et al., 2012). However, the SEBT
reach directions (based on the stance foot) can be confusing when the stance foot is

changed. Therefore, hand reaches were defined from the anatomical position where the
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anterior (A0) and posterior (P180) reaches divide the body into right (R) and left (L) halves.
Each half was then divided into 45-degree increments to define the additional six hand
reaches: R45, R90, R135, L135, L90 and L45. Collectively these reaches are defined as
horizontal reaches. The horizontal reaches are divided into anterior reaches (L45, AO and
R45) and defined as flexion movement patterns, while posterior reaches (R135, P180 and
L135) are defined as extension movement patterns. In order to specifically target transverse
plane joint mobility demands both a left (LROT) and a right rotational reach (RROT) were
developed. Since the test is mostly based on hand reaches in the same directions as the

SEBT, the name hand reach star excursion test (HSEBT) was chosen.

Equipment

To facilitate measurements, a testing mat was designed identifying the reach directions with
marks using the metric system (Figure 2). Specifically, the testing mat consisted of eight
reach directions extending from a common center point at 45-degree intervals and marked
at 1 cm intervals, which defined the resolution of the measurement. Furthermore, at each
10 cm radius (up to 90 cm) a concentric circle was added. These circles were marked with 10
degree intervals in order to measure rotational reaches, measured in degrees. Having
defined the task (hand reaches), a general starting position (standing) and reach directions,
specific testing procedures were developed for each reach as follows: 1) starting position, 2)

movement, 3) measurement and 4) ending position.
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LROT RROT

Figure 2. Maximum HSEBT reach positions. Testing mat with reach directions and images
showing maximum reach positions on the left foot.

Starting position

Since we wanted to impose joint mobility demands on one lower extremity at a time, the
position of both the stance and support foot had to be defined. To avoid the variable stance
foot positions currently used in the SEBT (Plisky et al., 2009) standardization of stance foot
positioning was defined as follows: 1) half of the foot should be in front of the line
connecting the L90 and R90 reach directions and 2) the second toe and the center of the
heel should be on top of the line connecting the A0 and P180 reach directions. The position
of the support foot is also important since it can be used in a balancing strategy, which was
observed in the unilateral hand reach test (the cross-over reach test) presented by Kivlan
and co-workers (Kivlan et al., 2013). To avoid counterbalancing, toe-touch weight-bearing of
the support foot at a 135-degree angle relative to the reach direction was chosen. This was
to make sure that the BOS in the reaching direction did not increase. Furthermore, the

support foot was angled in the direction of the reach (neutral position) to avoid any
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influence on the reach measurement, as lower extremity positioning has been shown to
influence postural control and trunk biomechanics (Zhou, Ning, Hu, & Dai, 2016). Also, the
support foot was positioned between the 20 and 30 cm concentric circle to approximate hip
width. The only exceptions to these general support foot guidelines were the rotational
reaches (LROT and RROT), where both feet were placed in parallel (on the L90 or R90 line)
and the support foot was allowed to rotate in the direction of the reach, and in the L90 and

R90 reaches, where the support foot was angled in the AO direction.

Movement

The different reaches were defined based on hand(s) performing the reach with the
following stance foot constraints: 1) the heel, big and little toe (first and fifth
metatarsophalangeal joints) had to maintain ground contact during the reach, and 2) no
footwear. Tests were divided into bilateral and unilateral hand reaches in order to facilitate
uni- and multi-dimensional joint mobility demands respectively. Specifically, the three
cardinal planes were targeted by bilateral hand reaches as follows: 1) sagittal (AO and P180
reach), frontal (L90 and R90) and transverse plane (LROT and RROT) and defined as pure
plane reaches. In the bilateral hand reaches the middle fingers were positioned on top of
each other to decrease frontal and transverse plane joint movement contributions. The
other horizontal reaches (L45, R45, L135 and R135) are all unilateral and defined as diagonal
hand reaches. In these reach directions the hand selected to perform the reach was based
on proprioceptive neuromuscular facilitation principles of crossing the midline; i.e. the right
hand reaches to the L45 and L135 targets and vice versa. Similar movement patterns to the
unilateral hand reaches have been advocated in shoulder rehabilitation (Kibler & Sciascia,
2016; McMullen & Uhl, 2000). During the diagonal reaches the opposite hand is positioned
on the hip. This standardization is important considering that the SEBT preferred testing
procedure is hands at the side (pelvis) (Gribble et al., 2012), which is not always abided by
(Hertel, Miller, & Denegar, 2000; Plisky et al., 2009). For all reaches elbow(s) are extended
with wrist(s) in neutral position(s). The verbal instructions given to the participant are:

“reach as far as you can while maintaining balance”.
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Testing order

A specific testing order was created to decrease testing time and to facilitate qualitative left-
to-right comparisons. We decided that the general order should be left to right stance foot
reaches to limit instructions to 10 left stance foot reaches, and asking the participant to
perform the same reach on the right foot. In addition, this order will make immediate left to
right qualitative comparisons easier. Furthermore, the overall testing order starts with
horizontal reaches based on the hypothesized elicited hip joint movements (Table 2).
Specifically, flexion movement patterns are performed first and ordered from external to
internal hip rotation (L45, AO to R45). Then, lateral reaches ordered from hip abduction to
adduction (L90 to R90) followed by posterior (L135, P180 to R135) and rotational reaches
(RROT to LROT) ordered from external to internal hip rotation. The testing order is presented

in Appendix V.

Measurements and data presentation

Measurements are obtained from the maximum reach position from the center of the mat
to the tip of the middle finger(s) (cm) for the horizontal reaches. For the rotational reaches
the measurement is the angular excursion from A0 (0°) to maximum reach position. The best
of three reaches after a minimum of three practice trials is used. Specifically, the L45, AO and
R45 the measurements are obtained from the finger position on the mat since ground level
is the target, but only tapping on the mat without support is allowed for a valid trial. For the
other horizontal (L90, R90, L135, P180 and R135) and the rotational reaches (LROT and
RROT) the maximum reach position of the middle finger(s) is projected onto the mat using a
plumb-line or stick. Loss of balance while reaching or the inability to return to the starting
position is regarded as an incomplete attempt. All procedures have to be followed for the
reach to be counted as a valid. A complete description of testing procedures is presented in

Appendix V.

HSEBT results are presented as individual reach measurements, different composite scores
as commonly done for the SEBT (Gribble et al., 2012), or area calculations. For ease of
communication with patients and athletes we explored area calculations to provide a better

visualization of scores and to present a “movement sphere”.
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Joint mobility demands

While creating these tests the group hypothesized about the joint mobility demands
imposed by the different reaches. The joint movements identified with bold letters have
larger contributions (magnitude), those in regular font have smaller contributions, and
“none” is used when the group was uncertain or felt that a specific joint movement
contribution would be minimal (Table 2). Only left stance foot tests are described, since we

expected right stance foot tests to be the same.
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Background

Criterion related validity

Since there is no gold-standard dynamic postural control test there is no single criterion that
the HSEBT measurements can be compared to. However, concurrent validity, one
component of criterion related validity, can be determined by comparing the visually
obtained maximum hand reach measurement to a gold standard measurement, such as
motion capture data. This approach was used for the comparative SEBT (Bastien et al.,

2014a).

Construct validity

A comparison of the HSEBT to a similar test, such as the SEBT, can be used to address
construct validity. The level of agreement between specific SEBT and HSEBT reaches can be
used to determine whether they assess the same parts (convergent validity) or different

parts (divergent validity) of the underlying construct (dynamic postural control).

Reliability

Reliability is a fundamental characteristic of any test, which describes whether the
measurement is consistent and free from error, and is commonly described as test-retest,
intra- and inter-rater reliability. Test-retest reliability describes the consistency of
measurements on two separate occasions. Intra-rater reliability refers to the consistency of
measurements by the same tester in tests that follow each other within a short time
interval, while inter-rater reliability describes the agreement between two different testers
who measure the same group of participants and observe the same participant responses. It
may be difficult to determine inter-rater reliability for the HSEBT since testing procedures
require direct instructions by the tester, and some of the measurements (stick and plumb-
line) are obtained in close interaction with the participant. Furthermore, a minimum of 120
reaches are done in one session (three trials for both familiarization and measurements).
Thus, the best strategy to assess inter-rater reliability might be to perform testing on
separate days. Based on the possible influence of fatigue, intra-rater reliability may also be

difficult to assess.

30



Background

Factors influencing reach measurements

Comparable SEBT foot reach measurements are influenced by factors such as
anthropometry, age, activity level and sex. Specifically, leg length was found to explain a
significant portion of the variance in the SEBT reaches (range R%: .02 to .23) (Gribble &
Hertel, 2003). Consequently, foot reaches have since mostly been normalized (% leg length).
Physical activity also influence SEBT measures; specifically, differences between sports have
been observed (Bressel, Yonker, Kras, & Heath, 2007), with equivocal findings between
athletes and recreationally active individuals (Ambegaonkar et al., 2013; Sabin, Ebersole,
Martindale, Price, & Broglio, 2010; Thorpe & Ebersole, 2008). Furthermore, both sex
(Gorman, Butler, Rauh, Kiesel, & Plisky, 2012; Gribble & Hertel, 2003; Gribble, Robinson,
Hertel, & Denegar, 2009; Holden, Boreham, Doherty, Wang, & Delahunt, 2016) and age
influence SEBT reach measurements (Gonzalo-Skok, Serna, Rhea, & Marin, 2017; Holden et
al., 2016; McCann et al., 2017). Based on these findings it appeared reasonable to explore

the effect of these factors on the HSEBT outcome measurements.

HSEBT and athletic performance

Application of the HSEBT described previously may improve the assessment of athletic
performance, especially in sports where the hands are important in performance, as in
overhead sports (i.e. throwing and tennis). Overhead throwing is fundamental to sports such
as baseball, cricket, javelin, volleyball, and team handball, and is a result of sequential
muscle activation and torque generation in the kinetic chain that progresses in a proximal to
distal sequence (Mero, Komi, Korjus, Navarro, & Gregor, 1994; Putnam, 1993; Roach,
Venkadesan, Rainbow, & Lieberman, 2013; Young, 1996). The ability to generate high joint
angular velocities in throwing is dependent on internal torques acting on joints with
sufficient mobility for acceleration and deceleration of the movement. Roach and Lieberman
explored the impact of mobility on throwing performance using bracing (Roach &
Lieberman, 2014). Limiting proximal segmental mobility decreased joint power generation
throughout the kinetic chain, angular velocities, elastic storage of energy at the shoulder,
and throwing velocity. Thus, unrestricted joint movements are important for generating high
throwing velocities. In overhead team handball throwing, specific upper extremity and trunk

contributions to throwing velocity have been established (Hirashima et al., 2007; Hirashima,
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Yamane, Nakamura, & Ohtsuki, 2008; van den Tillaar & Ettema, 2004, 2007; Wagner,
Pfusterschmied, von Duvillard, & Muller, 2011). However, traditional ROM measurements of
upper extremity joint movement only (Schwesig et al., 2016; van den Tillaar, 2016) have
been reported to have non-significant relationships to throwing velocity, which may be due
to their aforementioned shortcomings. Thus, the HSEBT may be an appropriate test to
assess dynamic postural control of joint movements associated with overhead throwing

performance.

Purpose

In light of the current literature of dynamic postural control and functional mobility tests
there is a need for a test that imposes joint mobility demands on the kinetic chain, such as

the HSEBT. The specific aims of the thesis were to:

e Quantify the joint mobility demands imposed by the HSEBT

e Determine the validity of HSEBT measurements.

e Determine the reliability of HSEBT measurements.

e Determine the influence of HSEBT measurements on overhead athletic performance.
e Determine the influence of anthropometric measurements, sex, age and level of

physical activity on HSEBT measurements.
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Methods

Participants

In total, 224 participants volunteered to participate in one or more of the studies included in
this thesis (Table 2). Studies | and Il included recreationally active males, while study IV
included national- and international-level female team handball players. Study Il included
international-level male and female youth athletes from different winter sports, who

participated in a recent Youth Olympic Winter Games (YOG).

In studies | and Il, participants were recruited from the student population at the Norwegian
School of Sport Sciences and through the personal networks of the researchers conducting
the studies. In study Il participants were recruited in the Learn & Share area during the YOG,
while elite female team handball players were recruited at the Norwegian Olympic and
Paralympic Committee and Confederation of Sports, and from Elite Division clubs in the Oslo

region (study V).

Exclusion criteria for studies I, Il and Il were no current diagnoses impacting musculoskeletal
function and no past surgeries to the trunk, lower or upper extremities. Exclusion criteria for
all studies included any injuries in the past six months that led to loss of sports or

recreational activity participation for more than seven days, and pain during testing.

In study Il one participant withdrew due to LBP. In study IV one participant did not complete
the protocol while one participant experienced pain while being tested and was
consequently removed from the analysis. In total 222 participants were included in all

studies with the distribution between studies as presented in Table 3.
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Table 3. Participant characteristics

Study  Purpose Paper n Sex Age (years) Height (cm)

| Validity L&l 282 Male 23.842.2 189.7+6.0

1l Reliability 1 &I 29 Male 23.8+2.2 180.0+9.3
Factors influencing HSEBT measurements Male (76) 17.2+0.5 175.1+¢7.1

" " 154 Female (78) 17.0+0.7 165.945.9

v Application to team handball throwing &IV 11 Female 21.741.8 174.946.8
performance

Note: ?a subset of 20 subjects who were tested for both HSEBT and SEBT is reported in paper Il

Ethics

All studies were conducted in accordance with Good Clinical Practice and the Declaration of
Helsinki, using standard procedures routinely used in research settings at the Norwegian
School of Sport Sciences. The protocols, written information and consent forms were
submitted to the regional committee for medical and health research ethics for studies | to
IV. The committee concluded that the studies were outside their mandate. Consequently, all
studies were conducted according to Norwegian Law. All studies were approved by the

Norwegian Center of Research Data (Appendix VI).

Prior to participation and signing an informed consent all participants were informed about
the risks associated with the study. During the development of the HSEBT testing procedures
we found that some participants reported some discomfort in terms of general soreness in
the hips, lower back and thoracic spine after testing, which subsided within 24 hours. This
could be due to HSEBT being a maximum reach test. Consequently, in all studies the
participants were informed that this could be a potential response and that the maximum
reach should be based on their own capacity. Since study Ill included YOG participants,
verbal instructions were given in Norwegian and English with written information available
in the following languages: Norwegian, Chinese, English, French, Japanese, German, Korean
and Russian. In studies I-lll no general warm-ups beyond familiarization with the reaches
themselves were done. However, in study IV on throwing performance, speed and accuracy,
a standardized warm-up was done since this was a maximum effort involving a high-velocity
movement. The warm-up consisted of a general 10-minute warm-up followed by a handball-

specific section that concluded with 2-3 throws at maximum effort (see Appendix VII for
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details). Overall, the risks of participating in these studies were considered low and not

greater than what would be experienced during everyday sporting or recreational activity.

During data collection and analysis each subject was represented only by a code. Lists linking

participants to codes were locked in a safe and destroyed at the end of data analyses.

Experimental approach

The present thesis consists of four studies with observational designs. Concurrent validity of
HSEBT measurements was assessed by comparing visually obtained hand reach
measurements to those calculated from motion capture data. Furthermore, the content
validity of joint mobility demands, and the three-dimensional joint movements of the ankle,
knee, hip, trunk and shoulder at the maximum reach position were calculated from motion
capture data. Construct validity was obtained by comparing SEBT and HSEBT reach
measurements (study I). Then, test-retest and inter-rater reliability was established by three
different testers who tested participants individually on four different occasions (Study II).
The influence of age, sex, level of physical activity and anthropometric measures on HSEBT
outcome measurements were explored in study Ill, while the influence of HSEBT
measurements on overhead team handball throwing performance was explored in study IV.
Studies LIl and IV were conducted in the biomechanics laboratory at the Norwegian School
of sport sciences, while study Ill was conducted at the facilities of a recent Youth Winter

Olympic Games (YOG).

Equipment and variables

Motion capture

In studies | and IV a standard motion capture system was used (Qualisys Oqus 400 cameras,
Qualisys AB, Gothenburg, Sweden). In study | a 15-camera set-up was used to measure the
position of a full-body marker set. The cameras had different vertical positions (wall and
tripods) to ensure that they could capture markers in anterior and posterior positions on the
body in flexion and extension movement patterns, respectively. In study IV a 5-camera set-
up was used to measure athlete entry and ball throwing speed in an overhead handball

throw. The recording frequency used for both studies was 480 Hz. Prior to data acquisition
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the system was calibrated (20-30 seconds as recommended by the manufacturer) using an L-
shaped reference frame (for the 750 wand kit) with four reflective markers, which defined
the direction of the lab coordinate system, and a T-shaped wand (749.2 mm) with two
reflective markers. A re-calibration was performed if 1) one of the cameras was identified as
failed by the Qualisys Track Manager (QTM) software; 2) the average of the residuals of the
position of the camera to the origin of the coordinate system was too high (>3 millimetres);
and 3) if the T-shaped wand was subjectively judged to have not adequately covered the
recording volume. In study | the approximate recording volume was 2.5 m (length and width)

and 3 m (height), while in study IV it was 6 m (length), 4 m (width) and 3 m (height).

Video capture

In study Ill a Basler acA2000 — 165uc video camera (Baser AG, Ahrensburg, Germany) was
used to measure the accuracy of team handball throws at 165 frames per second (study V).
Specifically, the camera was placed behind the participant, perpendicular to the target at a

distance of 12 m and a height of 2 m.

Other equipment

Anthropometric measurements of height and mass were obtained using a Seca model 217
stadiometer and a Seca flat scale, respectively (Seca GmbH. & Co. Hamburg, Germany). A
standard tape measure was used for the other anthropometric measurements. Leg length
was measured as the distance from the greater trochanter to the floor for one leg. Arm
length was measured from the acromion to the middle digit with the shoulder abducted to
90° for one arm, and wingspan was measured from middle digit to middle digit with both

shoulders abducted to 90°.

All HSEBT reach measurements were obtained using the testing mat (Athletic Knowledge
Nordic AB, Stockholm, Sweden) as described previously. Measurements for the lateral,
extension and rotational movement patterns required the use of a plumb-line and a wooden

stick.
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Data acquisition

Validity (study 1)

Due to differences in SEBT testing procedures (Gribble et al., 2012; Hertel et al., 2000; Plisky
et al., 2009) some clarification of how these reach measurements were obtained is needed.
The SEBT was performed as follows: 1) the stance foot was placed on the middle of the mat;
2) the heel, first and fifth metatarsal heads maintained ground contact during the reaches;
3) the trunk was aligned with the reach vector for diagonal reaches (R45, R135,L135 and L45;
4) the lateral reaches (R foot L90 and L foot R90 reach) were performed with the reaching
foot in front of the stance foot; 5) both hands were on the hips; and 6) during rotational
reaches the big toe of the reaching foot followed the 50 cm radius circle with the
longitudinal axis of the foot segment oriented toward the center of the testing mat. The
SEBT rotational reaches are new and were added to target dynamic postural control in the
transverse plane in single leg stance and to compare measurements to the HSEBT rotational
reaches. Prior to performing each reach test the subjects were asked to stand with their feet
parallel to the shoulder line, with the hands on the hips, for a minimum of 3 seconds. For all
HSEBT and SEBT reaches a minimum of three practice trials were allowed, after which three
valid maximum reaches were recorded with the highest value used for analysis. Trials were

discarded if procedures were not followed.

Fifty-eight spherical reflective markers (20 mm @) were attached over specific anatomical
landmarks using bi-adhesive tape in order to define and track the foot, leg, thigh, pelvis,
thorax and upper arm segment (Figure 3). A complete list of markers used is provided in
Appendix VIII. Marker clusters for the leg, thigh and upper arm were attached firmly using

tensoplast elastic tape (BSN Medical GmBH, Hamburg, Germany).

37



Methods

Figure 3. Marker set study |

Reliability (study 1)

Each participant completed the HSEBT in four sessions across four different days. One of
three raters (convenience sample) administered the HSEBT independently each day, thus
one rater administered the HSEBT twice. The rater who tested all participants twice was a
physical therapist with two years’ experience in administering the HSEBT, while the other
two raters were sports science students with one year of experience. The order of raters was
randomized for each participant, while the order of reaches was the same for all sessions
(Appendix V). Testing sessions for each participant were scheduled at the same time of day
when possible; 8 a.m.—12 noon (morning) or 12 noon —6 p.m. (afternoon), since time of day

has been found to influence performance on the SEBT (Gribble, Tucker, & White, 2007).

Factors influencing HSEBT reach performance (study Ill)

Participants were tested on a subset of the HSEBT due to the time constraints of testing as

many athletes as possible in a short time span while they were available for testing at the
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YOG. Specifically, two flexion (L45 and R45) extension (L135 and R135) and rotational (LROT

and RROT) reaches were tested for both feet.

Application to team handball throwing performance (study V)

Specific HSEBT reaches were selected based on the similarity of elicited hip, trunk and
shoulder joint positions and movements (study 1) to the different phases of the overhead
team handball throw (van den Tillaar & Ettema, 2007; Wagner et al., 2011). Specifically, the
L135 and R135 reaches were tested since hip, trunk and upper extremity joint movements
and positions assumed in these reaches (study I) are similar to those observed in the cocking
and acceleration phase (van den Tillaar & Ettema, 2007; Wagner et al., 2011). The L45 and
R45 reaches were tested since hip, trunk and upper extremity positions and joint
movements assumed in these reaches (study I) are similar to those observed in the follow-
through phase of the throw (van den Tillaar & Ettema, 2007; Wagner et al., 2011). The LROT
and RROT rotational reaches were done to target the hip and trunk rotations associated with

the three phases of the throw (van den Tillaar & Ettema, 2007; Wagner et al., 2011).

The throwing target was indicated on a high-jump mat (2 m x 3 m) placed vertically in front
of a handball goal in order to protect lab equipment. Based on previously used protocols in
handball throwing studies, sports tape was used to define a +-shaped mark centrally located
inside a 1 m x 1 m throwing target (van den Tillaar & Ettema, 2003; Wagner et al., 2014). For
right-handed subjects the target was placed 0.1 m below the crossbar at the right side of the
goal’s midline and mirrored for the left-handed subjects (van den Tillaar & Ettema, 2003). An
International Handball Federation standard size women’s handball (Select AS, Glostrup,
Denmark) was used for all throws. A three-step run-up throw from 8 m was allowed, since
this throw is frequently used in team handball when throwing from the backcourt position
(Wagner, Pfusterschmied, Von Duvillard, & Muller, 2012). All subjects were given the
following instructions: “Throw the ball as hard as you can and hit the target” (van den Tillaar
& Ettema, 2003). There was a one-minute rest period between throws. The subjects
continued throwing until five valid throws (i.e. the ball landed inside the target) were

achieved, and the total number of throws was recorded.

Kinematic data was obtained using two markers attached to the ball (two markers opposite

each other to determine the center of the ball), throwing hand (head of the intermediate
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phalanx of the third digit) and the pelvis (highest point left and right iliac crest). A complete

description of the lab set-up is presented in Figure 4.

15m

* 9
2m

Area seen by
Qualisys cameras

= | i

R -
& L]
Video Camera (@[ = Qualisys Camera + = Anthropometric area

=HSEBT

Figure 4. Laboratory set-up study IV (Seeland, 2015)

Data processing

Validity (study 1)

Markers were identified using the QTM software. If gaps in marker trajectories occurred
they were interpolated or reconstructed using Matlab (Mathworks Inc, Natick, MA, USA)
(Federolf, 2013). However, for very long gaps these methods failed and the affected joint
angles, hip, spine or shoulder, could not be calculated. All kinematic data for the HSEBT
reaches presented in study | are based on a minimum of 24 subjects. Marker data was not

filtered.

Data analysis was done using Visual 3D® (C-Motion Inc., Rockville, MD, USA). Marker
locations were registered in a static standing trial in order to determine the static calibration
of the kinematic model. Local coordinate systems for the different segments were created
based upon established recommendations from the International Society of Biomechanics

(Wu et al., 2002; Wu et al., 2005). Specifically, the following segments were created: 1) foot
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based on the recommendation of Hamill and co-workers (Robertson, Caldwell, Hamill,
Kamen, & Whittlesey, 2014); 2) leg (Wu et al., 2002); 3) thigh using the prediction approach
to calculate the hip joint center (Bell, Brand, & Pedersen, 1989; Wu et al., 2002); 4) pelvis
(Leardini et al., 2011; Wu et al., 2002); 5) thorax (Leardini et al., 2011; Wu et al., 2005); and
6) upper arm (Wu et al., 2005). Joint rotations of the ankle (foot and leg segment), knee (leg
and thigh segment), hip (thigh and pelvic segment) and spine (pelvic and thoracic segment)
were calculated (cardan sequence XYZ) in the sagittal (X-axis), frontal (Y-axis), and
transverse (Z-axis) planes. Shoulder motions were calculated using both ZYZ (Zsirst=horizontal
adduction and abduction, Y=abduction and adduction, Zwirs=internal and external rotation)
(Wu et al., 2005) and XYZ (X=flexion and extension only) cardan sequences. No upper arm
segments were created, nor were any shoulder joint movements calculated for the SEBT

reaches.

Joint movements were calculated as the difference between starting (@start) and maximum
reach position (@max). Specifically, starting positions were defined as the mean joint positions

observed during the last 95 of the first 100 frames of recording (Equation 1).

Pstart= MeEaANframes 5-100 (1)

Maximum reach position (@max) was defined as the maximum or minimum x, y and z-
coordinate values in the global coordinate system (orientations: x (+) anterior, y (+) right
lateral and z (+) vertical) of the second metacarpal and the first metatarsal marker of the
reaching hand(s) or foot, respectively. Specifically, the maximum positions (¢max) for the
HSEBT reaches were defined as follows: flexion (minimum z-coordinate value), lateral
(minimum and maximum y-coordinate values), extension (minimum z-coordinate value
except P180 reaches where the minimum x-coordinate value was used) and rotational
movement patterns (minimum x-coordinate value). The maximum position (@max) for the
SEBT reaches were defined as follows: diagonal reaches (maximum value of V(x-coordinate?
+ y-coordinate?), P180 (minimum x-coordinate), AO (maximum x-coordinate), L90 (minimum
y-coordinate), R90 (maximum y-coordinate) and rotational reaches (minimum x-coordinate).
All tests were visually inspected to ensure that the set criteria matched for @max. Then, joint

movements (6) were calculated (Equation 2) for each reach and averaged for all subjects.

ez(pmax‘(Pstart (2)
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Joint movements of mirrored reaches (left and right) were averaged and named based on
left stance foot definitions for ease of data presentation. For HSEBT reaches with bilateral
symmetrical shoulder joint movements, i.e. AO, P180, L90 and R90 reaches, the mean of left
and right shoulders is presented. To compare the magnitude of joint movements elicited by
both the HSEBT and SEBT, the greatest values in joint movements (Bmax) of the ankle, knee,
hip, trunk and shoulder were identified for the HSEBT (Bmaxtseat) and SEBT (Omaxsest) reaches

and their differences were calculated (Bmaxoirr) (Equation 3).

OmaxDiFF = BmaxHseBT - OmaxsesT (3)

Then, Bmaxnsest and BOmaxsest Values were compared to determine whether they were within a
95% confidence interval of normative ROM reference (Greene & Heckman, 1994), except for
knee rotations. Trunk movements (lumbar and thoracic spine values added) were compared
to the lowest reported values (Magee, 2006). Comparisons of Omaxtsestr and Bmaxsest ankle and
knee abduction and adduction were not done since these measures are not commonly
quantified using clinically available assessment tools and normative clinical ROM values are
lacking (Greene & Heckman, 1994). Shoulder BmaxHsesr comparisons to normative values
were done for flexion, abduction, external rotation (Greene & Heckman, 1994) and
horizontal adduction (Magee, 2006) only. Thus, eighteen joint movements (ankle, knee, hip
and trunk) were compared for both HSEBT and SEBT, with the addition of four shoulder joint

movements for the HSEBT.

Further comparisons between the HSEBT and SEBT reach measurements were done using
composite scores and area calculations. As indicated previously, our clinical experience
supports the idea that expressing test outcomes as areas provides a better visual feedback
of results to participants than composite scores. Therefore, both areas and composite scores
were used in the analysis. Total area (Atwt) was calculated as the sum of the areas covered by
the eight triangles obtained from the horizontal reach (HR) measurements (HR; (i= 1(A0),
2(R45), 3(R90), 4(R135), 5(P180), 6(L135), 7(L90) and 8(L45)) (Equation 4). Additionally,
anterior (Aant) (Equation 5) and posterior areas (Apost) (Equation 6) were calculated in order
to differentiate between anterior and posterior HSEBT and SEBT reaches. Composite scores

(CS) were also calculated since they have been used to quantify combinations of SEBT
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reaches (Plisky et al., 2006). Specifically, CS were calculated as the sum of all (CStt), anterior

(CSant), and posterior reaches (CSpost) (Equations 7-9).

Awor=31/2*HR1.3*HR1.5*sin45° (4)
Aant=51/2*HR1.37.8*HR1.3 7.8*5in45° (5)
Apost=31/2*HR3.7*HR3.7*sin45° (6)
CStot=yHR1.8 (7
CSant=2HR1,2,8 (8)
CSpost=2HR4-6 (9)

In order to determine similarities of movement strategies between specific HSEBT and SEBT
reaches, shared movement synergies were quantified as the number of common joint
movements (maximum 12) used to obtain the maximum reach position. The movement

synergy was defined as follows: strong (>8), moderate (5 to 8) and weak (<5).

Concurrent validity of HSEBT reaches was established by comparing visually obtained HSEBT
reach measurements (Maxm) to those calculated from kinematic data (Max«in). Based on the
®max definitions previously described, horizontal reach distances Maxkin were calculated from
the position of the metacarpal marker at the maximum reach event resolved in the
coordinate system of the stance foot. Specifically, Maxxin was quantified as |x| and |y| (pure
plane reaches) and V(x? + y?) (diagonal reaches). An underestimation of Maxin relative to
Maxm is expected for horizontal reaches since the foot coordinate system is not exactly
aligned with the center of the testing mat, and the position of the 5th metacarpal marker
underestimates the position of the distal-most point of the third digit. Maxkin for rotational
reaches was defined as the orientation (°) (first rotation (Z) of the ipsilateral upper arm
segment) at the maximum reach event resolved in the local coordinate system of the stance

foot.

Reliability (study 1)

Raters were blinded to the results since all HSEBT measurements were sent to a fourth

researcher for data aggregation, storage and analysis.
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Factors influencing HSEBT (study 1)

No specific data processing beyond recording reach measurements was necessary for this

study.

Application to team handball throwing performance (study V)

Different composite scores (CS) were calculated as the sum of horizontal reaches (HR; (i=
1(L45), 2(R45), 3(R135), 4(L135)) as follows: dominant and non-dominant foot (CSdom, CSnon-
dom) (Equation 10), dominant and non-dominant foot flexion movement patterns (CSdom_ant,
CSnon-dom_ant) (Equation 11) and dominant and non-dominant foot extension movement

patterns (CSdom_ant, CSnon-dom_a nt)-

Csdom, non-dom=zH R1-4 (10)
Csdom_ant, non-dom_ant=zH R1,2 (11)
Csdom_post, non-dom_post =ZH R3,4 (12)

Marker data was filtered (2" order Butterworth low pass filter with 15Hz cut-off frequency).
Throwing velocity (m-s?) was then calculated as the average velocity between frames 3 and
8 after time (to) (frame of maximum acceleration between the marker on the third digit) of
the center of the ball (midpoint between the two ball markers) (van den Tillaar & Ettema,
2007). Entry velocity (m-s) was defined as the maximum velocity of the midpoint between
the two pelvic markers at 3 and 100 milliseconds prior to to. Both throwing and entry
velocity were calculated for all throws using Matlab (Mathworks Inc, Natick MA, USA).
Accuracy of all throws was calculated from video as mean radial error, the average of five
throws of the absolute distance from the center of the ball to the center of the target (van

den Tillaar & Ettema, 2003), using Dartfish (Dartfish, Fribourg, Switzerland).

Statistical analysis

For all studies descriptive statistics (mean and standard deviation (SD)) were calculated in
Excel for Mac OS 10.10.5 (Apple Inc., Cupertino, CA, USA), version 14.4.8 (Microsoft Corp.,
Redmond, WA, USA), while all other statistical tests were done using IBM SPSS version 21.0

(IBM, Armonk, NY, USA). Normality of the data was assessed using the Shapiro-Wilk test
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(p<0.05). Outliers were determined using the outlier labelling rule of 2.2 multiples of the
upper and lower quartiles (Hoaglin & Iglewicz, 1987) and were removed from the analysis
(study I-IV). Correlation coefficients were interpreted as follows: 0.00 - 0.25 little or no
relationship, 0.25 — 0.50 fair, 0.50 — 0.75 moderate to good, and 0.75 — 1.00 good to
excellent (Portney & Watkins, 1993). Effect sizes were calculated in studies | and Ill and

interpreted as follows: <0.2=small; 0.2 to 0.5=medium; >0.8=large effect (J. Cohen, 1988).

Validity (study 1)

The relationships between HSEBT and SEBT areas, composite score and specific reach tests
were obtained using linear regression analysis. To determine the differences between
Omaxtsest and BOmaxsest two-sided paired t-tests (level of confidence a>95%) were used with a

subsequent calculation of Cohen’s d effect sizes.

The criterion related (concurrent) validity of HSEBT reaches was determined by comparing
Maxm to Maxwn using linear regression analysis and the Bland Altman method. The
difference score (Maxaiff) was calculated (Equation 13) and in the presence of a non-normal
distribution a ratio of manual to kinematic measurements was calculated (Equation (14)) and
used in the subsequent analysis. Bland Altman plots were generated for Maxaitf OF m_kin (V-
axis) and the average of measurements (Equation (15)) (x-axis). Bias between measurements
(Maxaifimean) Was calculated (Equation (16)) with standard deviation (Maxadittsp) and plotted
with a 95% confidence interval (MaXdiffmean * 1.96Maxaifrsp). Then standard error difference

scores were calculated (Equation (17)).

Maxaift = Maxm — MaXxkin (13)
Fm_kin = MaXm/MaXin (14)
MaXmean = mean(Maxiin + Maxm) (15)
MaXqiffmean = MeaNsubjecti-2sMaXdift (16)
SEaift = V(Maxaitso®/n) (17)

Reliability (study 1)

Inter-rater and test—retest reliability were assessed for each test by calculating intraclass

correlation coefficients, ICC,3 and ICCy1 respectively. The following criteria were used to
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evaluate ICC values: 20.90 high, 0.80-0.89 moderate and below 0.80 questionable (Vincent,
2005). Test-retest and inter-rater SDs were calculated using Equations (18) and (19)
respectively. Stability of measurements was assessed by calculating the SEM (Equation (20)),
and the CV for both test—retest (Equation (21)) and inter-rater reliability (Equation (22)).
Minimal detectable change (MDCgs) was calculated using a 95% confidence interval for both
test—retest and interrater reliability (Equation (23)). A within-subjects repeated-measures
analysis of variance (ANOVA) was performed with the independent variable being day (1, 2,
3, 4) to identify whether any learning effects had occurred between sessions. The same
ANOVA analysis was done with the independent variable being rater (1, 2, 3), where the first
session of the rater who tested the subjects twice was used. The level of significance was set

at 95% (o = 0.05).

SDtest-retest = V3 (test 1 —test 2)2/2n (18)
SDinterrater = V3 (SDbetween raters)?/n = 1 (19)
SEM = SD x V(1 - ICC) (20)
SD:test-retest/ pooled mean x 100 (21)
SDinterrater/pooled mean x 100 (22)
MDCgs = 1.96 x V(2 x SEM) (23)

Factors influencing HSEBT reach performance (study Ill)

Mirrored reach test measurements on the left and right foot were compared using a paired
samples t-test and interpreted using effect size (Cohen’s d) and MDC values (study I). The
influence of anthropometric measures (height, wingspan, arm length, leg length and trunk),
age, sex and level of physical activity (athletes; recreational) on HSEBT measurements was
determined using stepwise multiple regression analysis. Measurements for the same tests
on the left and right foot (e.g. left foot R45 reach and right foot L45 reach) were averaged.
Linearity was assessed by visual inspection of scatter plots of studentized residuals and
predicted values. Multicollinearity was assessed using a variable inflation factor (VIF) with a
cut-off of >10. Independence of residuals was analyzed using Durbin-Watson statistics with
cut-off values <1 and >3. Homoscedasticity was assessed by visual inspection of the scatter

plots of the standardized predicted values of the model and the standardized residuals.
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Normality of residuals was determined by visual inspection of the histograms of
standardized residuals and probability-probability plots. Casewise diagnostics were set to
three standard deviations to determine whether 1% or less of the subjects had standardized
residuals outside this distribution. Specifically, a random sample, consisting of 75% of the
participants, was used to generate the initial model using forward stepwise regression based
on statistical significance (t-test). The model was then validated on the remaining 25% of the
participants using forced entry. The validation model was then compared to the initial model
based on change of R? values, and independent variables that significantly contributed
(p<.05) to the model were retained. Pearson correlation coefficients of retained variables
from the regression analysis to their respective HSEBT reaches were then calculated. The
criterion for normalization of HSEBT reaches to anthropometric measures was based on
significant correlation coefficients and R? values and changes greater than the CV of the

respective reach (study 1).

Independent samples t-tests were then used to explore differences between age groups
(young:<20 years; adult: >20 years), sex (M; F) and level of physical activity (recreational;
athletes). Homogeneity of variance was assessed using Levene’s test. In the case of non-
normal distribution of data as indicated by a significant Shapiro-Wilk test outcome, the test
z-scores of both skewness and kurtosis were calculated to explore the necessity for data

transformation. Effect size was calculated using Cohen’s d.

Application to team handball throwing performance (study V)

Pearson correlation analysis (two-tailed) was carried out to determine the relationship
between throwing velocity, accuracy, number of attempts and HSEBT reach measurements
(cm, ° and CS). Linearity of the relationships between these variables was assessed using
visual inspection of the scatter plots. Dynamic postural control tests are presented based on
the dominant foot (the opposite of the throwing hand). Since 9 of 11 players were left-foot

dominant, left-foot reach definitions were used for the presentation of the HSEBT results.
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Results

Validity of the HSEBT (Study 1)

Content validity

A detailed description of the joint movements used to estimate maximum reach position for
the different HSEBT reaches is presented in Table 5. HSEBT anterior reaches resulted in ankle
dorsiflexion (range = 19.4 to 29.7°), knee flexion (range = 81.6 to 101.7°), hip flexion (range =
98.8 to 103.3°) and trunk flexion (range = 51.2 to 58.8°), while posterior reaches elicited
ankle dorsiflexion (range = 19.7 to 24.5°), knee flexion (range = 18.0 to 28.8°), hip extension
(range = 17.4 to 29.5°) and trunk extension (range = 28.5 to 36.2°). HSEBT lateral reaches
targeted different frontal plane movements where the L90 reach generated ankle inversion
(7.5%4.5°), knee abduction (2.1£3.7°), hip abduction (16.9+6.3°) and ipsilateral trunk flexion
(38.2£7.0°), whereas the R90 reach elicited ankle eversion (18.2+3.3°), knee adduction
(2.7£3.0°), hip adduction (27.6+6.4°) and contralateral trunk flexion (38.8+5.8°). HSEBT
rotational reaches targeted different transverse plane movements where the LROT reach
induced ankle adduction (15.1+5.2°), knee internal rotation (15.1%£3.7°), and hip internal
rotation (33.2+3.8°), whereas the RROT reach elicited ankle abduction (13.4%3.6°), knee
external rotation (23.8+5.4°), hip external rotation (29.5%5.4°) and contralateral trunk
rotation (33.7+4.5°). Shoulder extension, adduction, internal rotation and horizontal
abduction are not reported since no test specifically targeted the magnitude of these joint

movements. Movement synergies ranged from 4/12 to 10/12 joint movements (Table 5).
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Results

The identified Omax1sear exhibited greater values than Omaxsest for all joint movements, except
for ankle dorsiflexion, plantarflexion and knee extension (Table 6). Joint movements with
greater Omaxnsest (bold font column 5 Table 6) values were significantly greater than Omaxsest
for all comparisons, except for hip external rotation (t(34)=-0.51, p=.61, d=.09), with effect
sizes ranging from medium to large (d = .39 to 5.21). The Bmaxsesr values were significantly
greater than Bmaxusest for all ankle dorsiflexion, plantarflexion and knee extension with effect
sizes ranging from medium to large (d = .45 to 1.39). Comparisons of Omaxtsesr and Omaxsest tO
normative ROM values revealed that 8/22 and 3/18 joint movements, respectively, were

within normative ROM values (Table 6).
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Results

Criterion related validity

Excellent correlations were observed between Maxm and Maxin measurements for 18 out of
the 20 tests (r 2 0.90), with a shared variance that ranged from 81 to 97%. Two tests, left
foot RROT (r = 0.89) and right foot RROT (r = 0.79), had good correlations and a shared
variance of 79% and 63% respectively (Table 7). Maxgitt was normally distributed as assessed
by a Shapiro-Wilk test with one exception, right foot P180 reach (p = 0.045); however, rm_in
for this test was normally distributed (p = 0.067) and used in the agreement analysis (Table 7
and Figure 5). There was a positive fixed bias (Maxaifmean) for all horizontal reaches ranging
from 2.2 to 12.8 cm and 23.7% (P180). Fixed biases for the rotational reaches were positive
for ipsilateral (10.2 and 11.2°) and negative for contralateral rotational reaches (-5.0 and

-6.0°) (Table 7 and Figure 5).

Table 7. Concurrent validity of the HSEBT

Regression analysis Agreement analysis
Test Foot Hand(s) Order Maxm (+£SD)? Maxuin (£SD)? r R? Bias+SD Bias+SE
A0 L B 9 72.848.4 70.6+6.9 0.97 0.94 22424 2.240.5
A0 R B 15 71.249.9 67.848.4 0.98 0.96 3.4+23 3.4+0.5
R45 L L 1 79.0£7.2 74.116.6 0.95 0.90 4.9+2.4 4,9t0.4
L45 R R 5 79.2+8.4 74.146.9 0.96 0.93 5.1+2.6 5.1+0.5
R90 L B 12 67.4+11.2 55.3+10.5 0.96 0.92 12.043.1 12.0+0.6
L90 R B 18 67.6+12.3 54.7411.1 0.95 0.91 12.843.8 12.840.7
R135 L L 4 62.0+13.3 52.2412.3 0.95 0.89 9.8+4.4 9.810.8
L135 R R 8 61.3+14.3 50.2+14.3 0.99 0.97 11.1+2.4 11.1+0.5
P180 L B 10 71.3+12.9 58.5+12.4 0.97 0.94 12.843.1 12.840.6
P180 R B 16 70,8+12.4 57.7411.9 0.95 0.91 1.23740.087°  1.23740.016°
L135 L R 2 87.6+8.9 76.618.6 0.95 091 11.0+2.7 11,0£0.5
R135 R L 6 82.8+10.7 73.149.9 0.94 0.88 9.743.7 9.7+0.7
L90 L B 11 75.7+10.0 71.8+7.6 0.90 0.81 3.8+4.6 3.8+0.9
R90 R B 17 74.5+11.6 69.5+9.5 0.95 0.90 5.1+4.0 5.1+0.8
L45 L R 3 68.249.5 65.0+8.1 0.99 0.98 3.2+1.9 3.240.4
R45 R L 7 65.749.9 63.0+8.6 0.98 0.96 27423 2.740.4
RROT L B 14 135.4+14.8 140.4+16.0 0.89 0.79 -5.0£7.3 -5.0+1.4
LROT R B 20 140.8+15.1 146.8+19.4 0.90 0.81 -6.0£8.8 -6.0+1.7
LROT L B 13 133.3+18.7 123.1+18.9 0.92 0.84 10.247.7 10.2+1.5
RROT R B 19 135.2£15.5 124.0+16.3 0.79 0.63 11.2+10.3 11.242.0

Note: SD = Standard deviation; SE = Standard error; Maxm = Maximum observed reach HSEBT measurement; Maxin = Maximum measured
kinematic measurement; r = Correlation coefficient; R2 = Coefficient of determination; L = Left; R = Right; AO = Anterior reach; R45 = Right
anterolateral (45°) reach; R90 = Right lateral (90°) reach; R135 = Right posterolateral (135°) reach; P180 = Posterior (180°) reach; L135 =
Left posterolateral (135°) reach; L90 = Left lateral (L90) reach; L45 = Left anterolateral (45°) reach; RROT = Right rotational reach; LROT =
Left rotational reach; 2= cm is the unit in all reach tests with the exception of LROT and RROT (°); ®= bias as ratio (rm_«in=Ratio MaXm/MaXin).
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80 100 120 40 160 180 20 4 60 8 100 8 100 120 40 160 180

80 100 120 140 160 180 20 4 60 8 100 80 100 120 140 160 180

Figure 5. Agreement analysis of horizontal and rotational reaches, left and right foot.
Visual representation (center top and bottom) of horizontal reach test scores (full line Maxm,
dotted line Maxkin and grey area showing difference). Circular graphs (Maxin grey, Maxm
black) of left and right rotational reaches. Bland Altman plots (y axis: Maxaq and x-axis:
Maxmean) for all tests with fixed bias (full line) with 95% confidence interval (dotted line) and

agreement (dashed line). Note that the units are cm for all reaches except LROT and RROT
(°).
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Results

Construct validity

HSEBT and SEBT reach measurements with correlations between area, composite scores and
reach measurements are presented in Table 8 and Figures 6 and 7. Total area (Aw) and
composite score (CStot) correlations ranged from r=.393 to .606, with statistical significance
for the right foot only (Table 8). Both Aant and CSant had higher correlations (range r = .531 to
.823) than Agost and CSpost (range r = .269 to .406) (Table 8). Anterior reaches, on both the left
and right foot, had moderate to good correlations ranging from r = .515 to .572 and r = .707
to .822, respectively. None of the posterior reaches were significantly correlated (Figure 6).
Anterior hand reach to posterior foot reach comparisons (A and CS) were significantly
correlated (r=.534 to .698), while posterior hand reaches to anterior foot reaches (A and CS)
were significantly correlated for the right foot only (r = .469 and r = .480) (Table 8). Variable
correlations were observed for the lateral (range r = -.182 to .510) and rotational reaches

(range r =.402 to .696) (Figure 6 and 7).

Table 8. Area and composite score comparisons between HSEBT and SEBT

Left foot Right foot
Comparisons r R? r R?
Atot .393. 154 .602** .362
Aant .531* .282 .780%* .608
Apost .269 .072 .406 .165
HSEBT Aantand SEBT Apost .534* .285 .698** 487
HSEBT Apost and SEBT Aant 227 .052 .480* .230
CStot 414 171 .606** 367
CSant .605** .366 .823** 677
CSpost 341 116 344 118
HSEBT CSantand SEBT CSpost .536* .287 .608** 370
HSEBT CSpost and SEBT CSant 261 .068 .469* 220

Note: Awt = Total area; Aant = Anterior area; Apost = Posterior area; CSiot = Total composite score; CSant = Anterior composite score; CSpost =
Posterior composite score. Statistical significance denoted as: * p<0.05 and ** p<0.01.s
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Results

Figure 6. Horizontal reach comparisons for the HSEBT and SEBT on the left and right leg.
Visual representations of the execution of the horizontal reaches (photographs) and mean
(£SD) reach distances (cm) observed for all tests in the center graphs for HSEBT (black) and
SEBT (grey). Correlation coefficients (r) are shown for each direction (*p<0.05 and **p<0.01).
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r=.569** r=.413

133418 __ 16

-150 -100 -50 0 50 100 150

r=.696** r=.402

-150 -100 -50 0 50 100 150

Figure 7. Rotational reach comparisons for the HSEBT and SEBT on the left and right leg.
Visual representation of the execution of the rotational reaches (photographs) for both left
(top) and right leg (bottom) with mean (+ SD) reach excursion ( ) observed for all tests in the
horizontal bar graphs for both HSEBT (black) and SEBT (grey). Correlation coefficients (r) are
shown for each direction (*p<0.05 and **p<0.01).
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Results

Reliability of the HSEBT (Study II)

There were 6.4 = 6.1 days between test sessions, and 63.2% of consecutive test sessions
were scheduled at the same time of the day (morning or afternoon). HSEBT reach
measurements, ICC, SEM and CV for both interrater and test—retest reliability are presented
in Table 9, where mirrored tests left and right follow each other and are grouped by color
(grey and white). HSEBT reach measurements (mean * SD) for the three and two sessions

used for inter-rater and test-retest reliability respectively are also presented in Table 9.

Test-retest reliability was moderate to high for 19 out of 20 HSEBT reaches (range ICC = 0.80
to 0.96) with right foot L90 reach being questionable (ICC = 0.77). SEM ranged from 0.3 to
2.8 cm and 1.7 to 2.6° for horizontal and rotational reaches respectively, while CV ranged
from 2.1 to 13.1%. MDCgs ranged from 0.9-7.9 cm and 4.7-7.2° for horizontal and rotational

reaches, respectively (Table 9).

Inter-rater reliability was high (range ICC = 0.90 to 0.98) with SEM ranging from 0.3 to 2.1 cm
and 1.8 to 2.4° for horizontal and rotational reaches respectively. CV values ranged from 3.1
to 14.6%, while MDCqs ranged from 0.9 to 5.7 cm and 5.1 to 6.6° for horizontal and
rotational reaches, respectively (Table 9). No effect of test session (day) on the results was
observed; however, a significant difference between raters was observed for the following
tests (maximum difference between raters identified in parentheses): left foot AO reach (1.4
cm); right foot L135 reach (5.6 cm); left foot L90 reach (2.6 cm); right foot LROT reach (6.9°);
and L foot LROT reach (5.4°).
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Results

Factors influencing HSEBT reach performance (study Ill)

Descriptive data for the different groups, sex, age and physical activity level, are presented
in Table 10 with the significance of group differences, effect sizes and established MDC
values from study Il. The male group was older than the female group (d=.83), with greater
anthropometric measures (range d = 0.94 to 1.51). The adult group also had greater
anthropometric measures than the young group (range d = 0.56 to 1.17). Recreationally
active participants were older than the athletes (d = 2.00), with greater anthropometric
measures (range d = 0.64 to 1.26). Females, young participants and athletes demonstrated
significantly greater normalized L45 and R45 reach measurements (p<.001) with medium
effect sizes. Trivial effects were observed for the non-normalized comparisons for these
reaches with one exception: males had greater R45 reach measurements than females
(small effect) with a group difference greater than MDC values. Small to medium effects for
sex, level of physical activity and age were observed for the R135 reach. Specifically, the
athletic group had reach measurements greater than MDC values, while the observed
difference between the young and the adult group (7.6 cm) was within the range of MDC
values. The athlete group had significantly greater L135 reach measurements (4.1 cm) than
the recreational group (small effect), which is within the range of MDC values. Trivial to
small effects were observed for age, sex and level of physical activity of the rotational reach

measurements (Table 10).
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Results

In the stepwise regression analysis multicollinearity was not observed (range VIF = 1.000 to
4.152) and there was a homogeneity of variance (range Durbin-Watson = 1.699 to 2.397).
Wingspan explained 34.6 and 11.7% of the variance in the R45 and L45 reach
measurements, respectively. Leg length explained 1.9 and 2.7% of the R45 and L135 reach
measurements respectively (Table 11). No anthropometric variable could explain a
significant portion of the variance in the R135, LROT and RROT reaches. Based on the
aforementioned criteria, only the L45 and R45 measurements were normalized to wingspan
and expressed as a percentage of wingspan. In addition, sex explained 4.2 and 8.9% of the
variation of the R45 and L45 measurements respectively. However, the contributions of sex
and leg length to L45 and R45 reach measurements were non-significant in the validation
model (Appendix IX). Level of physical activity explained 3.3% and 6.5% of the L135 and R135

reach measurements, respectively (Table 11).
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Results

Table 11. Stepwise multiple linear regression of HSEBT tests

Test B SEB B R?

R45 Step 1

Constant 11.96 7.22

Wingspan .39 .041 59*** 346

R45 Step 2

Constant -3.93 8.45

Wingspan 47 .047 B2¥**

Sex 3.07 .92 .24*** 388 (AR?=.042)
R45 Step 3

Constant .62 8.58

Wingspan .58 .069 .8g¥**

Sex 3.1 .90 24% %%

Leg length -.279 12 -22% .407 (AR?=.019)
L45 Step 1

Constant 22.71 9.69

Wingspan .26 .055 34¥x* 117

L45 Step 2

Constant -3.86 11.13

Wingspan .40 .062 53 **

Sex 5.15 1.21  .35%** 206 (AR2=.089)
L135 Step 1

Constant 87,38 .83

Activity level -3.86 1.67 -.18* .033

L135 Step 2

Constant 59.67 12.86

Activity level -4.64 1.69 -22%*

Leg length 32 .15 17* .060 (AR?=.027)
R135

Constant 64.68 1.08

Activity level -7.21 2.17 -.25%* .065

RROT

NE

LROT

NE

Note: B = Unstandardized coefficient; B = Standardized beta coefficient; SE = Standard error; R? = Coefficient of determination; NE = No
variables entered into the equation; R45 = Right anterolateral (45°) reach; R135 = Right posterolateral (135°) reach; L135 = Left
posterolateral (135°) reach; L45 = Left anterolateral (45°) reach; RROT = Right rotational reach; LROT = Left rotational reach. Statistical
significance denoted as: *p<.05, **p<.01 and ***p<.001.

Application to team handball throwing performance (Study 1V)

The throwing performance of the participants was as follows: entry velocity = 3.1+0.5 m-s;
throwing velocity = 22.8+1.9 m-s; accuracy = 0.32+0.09 m; and number of valid throws =
8.813.0. Reach measurements and composite scores for the dominant and non-dominant

foot are presented in Table 14. There was no throwing velocity and accuracy trade-off (r =

62



Results

.062, p =.856). Furthermore, the number of throws did not significantly correlate with either
throwing velocity (r = -.267, p=.428) or accuracy (r = .330, p = .322). No significant
correlations between throwing velocity and the HSEBT, reaches or composite scores, were
observed (Table 12, Figure 8). In contrast, HSEBT composite scores and mean radial error
were significantly correlated for the dominant foot (CSgom r = .622, p<.05) and approached
significance for the non-dominant foot (CSnon-dom I = .584, p=.059), with extension movement
pattern composite scores being significant for both the dominant foot (CSdom_ext I = .756,
p<.05) and non-dominant foot (CSnon-dom_ext I = .656, p<.05) (Table 12). Specific reaches —
both the L135 (r = .725, p<.05) and R135 (r = .698, p<.05) reaches on the dominant foot and
the R135 reach (r = .839, p<.05) on the non-dominant foot — were significantly correlated
with the mean radial throwing error. These significant findings corresponded with

coefficients of determination ranging from .34 to .70 (Figure 9).

Table 12. Correlations HSEBT measurements and throwing performance

Measurement Measurement (meanSD) Throwing velocity Mean radial error
R45 (cm) 79.845.9 1395 (p=.230) 1222 (p=.513)
145 (cm) 68.246.2 253 (p=.452) 552 (p=.078)*
1135 (cm) 87.445.6 177 (p=.602) 666 (p=.025)**
R135 (cm) 63.4+11.8 309 (p=.356) 553 (p=.078)*
Dominant RROT (°) 122.9+7.0 -214 (p=.527) 1319 (p=.340)
LROT (°) 121.3+12.0 -530 (p=.093)* 341 (p=.305)
CS (cm) 297.8+24.1 382 (p=.246) 596 (p=.053)*
CSex (cm) 148.0+11.2 349 (p=.349) 421 (p=.197)
CSext (cm) 150.7+17.4 285 (p=.396) 631 (p=.037)**
R45 (cm) 68.546.6 -.003 (p=.992) .350 (p=.291)
145 (cm) 80.7+4.6 211 (p=.533) 171 (p=.616)
1135 (cm) 61.1+11.4 135 (p=.693) 510 (p=.109)
R135 (cm) 87.0£6.1 011 (p=.973) 812 (p=.002)**
Non-dominant RROT (°) 114.1+10.3 110 (p=.747) 1149 (p=.663)
LROT (°) 125.2+10.1 -.349 (p=.293) 452 (p=.163)
CS (cm) 297.8+24.1 079 (p=818) 599 (p=.051)*
CStiex (cm) 149.2+10.2 1093 (p=.785) 303 (p=.365)
CSex: (cm) 148.1£17.4 1099 (p=.772) 665 (p=.026)**

Note: R45 = Right anterolateral (45°) reach; R135 = Right posterolateral (135°) reach; L135 = Left posterolateral (135°) reach; L45 = Left
anterolateral (45°) reach; RROT = Right rotational reach; LROT = Left rotational reach. Statistical significance denoted as: *p<.10, **p<.05.
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Figure 8. The relationship between hand reach measurements and throwing velocity.
Coefficients of determination (R?) presented for dominant and non-dominant foot (columns)
for both reaches and composite scores (rows).
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Discussion

This thesis established the HSEBT as a new test of dynamic postural control that imposes
three-dimensional joint mobility demands on the lower extremity, trunk and shoulder joints.
The HSEBT is a valid test with moderate to high reliability that requires reach-specific
normalization to wingspan. Moreover, the reach-specific influences of age, sex, and level of
physical activity have to be accounted for when performing individual or group comparisons.
The impact of HSEBT on athletic performance in overhead team handball throwing could not
be established, as increased reach measurements were not beneficial to performance in an

elite female population.

Content validity

The HSEBT imposes reach-specific joint mobility demands that require simultaneous three-
dimensional joint movement contributions from lower extremity, trunk and shoulder joints
(Table 5). In comparison to the SEBT the number and magnitude of joint movements
(degrees of freedom) are greater. In fact, in 18 out of 22 joint movement comparisons the
Omaxnsest Were significantly greater than Bmaxsest. Furthermore, comparisons of Bmaxxsest With
OmaxsesT reported elsewhere support this observation (Aminaka & Gribble, 2008; Doherty et
al., 2015; Fullam et al., 2014; Hoch et al., 2011; Kang et al., 2015; Robinson & Gribble, 2008).
The greater Bmax1sear may be due to a larger BOS. This notion is supported by other tests with
large BOS (i.e. deep overhead squat), which elicit greater hip and knee flexion and
comparable ankle dorsiflexion values to Bmaxxsest (Butler et al., 2010). Also, the WBLT, which
has a large BOS, elicits greater ankle dorsiflexion than both the HSEBT and SEBT (Bennell et
al., 1998). However, the influence of the BOS is task dependent, as a greater BOS by itself
will not impose greater joint mobility demands. Both the FRT and the deep overhead squat
have a similar BOS as both are performed from a bilateral standing position, but the joint

mobility demands are different.

If the purpose is to assess lower extremity flexion joint movements, the deep overhead
squat and the WBLT are good alternatives. However, many functional and athletic tasks not
only require lower extremity flexion, but also flexion in combination with frontal and

transverse plane joint movements. In fact, one reason for the three different anterior
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reaches was to potentially quantify the influence of transverse and frontal plane joint
movements on a predominantly sagittal plane flexion task (anterior reach). The pure plane
reach (AO) primarily targets sagittal plane joint movements, while the diagonal reaches L45
and R45 combine lower extremity flexion with frontal and transverse plane joint movements
(Table 5). Thus, the difference in observed reach measurements can quantify the influence
of frontal and transverse plane joint movements on lower extremity flexion movements.
Specifically, a lower dorsiflexion was observed in combination with ankle inversion and
adduction (L45) than with eversion and abduction (R45) (Table 5). These findings are
supported by the work of Tiberio and co-workers who showed that a pronated foot yielded
greater dorsiflexion (Tiberio, Bohannon, & Zito, 1989). This might be important as
dorsiflexion has been reported to influence other parts of the kinetic chain in the squat
movement (Basnett et al., 2013; Fuglsang, Telling, & Sorensen, 2017; Gabriner, Houston,
Kirby, & Hoch, 2015; Hoch et al., 2011). In addition, hip joint movement combinations could
also impact the observed reach measurement differences, since a lower hip flexion in the
L45 (98.8+8.2°) than the R45 reach (108.2+7.9°) was observed. If the hip had the capacity to
compensate for the decreased dorsiflexion (L45), an increased hip flexion would be expected
in order to increase the reach measurement. Thus, it may be that the other observed hip
joint movements (internal rotation and adduction) limit hip flexion, and that the joint is
approaching positions of bony impingement (Bowman, Fox, & Sekiya, 2010). In contrast, the
observation of hip external rotation in combination with abduction allows greater hip flexion
since there is a lower chance of bony impingement (Bowman et al., 2010). Furthermore,
Bmaxnsest for trunk flexion was observed in the AO reach, whereas the frontal and transverse
plane trunk movements were less than 50% of the observed Bmaxusest in the L45 and R45
reaches (Table 5 and 6). This suggests that neither trunk lateral flexion nor rotation impact
reach measurements significantly, and that the difference in reach measurements is due to

lower extremity frontal and transverse plane joint movement influences.

How the anterior reaches can be analysed and compared is summarized in Figure 10.
Specifically, the anterior reach areas and composite scores can be compared left to right.
Also, the AO reaches can be compared left to right (column in the middle of Figure 10), which
allows for similar (=) joint movement comparisons, as the same joint movements are

observed at the maximum reach position. As for the L45 and R45 reaches, the sagittal plane
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joint movements are the same (=), but the frontal and transverse plane joint movements are
different (#), which in turn impact (increase (") or decrease ({')) the sagittal plane joint
movements. Comparisons between these tests allow for a comparison of how frontal and
transverse plane joint movements influence reach measurements. Then, left to right
comparisons can be done to determine differences between the left and right lower
extremities. Furthermore, a similar analysis can be applied to the posterior reaches (L135,
P180 and R135) to determine the influence of frontal and transverse plane joint movements
on extension movement patterns. Overall, the observed differences between the L45 and
R45 reach measurements indicate that unilateral testing beyond the sagittal assessment
offered by the deep overhead squat should be done, especially since diagonal reaches
represent joint movement combinations important to athletic performance such as the

tennis forehand and backhand or the ice-hockey shot.
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Figure 10. Flowchart for between- and within-limb reach comparisons for the HSEBT.
Analysis of L45 and R45 reaches and how their differences (#) affect their common joint
movements (=). Joint movement abbreviations are presented with Table 5.

Existing tests tend to target the joint mobility demands of either the lower extremities or the
trunk and the upper extremities. Lower extremity joint mobility demands are imposed by
the SEBT, YBT, deep squat, in-line lunge and WBLT, hopping and landing tests, whereas the

other reach tests, the one arm hop test and the SFMA impose demands on the trunk and/or
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upper extremities. The demands imposed by the SEBT and YBT have been described
previously, whereas hopping tests impose the greatest demand on dorsiflexion (Augustsson
et al., 2006). The UQYBT has been described as maximally challenging the mobility and
stability of the shoulder and upper trunk (Gorman, Butler, Plisky, et al., 2012); however, no
studies have explored these claims. Furthermore, different tests of the SFMA impose trunk
and hip mobility demands. Even if the criteria and category scoring of the SFMA have not
been validated against motion capture data, comparable tests have been found to elicit joint
mobility demands similar to Bmaxusest (Alghtani et al., 2015; Esola et al., 1996; Leardini et al.,
2011). The only other test beside the HSEBT that targets multiple lower extremity, trunk and
shoulder joint mobility demands is the deep overhead squat, which is mostly a sagittal plane
flexion assessment. Thus, the simultaneous joint mobility demands imposed on the lower
extremity, trunk and shoulder joint that target three-dimensional joint movements make the

HSEBT unique.

How the joint movements elicited by the HSEBT (Omaxtsesr) compare with normative ROM
values provides an indication of the magnitude of the joint movements elicited by the
HSEBT. The OmaxtsesT Were more consistently within the ranges of normative ROM values (8
out of 22 joint movements) than the Bmaxsest (3 out of 18 joint movements). Expecting 22 out
of 22 joint movements is unreasonable as the HSEBT testing procedures impose
biomechanical constraints (Figure 1), as do functional and athletic tasks, which will not allow
for all joint movements to be elicited within normative ROM values (i.e. ankle plantar flexion
and knee flexion). Considering that the magnitudes of joint movements elicited by the HSEBT
reach measurements are greater than those of the SEBT, it is a better test of functional

mobility that should be used to complement traditional ROM tests.

Criterion related validity

There were good to excellent correlations between Maxm and Maxkin measurements, similar
standard deviations, and a shared variance ranging from 63 to 98% for all HSEBT tests. Of the
20 comparisons, 12 tests had a shared variance > 90% (Table 7). However, these values are
lower than the 98% shared variance reported for the SEBT reaches (Bastien et al., 2014a).
Fixed biases were observed for all tests in a manner that appears to be reach-specific. Fixed

biases in flexion, lateral and extension movement patterns ranged from 2.2 to 5.1 cm, 3.8 to
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12.8 cm and 9.7 to 12.8 cm respectively (Table 7). These biases are greater than 90% of all
SEBT reaches, which are reported to have a difference of less than 2.32 cm (Bastien et al.,

2014a).

The lower criterion validity observed for the HSEBT than the SEBT can be partially explained
by the kinematic methods used to calculate the Maxin. First, the 5™ metacarpal marker was
used to represent the position of the distal point of the third digit, which underestimates the
visual measurement. Second, the center of the foot coordinate system was located posterior
to the center of the testing mat. Based on the location of the stance foot coordinate system,
and assuming a similar horizontal orientation of the hand segment in the global coordinate
system, the greater biases observed in extension than flexion movement patterns were
expected (Table 7). Differences in hand orientation in the global coordinate system may
explain the observed differences in the lateral reach measurements. Directional specific
differences in fixed biases were observed in ipsilateral and contralateral overhead reaches of
3.8 to 5.1cm and 12.0 to 12.8cm, respectively. The ipsilateral hand had a more vertical
orientation in the maximum reach position in the ipsilateral than in the contralateral
overhead reach (visual observation). Thus, the 5™ metacarpal marker will better
approximate the position of the most distal point of the third digit in the ipsilateral reach in

the Y-direction of the global coordinate system of the laboratory.

Calculation of Maxin for the rotational reaches was based on the orientation of the
ipsilateral arm resolved in the coordinate system of the stance foot. Specifically, the Maxkin
measurements were higher and lower than Maxm for contralateral and ipsilateral rotational
reaches respectively (Table 7). A greater contribution of shoulder horizontal adduction in
contralateral than horizontal abduction in ipsilateral rotational reaches (visual observation)
can explain these observed differences. Overall, based on the good to excellent correlation
coefficients between Maxm and Maxin, and on the fact that the kinematic methods used can
explain the observed fixed biases, manual measurements of hand reach distance (cm) and

rotation (°) seem to be valid.
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Construct validity

Large ranges of shared variance between HSEBT and SEBT area and composite scores (5.2 to
67.7%) and reach specific correlations (r = -.182 to .822) were observed. These findings
indicate that HSEBT reaches measure both similar and different aspects of dynamic postural
control than their SEBT counterparts, with the anterior reaches having the highest
correlations. The strength of the shared movement synergies could explain some of the
reach-specific observed differences. Specifically, the lateral reach with a weak movement
synergy (4/12) had little to no correlation, while the lateral reach with a strong movement
synergy (9/12) had fair to moderate correlation (Table 5). Furthermore, posterior reaches
had moderate shared movement synergies (6-8/12) and fair correlations, while rotational
and anterior reaches with moderate to strong shared movement synergies (8-10/12) had fair
to good correlations (Table 5). Since the anterior HSEBT (A0, R45 and L45) and the posterior
SEBT (P180, L135 and R135) reaches also had strong shared movement synergies (8-11/12,
obtained from Table 5) with joint movements of a similar magnitude, especially the hip joint
(Table 5), an anterior HSEBT to posterior SEBT CS comparison should not influence the
moderate to good anterior CS correlations. However, correlation coefficients mostly
decreased for these comparisons (Table 8). Thus, it appears that a shared movement synergy
is only one of the plausible explanations for the variable correlations between HSEBT and
SEBT reaches. It might be that rather than an overall synergy, one specific joint movement of
a shared movement synergy (i.e. dorsiflexion) has a greater influence on outcome
measurements than other joint movements. In fact, dorsiflexion has been found to predict
SEBT reach performance (Basnett et al., 2013; Gabriner et al., 2015; Hoch et al., 2011).
However, the influence of specific joint movements (i.e. dorsiflexion) on HSEBT reach
measurements has not been explored. Another reason for the differences in the correlations
between anterior and posterior reaches may lie in the similarity of LOS. It is likely that the
COP will move in the same direction as the reach for both the HSEBT and the SEBT, which
could explain why the anterior HSEBT and SEBT CS comparison had a stronger correlation
than the anterior HSEBT and posterior SEBT CS comparison (Table 8). Future studies should
explore how the COP behaves and possibly influences different HSEBT reach measurements.
In addition, visual feedback could have influenced the anterior to posterior SEBT and HSEBT

comparisons, since visual feedback of the reaching target is available for the anterior, but
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not for the posterior reaches. In summary, the current findings indicate that the HSEBT
measures different aspects of dynamic postural control than the SEBT, especially in the

lateral, posterior and rotational reaches.

Test-retest reliability

High to moderate ICC values (range = 0.80 to 0.96) were observed for all HSEBT reaches
except right foot R90 reach (0.77). These ICC values are comparable or better to those
reported for other tests of dynamic postural control (see Appendix I-lll for details).
Specifically, test-retest ICC values for the comparable dynamic postural control reach tests
range as follows: SEBT (0.62 to 0.92) (Kinzey & Armstrong, 1998; Lopez-Plaza, Juan-Recio,
Barbado, Ruiz-Perez, & Vera-Garcia, 2018; Munro & Herrington, 2010), YBT (0.51 to 0.98)
(Calatayud, Borreani, Colado, Martin, & Flandez, 2014; Clark et al., 2010; Faigenbaum et al.,
2014; Freund et al., 2018; Kenny et al., 2018; Plisky et al., 2006; Shaffer et al., 2013), SRT
(0.78 to 0.99) (Field-Fote & Ray, 2010; Katz-Leurer et al., 2009; Radtka et al., 2017), FR,
lateral and multidirectional reach (0.92 to 0.99) (Brauer et al., 1999; Duncan et al., 1990;
Newton, 2001), CKCUEST (0.90 to 0.96) (Goldbeck & Davies, 2000; Tucci, Martins, Sposito
Gde, Camarini, & de Oliveira, 2014) and the UQYBT (0.80 to 0.99) (Gorman, Butler, Plisky, et
al., 2012; Westrick, Miller, Carow, & Gerber, 2012) .

Response stability, as quantified by SEM, ranged from 0.3 to 2.8 cm and 1.7 to 2.6°, which is
comparable to that reported for other dynamic postural control reach tests on the same
scale (cm). Specifically, reported SEM values range as follows: SEBT (3.4 to 4.0 cm) (Kinzey &
Armstrong, 1998), YBT (1.7 to 5.4 cm) (Freund et al., 2018; Kenny et al., 2018; Shaffer et al.,
2013), FR (2.1 to 2.4 cm) (Lin, Chen, Tang, & Wang, 2012), SRT (2.0 to 4.0 cm) (Radtka et al.,
2017) and UQYBT (composite score = 2.2 to 2.9 cm) (Gorman, Butler, Rauh, et al., 2012). The
observed CV values (2.1 to 13.1%) are at least comparable to if not greater than those
observed for the SEBT (3.6 to 4.4%) (Plisky et al., 2006), which is the only study to report CV
values for the reach and functional mobility tests (Appendix I and IV). Coefficient of variation
values for test-retest reliability for other dynamic postural control tests are mostly greater
(Appendix Il and IIl). Thus, the reported HSEBT CV values (range = 2.1 to 13.1%) appear to be

better than or comparable to established tests of dynamic postural control.
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Inter-rater reliability

The inter-rater reliability for the HSEBT was high for all reaches, with ICC values ranging from
0.90 to 0.98 (Table 9), which is comparable to or better than those reported for other reach
tests, SEBT (range = 0.81 to 0.94) (Gribble, Kelly, Refshauge, & Hiller, 2013; Hertel et al.,
2000; Hyong & Kim, 2014), YBT (0.80 to 1.00) (Almeida et al., 2017; Clark et al., 2010;
Faigenbaum et al., 2014; Freund et al., 2018; Plisky et al., 2009; van Lieshout et al., 2016)
and FR (0.73 to 0.92) (Lin et al., 2012). Despite the high ICC values, the MANOVA results
suggest that in 5 of the 20 tests at least one rater differed systematically from the other
raters. Even if these differences were lower than the MDC values, the effect of the test

administrator on the results cannot be ruled out.

The observed SEM values ranged from 0.3 to 2.1 cm and 1.8 to 2.4°, which is comparable to
those reported for other dynamic postural control reach tests such at the YBT (0.7 to 3.3 cm)
(Plisky et al., 2009), SEBT (2.3 to 3.9 cm) (Hertel et al., 2000) and FR (2.1 to 2.3 cm) (Lin et al.,
2012). Since no other reach tests to date are measured in degrees, comparisons of SEM
values with other studies are not possible. Furthermore, comparisons of reported CV values
(3.1 to 14.6%) to other reach, functional mobility, hopping and landing tests cannot be made
since, to the author’s knowledge, these values have not been established (Appendix I-IV).
However, as inter-rater reliability was calculated from different sessions, comparisons with
CV values from test-retest analyses can be made. As described previously, these values are

mostly greater (Appendix Il and 111).

Both differences and ranges in CV values followed a similar pattern for both test-retest and
inter-rater reliability. One potential reason for these relatively large variations is the
influence of visual feedback. When subjects could see how far they reached (anterior
reaches) a considerably lower variation was observed (range test-retest CV = 2.1 to 3.8%;
range inter-rater CV = 3.1 to 5.2%), than when the subjects could not see (lateral and

posterior) (range test-retest CV = 5.2 to 13.1%; range interrater CV = 5.6 to 14.6%).

Calculations of MDC values were carried out as they are important from both a clinical and
research perspective (Haley & Fragala-Pinkham, 2006). Based on MDC calculations and
personal clinical experience, a change or difference score of 5 cm in anterior and 7 cm in

lateral and posterior reach measurements constitutes a true difference or change in
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outcome measurements. These values are comparable to some of the lower MDC values
reported for the SEBT (5-7cm; 6-8% of leg length) (Freund et al., 2018; Hyong & Kim, 2014;
Kenny et al., 2018; Munro & Herrington, 2010; Shaffer et al., 2013; van Lieshout et al., 2016)
(Appendix I).

In summary, the HSEBT has equal or better reliability in comparison with other tests of
dynamic postural control and functional mobility. The established CV and MDC values allow
for interpretation of change and difference scores for within- or between-subject

comparisons.

Factors influencing HSEBT

Anthropometry

Anthropometric measures were found to have reach-specific influences. As expected, an
influence of anthropometry was observed in anterior reaches as wingspan explained 11.7
and 34.6% of the variation in L45 and R45 reach measurements respectively. These findings
were greater than the observed CV values (range = 3.0 to 5.2%). In addition, between-group
comparisons (age, sex and level of physical activity) using normalized anterior reaches (% of
wingspan) resulted in a change from non-significant to significant differences with effect
sizes changing from trivial and small (range d = .01 to .28) to medium (range d = .50 to .72)
(Table 10). However, posterior reaches were unexpectedly only influenced by leg length
(L135), and only explained a lower portion of the variance than the observed CV values (5.2
to 6.6%, see Table 9). Also, leg length had a non-significant contribution to the R45 reach
measurement (Appendix 1X). As expected, no anthropometric measures influenced the
rotational reaches. Overall, these findings suggest a reach-specific normalization of the

anterior reaches (L45 and R45) to wingspan.

Reach-specific normalization procedures, as suggested for the HSEBT, are not used for other
reach tests. Even if six of eight SEBT foot reaches were significantly correlated with leg
length (range R?> = .02 to .23) (Gribble & Hertel, 2003) a general normalization was
recommended and has since been widely used (Gribble et al., 2012). The other hand
reaches, UQYBT, forward, lateral and posterior reaches, have all been normalized to arm

length even if the influence on reach measurements has not been demonstrated.
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Specifically, forward and lateral reach outcome measurements are difference scores from
the starting position (arm flexed or abducted to 90 degrees) to the maximum reach position,
and thereby normalized to arm length. The UQYBT measurements are commonly normalized
to arm length (Borms, Maenhout, & Cools, 2016; Butler et al., 2014; Gorman, Butler, Plisky,
et al., 2012; Taylor, Wright, Smoliga, Depew, & Hegedus, 2016; Westrick et al., 2012), but the

influence of arm length on reach measurements has yet to be explored.

Age

There are reach-specific effects of age. Specifically, the young group had greater
measurements with medium effects observed for the R135 and the normalized L45 and R45
reaches. The observed group difference for the R135 reach (7.6 cm) (Table 10) was within
the range of MDC values (5.5 to 7.9 cm) (Table 9). Based on the age groups being
significantly different (p<0.05); a medium effect size (d= .55); MDC values being calculated
for a conservative confidence interval (95%) (Haley & Fragala-Pinkham, 2006); and the
previously recommended difference score of 7 cm, age was interpreted to influence the
R135 reach measurement. The combination of these comparisons is a more robust
interpretation of findings, since it is not based solely on significance testing. Thus, age should
be considered when performing between-individual or group comparisons for the R135 and
normalized L45 and R45 reach measurements. However, these findings may be influenced by
the young group consisting of athletes, while the older group consisted of both athletes and

recreationally active participants (see section below).

A similar influence of age has been reported using different reach tests. In a young
population, SEBT measurements increase with age (Gonzalo-Skok et al., 2017; Holden et al.,
2016; McCann et al., 2017). Specifically, older individuals (15.6+£0.6 years) had increased
SEBT measurements in some directions when compared to younger basketball players
(13.7£0.5 years) (Gonzalo-Skok et al., 2017). McCann and co-workers also reported that
older football players (19.8+1.4 years) had greater SEBT reach measurements than younger
players (15.9+1.1 years) (McCann et al., 2017). In an older population (28.7+6.3 years)
younger participants (<30 years of age) had greater reach measurements than older
participants (Teyhen et al., 2014), and in an older female population (50 to 79 years of age) a

decrease with age was observed (Freund et al., 2018). However, only one study reported
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effect sizes (Gonzalo-Skok et al., 2017), and none of these studies compared group
differences to MDC values (Munro & Herrington, 2010), which could change the
interpretation of some of the results. Age has also been reported to influence arm reach
tests such as the UQYBT. Teyhen and co-workers reported no influence of age (Teyhen et al.,
2014), while Borms and Cools reported that increased age decreased reach measurements in
female volleyball, but not tennis and team handball players (Borms & Cools, 2018). However,
when compared to MDC values (Gorman, Butler, Rauh, et al., 2012), only the superolateral
reach direction decreased with age (Borms & Cools, 2018). Moreover, younger participants
have been reported to have significantly greater dorsiflexion (WBLT) ROM (2.9°) (Teyhen et
al., 2014). Again, the group difference is lower than the established MDC values (4.5 to 4.7°)
(Powden et al., 2015). Overall, the increased HSEBT reach measurements in a younger
population for selected reaches agree with what has been reported for other reach tests in a

similar age group.

Level of physical activity

Athletes were found to have significantly greater reach measurements than the
recreationally active participants for the R135 and the normalized L45 and R45 reaches. The
significant between-group differences, the medium effect sizes and the group difference for
the R135 reach being greater than MDC values justify the inference that level of physical
activity increases L45, R45 and R135 reach measurements. However, the interpretation
should be done cautiously as these findings coincide with the significant reaches for the age
group comparisons where the athletic population was significantly younger than the
recreationally active (large effect). Also, level of physical activity explained 3.3 and 6.5% of
the L135 and R135 reach measurements respectively, but these values were lower than the
observed CV values for these reaches (Table 9). However, it appears that level of physical
activity should be considered when performing between-individual or group comparisons

using the HSEBT.

The level of physical activity has been found to influence reach measurements in
comparable tests such as the SEBT (Ambegaonkar et al., 2013; Bressel et al., 2007; Sabin et
al., 2010; Thorpe & Ebersole, 2008). Both female dancers and soccer players seem to have

greater SEBT reach measurements in comparison to their recreationally active counterparts
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(Ambegaonkar et al., 2013; Thorpe & Ebersole, 2008). In contrast, Sabin and co-workers
found that active controls had greater SEBT reach measurements than basketball players
(Sabin et al., 2010). Furthermore, there are sport-specific SEBT reach differences e.g. soccer
players had greater SEBT reach measurements than basketball players, but there was no
observed difference between gymnasts and soccer players (Bressel et al., 2007). However,
the aforementioned studies neither reported effect sizes nor compared group differences to
MDC values. Thus, it seems that level of physical activity and type of sport influence dynamic

postural control as measured by the SEBT.

An equivocal influence of level of physical activity has been reported for the UQYBT (Borms
& Cools, 2018; Bullock, Brookreson, Knab, & Butler, 2017; Myers, Poletti, & Butler, 2017;
Taylor et al., 2016). Wrestlers had greater reach measurements than baseball players (high
school level) (Myers et al., 2017), while baseball players had greater normalized hand reach
measures than athletes participating in basketball, lacrosse, track and field and cross-
country (large effect sizes) (Taylor et al., 2016). However, no pairwise comparisons between
the other sports were performed (Taylor et al., 2016). Furthermore, team handball players
had significantly greater medial reach measurements than volleyball players (Borms & Cools,
2018), while swimmers at collegiate competition level had significantly greater normalized
reach measurements than those at a lower level (high school) (Bullock et al., 2017). Effect
sizes were reported in one study (Taylor et al., 2016) and comparisons to MDC values were
only possible in one other study (Borms & Cools, 2018) since reported MDC values were not
normalized (Gorman, Butler, Rauh, et al., 2012). This would change the interpretation to a
non-significant difference between team-handball and volleyball players (Borms & Cools,
2018). Overall, it appears that the influence of level of physical activity on HSEBT reach
measurements is in agreement with what has been reported for both the SEBT and the

uQyBT.

Influence of sex

Females had significantly greater normalized L45 and R45 reach measurements with a
medium effect size. These findings could be influenced by the female group being younger
than the male group (d = 0.83) since younger participants have greater normalized L45 and

R45 reach measurements. It is interesting to note that males have significantly greater
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absolute R45 reach measurements with a small effect size and a group difference less than
MDC values. Normalization to wingspan changes this relationship completely with females
having greater measurements (d = 0.64). These findings might be due to males having a
greater wingspan (10.9 cm; d = 1.51), and the fact that the R45 reach is where wingspan
accounts for the greatest variation of the measurement (34.6%). Thus, females are better
able to combine different joint movements to maximize R45 reach measurements despite
having unfavourable anthropometrics. In addition, sex had a medium effect and explained
4.2 and 8.9% of the variance of the R45 and L45 reach measurements, greater than most
CV’s for R45 and L45 reaches (3.0 to 5.2%). However, sex was found to have a non-significant

contribution in the validation model of the regression analysis.

Similar to our findings, physically active females have been found to have greater SEBT reach
measurements than their male counterparts (Gribble et al., 2009). However, in an earlier
study, Gribble and co-workers reported no influence of sex on normalized SEBT reach
measurements (Gribble & Hertel, 2003). In contrast, others have found males (Sabin et al.,
2010) and athletic males (Gorman, Butler, Rauh, et al., 2012) to have greater SEBT reach
measurements than their female counterparts. In the aforementioned studies effect sizes

were not reported and group differences were not compared to MDC values.

Contrary to our findings, males have been reported to have greater UQYBT reach
measurements. No difference in reach measurements were reported in recreationally active
males and females (Gorman, Butler, Plisky, et al., 2012), but male volleyball, tennis and team
handball players have been reported to have significantly greater hand reach measurements
than their female counterparts (Borms & Cools, 2018). In swimming, male athletes have
greater reach measurements than their female counterparts, with effect sizes ranging from
medium to large (Butler et al., 2014). Male active duty service members on average had a
4.6% greater reach measurement than their female counterparts in different age groups
(Teyhen et al., 2014). The greater reach measurements observed for males may be due to
greater strength demands as the UQYBT is performed from a three-point plank position

(Westrick et al., 2012).
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Influence on performance — throwing velocity

In study IV throwing velocity and accuracy was analyzed separately, as neither a trade-off
nor a correlation between throwing velocity and throwing accuracy were observed. These
findings agree with previous observations (Garcia, Sabido, Barbado, & Moreno, 2013; van
den Tillaar & Ettema, 2003, 2006). The throwing velocities observed are comparable to those
reported elsewhere for elite female handball players (Granados, lzquierdo, Ibanez,
Bonnabau, & Gorostiaga, 2007; Granados, Izquierdo, Ibanez, Ruesta, & Gorostiaga, 2008;
Vila et al., 2012). Individual HSEBT reach measurements and composite scores did not
correlate with throwing velocity. Hip extension, pelvic rotation, trunk rotation and extension
are joint movements associated, on the one hand, with the approach, cocking and
acceleration phase of the throw (van den Tillaar & Ettema, 2007; Wagner et al., 2011), and
on the other hand, with the different posterior reaches (Eriksrud, Federolf, Anderson, &
Cabri, 2018). Furthermore, Wagner and co-workers found that maximum trunk and pelvic
rotation during the throw were correlated with throwing velocity (Wagner et al., 2011).
Therefore, it seemed plausible to expect a correlation between HSEBT results and throwing
velocity, especially considering that limiting proximal mobility (trunk and shoulder complex)
by bracing decreased throwing velocity (Roach & Lieberman, 2014). Our findings, however,
did not support this hypothesis. Considering that all subjects were elite level handball
players, they could all have had sufficient joint mobility to generate high throwing velocities
(ceiling effect). In fact, comparisons of L135 and R135 reach measurements (Table 12) with
reference data from study Il (Table 9) showed that the handball players had reach
measurements greater than the recommended difference score (7 cm). However, when
compared to the athlete group from study IV (Table 10) no such difference could be
observed. Furthermore, no differences could be observed for flexion and rotational
movement patterns. These comparisons may indicate that the players studied had sufficient
functional mobility and dynamic postural control associated with the cocking and

acceleration phase for the generation of high throwing velocities.

Based on current and previous findings, it appears that ROM (Schwesig et al., 2016; van den
Tillaar, 2016), functional mobility and dynamic postural control measurements (Bullock et
al., 2018) do not predict throwing velocity. Thus, mobility and dynamic postural control

measurements should perhaps be analyzed in combination with measures of other
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neuromuscular qualities to better understand the underlying factors influencing throwing
velocity. Muscular strength and power have been more studied and found to be significantly
correlated with throwing velocity (Chelly, Hermassi, & Shephard, 2010; Cherif, Chtourou,
Souissi, Aouidet, & Chamari, 2016; Debanne & Laffaye, 2011; Fleck et al., 1992; Gorostiaga,
Granados, Ibanez, & lzquierdo, 2005; Granados et al., 2007; Manchado, Tortosa-Martinez,
Vila, Ferragut, & Platen, 2013; Marques, van den Tilaar, Vescovi, & Gonzalez-Badillo, 2007).
Specifically, power tests (kneeling medicine ball throw) and strength and power training
(overhead medicine ball throwing) that target joint movements similar to those observed in
the posterior overhead reaches (shoulder flexion, hip and trunk extension) have been found
to be correlated with throwing velocity (Debanne & Laffaye, 2011; Hermassi, van den Tillaar,
Khlifa, Chelly, & Chamari, 2015). Thus, combining these tests with the HSEBT posterior
reaches might be a good multifactorial model of neuromuscular qualities to explain throwing

velocity.

Influence on performance — throwing accuracy

The throwing accuracy observed in the current study (mean radial error: 0.32+£0.09 m) was
comparable with previous findings (van den Tillaar & Ettema, 2003, 2006; Wagner,
Buchecker, von Duvillard, & Muller, 2010; Wagner et al., 2011; Zapartidis, Gouvali, Bayios, &
Boudolos, 2007). Unlike throwing velocity, accuracy has not received the same attention in
the literature. The effect of instructions (Garcia et al., 2013; van den Tillaar & Ettema, 2003,
2006), age and sex (Gromeier, Koester, & Schack, 2017), fatigue (Nuno et al., 2016;
Zapartidis et al., 2007), performance level (Rousanoglou, Noutsos, Bayios, & Boudolos, 2015;
van den Tillaar & Ettema, 2006), temporal constraints (Rousanoglou et al., 2015), throwing
techniques (Wagner et al., 2010) and laterality (van den Tillaar & Ettema, 2009) on throwing
accuracy have been explored. However, only two studies have explored the influence of
neuromuscular qualities, strength and power on accuracy, with non-significant findings
(Raeder, Fernandez-Fernandez, & Ferrauti, 2015; Zapartidis et al., 2007). No studies so far
have explored the influence of functional mobility or dynamic postural control on accuracy.
Furthermore, accuracy has been little studied in other comparable overhead and throwing
sports. In baseball, static stretching did not influence accuracy (Haag, Wright, Gillette, &

Greany, 2010), while better static balance in baseball (Marsh, Richard, Williams, & Lynch,
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2004) and lacrosse (Marsh, Richard, Verre, & Myers, 2010) improved accuracy (Marsh et al.,
2010).

Considering the limited information available on the influence of dynamic postural control
and functional mobility on throwing accuracy, our findings provide valuable information on
this important throwing performance factor. We showed that greater posterior overhead
hand reach measurements are correlated with lower throwing accuracy. One speculative
interpretation of this finding might be that posterior overhead reaches quantify the
proprioceptive and balance demands associated with throwing. Measures of proprioception
are correlated with successful basketball free-throw performance (Sevrez & Bourdin, 2015),
but not throwing accuracy in baseball (Freeston, Adams, & Rooney, 2015) or lacrosse (Marsh
et al., 2010). Based on their findings, Freeston et al. (2015), argued that proprioception of
the entire kinetic chain should be assessed since proprioception of the shoulder joint in
isolation did not correlate with throwing accuracy. If proprioception is measured by the
HSEBT and more accurate throwers have better proprioception, then lower posterior
overhead reach measurements represent better, or a better use of, proprioceptive
information. It may be that some players stopped at a safer margin to LOS based on

proprioceptive input that resulted in a lower reach measurement.

Perspectives and implications for future research

The influence of COP measures (i.e. velocity and excursion) and COM movements (i.e.
vertical) on HSEBT reach measurements should be explored as they have been reported to
influence SEBT reach measurements (Bastien et al., 2014b; Pionnier et al., 2016). Also, time
to maximum reach position, trajectory of reaching hand(s) and deviation from reaching
direction and target could provide additional information about dynamic postural control. In
fact, these measures have been explored for the SEBT and reported to be different in

patients with chronic ankle instability (Pionnier et al., 2016).

The HSEBT consists of 20 different hand reaches, which may provide redundant reach
measurement information. In fact, reach measurements have been used as one argument
for the reduction from eight (SEBT) to three (YBT) foot reaches (Hertel et al., 2006).
However, reducing the number of reaches based on one discrete measurement (maximum

reach) may be too simple, as more information may be contained in the different hand
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reaches. Specifically, analyzing coordination based on phase angles, angle-angle plots or
principle component analysis may provide more insight about the dynamic postural control
information expressed by the different hand reaches. This information (i.e. similarities and
differences of principal components of different reaches), in combination with reach
measurements, may allow for a better analysis of how to reduce the number of hand

reaches.

HSEBT hand reaches did not correlate with overhead team handball throwing velocity, but
one reach (right foot L135 reach for right handed players) was significantly correlated with
tennis serve velocity (Eriksrud, Ghelem, Henrikson, Englund, & Brodin, 2018). The HSEBT
reaches tested in this study were selected based on the same principle used for assessing
team handball players; eliciting combinations of joint movements similar to those used in
the preparation and acceleration phase of the serve (Elliott, 2006; Kovacs & Ellenbecker,
2011; Tubez et al., 2015; Wagner et al., 2014). This particular hand reach elicited dominant
arm shoulder flexion, trunk extension, minimal ipsilateral rotation and contralateral lateral
flexion (Table 5). Based on these findings, it appears that the combination of dominant
shoulder flexion, previously found to be significantly correlated to serve speed (Cohen,
Mont, Campbell, Vogelstein, & Loewy, 1994), with trunk extension and ipsilateral rotation
offers the best representation of joint movement combinations, or represents significant
boundary conditions associated with the preparation and acceleration phases of the tennis
serve. The ability to use the combination of these joint movements of a certain magnitude
might allow players to produce greater linear and angular momentum and thereby increase
serve speed (Elliott, Marsh, & Blanksby, 1986). This has been corroborated in a study in
which elite players with high serve speeds were capable of performing backswings of greater
magnitude (Girard, Micallef, & Millet, 2005). It is important to note that the performance
level of the participants in this study ranged from regional to international, which supports
the ceiling effect discussed in study Ill. Thus, it may be that the HSEBT can be applied to
team handball throwing performance where certain cut-off scores can be established,

beyond which throwing performance is not positively influenced.

Even if the HSEBT has a variable relationship to overhead athletic performance as reported
for team handball overhead throwing (study 1V) and tennis serve performance (Eriksrud,

Ghelem, et al., 2018), the HSEBT may find other applications in overhead athletes. For
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example, in team handball, shoulder pain is highly prevalent (Myklebust, Hasslan, Bahr, &
Steffen, 2013), and isolated tests of shoulder mobility have a variable capacity to predict
shoulder injuries (Andersson, Bahr, Clarsen, & Myklebust, 2017; Clarsen, Bahr, Andersson,
Munk, & Myklebust, 2014). Based on these shortcomings, and the kinetic chain contributions
to throwing performance, it has been argued that kinetic chain assessments including the
trunk and the lower extremities should be an integral part of routine shoulder assessment
(Kibler & Sciascia, 2016; Young et al., 1996). The scapula serves as the dynamic base of the
glenohumeral joint to allow for optimal positioning of the glenoid to ensure stability (Kibler
& Sciascia, 2016). In fact, the dynamic scapular positioning has a highly coordinated
interaction with both the shoulder joint and the thoracic spine (Crosbie et al., 2008).
Furthermore, trunk and hip joint movements (Hirashima et al., 2007; Kibler & Sciascia,
2016), muscle activation patterns (Hirashima, Kadota, Sakurai, Kudo, & Ohtsuki, 2002; Kibler,
Chandler, Shapiro, & Conuel, 2007; Kibler & Sciascia, 2016) and energy transfers (Happee &
Van der Helm, 1995; Hirashima et al., 2007; Hirashima et al., 2008) occur in a proximal to
distal sequence to ensure dynamic positioning of the scapula for different upper extremity
tasks (Kibler & Sciascia, 2016). Furthermore, Kibler and co-workers also argue that core
muscle function should be assessed dynamically in three dimensions and include trunk
control over a planted leg (Kibler et al., 2006). Currently there are no standardized tests that
address the dynamic hip and trunk movements in this patient population. Thus, the HSEBT
may be a good assessment tool to target regional interdependence and move beyond the
biomedical model of isolated joint assessments (Wainner et al., 2007) in this patient

population.

Hand reaches may also be a valuable assessment tool in other diagnoses, such as low back
pain (LBP). Specifically, the lumbo-pelvic rhythm in the sagittal plane, forward bending in
bilateral stance, is reported to be altered in patients with LBP (Laird et al., 2014; Laird et al.,
2016). This rhythm has also been reported in both lateral trunk bending (frontal plane) (Laird
et al., 2016; Tojima et al., 2016) and axial rotation (transverse plane) (Taniguchi, Tateuchi,
Ibuki, & Ichihashi, 2017), but was most commonly assessed for patients with LBP in the
sagittal plane (Laird et al., 2014). It has been reported that different stance widths and
angulations (neutral and externally rotated lower extremities) influence the lumbo-pelvic

rhythm in forward bending (Zhou et al., 2016), which indicates a task-specific dynamic
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postural control of the lumbo-pelvic rhythm influenced by both BOS and lower extremity
joint movement contributions. Specifically, hip mobility may influence this rhythm, and
hamstrings flexibility have been reported to do so (Zawadka et al., 2018). Thus, hand reaches
may be a strategy to explore the lumbo-pelvic rhythm in a uni- and multi-directional manner

in patients with LBP.

The anterior reaches can be used to assess different lower extremity functional limitations.
Based on hip joint movements elicited by the left foot L45 and right foot R45 hand reaches,
it may well be that these reaches can be used as a weight-bearing version of a common
clinical test for femoroacetabular impingement, which is currently done in supine with the
hip passively brought into flexion, adduction and internal rotation. Previously Kivlan and co-
workers designed a similar test, the cross-over reach test, to assess intra-articular hip related
pathology (Kivlan et al., 2013). Since a limited description of testing procedures is provided
and the support foot is free to counterbalance (Kivlan et al., 2013) the HSEBT might be a

better alternative.
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Conclusions
In conclusion the current thesis demonstrated that:

1. The HSEBT is a valid and reliable measure of dynamic postural control.

2. The HSEBT measures different aspects of dynamic postural control, especially in the
posterior and lateral directions, compared to the SEBT.

3. Greater and more joint movements are elicited by the HSEBT reaches in comparison
to the SEBT, making the HSEBT a useful addition to tests of functional mobility.

4. Normalization to wingspan is reach-specific and should only be applied to the L45 and
R45 reaches.

5. HSEBT reach measurements L45 and R45 are significantly influenced by age, sex and
level of activity, while the R135 reach is significantly influenced by age and level of
physical activity.

6. Increased dynamic postural control as measured by the HSEBT was not beneficial to
overhead throwing performance in a group of female international level team

handball players.
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Abstract: Measuring dynamic postural control and mobility using task-based full-body movements
has been advocated. The star excursion balance test (SEBT) is well-established, but it does not elicit
large upper body joint movements. Therefore, the hand reach star excursion balance test (HSEBT) was
developed. The purpose of the current study was to assess the inter-rater and test-retest reliability and
validity of the HSEBT. Twenty-nine healthy male subjects performed ten HSEBT reaches on each leg
on four different occasions, led by three different raters. Reach distances were recorded in centimeters
and degrees. Then, twenty-eight different healthy males performed the HSEBT while using a standard
motion capture system. Reliability was assessed using the intraclass correlation coefficient (ICC)
(range 0.77-0.98). Stability of measurement was assessed using the standard error of measurement
(SEM) (range 0.3-2.8 cm and 1.7°-2.6°) and coefficient of variation (CV) (range 2.1-14.6%). Change
scores were obtained using minimal detectable change (MDCgs) (range 0.9-7.9 cm and 4.7°-7.2°).
Observed (Maxp) and calculated (Maxy,) maximum hand reach measurements showed good to
excellent correlations. Bland Altman analysis established a fixed bias for all tests, which can be
partially explained by the kinematic calculations. In conclusion, the HSEBT is a valid and reliable
full-body clinical tool for measuring dynamic postural control and functional joint mobility.

Keywords: dynamic postural control; balance; posture; reliability; validity

1. Introduction

A task-based clinical assessment of mobility and dynamic postural control that elicits full
kinematic chain (foot to hand) three-dimensional joint movements has been advocated [1,2]. This is
clinically important considering that testing of joints in isolation does not capture the neuromuscular
control involved in the joint or muscular synergies necessary for dynamic postural control. Foot
and hand reaches are task-driven tests that can capture this interaction. The star excursion balance
test (SEBT) is a well-established, reliable clinical tool for dynamic postural control [3] that assesses
different neuromuscular functions, such as proprioception [4], joint range of motion (ROM) [5]
and lower extremity strength and balance [6]. Clinically, the SEBT has proved to be sensitive in
detecting functional deficits in patients with different lower extremity dysfunctions and diagnoses [3],
improvements in response to training [7], and predicting the risk of lower extremity injuries [8].
However, the SEBT does not examine trunk, upper extremity and all hip joint movements in the
assessment of dynamic postural control, and therefore is not well suited to revealing functional deficits
in these joints in combination with lower extremity joint movements. A systematic combination of
hand reaches has the potential to capture this interaction.
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Hand reaches beyond arm’s length from standing elicit a dual role of the trunk and lower
extremities in both postural stability and joint movements in transferring the hand to the target,
linking posture and movement coordination [9-11]. As reach distance increases, the trunk, upper and
lower extremities work together as one functional unit to move the body toward the target [9] with a
greater movement of center of the mass (COM) [9,11] and increased joint movements [12]. In addition,
different reach directions describe different limits of stability [13]. Furthermore, 95% of the activities of
daily living involve trunk and arm movement [14], and falls often occur while reaching [15]. Hand
action is also closely linked with movement of the rest of the body and thus with performance in
volleyball, tennis, golf and throwing sports. Therefore, a systematic combination of hand reaches in
different directions might prove to be a highly relevant clinical tool.

Currently, different hand reach tests are used for assessing dynamic postural control and upper
body mobility and stability [13,16-19]. However, a validated and reliability-tested hand reach test
battery, comparable to the SEBT, that elicits ankle, knee, general hip, trunk and upper extremity joint
movements in standing is currently not available. Such a test battery would provide the clinician with a
tool for quantitative (cm or °), qualitative (magnitude and coordination) and subjective assessment of
dynamic postural control and full body movement (functional mobility). Therefore, we developed the
hand reach star excursion balance test (HSEBT), which consists of ten different hand reaches on each foot
in the same directions as the SEBT, with the addition of two rotational reaches. The HSEBT measures
hand reach distance (cm or °) while engaging the full kinetic chain (hand to foot) under reach-specific
constraints dictated, for example, by stance position and reaching arm. Thus, the HSEBT has the
potential to complement the SEBT as a clinical tool in the assessment of dynamic postural control.

The current paper reports on two studies that were conducted to evaluate the reliability and
internal validity of the HSEBT. Specifically, the purposes were to (i) determine test-retest reliability;
(ii) document the inter-rater reliability of all HSEBT reaches; (iii) validate reach measurements
(cm and °) collected by a trained physiotherapist against kinematic measurements and (iv) provide
reference data for a young healthy male population.

2. Materials and Methods

2.1. Participants

Two convenience samples of 29 (age 25.4 + 6.4 years; height 180.0 £ 9.3 cm; mean =+ SD) and 28
(age 23.8 &+ 2.2 years; height 181 & 6.0 cm; mean £ SD) recreationally active, healthy male subjects
volunteered for the reliability analysis and kinematic validation respectively. Exclusion criteria were
musculoskeletal or neurological dysfunction or injury in the past six months. All subjects gave
written informed consent. The regional committees for medical and health research ethics in Norway
(reference number: 2012/1736 A; approval date: 12 October 2012) and Norwegian Data Protection
Agency (reference number: 40996) approved the study, and it was carried out according to the rules of
the Declaration of Helsinki. The subjects” height and weight were obtained using a Seca model 217
stadiometer and a Seca flat scale (Seca GmbH. & Co., Hamburg, Germany).

2.2. Research Design

Reliability was determined using a within-subjects repeated measures design, while the validation
was a cross-sectional study.

2.3. Procedures Hand Reach Star Excursion Balance Test (HSEBT)

The HSEBT consists of eight horizontal and two rotational hand reach tests executed separately
standing on the right and the left foot. Similar to the SEBT [3], the horizontal HSEBT reaches are
performed along eight reaching directions at 45 degree intervals and categorized into movement
patterns according to the following criteria: (1) flexion (three reaches forward to the ground);
(2) extension (three reaches backward overhead) and (3) lateral (two reaches laterally overhead).
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The two rotational reaches are performed with both shoulders flexed to 90°. Furthermore, hand
reaches are classified as either pure plane (reaches within a cardinal plane) or diagonal (reaches that
combine planes of motion).

The individual hand reach tests were defined based on the anatomical neutral position as follows:
direction (i.e., anterior (A); posterior (P)), side of body (left (L); right (R)); angle at 45° increments from
anterior (0°) to posterior (180°); and movement (rotation (ROT)). Thus, pure plane reaches were named
A0, P180, R90, L90, LROT and RROT, while diagonal reaches were named R45, R135, L45, and L135. The
pure plane and diagonal reaches are bilateral and unilateral hand reaches, respectively. Tables 1 and 2
identify stance foot and hand(s) reaching, while Figure 1 shows the maximum reach positions for all tests.
Note that these definitions differ from the SEBT reaching directions defined based on stance foot [3].

LROT 124213 RROT 119414

Figure 1. Horizontal and rotational reaches for left and right leg. Visual representation of all reaches
(photographs). Horizontal reaches (center graphs) with average (cm, black line) and standard deviation
(£SD, grey shaded area). Rotational reaches (°, circular graphs) with average (+SD). All values are
based on results from four sessions.

All reaches were performed in the same order (Tables 1 and 2) and testing procedures were based
on starting position, movement and measurement. The starting positions were defined as follows:
(1) one foot (stance foot) without footwear, positioned in the center of the testing mat; (2) longitudinal
axis of stance foot (bisection of heel to second toe) aligned with the A0 to P180 line; (3) other foot
(support foot) placed at a 135° angle (toe-touch) relative to the reach vector and rotated in the direction
of the reach, with the exception of rotational and lateral movement patterns, where the support foot is
oriented in the A0 direction; (4) support foot placed parallel to the stance foot (L90 or R90) for rotational
reaches; and (5) diagonal reaches are unilateral hand reaches where the trunk is aligned with the reach
vector prior to reaching, and the hand reaching is based on crossing the A0 to P180 line from starting
to maximum reach position with the other hand placed on the hip. Movement was defined as follows:
(1) the heel and the head of the first and fifth metatarsals of the stance foot maintain ground contact
while reaching; (2) elbows extended and wrists in neutral positions; (3) when reaching to the floor
(flexion), no weight support with the reaching hand(s) was allowed; and (4) subjects were instructed
to reach as far as possible and return to the starting position without losing balance. Measurement
was defined as follows: (1) all horizontal reach distances were measured in centimeters (cm) from the
center of the mat to the tip of the third digit; (2) rotational reaches were measured in degrees (°); and
(3) in extension, lateral, and rotational reaches a plumb line (extension, lateral) or a rod (rotation) was
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used to project the position of the middle digit to the testing mat. A minimum of three practice trials
were given for each reach, after which three valid reaches were recorded, with the maximum value
used for analysis.

Similarly to when conducting an SEBT, drawing or taping a star onto the ground to indicate the
direction of axes and their scale (cm), with the addition of concentric circles marked at 5° intervals,
proved to be a helpful preparation. For ease of measurement, a mat with imprinted reaching directions
with marks at 2 cm intervals and nine concentric circles at 10 cm intervals (Athletic Knowledge Nordic
AB, Stockholm, Sweden) was used to determine reach performance. The outer concentric circle (90 cm
radius) with marks at 5-degree intervals was used to measure rotational reaches.

2.4. Procedure Testing Reliability

Each subject completed the HSEBT a total of four times across four different days. One of
three raters (convenience sample) administered the HSEBT independently each day, thus one rater
administered the HSEBT twice. Specifically, the rater who tested all subjects twice was a physical
therapist with two years’ experience in administering the HSEBT, while the other two raters were
sports science students with one year of experience. All tests were done independently by each rater,
the order of raters was randomized for each subject, and the order of reaches was the same for all
sessions (Tables 1 and 2). Testing sessions for each subject were scheduled at the same time of day
when possible; 8 a.m.—12 noon (morning) or 12 noon-6 p.m. (afternoon), since time of day has been
found to influence performance on a similar test battery (SEBT) [20]. Raters were blinded to inter-rater
reliability and test-retest reliability results.

2.5. Procedure Testing Validity

For the validity assessment, the volunteers were equipped with reflective markers to capture
movements and postures while executing the HSEBT. The motion tracking system consisted of 15
Oqus cameras (ProReflex®, Qualisys Inc., Gothenburg, Sweden) recording at 480 Hz. A total of
seventy-nine spherical reflective markers (20 mm &) were attached over specific anatomical landmarks
using bi-adhesive tape. For the purpose of validation (cm and °), the following markers were used:
foot (calcaneal, 1st and 5th metacarpal marker); leg (medial and lateral malleoli marker); hand (dorsal
surface 5th metacarpal marker); upper arm (medial and lateral epicondyle and marker clusters
(attached firmly using tensoplast elastic tape (BSN Medical GmBH, Hamburg, Germany)); and the
thorax segment (acromion). Markers were identified using Qualisys software (Goteborg, Sweden).
Gaps in marker trajectories were interpolated and reconstructed as needed. Otherwise marker data
were not treated or filtered.

All HSEBT reaches were recorded on the same testing mat and performed according to the testing
procedures described previously, with the exception of the measurements for extension, lateral and
rotational movement patterns. These measurement procedures were changed since a tester standing
next to the subject obstructed the field of view for multiple cameras, making the tracking of markers
difficult. For these movement patterns a vertical pole mounted on a plate was used and moved along
the horizontal reach vectors or along the outer concentric circle to the maximum reach position by a
tester lying on the floor. The order of tests (Table 3) was the same for all subjects. The maximum reach
distance of three trials (Maxm) for each HSEBT reach was used for analysis.

Analysis of kinematic data was done using Visual 3D® (C-Motion Inc., Rockville, MD, USA).
Calibration of the kinematic model was carried out using marker locations registered while standing.
Local coordinate systems for the foot and upper arm were created according to the International
Society of Biomechanics (ISB) recommendations. Specifically, the local foot coordinate system
was located at ground level with the origin at the midpoint between the calcaneal marker and
the midpoint between the two metacarpal markers to reflect the center of the testing mat. A
ZYZ cardan sequence (Zgst = horizontal adduction and abduction, Y = abduction and adduction,
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Zihird = internal and external rotation) was used for orientation of the upper arm segments in the
validation of rotational reaches.

Maximum reach events were defined as the position of the ipsilateral metacarpal marker relative
to the stance foot in the global coordinate system (orientations: x (+) anterior, y (+) right lateral and z
(+) vertical) for the different HSEBT reaches as follows: flexion (minimum z-coordinate value), lateral
(minimum and maximum y-coordinate values), extension (minimum z-coordinate value except P180
reaches the minimum x-coordinate value) and rotational movement patterns (minimum x-coordinate
value). Reach distances (Maxyyy) for the horizontal reaches were then calculated from the position
of the metacarpal marker at the maximum reach event in the coordinate system of the stance foot.
Specifically, Maxy, was quantified as x| and |y | (pure plane reaches) and /(x* + y?) (diagonal
reaches). An underestimation of Maxy, relative to Maxm, is expected for horizontal reaches since the
foot coordinate system is not exactly aligned with the center of the testing mat, and the position of the
5th metacarpal marker underestimates the position of the distal-most point of the third digit. Maxy;,
for rotational reaches was defined as the orientation (°) (first rotation (Z) of the ipsilateral upper arm
segment) at the maximum reach event resolved in the local coordinate system of the stance foot.

2.6. Statistical Analysis

Descriptive statistics (mean and standard deviation (SD)) were calculated in Excel for Mac OS
10.10.5 (Apple Inc., Cupertino, CA, USA), version 14.4.8 (Microsoft Corp., Redmond, WA, USA) for
all tests included in the analysis of inter-rater and test—retest reliability. Specifically, test-retest and
inter-rater SDs were calculated using Equations (1) and (2) respectively. All other analyses were
done using IBM SPSS version 21.0 (IBM, Armonk, NY, USA). Inter-rater and test-retest reliability
were assessed for each test by calculating intraclass correlation coefficients (ICC,3) and (ICCy1)
respectively. The following criteria were used to evaluate ICCs: high >0.90, 0.80-0.89 moderate and
below 0.80 questionable. Stability of measurements was assessed by calculating the standard error
of measurement (Equation (3)), and the coefficient of variation (CV) for test-retest (Equation (4)) and
inter-rater reliability (Equation (5)). Minimal detectable change (MDCys) was calculated for a 95%
confidence interval for both test-retest and interrater reliability (Equation (6)). A within-subjects
repeated-measures analysis of variance (ANOVA) was performed with the independent variable being
day (1, 2, 3, 4) to identify whether any learning effects had occurred between sessions. The same
analysis was done with the independent variable being rater (1, 2, 3), where only the first session of
the rater who tested the subjects twice was used. The level of significance was set at 95% (a = 0.05).

SDest-retest = v/ E(test 1 — test2)%/2n 1)
SDinterrater = v/3_(SDbetween raters)” /1 — 1 )
SEM = (SD x /(1 — ICC) ®)
SDtest-retest/ pooled mean x 100 @
SDinterrater/ pooled mean x 100 )
MDCys = 1.96 x /(2 x SEM) ©)

The validity of HSEBT reaches was determined by comparing Maxy to Maxy, using linear
regression analysis and the Bland Altman method. Correlation coefficients of 0.50-0.75 and >0.75 were
considered moderate to good and good to excellent, respectively. The normal distribution of difference
between measurements (Equation (7)) was assessed using the Shapiro-Wilk test. In the presence of
a non-normal distribution of Maxg;g, a ratio of manual to kinematic measurements was calculated
(Equation (8)) and used in the subsequent analysis. Bland Altman plots were then generated for Max ;¢
Or I'y kin (V-axis) and averages of measurements (Equation (9)) (x-axis). Bias between measurements
(Maxqiffmean) Was calculated (Equation (10)) with standard deviation (Maxg;gsp) and then plotted with
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95% confidence interval (MaXgjffmean = 1.96Maxgigsp). Then standard error difference scores were
calculated (Equation (11)). Maxgs outliers were determined using the outlier labelling rule of 2.2
multiples of the upper and lower quartiles. Values outside this range were removed from the analysis.

Maxgigr = Maxm — Maxyin @)
T'm_kin = Maxpm / Maxyin 8)
Maxmean = mean(Maxy;, + Maxp) 9)
MaXgiffmean = meansubjectleSMaXdiff (10
SEait = v/(Maxgigtsp” /) (11)

3. Results

There were 6.4 + 6.1 days between sessions and 63.2% of the test sessions were scheduled at the
same time of the day (morning or afternoon) as the previous tests. HSEBT reach tests, ICC, SEM and
CV for interrater and test—retest reliability are listed in Table 1, which is organized so that the same
tests, left and right, follow each other (grey and white). In addition, HSEBT reach scores (mean + SD)
for all hand reach tests (four sessions) are presented in Figure 1.

Test-retest reliability was moderate to high for 19/20 HSEBT reaches (ICC: 0.80 to 0.96) with right
foot L90 reach being questionable (ICC = 0.77). SEM ranged from 0.3 to 2.8 cm and 1.7° to 2.6° for
horizontal and rotational reaches respectively, while CV ranged from 2.1% to 13.1%. MDCgs ranged
from 0.9-7.9 cm and 4.7°-7.2° for horizontal and rotational reaches, respectively (Table 1).

Inter-rater reliability was high (ICC: 0.90 to 0.98) with SEM ranging from 0.3 to 2.1 cm and 1.8° to
2.4° for horizontal and rotational reaches respectively. CV values ranged from 3.1% to 14.6% (Table 1).
MDCys ranged from 0.9 to 5.7 cm and 5.1° to 6.6° for horizontal and rotational reaches, respectively
(Table 1). There was no effect of test session (day) on the results; however, a significant difference
between raters was observed for the following tests (maximum difference between raters identified in
parentheses): left foot AO reach (1.4 cm); right foot L135 reach (5.6 cm); left foot L90 reach (2.6 cm);
right foot LROT reach (6.9°); and L foot LROT reach (5.4°) (Table 2).

There was a strong relationship between Maxy, and Maxy;, measurements for all HSEBT reaches.
Maxm and Maxy;, measurements for 18/20 tests had excellent correlation coefficients (r > 0.90) and a
shared variance of 81 to 97%, while two tests, left foot RROT (r = 0.89) and right foot RROT (r = 0.79),
had a shared variance of 79% and 63% respectively (Table 3). Maxgi¢ was normally distributed as
assessed by Shapiro Wilk’s test with one exception, right foot P180 reach (p = 0.045); however, rpy, kin
for this test was normally distributed (r = 0.067) and used in the agreement analysis (Table 3). There
was a positive fixed bias (Maxgiffmean) for all horizontal reaches ranging from 2.2 to 12.8 cm and 23.7%
(m-xin = 1.237) for the right foot P180 reach test. Fixed biases for the rotational reaches were positive
for ipsilateral (10.2 to 11.2°) and negative for contralateral rotational reaches (—5.0 to —6.0°) (Table 3
and Figure 2).
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Table 3. Validity of HSEBT.

Regression Agreement Analysis
Test Foot Hand(s) Order Maxy (£SD)?  Maxy, (£SD)? Analysis 8 Y
r R? Bias &+ SD Bias + SE
A0 L B 9 728 +84 70.6 + 6.9 0.97 0.94 22+24 22+05
A0 R B 15 71.2+99 67.8 8.4 0.98 0.96 34+23 34+05
R45 L L 1 79.0+72 741 + 6.6 0.95 0.90 49+24 49+04
L45 R R 5 792+ 84 741+ 6.9 0.96 0.93 51+26 51+05
R90 L B 12 67.4 4112 55.3 +10.5 0.96 0.92 120431 120+ 0.6
L90 R B 18 67.6 +12.3 547 +11.1 0.95 091 128 +3.8 128+0.7
R135 L L 4 62.0 +13.3 522 +12.3 0.95 0.89 98 +44 9.8 +0.8
L135 R R 8 61.3 +14.3 50.2 +14.3 0.99 0.97 11.1+24 11.1+05
P180 L B 10 713 £129 585 +12.4 0.97 0.94 128 £3.1 12.8 £ 0.6
P180 R B 16 70.8 +12.4 57.7 +£11.9 0.95 0.91 1.237 +0.087>  1.237 +0.016°
L135 L R 2 87.6 +8.9 76.6 + 8.6 0.95 091 11.0+27 11.0£ 05
R135 R L 6 82.8 £10.7 731+99 0.94 0.88 9.7 £37 9.7+ 0.7
L90 L B 11 75.7 £10.0 718 £ 7.6 0.90 0.81 38+46 38+09
R90 R B 17 74.5 + 11.6 69.5+9.5 0.95 0.90 51+40 51+08
L45 L R 3 68.2+9.5 65.0 + 8.1 0.99 0.98 32+19 32+04
R45 R L 7 65.7+9.9 63.0 + 8.6 0.98 0.96 27+23 27+04
RROT L B 14 1354 +14.8 140.4 £16.0 0.89 0.79 —50+73 —50+14
LROT R B 20 140.8 £15.1 146.8 £19.4 0.90 0.81 —6.0 £88 —6.0+1.7
LROT L B 13 1333 +£18.7 1231 +£189 0.92 0.84 102477 102+ 15
RROT R B 19 1352+ 15.5 1240 +£16.3 0.79 0.63 1124+ 103 112420

@ = cm is the unit in all reach tests with the exception of LROT and RROT where is the measurement unit.
b = bias as ratio (ry kin = Ratio Maxm /Maxy,). Abbreviations: SD = Standard deviation; SE = Standard error;
Maxm = Maximum observed HSEBT reach measurement; Maxy;, = Maximum measured kinematic measurement;
r = Correlation coefficient; R? = Coefficient of determination; L = Left; R = Right; B = Bilateral; AO = Anterior (0°)
reach; R45 = Right anterolateral (45°) reach; R90 = Right lateral (90°) reach; R135 = Right posterolateral (135°) reach;
P180 = Posterior (180°) reach; L135 = Left posterolateral (135°) reach; L90 = Left lateral (90°) reach; L45 = Left
anterolateral (45°) reach; RROT = Right rotational reach; LROT = Left rotational reach.

Figure 2. Agreement analysis of horizontal and rotational reaches left and right foot. Visual

representation (center left and right) of horizontal reach test scores (full line Maxy,, dotted line
Maxyi, and grey area showing difference). Circular graphs (Maxy, grey, Maxny, black) of left and
right rotational reaches. Bland Altman plots (y-axis: Maxg;¢ (cm) and x-axis: MaXmean (cm)) for all tests
with fixed bias (full line) with 95% confidence interval (dotted line) and agreement (dashed line).

4. Discussion

The current study has established the HSEBT as a reliable and valid test battery for hand reaches,
with description of the testing procedures and reference values for a young, healthy male population.
The HSEBT has moderate to high test-retest and inter-rater reliability, with ICC results similar to or
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better than comparable tests such as SEBT [21] and functional reach test (FR) [22]. Response stability
(SEM and CV) was also comparable to these tests [16,21,22], while MDCgs was smaller than what has
been reported for the SEBT [23]. No learning effect between test sessions was observed, but there was
a small yet systematic difference between raters in five tests. Manual (Maxm) and calculated (Maxyi,)
hand reach measurements had good to excellent correlation. However, agreement analysis showed a
fixed bias for all HSEBT reaches, which can be partially explained by the methods used for kinematic
calculation (Maxyp).

The reliability results (ICC values) obtained in the current study are comparable to other tests of
dynamic postural control and functional mobility. The HSEBT test—retest reliability ICC values ranged
from 0.77 to 0.96, while FR test-retest reliability ICC values of 0.89 and 0.92 have been reported [16,22].
Upper quarter Y balance tests and the multi-directional reach tests were found to range from 0.80 to
0.99 [19] and 0.93 to 0.95 [13], respectively. SEBT ICC test-retest values range from 0.84 to 0.98 [23-26].
Furthermore, the inter-rater reliability of the HSEBT was high, with ICC values ranging from 0.90 to
0.98. FR inter-rater ICC values between 0.73 and 0.98 have been reported [22,27,28], while SEBT values
range from 0.81 to 0.93 [21,24,26,29]. Even though our ICC results showed high HSEBT inter-rater
reliability, the repeated measure ANOVA results suggested that in five of the 20 tests at least one rater
differed systematically from the other raters (Table 2). Effects of test administrators on the results
therefore cannot be ruled out. In contrast, test day did not have an impact on the results (Table 2).

Response stability, as quantified by SEM, ranged in the current study from 0.3 to 2.8 cm and from
1.7° to 2.6° for both test-retest and interrater reliability. The SEM values reported for the SEBT range
from 2.2 to 4.8 cm and 2.0 to 5.0 cm for test-retest and inter-rater reliability, respectively [21,23,30], while
FR ranged from 2.1 to 4.0 cm and 2.1 to 4.3 cm for inter-rater and test-retest reliability, respectively [22].
In summary, the SEM values found for HSEBT are comparable or lower than those established for the
SEBT and FR.

However, CV is a more appropriate measure of response stability than SEM when comparing
HSEBT to SEBT and FR. In the current study the CV ranged from 2.1% to 13.1% and 3.1% to 14.6% for
test-retest and inter-rater reliability, respectively. Some of these values are higher than the test-retest
CVs reported for the SEBT, 2.0% to 4.6% [25], and the FR, 2.5% [16]. One potential reason for these
relatively large variations is the influence of visual feedback. When subjects could see how far they
reached (flexion) a considerably lower variation was observed (test-retest CV: 2.1-3.8%; inter-rater CV:
3.1-5.2%), than when the subjects were blind to the test results (lateral and extension) (test-retest CV:
5.2-13.1%; inter-rater CV: 5.6-14.6%).

MDC values are change scores important from both a clinical and a research perspective. MDCos
for the horizontal and rotational reaches ranged from 0.9 to 7.9 cm and 4.7° to 7.2° respectively for both
inter-rater and test-retest reliability (Table 1). Based on clinical experience, a 5 cm change in flexion and
7 cm change in lateral and extension movement patterns have been considered clinically meaningful in
documenting change or right-to-left asymmetry. However, our results suggest that mostly lower values,
0.9 to 2.8 cm, 2.3 to 6.3 cm, and 2.2 to 7.9 cm, can be used in flexion, lateral and extension movement
patterns respectively (Table 1). Based on our findings and clinical experience we recommend 5 cm
in flexion and 7 cm in lateral and extension movement patterns as a clinically meaningful difference.
These values are comparable to what has been reported for the SEBT (5-7 cm) [23], while others have
found slightly greater values [24]. In their discussion, Munro and co-workers argue that an MDC of
5-7 cm (6-8% of leg length) puts into question previously established side differences of 4.2 cm and
2-5% in patients with and without chronic ankle instability (CAI) [23], as well as the 4 cm SEBT side
difference used to determine risk of lower extremity injury in high school basketball players [25].

There was a good to excellent relationship between Maxm and Maxy;, measurements, similar
standard deviations, and a shared variance ranging from 63% to 97% for all HSEBT reaches. However,
agreement analysis using the Bland Altman method found a fixed bias for all tests, which can be
partially explained by the position of the center of the foot coordinate system relative to the geometric
center of the foot, and the orientation of the hand at maximum reach position. The observed differences
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in fixed biases for the horizontal reaches ranged from 2.2 to 5.1 cm, 3.8 to 12.8 cm and 9.7 to 12.8 cm
(Table 3) for flexion, lateral and extension movement patterns, respectively. The difference between
flexion and extension movement patterns can be partially explained by the definition of the foot
coordinate system. The center of the foot coordinate system will be posterior to the geometrical center
of the foot used as a reference for foot placement on the testing mat. This will decrease and increase
the influence of the distance (cm) from the 5th metacarpal marker to the distal-most point of the
third digit in flexion and extension movement patterns, respectively, based on the assumption of
similar hand orientation. The influence of hand orientation can be exemplified and may partially
explain the observed differences between lateral movement patterns. There were directional specific
differences in the fixed bias for ipsilateral and contralateral overhead reaches of 3.8 to 5.1 cm and 12.0
to 12.8 cm, respectively. The hand had a stronger vertical orientation in the maximum reach position in
the ipsilateral than in the contralateral overhead reach (visual observation). Thus, the 5th metacarpal
marker will better approximate the position of the distal-most point of the third digit (y-coordinate) in
the ipsilateral than in the contralateral overhead reach. Fixed bias for rotational reaches can be partially
explained by the orientation of the ipsilateral upper arm to the stance foot at the maximum reach event.
Maxyin values were higher and lower than Maxy, for contralateral and ipsilateral rotational reaches,
respectively. A greater contribution of shoulder horizontal adduction in contralateral rather than
horizontal abduction in ipsilateral rotational reaches (visual observation) can explain the observed
difference. Based on the good to excellent correlation coefficients between Maxm and Maxy;,, and
because kinematic methods can explain the observed fixed biases, manual measurements of hand
reach distance (cm) and rotation (°) seem valid.

4.1. Clinical Application

Future research should focus on the HSEBT as a clinical measure for dynamic postural control
and functional joint mobility testing in different populations. In particular, the application of HSEBT,
possibly in combination with SEBT, should be explored in sports where hand and arm action is closely
linked with the movement of the rest of body, such as volleyball, tennis, golf and various throwing
sports. Furthermore, different reach directions describe different limits of stability [13] and since falls
often occur while reaching [15] HSEBT may be an interesting clinical tool in determining fall risks. In
addition, the ability to assess the influence of other joints and regions on specific diagnoses such as low
back pain (LBP) and shoulder instability has the potential to offer information about causative factors.
We also believe that the HSEBT is a clinical measure that has the potential to differentiate pathological
conditions, similar to the SEBT. The HSEBT may serve as a weight-bearing version of current clinical
tests; for example, the L foot L45/R foot R45 triggers the same hip joint movements (flexion, adduction
and internal rotation) that comprise a clinical test for hip impingement (FADIR).

4.2. Study Limitations

In future studies, learning effects, rest periods, and the randomization of reach orders and
populations should be addressed. Each subject was given at least three warm-up attempts per reach.
These were not documented and more attempts were given if the subjects were unable to complete the
reach as defined by the testing procedures. Documentation of warm-up reaches could have provided
additional information about learning effects. Future studies should include females, a wider age-range
and different diagnoses, since only a young, healthy, male population was studied. However, the
current study provides reference data that can be used for future comparisons.

The kinematic methods used to calculate maximum reach position could be improved since a
fixed bias was observed for all tests. Placement of a marker at the distal-most point of the third digit
of the reaching hand, and using an external reference frame (markers) with a geometrical center in
the center of the mat, rather than the coordinate system of the foot, would have optimized kinematic
distance calculations. In addition, the pole used to measure lateral and extension movement patterns
introduced a measurement error, because the center of the base of the pole (4 cm diameter) had to be
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projected onto the reaching vector. However, this was necessary since the presence of a tester standing
next to the subject obstructed the view of the markers used for kinematic analysis.

5. Conclusions

HSEBT has moderate to high intra-test and test-retest reliability (ICC) and stability of
measurements (SEM, CV and MDCgys) similar to or better than comparable tests such as SEBT and FR.
Manually obtained HSEBT reach test measurements (cm or °) are a valid representation of calculated
measurements. However, the fixed bias observed for all tests, partially explained by the kinematic
methods employed, has to be considered in the interpretation of internal validity. Since the HSEBT
elicits joint movements in the hip, spine and shoulder, which are not challenged to the same magnitude
in other dynamic postural control tests, it can be considered a viable complement to these tests. We
expect that the HSEBT will find application in the clinical assessment and documentation of training
and rehabilitative progress for shoulder, spine, hip and knee musculoskeletal dysfunctions, as well as
in LBP, and neurological conditions with balance and dynamic postural control impairments.
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Abstract

Tests of dynamic postural control eliciting full-body three-dimensional joint movements in a
systematic manner are scarce. The well-established star excursion balance test (SEBT)
elicits primarily three-dimensional lower extremity joint movements with minimal trunk and
no upper extremity joint movements. In response to these shortcomings we created the
hand reach star excursion balance test (HSEBT) based on the SEBT reach directions. The
aims of the current study were to 1) compare HSEBT and SEBT measurements, 2) compare
joint movements elicited by the HSEBT to both SEBT joint movements and normative range
of motion values published in the literature. Ten SEBT and HSEBT reaches for each foot
were obtained while capturing full-body kinematics in twenty recreationally active healthy
male subjects. HSEBT and SEBT areas and composite scores (sum of reaches) for total,
anterior and posterior subsections and individual reaches were correlated. Total reach
score comparisons showed fair to moderate correlations (r = .393 to .606), while anterior
and posterior subsections comparisons had fair to good correlations (r = .269 to .823). Indi-
vidual reach comparisons had no to good correlations (r = -.182 to .822) where lateral and
posterior reaches demonstrated the lowest correlations (r =-.182 to .510). The HSEBT elic-
ited more and significantly greater joint movements than the SEBT, except for hip external
rotation, knee extension and plantarflexion. Comparisons to normative range of motion val-
ues showed that 3 of 18 for the SEBT and 8 of 22 joint movements for the HSEBT were
within normative values. The findings suggest that the HSEBT can be used for the assess-
ment of dynamic postural control and is particularly suitable for examining full-body func-
tional mobility.

Introduction

Different tests of dynamic postural control have gained popularity and interest since they are
considered more ecological in sports or physical activities [1]. One such test is the star excur-
sion balance test (SEBT) which was originally presented as a low-cost rehabilitation tool [2].
The SEBT quantifies maximum foot reach distances of the non-stance foot using a star on the
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ground with 8 different reaching directions at 45-degree intervals extending from a center
point [3]. Currently, the star excursion balance test (SEBT) is a well-established task-based
objective clinical test battery of dynamic postural control that measures different aspects of
neuromuscular functions, such as proprioception [4], strength [5-7], power [8], balance [6]
and coordination [9] while eliciting different combinations of trunk and lower extremity
joint movements [10-14]. Clinical application of the SEBT has primarily focused on lower
extremity joint dysfunctions such as ankle instability, knee dysfunction after anterior cruciate
ligament reconstruction, patella femoral pain and in the prediction lower extremity injuries
[1]. The SEBT is frequently described as a “series of single leg squats” [1], and is therefore
not well suited to capture movements in the transverse plane, as is reflected by elicited hip
rotational joint movements [10, 12, 15]. Furthermore, SEBT neither captures all hip joint
movements nor does it represent the interaction of larger trunk and upper extremity joint
movements.

Complementing the SEBT with hand reaches is a justifiable approach to reduce these short-
comings. However, current hand reach tests also have shortcomings since they are performed
in bilateral stance and elicit neither large joint movements nor vertical displacement of the
center of mass (COM) [16-18]. Hand reaches based on SEBT reaching directions, the “hand
reach star excursion balance test” HSEBT [19], may provide a platform in which upper extrem-
ity and greater trunk movements are integrated with lower extremity joint movements. Conse-
quently, the HSEBT can complement the clinical application of the SEBT by addressing full
body movements in the assessment of dynamic postural control. In addition, these hand reach
tests can also serve as a measure of functional mobility, i.e. the combination of range of motion
(ROM) of multiple joints utilized to accomplish more ecological activities of daily living and
athletic performance. If HSEBT reaches are to be a measure of functional mobility they should
elicit more and greater joint movements than their SEBT counterparts. Also, the elicited joint
movements from the HSEBT should be more comparable to established normative ROM
goniometric reference data, indicating that mobility is being challenged. Thus, information
obtained from HSEBT reaches can provide clinicians with a systematic assessment tool to bet-
ter understand the influence of dysfunction such as shoulder instability [20] and low back pain
(LBP) [21] on full body movements.

The purpose of the current study was to 1) determine if the HSEBT reaches provide differ-
ent information about dynamic postural control than the SEBT reaches, and 2) compare joint
movements elicited by HSEBT to both SEBT and normative joint mobility (ROM) values pub-
lished in the literature.

Materials and methods
Participants

A convenience sample of twenty recreationally active healthy male subjects (age 24.4 + 2.3
years; height 179.9 + 6.0 cm; weight 77.5 + 9.3 kg; mean + SD) volunteered for the study.
Exclusion criteria were musculoskeletal or neurological dysfunction or injury in the past six
months. Body height and weight were obtained using a Seca model 217 stadiometer and a Seca
flat scale (Seca GmbH. & Co. Hamburg. Germany).

Ethics approval. The committee for medical and health research ethics in Norway (2012/
1736) and Norwegian Data Protection Agency (40996) approved the study. Measurements
were carried out according to the principles described in the Declaration of Helsinki. All sub-
jects were given written and verbal information about the study prior to giving written
informed consent. The individual in this manuscript has given written informed consent (as
outlined in PLOS consent from) to publish these case details.
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Experimental design

Descriptive and cross-sectional cohort study for comparison of HSEBT and SEBT reach tests.

Procedures

The HSEBT consists of 10 hand reaches on each foot (stance foot) with toe-touch of the oppo-
site foot in the same 8 directions as used for the SEBT with the addition of two rotational
reaches. HSEBT reaching directions are defined from the anatomical neutral position as fol-
lows: direction (i.e.: anterior (A); posterior (P)), side of body (left (L); right (R)), angle at 45°
increments from anterior (0°) to posterior (180°) and movement (rotation (ROT)). Reaches
along the 8 horizontal reach vectors (A0, R45, R90, R135, P180, L135, L90 and L45) are hori-
zontal reaches (HR) and measured in centimeters (cm), while the two rotational reaches
(LROT, RROT) are measured in degrees (*). These reach definitions were applied to the SEBT
for ease of comparison, which differs from established SEBT definitions based on stance foot
[3]. Furthermore, two rotational reaches were added to the SEBT to complement the HSEBT
rotational reaches, and to target transverse plane dynamic postural control in single leg stance.
Both HSEBT and SEBT reaches can be classified based on plane(s) of motion: pure plane (A0,
P180, L90, R90, LROT, RROT) and diagonal (L45, R45, L135, R135); or with subgroups based
on direction of movement: anterior (L45, A0, R45), posterior (L135, P180, R135), lateral (L90,
R90), and rotational (LROT, RROT).

HSEBT and SEBT reaches were performed in the same order and executed on a testing
mat, which was developed to guide and measure the different reaches. The mat was imprinted
with horizontal reaching directions marked at 2 cm intervals and with nine concentric circles at
10 cm intervals marked at 5-degree intervals (Athletic Knowledge Nordic AB, Stockholm, Swe-
den). Both the HSEBT and SEBT testing procedures are described in detail elsewhere [3, 19].
The following clarifications concerning the SEBT need to be made:1) the stance foot was placed
on the middle of the mat, 2) heel, first and fifth metatarsal heads maintained ground contact
during the reaches, 3) the trunk aligned with the reach vector for diagonal reaches (R45, R135,
L135 and L45); 4) the lateral reaches (R foot L90 and L foot R90 reach) were performed with the
reaching foot in front of stance foot, and additionally 5) during rotational reach the big toe of
the reaching foot followed the 50 cm radius circle with its longitudinal axis oriented toward the
center of the testing mat. For all HSEBT and SEBT reaches a minimum of three practice trials
were allowed, after which three valid maximum reaches were recorded of which the highest
value was used for analysis. Trials were discarded if the procedures were not followed.

Kinematic data of all reaches were obtained using 15 Oqus cameras (ProReflex®), Qualisys
Inc., Gothenburg, Sweden) recording at 480 Hz. Fifty-eight spherical reflective markers (20
mm @) were attached over specific anatomical landmarks (Fig 1) to define and track the foot,
leg, thigh, pelvis, thorax and upper arm segments. The marker clusters used for the leg, thigh
and upper arm were attached firmly using tensoplast elastic tape (BSN Medical GmBH, Ham-
burg, Germany). The markers were identified using the Qualisys software (Qualisys Inc.,
Gothenburg, Sweden). To minimize the risk of gaps in marker trajectories, especially for the
anterior trunk and pelvic markers during anterior reaches (L45, A0 and R45), lateral pelvic
markers were included in the marker set for tracking and four Qualisys cameras were placed
as close to the ground as possible. If gaps in marker trajectories occurred, they were interpo-
lated or reconstructed [22]. However, these methods sometimes failed with a minimum num-
ber of subjects included for HSEBT shoulder (14), trunk (19), hip (20), knee (19) and foot (20)
joint movement calculations. All joint movement calculations for the SEBT included all sub-
jects, except for LROT (19) and RROT (18). Otherwise, the marker data were not treated or
filtered.
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Fig 1. Marker set used for kinematic data acquisition.

https://doi.org/10.1371/journal.pone.0196813.g001

Data analysis

The data analysis was carried out using Visual 3D®) (C-Motion Inc., Rockville, MD, USA).
Local coordinate systems for the foot, leg, thigh, pelvis, thorax and upper arm were created
[23, 24]. Three-dimensional joint rotations of the ankle, knee, hip and trunk were then calcu-
lated (cardan sequence XYZ). Shoulder motions were calculated using both ZYZ (Z, = hori-
zontal adduction and abduction, Y = abduction and adduction, Z;;;4 = internal and external
rotation) and XYZ (X = flexion and extension) cardan sequences. Prior to reaching the sub-
jects were asked to stand feet parallel to shoulder line with hands on the hips for a minimum
of 3 seconds. Normalization of joint starting positions was defined as the mean joint positions
observed during the last 95 of the first 100 frames of recording (¢stare) (Eq 1).

PDstare = MEANL 06 5100 (1)

The local coordinate system of the upper arm was aligned with the thorax at the beginning
of each motion trial, and was used for all joint angle calculations of the shoulder. Furthermore,
the neutral starting position for shoulder horizontal abduction and adduction was defined as
the upper arm oriented in the frontal plane (90° abducted position). Maximum reach position
(¢pmax) was defined as the highest (or lowest) x, y and z-coordinate values in the global coordi-
nate system of the second metacarpal and the first metatarsal marker of the reaching hand or
foot, respectively, with procedures described in detail elsewhere [19]. All tests were visually
inspected to ensure that the set criteria matched for ¢,y Joint movements () were then cal-
culated (Eq 2) for each reach and averaged for all subjects.

0= Brrax = Dotar @)

Joint movements of mirrored reaches (left and right) were averaged and named based on
left stance foot definitions for ease of data presentation. In tests with bilateral symmetrical
shoulder joint movements, i.e. A0, P180, L90 and R90 reaches, only the mean of left and right
shoulders is presented. Reaches eliciting the greatest values in joint movements (8,,,,,) of the
ankle foot complex, knee, hip, trunk and shoulder were identified for both the HSEBT (6,,ax11-
sepr) and SEBT (Opaxsept) and their differences were calculated (8,,.p15r) (Eq 3).

0 =0 0

maxDIFF maxHSEBT — " maxSEBT (3)

Then, Omaxisest and OmaxsepT Values were compared to determine if they were within a
95% confidence interval of normative ROM reference [25], except knee rotations and trunk
movements (lumbar and thoracic spine values added) were compared to the lowest reported
values [26]. Comparisons of 0,,,,xpsept and Opaxsepr ankle and knee abduction and adduction
were not done since these measures are not commonly quantified using clinically available
assessment tools and normative clinical ROM values are lacking [25]. Shoulder 0, 11sEBT
comparisons to normative values were done for flexion, abduction, external rotation [25] and
horizontal adduction [26] only. Thus, eighteen joint movements (ankle, knee, hip and trunk)
were compared for both HSEBT and SEBT, with the addition of four shoulder joint move-
ments for the HSEBT only.

Our clinical experience indicated that expressing test outcomes as areas provides a better
feedback of results than composite scores. Therefore, both areas and composite scores were
used in the analysis. Total area (A,) was calculated as the sum of the areas covered by the 8 tri-
angles obtained in the horizontal reach measurements (HR; (i = 1(A0), 2(R45), 3(R90), 4
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(R135), 5(P180), 6(L135), 7(L90) and 8(L45)) (Eq 4). Additionally, anterior (A,,,) (Eq 5) and
posterior areas (Apqs) (Eq 6) were calculated in order to differentiate between anterior and
posterior HSEBT reaches, respectively. Composite scores (CS) were also calculated since they
have been used to quantify combinations of SEBT reaches [27]. Specifically, CS were calculated
as the sum of all (CSq,), anterior (CS,,,), and posterior reaches (CS,o5:) (Eqs 7-9).

1
Ay =25 HR, - HR, - sind5’ (4)
1 e
A = 25 “HRy 37 s - HR, 7 - sindd )
1 e
Aoy =5 HRy ;- HR, ;- sin} (6)
CS,, = ZHR, 7)
CSoue = EHRI.Z.S (8)
Cspasr =ZXHR, )

In order to determine similarities of movement strategies between direction specific HSEBT
and SEBT reaches, shared movement synergies were quantified as the number of common joint
movements (maximum 12) and defined as: strong (>8), moderate (5 to 8) and weak (<5).

Descriptive statistics (mean and standard deviation (SD)) were calculated in Excel for Mac
08§ 10.10.5 (Apple Inc., Cupertino, CA, USA), version 14.4.8 (Microsoft Corp., Redmond,
WA, USA). All other statistical tests were done using IBM SPSS version 21.0 (IBM, Armonk,
NY, USA). Normality of the data was assessed using Shapiro Wilk s test (p<0.05). Outliers
were determined and removed from the analysis [28]. The relationship between HSEBT and
SEBT areas, composite score and were estimated using linear regression analysis. Interpreta-
tion of correlation coefficients was done according to the guidelines of Portney and Watkins
[29]. To determine whether the differences between 0. 1sppt and 0,,.sepT Were different,
two-sided paired t-tests (level of confidence 0>95%) were used. Effect size was calculated
using Cohen’s d (<0.2 = small; 0.2 to 0.5 = medium; >0.8 = large effect).

Results

Test results for all HSEBT and SEBT reaches are presented in Figs 2, 3 and 4.

Total area (A,,) and composite score (CS,,,) correlations ranged from .393 to .606, with sta-
tistical significance for the right foot only (Table 1). Both A, and CS,,, have higher correla-
tions (.531 to .823) than Apqq and CSpos (269 to .406) (Table 1 and Fig 5). Anterior reaches,
both on the left and right foot, had moderate to good correlations ranging from r = .515 to
.572 and r =.707 and .822, respectively. None of the posterior reaches were significantly corre-
lated (Figs 2 and 3). Anterior hand reach to posterior foot reach (A and CS) was significantly
correlated (.534 to .698), while posterior hand reaches to anterior foot reaches (A and CS) was
significantly correlated for the right foot only (.469 and .480) (Table 1). Variable correlations
were observed for the lateral (-.182 to .510) and rotational reaches (.402 to .696).

A detailed description of elicited joint movements of both the HSEBT and the SEBT with
reach specific comparisons is presented in Table 2. HSEBT anterior reaches resulted in ankle
dorsiflexion (19.4-29.7°), knee flexion (81.6-101.7°), hip flexion (98.8-103.3°) and trunk
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Fig 2. Horizontal reaches HSEBT and SEBT left leg. Visual representations of the execution of the horizontal reaches
(photographs) and mean (+SD) reach distances (cm) observed for all tests in the center graphs for HSEBT (black) and SEBT
(grey). Correlation coefficients (r) are shown for each direction (*p<0.05 and **p<0.01).

https://doi.org/10.1371/journal.pone.0196813.9002

flexion (51.2-58.8"), while posterior reaches elicited ankle dorsiflexion (19.7-24.5°), knee flex-
ion (18.0-28.8°), hip extension (17.4-29.5°) and trunk extension (28.5-36.2°). HSEBT lateral
reaches targeted different frontal plane movements where the L90 reach generated ankle inver-
sion (7.5+4.5°), knee abduction (2.1+3.7°), hip abduction (16.9+6.3°) and ipsilateral trunk flex-
ion (38.2+7.0°), whereas the R90 reach elicited ankle eversion (18.2+3.3°), knee adduction (2.7
+3.0°), hip adduction (27.6+6.4°) and contralateral trunk flexion (38.8+5.8"). HSEBT rota-
tional reaches targeted different transverse plane movements where the LROT reach induced
ankle adduction (15.145.2°), knee internal rotation (15.1+3.7°), hip internal rotation (33.2
+3.8°), whereas the RROT reach elicited ankle abduction (13.4+3.6°), knee external rotation
(23.8+5.4°), hip external rotation (29.5+5.4") and contralateral trunk rotation (33.7+4.5°).
Shoulder extension, adduction, internal rotation and horizontal abduction are not reported
since no test targeted these movements specifically and the observed 8,,,.xisesT Were small.

Shared joint movement synergies ranged from weak to strong (4 to 10 out of 12). Anterior
and posterior reaches induced shared movement synergies of 8-10/12 and 6-8/12, respectively.
Whereas, lateral and rotational reaches demonstrated shared movement synergies of 4-9/12
and 8-10/12, respectively.
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Fig 3. Horizontal reaches HSEBT and SEBT right leg. Visual representations of the execution of the horizontal reaches
(photographs) and mean (+SD) reach distances (cm) observed for all tests in the center graphs for HSEBT (black) and SEBT (grey).
Correlation coefficients (r) are shown for each direction (*p<0.05 and **p<0.01).

https://doi.org/10.1371/journal.pone.0196813.g003

The identified 0,,.x11sEpT exhibited greater values than 6,,.xsgpt for all joint movements,
except for ankle dorsiflexion, plantarflexion and knee extension (Table 3). Joint movements
with greater 0,,ax1sppT Values were significantly greater than 0,,,,.sgpr for all comparisons,
except for hip external rotation (t(34) = -0.51, p = .61, d = .09), with effect sizes ranging from
medium to large (d = .39-5.21). The greater 6,,,sepT Values were significant for all compari-
sons with effect sizes ranging from medium to large (d = .45-1.39). Comparisons of 0xisesT
and 6,,.xsepT to normative ROM values revealed that 8/22 and 3/18 joint movements, respec-
tively, were within normative ROM values.

Discussion

The current study established that the HSEBT provides additional information about dynamic
postural control and functional mobility. However, there seems to exist a relationship since
total scores (A and CS,,,) have demonstrated fair to moderate correlations. Nevertheless,
large reach specific differences were noted. Anterior HSEBT reaches are closer related to both
anterior and posterior SEBT reaches, which can be partially explained by stronger shared

PLOS ONE | https://doi.org/10.1371/journal.pone.0196813 May 8,2018 8/18



@PLOS ‘ ONE

Hand reach star excursion balance test: A new test of dynamic postural control and functional mobility

73+17 128+16

=569 =413

121422

| =y
W J o

7118
r=.696"* r=.402
1A
150 100 50 0 50 100 150

©
Fig 4. Rotational reaches HSEBT and SEBT. Visual representation of the execution of the rotational reaches
(photographs) for both left (top) and right leg (bottom) with mean (+ SD) reach excursion (*) observed for all tests in
the horizontal bar graphs for both HSEBT (black) and SEBT (grey). Correlation coefficients (r) are shown for each
direction (*p<0.05 and **p<0.01).

https://doi.org/10.1371/journal.pone.0196813.9004

movement synergies. Posterior and lateral HSEBT reaches demonstrated weaker relationships
to their SEBT counterparts, indicating that these tests measure different aspects of dynamic
postural control. Overall, the HSEBT elicited greater joint movements (8,n.xisesr) than the
SEBT (O maxsept)- In addition, 8/22 8,,..sgpt Were within normative ROM values, while 0,
sepr had only 3/18 joint movements within normative ROM values. These findings may justify
the application of the HSEBT as a useful clinical tool in the assessment of functional mobility.

Dynamic postural control

HSEBT is able to measure different aspects of dynamic postural control in comparison to the
SEBT. The strength of the shared movement synergies could explain some of the differences
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Table 1. Area and composite score comparisons between HSEBT and SEBT.

Left foot Right foot

Comparisons r R? r R?

Aot 393, 154 602+* 362
Aunt 531% 282 780"+ 608
Apost 269 .072 406 .165
HSEBT A, and SEBT Ao .534* 285 698" 487
HSEBT Apo and SEBT A, 227 .052 480" .230
CSot 414 171 .606"* .367
CSant .605"* .366 .823% 677
CSpost .341 116 .344 .118
HSEBT CS,, and SEBT CS,o .536" 287 .608"* .370
HSEBT CS,05 and SEBT CS,p 261 .068 469" 220

Ator Total area; A,y Anterior area; Ao, Posterior area; CSy,p, Total composite score; CS,py, Anterior composite
score; CSpq1 Posterior composite score.

* p<0.05

**p<0.01

https://doi.org/10.1371/journal.pone.0196813.t001

observed. The lateral reach with a weak movement synergy (4/12) had little to no correlations,
while the lateral reach with a strong movement synergy (9/12) had fair to moderate correla-
tions. Furthermore, posterior reaches had moderate shared movement synergies (6-8/12) and
fair correlations, while rotational and anterior reaches with moderate to strong shared move-
ment synergies (8-10/12) had fair to good correlations (Table 2, Figs 2 and 3). Since anterior
HSEBT (A0, R45 and L45) and posterior SEBT (P180, L135 and R135) reaches also had strong
shared movement synergies (8-11/12, obtained from Table 2) and joint movements of a more
similar magnitude, especially hip joint (Table 2), an anterior HSEBT to posterior SEBT CS
comparison should not influence the moderate to good anterior CS correlations. However,
correlation coefficients all decreased for these comparisons (Table 1). Thus, it appears that a
shared movement synergy is only one of the plausible explanations for the variable correlations
between the reaches. Specific joint movements of a shared movement synergy, as observed in
the ankle, may have a greater influence considering that dorsiflexion was found to predict
anterior SEBT reach performance [14, 30]. However, the influence of dorsiflexion on anterior
HSEBT reach performance has not been established. Another reason for the differences in the
correlations between reaches may lie in the similarity of balance boundary conditions. This
could explain why the anterior HSEBT and SEBT CS comparisons had stronger correlations
than the anterior HSEBT and posterior SEBT CS comparisons. Future studies utilizing center
of pressure analysis should investigate this hypothesis. In addition, the influence of vision
could also have influenced the anterior and posterior comparisons, since visual feedback of the
reaching target was available for anterior, but not for posterior reaches. Composite scores of
right foot anterior reaches and the R45 reach had good correlations, while the remaining com-
parisons yielded none to moderate correlations. This suggests that the HSEBT is able to mea-
sure some different aspects of dynamic postural control as compared to the SEBT.

Functional mobility

The multi-joint movements observed for the different maximum hand reaches are organized
to meet the task requirements and to overcome internal constraints. These internal constraints
include not only postural and balance control strategies, but also individual joint movement
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Left foot comparisons Right foot comparisons
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Fig 5. Area and composite score comparisons of HSEBT and SEBT. Visual representation of total (top row),
anterior (middle row) and posterior (bottom row) comparisons of area (Aot Aant Apost) and composite score (CSyop,
CSanis CSpost)- Color coding of area in the center graphs is defined as follows: dark (shared area HSEBT and SEBT),
medium (unique HSEBT area) and light grey (unique SEBT area). Arrows represent the horizontal reaches included in
CSeor-

https://doi.org/10.1371/journal.pone.0196813.9005

capacities. Thus, reach measurements provide information of how the body is able to organize
and utilize joint excursions in a more ecological way. The HSEBT is therefore an appropriate
measure of functional mobility since it is the result of joint movement combinations of the
lower extremity, trunk and shoulder.

The data presented here provide not only a reference for functional mobility (Figs 2 and 3),
but also reference values of joint movements (8) and their combinations elicited for all HSEBT
reaches in a young and healthy male population (Table 2). Our kinematic data, as well as data
from other studies [10-14], demonstrated that hand reaches resulted in more joint movements
than foot reaches alone. Furthermore, 0,,,1sp5T Were significantly greater for trunk, hip
(except external rotation), knee, ankle, and upper extremity than 6,,,,xsepT (Tables 2 and 3). In
addition, 8,,,xisesT Were also more consistent within normative ROM values (8/22 joint
movements) in comparison 6,,.xsepT (3/18 joint movements). The greater joint movements
observed with the HSEBT (6,ax1sepT) might be due to the larger base of support in the
HSEBT, whereby decreasing the balance and postural control demand. Thus, the HSEBT
appears to be a good alternative to quantify functional mobility.
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Table 2. Kinematic comparisons HSEBT and SEBT.

Test Direction | Plane of Ankle 0 (°) Knee 0 (°) Hip 6 (°) Trunk 0 (°) Shoulder 0 (°) Movement
motion synergy
HSEBT | A0 Sag DF:26.2+4.5 | Flex:101.7 Flex: 103.3 Flex: 58.8+9.7% Flex: 112.9+11.3 8/12
+16.0° +19.8
Front Ev:12.9+5.8 | Add: 13.2+7.8 | Abd: 1.0+7.4 Ipsi lat flex: 4.1+4.5
Trans Abd:6.1+3.2 | IR:12.9+10.4 | ER:1.7#5.5 Ipsi rot: 0.9+3.6
SEBT | A0 Sag DF: 31.0+4.7 | Flex: 64.9+11.2 | Flex: 24.4 Flex: 3.5£16.5
+16.0
Front Ev: 4.3+3.2 Add: 3.8+6.4 Add: 16.6+5.1 | Contra lat flex: 2.0
+10.4
Trans Abd: 7.4+2.0 | IR: 3.2+4.5 IR: 11.6+5.4 Contra rot: 0.6+3.2
HSEBT | R45 Sag DF:29.7+5.7" Flex: 88.3£32.3 Flex:108.2 | Flex: 51.246.8 Flex: 117.7+11.5 10/12
+7.9°
Front Ev:12.5+4.7 | Add:17.2+6.5" | Abd: 16.0+6.3  Contra lat flex: 1.2
+6.3
Trans Abd: 11.5 ER: 6.1+7.9 ER: 2.248.0 Contra rot: 15.2+5.3 | ER: 36.4+18.8; Hor add: 63.7
+4.0 +9.2
SEBT | R45 Sag DF: 32.545.1° Flex: 63.9+16.1 Flex: 18.3 Flex: 8.9+13.9
+20.1
Front Ev: 2.5+3.8 Add: 3.2+6.2 Add:10.3+6.7 | Contra lat flex: 0.3
+13.4
Trans Abd: 10.8 ER: 1.5+6.2 IR: 9.1+8.9 Contra rot: 0.2+5.5
+2.4°
HSEBT | R90 Sag DF: 8.6+7.5 Flex: 6.6+13.6 | Ext: 0.5+11.2 Ext: 14.0+10.8 Flex: 127.9+14.6 9/12
Front Ev: 18.2+3.3" | Add: 2.7+3.0 Add: 27.6+6.4" | Contra lat flex: 38.8 | Abd:127.9+13.8*
+5.8"
Trans Abd: 2.1+3.4 | IR: 1.6+3.8 1R: 2.1+6.0 Contra rot: 9.3+5.8
SEBT | R90 Sag DF: 30.2+5.5 | Flex: 77.1 Flex: 65.2+14.0 | Flex: 10.9+13.1
+12.6°
Front Ev: 1.5+4.1 Abd: 1.5+6.5 Add: 0.8+7.1 | Contra lat flex: 0.9
+12.9
Trans Abd: 9.0+2.8 | IR:3.1+7.7 IR: 18.4+4.8 Contra rot: 1.1+5.4
HSEBT | R135 Sag DF: 19.745.7 | Flex: 18.0£10.6 = Ext: 17.4+5.2 Ext: 28.5+9.7 Flex: 149.8+14.4 7/12
Front Ev: 5.2+4.7 Abd: 1.7+2.2 Add: 12.1+5.2 | Contra lat flex: 20.6
+8.0
Trans Add: 0.6+4.5 | IR:8.0+3.8 IR: 10.4+6.0 Ipsi rot: 2.3£8.0 ER: 49.2+23.5
SEBT | R135 Sag DF: 25.046.5 Flex: 70.4+14.4 Flex: 84.3+10.3  Flex: 17.0+13.7°
Front Ev:3.7+3.4 Add: 3.4+7.0 Add:9.4+7.1 | Contra lat flex: 0.5
+16.2
Trans Abd: 4.6+4.3 | IR: 4.1+6.0 IR: 10.1+6.1 Contra rot: 0.9+5.7
HSEBT | P180 Sag DF: 24.5+6.4 | Flex: 21.1+10.2 | Ext: 28.3+5.6 Ext: 36.2+7.2% Flex: 144.3+13.0 8/12
Front Ev: 0.8+2.6 Abd: 1.6+2.4 Add: 2.9+3.8 | Contra lat flex: 3.2
+3.6
Trans Abd: 4.7+2.4 | IR:2.843.4 ER: 3.7+4.0 Contra rot: 1.8+2.8
SEBT | P180 Sag DF: 27.4+5.1 | Flex: 75.2+10.7 | Flex: 93.8+8.8" | Flex: 18.1+13.8
Front Ev: 5.3+2.6 Add: 11.0+6.8" | Add: 13.6+4.2 | Contra lat flex: 0.6
+15.8
Trans Abd:7.9+2.4 | ER: 1.1+6.8 ER: 4.446.9 Contra rot: 1.8+3.7
HSEBT | L135 Sag DF: 23.0£8.0  Flex: 28.8+14.0 Ext: 29.5+6.8° | Ext: 33.9+9.7 Flex: 150.6+15.8* 6/12
Front Inv:53+4.4  Abd: 1.8+3.4 Abd: 10.4£6.0 | Ipsilat flex: 18.3+7.9
Trans Abd: 10.2 ER: 5.2+5.1 ER: 20.4%5.5 Contra rot: 2.7+8.9 ER: 50.3+25.5"
+3.0
(Continued)
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Table 2. (Continued)

Test Direction | Plane of Ankle 0 (°) Knee 0 (°) Hip 6 (°) Trunk 0 (°) Shoulder 6 (°) Movement
motion synergy
SEBT | L135 Sag DF: 25.4+5.5 | Flex: 58.0+13.4 ' Flex: 78.9+14.6 | Flex: 10.8+11.5
Front Ev:7.443.5 Add: 15.847.4 | Add:12.1+4.7 | Contra lat flex: 0.6
+18.0
Trans Abd: 7.9+2.7 ER:7.8+4.9 ER:17.0+7.5  Contra rot: 0.7+4.2
HSEBT | L90 Sag DF:9.149.3 Flex: 21.6+24.5 | Flex: 8.3+23.8 | Ext: 14.8+12.9 Flex: 130.6+12.6 4/12
Front Inv: 7.5+4.5° | Abd: 2.1+3.7 Abd: 16.9+6.3" | Ipsi lat flex: 38.2+7.0° | Abd: 129.5+13.8"
Trans Abd: 0.0+3.4 | IR:0.1+4.9 1R: 4.3+13.5 Ipsi rot: 11.2+9.0
SEBT | L90 Sag PF:23+3.4° | Ext:8.7+4.8° | Flex:12.9 Ext: 5.1+8.7°
+10.1
Front Ev:12243.8° | Add:2.3+1.3 | Add: 23.3+7.4° | Contra lat flex: 0.5+9.2
Trans Abd: 0.1+3.6 | ER: 6.0+5.2 IR: 2.0+5.8 Contra rot: 1.3+5.2
HSEBT | L45 Sag DF: 19.4+8.2 | Flex: 81.6+20.6 = Flex: 98.8+8.2 | Flex: 57.4+10.2 Flex: 107.6+11.4 10/12
Front Inv: 1.1#5.0 | Add:6.246.9  Add:15.2+5.5 | Ipsilat flex: 11.0+6.7
Trans Add: 8.2+4.9 | IR: 12.416.7 IR: 2.1+6.0 Ipsirot: 15.3+4.4 ER: 30.4+12.7; Hor Add: 76.2
+14.7
SEBT | L45 Sag DF: 18.6+7.6 | Flex: 39.7+17.7 = Flex: 14.8 Flex: 3.1£10.7
+13.9
Front Ev:4.3+4.1 Add: 2.4+6.1 Add: 18.4+4.5 | Contra lat flex: 4.2+9.8
Trans Add:5.3+#3.3 IR:9.7+3.4 IR: 12.5+5.0 Ipsi rot: 1.3+5.6
HSEBT | LROT Sag DF: 0.7+5.2* | Flex: 12.8+7.5 | Flex: 10.8+5.8 | Ext: 6.8+7.9 10/12
Front Inv:5.94+5.0 | Abd:5.5+1.9" | Add:9.8+3.7 | Ipsilat flex: 7.4+5.6
Trans Add: 15.1 IR: 15.1+3.7° | IR:26.9+5.1° | Ipsirot: 33.2+3.8" Hor Add: 132.8+10.7*
+5.2°
SEBT | LROT Sag PF: 0.1+£5.4 Flex: 7.2+11.1 | Flex: 9.2+8.4° | Ext: 3.6+7.0
Front Ev:0.9+57° | Abd:2.6+2.4° | Add: 12.9+6.1 | Ipsilat flex: 5.9+7.2°
Trans Add: 10.6 IR: 13.7+4.8° | IR:19.2¢5.4° | Ipsirot: 7.6+6.9°
+4.7°
HSEBT | RROT Sag DF: 10.0+5.5  Flex: 6.7+11.7* | Ext: 2.6+6.0 Ext: 2.8+8.2 8/12
Front Ev:5.9+3.4 Add: 3.8+2.6 Add: 0.7+5.1 Contra lat flex: 7.2+5.5
Trans Abd: 13.4 ER:23.8+5.4"  ER:29.5+5.4" | Contrarot: 33.7+4.5"  Hor Add: 134.2+13.9%
+3.6"
SEBT | RROT Sag DF: 14.9+6.7 | Flex: 23.4+13.9  Flex: 12.4+8.0 | Flex: 2.4+7.3
Front Ev:4.2+4.4 Add: 6.2+£3.9 Abd: 5.9+7.7° | Ipsi lat flex: 2.046.3
Trans Abd:9.1+2.9 | ER:16.55.2° | ER:27.2:7.1° | Contra rot: 3.2+9.6

Shaded and white rows identify direction specific HSEBT and SEBT reach comparisons with bold font showing common joint movements

Sag, Sagittal plane; Front, Frontal plane; Trans, Transverse plane; DF, Dorsiflexion; PF, Plantarflexion; Ev, Eversion; Inv, Inversion; Abd, Abduction; Add, Adduction;
Flex, Flexion; Ext, Extension; ER, External rotation; IR, Internal rotation; Ipsi, Ipsilateral; Contra, Contralateral; Lat flex, Lateral flexion; Rot, Rotation; Hor add,
Horizontal adduction

* = maximum magnitude of specific joint movement elicited by HSEBT

® = maximum magnitude of specific joint movement elicited by SEBT

https://doi.org/10.1371/journal.pone.0196813.t002

The HSEBT quantifies functional mobility in the sagittal (A0 and P180), frontal (L90 and
R90) and transverse planes (LROT and RROT). The plane specific capacity of these reaches is
reflected by its ability to elicit one or more 0,,,xsgpr in their respective planes of motion.
(Table 3). Since decreased ROM of specific joints have been found to impact joint movements
elsewhere in the kinetic chain [31, 32], the HSEBT could be used to assess the influence of
joint mobility limitations on functional mobility. One approach could be to measure multiple
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Table 3. Maximum joint movements elicited by HSEBT and SEBT with comparisons to normative ROM.

Joint Plane Joint Reach Omaxusepr | Reach | O,..sppr | t-test Cohen’s  Normative HSEBT SEBT
Movement (°) (°) d ROM comparison comparison
Ankle Sag | DF R45 29.7+5.7 R45 32.545.1 t(38) =5.95p < .01 95 26.146.5° X X
PF LROT -0.745.2 L90 2.3+3.4 t(39) =2.91,p < .01 45 40.5+8.1°
Front | Ev R90 18.243.3 L90 122438  t(39) =-9.46,p < .01 1.50 2145° X X
Inv L90 7.5+4.5 LROT -0.9+5.7 | t(38)=-8.00,p < .01 1.28 37+4.5°
Trans = Abd RROT 13.4+3.6 R45 10.8+2.4  t(38) =-5.45,p < .01 .87 NR NA NA
Add LROT 15.1+£5.2 LROT  10.6+4.7 | t(38) =-5.57,p < .01 .89 NR NA NA
Knee Sag | Flex A0 101.7+7 R90 77.1£12.6 | t(39) =-9.08,p < .01 1.44 141+5.3¢
Ext RROT -6.7£11.7 L90 8.7+4.8 t(38) = 8.67,p < .01 1.39 2+3¢ X X
Front | Abd LROT 5.5+1.9 LROT | 2.6+2.4 t(38) =-7.79, p < .01 1.25 NR NA NA
Add R45 17.2+6.5 P180 | 11.0+6.8 t(39) =9.04,p < .01 1.43 NR NA NA
Trans | IR LROT 15.1+3.7 LROT | 13.7+4.8 t(38) = 2.45, p =.019 0.39 20
ER RROT 23.8+5.4 RROT | 16.5+5.2 t(37) =-9.73, p < .01 1.58 30
Hip Sag Flex R45 108.2£7.9 P180  93.8+8.8 | t(39)=-13.37,p < .01 2.11 121+6.4° X
Ext L135 29.5+6.8 LROT  -9.2+8.4 (36) = 25.92,p < .01 4.26 12+5.4° X
Front = Abd L90 16.9+6.3 RROT | 5.9+7.7 t(37) =7.59,p < .01 L2253 41+6°
Add R90 27.6+6.4 L90 23.3+7.4  t(38) =2.95,p < .01 0.47 27+3.6° X
Trans IR LROT 26.9+5.1 LROT  19.2#54  t(37)=10.91,p < .01 1.77 44+4.3¢
ER RROT 29.5+5.4 RROT  27.247.1 t(34) = -0.51, p = .61 .09 44+4.8°
Trunk Sag Flex A0 58.8+9.7 R135 | 17.0+13.7 | t(38) =-18.53,p < .01 2.97 60"
Ext P180 36.2+7.2 L90 5.1+8.7 t(38) =-18.03,p < .01 2.88 45°
Front | Lat flex L90 and 38.4+6.4% LROT | 5.9+7.2 t(38) =-29.43,p < .01 5.21 35 X
R90
Trans | Rot LROT and | 33.4+42° | LROT | 7.6+6.9 t(38) = -21.32,p < .01 | 3.41 38"
RROT
Shoulder Sag | Flex L135 150.6+15.8 | NA NA 167+4.7°
Front = Abd 190 and 128.7+12.8° | NA NA 184+7¢
R90
Trans  ER L135 50.3+25.5 NA NA 104+8.5°
Hor Add LROTand 133.5:123Y NA  NA 130° x
RROT

Shaded and white rows identify joints and regions

Sag, Sagittal plane; Front, Frontal plane; Trans, Transverse plane; DF, Dorsiflexion; PF, Plantarflexion; Ev, Eversion; Inv, Inversion; Abd, Abduction; Add, Adduction;
Flex, Flexion; Ext, Extension; ER, External rotation; IR, Internal rotation; Ipsi, Ipsilateral; Contra, Contralateral; Lat flex, Lateral flexion; Rot, Rotation; Hor add,
Horizontal adduction; L, Left; R, Right; A0, Anterior reach; R45, Right anterolateral (45°) reach; R90, Right lateral (90°) reach; R135, Right posterolateral (135°) reach;
P180, Posterior (180°) reach; L135, Left posterolateral (135°) reach; L90, Left lateral (L90) reach; L45, Left anterolateral (45°) reach; RROT, Right rotational reach;
LROT, Left rotational reach; NA, Not applicable; NR, Not reported; x, within normative ROM.

* Average trunk lateral flexion L90 and R90 reach

® Average trunk rotation LROT and RROT reach

© Average shoulder abduction 190 and R90 reach

4 Average shoulder horizontal adduction LROT and RROT reach

¢ Reference value from Greene and Heckman [25]

f Reference value from Magee [26]

https:/doi.org/10.1371/journal.pone.0196813.t003

hand reaches to explore if specific joint mobility limitations could be identified. For example,
anterior reaches (L45, A0 and R45) resulted in both common and different joint movements
(Table 2). These flexion movement patterns, based on common ankle dorsiflexion, knee and
hip flexion, elicit different frontal and transverse plane movements. The decrease in anterior
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reach values in L foot R45 compared to L45 suggests that sagittal plane joint movements of the
lower extremity are influenced by frontal and transverse plane joint movements. More specifi-
cally, less dorsiflexion was observed with inversion and adduction (L45) than with eversion
and abduction (R45) (Table 2). These findings are supported by the work of Tiberio and co-
workers who showed that a pronated ankle yielded greater dorsiflexion [33]. Furthermore, L45
hand reach resulted in less hip flexion when compared to R45. This could be explained by the
impact of both hip internal rotation and adduction (in the L45 reach) approaching positions of
bony impingement as previously described in the literature [34]. In contrast, the hip external
rotation and abduction associated of the R45 reach did not approach positions of bony
impingement [34]. Thus, both L foot L45 and R foot R45 hand reaches can be used as a weight
bearing version of a common clinical test for femoroacetabular impingement (FAI), which is
currently done in supine with hip passively brought into flexion, adduction and internal rota-
tion (FADIR).

Frontal and transverse plane trunk movements are opposite for the L45 and R45 reaches
possibly having an influence on the reach results. However, these opposite movements are less
than 50% of observed 0,,axsepT (Tables 2 and 3) suggesting that these trunk movements do
not impact reach measurements significantly. Similar to the anterior reach analysis, posterior
reaches or extension movement patterns based on a common hip extension, can be analyzed
to determine the influence of frontal and transverse plane joint movements on extension.

The HSEBT and SEBT elicited 8 of 22 and 3 of 18 joint movements that were within norma-
tive ROM values, respectively. This is not surprising considering that joint ROM measure-
ments are usually obtained using goniometry in positions that do not require neither strength
nor neuromuscular control. Furthermore, the transfer of joint ROM to functional tasks has
only limited significance [35]. Considering that the HSEBT elicited more and greater trunk,
upper and lower extremity joint movements coupled into one functional unit [36], the HSEBT
may also be a good assessment tool for functional mobility.

Clinical application

The HSEBT has the potential to have complementary and wider clinical application possibili-
ties than the SEBT, which is primarily used in the assessment of the lower extremity function
[27, 37-43]. Since the HSEBT integrates more and greater joint movements of the full kinetic
chain, it might find clinical applications in e.g. low back pain (LBP), where the assessment of
full-body movements has been reported as underexplored [21]. Furthermore, in patients with
shoulder dysfunctions hand reaches can provide important clinical information since dynamic
positioning of the scapula to stabilize the glenohumeral joint is dependent on the segmental
coordination of the entire kinematic chain [20]. In addition, the HSEBT could be useful in fall
risk management since falling occurs while reaching, leaning [44] and bending [45]. Currently,
a single item hand reach test, the functional reach test [16], and the multi-directional reach test
[18] are used to quantify limits of stability in populations at risk. However, these tests only
include reaches at shoulder level, neither provoking overhead activities nor bending. Thus, the
HSEBT might be an alternative tool in fall risk management. Furthermore, the HSEBT can be
useful in the assessment of athletes participating in overhead sports such as throwing (baseball
and European handball) and hitting (tennis and golf).

Conclusions

In comparison to the SEBT, the HSEBT measures different aspects of dynamic postural con-
trol, especially in the posterior and lateral reaches. Shared movement synergies could explain
some of the observed relationships between both tests. Considering that the HSEBT elicit
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more and greater joint movements than the SEBT, and that there is no currently available
functional mobility assessment tool, the HSEBT may also present a useful addition to the avail-
able test methods of functional mobility.
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Abstract

The relationship between dynamic postural control, functional
mobility and team handball throwing performance, velocity and
accuracy, is largely unknown. The hand reach star excursion bal-
ance test (HSEBT) is a full kinetic chain assessment tool of these
factors. Specifically, L135 and R135 (extension) reaches elicit
joint movement combinations similar to the cocking and acceler-
ation phase, while the L45 and R45 (flexion) reaches elicit joint
movement combinations similar to the follow-through. The pur-
pose of this study was to determine if specific HSEBT reach
measures correlate with team handball throwing performance.
Eleven elite female team handball players (21.7 + 1.8 years; 71.3
+9.6kg; 1.75 + 0.07 m) executed selected HSEBT reaches before
performing five valid step-up overhead throws (IxIm target)
from which throwing velocity (motion capture) and accuracy
(mean radial error) were quantified. Significant relationships be-
tween HSEBT measures and mean radial error, but not throwing
velocity were established. Specifically, extension composite
scores (L135+R135) for the dominant (150.7 + 17.4cm) and non-
dominant foot (148.1 £ 17.5 cm) were correlated with mean radial
error (p < 0.05). Also, specific reaches on the dominant (L135:
87.4 £ 5.6 cm; R135: 63.4 + 11.8 cm) and non-dominant (R135:
87.0+ 6.1 cm) foot were correlated with throwing error (p < 0.05).
The lack of significant findings to throwing velocity might be due
to a ceiling effect of both L135 and R135 and of throwing veloc-
ity. We conclude that while there may be other reasons for hand-
ball players to train and test functional mobility and dynamic pos-
tural control as measured in the HSEBT, no beneficial effect on
throwing performance should be expected in an elite group of
handball players.

Key words: Ball games, ball velocity, throwing accuracy, dy-
namic postural control.

Introduction

In team handball, throwing performance is determined by
both velocity and accuracy (Wagner et al., 2008). The com-
bination of these two factors gives defenders and/or goal-
keepers less time to parry the shot, thus increasing the like-
lihood of scoring (van Muijen et al., 1991). Throwing per-
formance is the result of sequential muscle activation,
torque generation, energy transfer, and a proximal to distal
increase of joint angular velocities in the kinetic chain that
starts in the lower extremities and progresses through the
trunk into the upper extremities (Bartlett, 2000; Fradet et
al., 2004; Herring and Chapman, 1992; Joris et al., 1985;
Roach etal., 2013; van den Tillaar and Ettema, 2004; 2007,
2009b; Wagner et al., 2011; 2012; 2014). This sequential

behaviour requires joint mobility for both angular acceler-
ation and deceleration throughout the kinetic chain. In their
study Roach and Lieberman reported that limiting proxi-
mal kinetic chain segmental mobility by bracing decreased
joint power generation throughout the kinetic chain, angu-
lar velocities, elastic storage of energy at the shoulder, and
throwing velocity (Roach and Lieberman, 2014). Further-
more, kinetic chain analyses of handball throwing found
correlations between throwing velocity and maximum joint
positions obtained during the cocking and acceleration
phase (van den Tillaar and Ettema, 2007; Wagner et al.,
2011).

Since full kinetic chain analysis of throwing perfor-
mance is an impractical field method, joint mobility is
commonly quantified using traditional goniometric meas-
urements of range of motion (ROM). However, only few
studies explored the influence of ROM measurements on
throwing performance, and non-significant findings have
been reported (Schwesig et al., 2016; van den Tillaar,
2016). Furthermore, ROM measurements have an uncer-
tain capacity to predict injuries (Andersson et al., 2018;
Clarsen et al., 2014). These findings might be due to some
inherent limitations of the traditional measurements.
Firstly, ROM measurements might not be representative of
the actual maximum joint movements attained during the
throw (van den Tillaar, 2016). Secondly, goniometric
measures only provide information about uniplanar and
unidirectional movements of specific joints, and do not
provide information about their role in the kinetic chain.
Thirdly, in the current literature assessing throwing perfor-
mance, goniometric measures are only applied to upper ex-
tremity joint movements, even if maximum trunk and pel-
vic rotations have been reported to also be important deter-
minants (Wagner et al., 2011). Finally, passive goniometric
tests have low neuromuscular demands. In fact, to the
knowledge of the authors no studies so far explored the in-
fluence of dynamic postural control on team handball
throwing performance. The lack of measurements that tar-
get kinetic chain assessment of both mobility and dynamic
postural control are in contrast to current practice in the fe-
male Norwegian national team, where testing and training
that integrate lower extremity, trunk and shoulder move-
ments are used for both mobility and dynamic postural con-
trol purposes. Considering that this is the most successful
female handball team in the past two decades (Olympic
games, World Championships and European Champion-
ships several gold, silver and bronze medals), it is interest-
ing to observe that such assessments are lacking in the lit-
erature.
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Considering the aforementioned shortcomings, a
study into the influence of mobility on throwing perfor-
mance should include assessment of the full kinetic chain
and impose greater neuromuscular demands. Thus, tests of
functional mobility — i.e. the combination of range of mo-
tion (ROM) of multiple joints in ecological movements —
might be an appropriate assessment strategy. The hand
reach star excursion balance test (HSEBT) appears to be an
appropriate test since the joint movements elicited by the
different sub-tests (Eriksrud et al., 2018) are similar to
those associated with overhead handball throwing (van den
Tillaar and Ettema, 2007; Wagner et al., 2011). Other tests
such as the star excursion balance tests (SEBT) (Gribble et
al., 2012; Kang et al., 2015), upper quarter Y-balance test
(UQYBT) (Gorman et al., 2012) and functional movement
screen (FMS) (Butler et al., 2010; Cook et al., 2006) do not
have this capacity.

Specifically, the HSEBT posterior overhead unilat-
eral hand reach measurements quantify the ability to posi-
tion the hand in space, which elicit hip, trunk and shoulder
joint movements (Eriksrud et al., 2018) similar to those ob-
served in the late cocking and acceleration phases of over-
head throwing (van den Tillaar and Ettema, 2007; Wagner
et al., 2011). Furthermore, the unilateral anterior diagonal
hand reaches to floor level elicit combinations of hip, trunk
and shoulder joint movements (Eriksrud et al., 2018) simi-
lar to those observed in the follow-through phase (van den
Tillaar and Ettema, 2007; Wagner et al., 2011). In addition,
the rotational reaches target transverse plane joint move-
ments (Eriksrud et al., 2018) associated with the different
phases of the throw (van den Tillaar and Ettema, 2007;
Wagner et al., 2011).

Therefore, the purpose of this study was to deter-
mine the influence of functional mobility and dynamic pos-
tural control assessed through specific HSEBT reaches on
team handball throwing performance. We hypothesized
that specific HSEBT measures correlate with throwing ac-
curacy or throwing velocity.

Methods

Participants

Thirteen Norwegian, international level, female handball
players volunteered for the study, with eleven completing
the entire protocol (age: 21.7 £ 1.8 years; weight: 71.3 +
9.6 kg; height: 1.75 + 0.07 m; wingspan: 1.74 £ 0.09 m).
Debut in the elite division in Norway was 3.5£1.9 years
prior to participation in the study, and at the time of the
study two players were on the national team while four
different players participated in European club
competitions. Exclusion criteria were musculoskeletal or
neurological dysfunction or injury in the past six months,
inability to participate in normal handball and throwing
activities, and pain or discomfort reported during testing.
All tests were done in the afternoon and participants were
instructed to eat and hydrate as they would do for a regular
practice. The committee for medical and health research
ethics in Norway (2014/2230) and the Norwegian Centre
for Research Data (40934) had reviewed and approved the
study. Measurements were carried out according to the
principles described in the Declaration of Helsinki. All

subjects were given written and verbal information about
the experimental risks associated with the study and signed
an informed consent form prior to participation. Testing
was done mid to late season.

Experimental design

This was a descriptive and cross-sectional cohort study for
comparison of HSEBT reaches with overhead throwing
performance (ball velocity and accuracy). Specifically,
HSEBT reaches that represent joint movements associated
with the different phases of the overhead handball throw,
cocking, acceleration and follow-through, were selected.
The unilateral posterior overhead reaches (L135 and R135)
were tested since hip, trunk and upper extremity joint
movements and positions assumed in these reaches
(Eriksrud et al., 2018) are similar to those observed in the
cocking and acceleration phase in the same joints (van den
Tillaar and Ettema, 2007; Wagner et al., 2011). Similarly,
the unilateral anterior diagonal reaches to floor level (L45
and R45) were tested since hip, trunk and upper extremity
joint movements and positions assumed in these reaches
(Eriksrud et al., 2018) are similar to those observed in the
follow-through phase in the same joints (van den Tillaar
and Ettema, 2007; Wagner et al., 2011). Furthermore, Left
(LROT) and right (RROT) rotational reaches were done to
target the hip and trunk rotations associated with the three
phases of the throw (van den Tillaar and Ettema, 2007;
Wagner et al., 2011).

Anthropometric measurements and limb dominance
Prior to testing, body height and weight were obtained
using a Seca model 217 stadiometer and a Seca flat scale
(Seca GmbH. & Co. Hamburg, Germany). A standard tape
measure was used to measure wingspan (tip of middle
finger to middle finger with shoulder abducted to 90
degrees in standing), arm length (acromion to tip of middle
finger with shoulder abducted to 90 degrees in standing)
and leg length (greater trochanter to floor in standing). The
dominant hand was defined as the throwing hand, while the
dominant foot was defined as the pivot foot in the 8-meter
throw with run-up.

Warm-up

All subjects performed a 15-minute standardized warm-up.
The general warm-up (10 minutes) consisted of jogging,
different shuffle runs, skipping and dynamic stretching
focusing on full body movements in all three planes of
motion. The handball-specific part (5 minutes) consisted of
throwing at a large target (wall) with a gradual increase in
velocity with the last 2-3 throws at maximum throwing
velocity.

Throwing protocol

A throwing target was indicated on a high-jump mat (2 m
x 3 m) placed vertically in front of a handball goal in order
to protect lab equipment. Based on different protocols
previously used in handball throwing studies (van den
Tillaar and Ettema, 2003; Wagner et al., 2014) sports tape
was used to define a +-shaped throwing target (1 m x 1 m).
For right-handed subjects the target was placed 0.1 m
below the crossbar at the right side of the goal’s midline.
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This was mirrored for the left-handed subjects (van den
Tillaar and Ettema, 2003). An International Handball
Federation standard size women’s handball (Select AS,
Glostrup, Denmark) was used for all throws. A three-step
run-up throw from 8 m was used, since this throw is
frequently used in team handball when throwing from the
backcourt position (Wagner et al., 2012). All subjects were
given the following instructions: “Throw the ball as hard
as you can and hit the target” (van den Tillaar and Ettema,
2003). There was a one-minute rest period between throws.
The subjects continued throwing until five valid throws
(inside the target) were obtained.

Dynamic postural control and functional mobility

Dynamic postural control and functional mobility were
assessed using the HSEBT, which has been reported to be
valid and reliable (Eriksrud et al., 2017). The original
HSEBT consists of 10 hand reaches on each foot (stance
foot) with a toe-touch of the opposite foot. Reach direction
definitions and procedures are described in detail
elsewhere (Eriksrud et al., 2017), but are summarized here
for clarity. HSEBT reaching directions are defined from
the anatomical neutral position as follows: direction (i.e.:
anterior (A); posterior (P)), side of body (left (L); right
(R)), angle at 45° increments from anterior (0°) to posterior
(180°) and movement (rotation (ROT)). Reaches along the
8 horizontal reach vectors (A0, R45, R90, R135, P180,
L135, L90 and L45) are horizontal reaches (HR) and
measured in centimeters (cm), while the two rotational
reaches (LROT, RROT) are measured in degrees (°). Of
the horizontal reaches, the diagonal reaches (L45, R45,

L135, R135) were selected based on the similarity of
elicited hip, trunk and shoulder joint movements and
positions (Eriksrud et al., 2018) to the different phases of
the throw (van den Tillaar and Ettema, 2007; Wagner et al.,
2011) as described previously. Based on sagittal plane hip
movements at maximum reach position, L45 and R45 are
considered flexion while L135 and R135 are extension
movement patterns. In addition, left (LROT) and right
rotational reaches (RROT) were performed to target full
body rotation. All HSEBT reaches were performed in the
same order on a testing mat specifically designed to guide
and perform measurements. Specifically, the testing mat
identifies the eight horizontal reaching directions with
imprinted marks at 2 cm intervals, and nine concentric
circles (at 10 cm intervals) with marks at 5-degree intervals
(Athletic Knowledge Nordic AB, Stockholm, Sweden). A
plumb line (L135 and R135) and a stick (LROT and
RROT) were used to project the position of the middle digit
of the reaching hand(s) to the mat. Images of HSEBT tests
and maximum reach positions are presented in Figure 1 and
2. Three to five practice trials were allowed, after which
three valid reaches were recorded and the maximum value
used for analysis. Trials were discarded if the procedures
were not followed. Composite scores (CS) where
calculated as the sum of horizontal reaches for the
following: dominant foot (CSgom), non-dominant foot
(CSron-dom), dominant foot flexion movement patterns
(CSdom flex), non-dominant foot flexion movement pattern
(CShnon-dom_flex), dominant foot extension movement pattern
(CSdom ext) and non-dominant foot extension movement
pattern (CSnon-dom ext)-

LROT
121,3:12,0

€5=297,8+24,1
CSpe=148,0:11,2
C50=150,7:17,4

Figure 1. Horizontal and rotational reaches HSEBT dominant leg with accuracy comparisons. Visual representations
of the execution of the horizontal and rotational reaches (photographs) on the left foot (9/11 subjects left foot dominant) with mean (+SD)
reach distances (cm, °) for observed (black) and calculated (grey) HSEBT reaches and CS (sum of horizontal reaches), CSgex (sum flexion
movements patterns) and CSy, (sum extension movement patterns) with their correlations (r, * p < 0.05)
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125#13

€5=298,2:24,1
CSpe=149,2£10,2
CSeq=148,1$17,5

RROT
114214

Figure 2. Horizontal and rotational reaches HSEBT non-dominant leg with accuracy comparisons. Visual representations
of the execution of the horizontal and rotational reaches (photographs) on the left foot (2/11 subjects right foot non-dominant) with mean
(+SD) reach distances (cm, °) for observed (black) and calculated (grey) HSEBT reaches and CS (sum of horizontal reaches), CSpex (sum
flexion movements patterns) and CS.y (sum extension movement patterns) with their correlations (r, * p < 0.05)

Kinematic and video analysis

Five Oqus-4 cameras (Qualisys AB, Gothenburg, Sweden)
were used to collect kinematic data (recorded at 480 Hz)
from five reflective markers (20 mm ¢) attached to the ball
(two markers opposite each other to determine the center
of the ball), throwing hand (head of the intermediate
phalanx of the third digit) and pelvis (highest point left and
right iliac crest). Marker data was filtered (2" order
Butterworth low pass filter with 15Hz cut-off frequency),
then throwing velocity (m-s), was calculated as the
average velocity between frames 3 and 8 after time (to)
(frame of maximum acceleration between the marker on
the third digit and the center of the ball (midpoint between
the two ball markers), which increases abruptly at ball
release (van den Tillaar and Ettema, 2007). Entry velocity
(m-s!) was defined as the maximum velocity of the
midpoint between the two pelvic markers 3 and 100 ms
prior to to. Both throwing and entry velocity were
calculated for all throws using Matlab (Mathworks Inc,
Natick MA, USA). Accuracy of all throws was calculated
from video analysis using a video camera (Basler acA2000
— 165uc video camera (Baser AG, Ahrensburg, Germany))
placed 12 m away from the target at a height of 2 m. Mean
radial error was used as the accuracy measurement and
defined as the average of the absolute distance from the
center of the ball to the center of the target (van den Tillaar
and Ettema, 2003) using Dartfish (Dartfish, Fribourg,
Switzerland). The number of throws used by each subject
to reach five valid throws was recorded but only the valid
throws were used for analysis.

Statistical analysis

Descriptive statistics (mean and standard deviation (SD))
were calculated in Excel for Mac OS 10.10.5 (Apple Inc.,
Cupertino, CA, USA), version 14.4.8 (Microsoft Corp.,
Redmond, WA, USA). All other statistical tests were done
using IBM SPSS version 21.0 (IBM, Armonk, NY, USA).
Normality of the data was assessed using the Shapiro-Wilk
test (p < 0.05). Pearson correlation analysis (two-tailed)
was done to determine the relationship between throwing
velocity, accuracy, number of attempts and tests of
dynamic postural control (cm, © and CS). Linearity of the
relationships between these variables were assessed using
visual inspection of scatter plots. Outliers were determined
and removed from the analysis based on adding or
subtracting the interquartile range multiplied by 2.2 from
the mean of measurements (Hoaglin and Iglewicz, 1987).
Dynamic postural control tests are presented based on the
dominant foot and hand respectively. Since 9 of 11 players
were left foot dominant, left foot reach definitions were
used for the presentation of the HSEBT results.

Results

The throwing performance of the participants was as fol-
lows: entry velocity (3.1+0.5 m's'), throwing velocity
(22.8 £ 1.9 m-s), accuracy (0.32 + 0.09 m), and number
of throws (8.8 + 3.0) (average = SD). Reach measurements
and composite scores for the dominant and non-dominant
foot are presented in Table 1 and Figure 1 and 2. All inde-
pendent and dependent variables were normally distributed
(Shapiro Wilk > 0.05). There was no throwing velocity and
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accuracy trade-off (r = 0.062, p = 0.856). No significant
correlations between number of throws and throwing ve-
locity (r = -0.267, p = 0.428) and accuracy and number of
throws (r=0.330, p = 0.322) were observed. No significant
correlations between throwing velocity and individual
HSEBT reaches or composite scores were observed (Table
1) with small coefficients of determination (R 2= 0.0004 to
0.11) (Figure 3). However, correlations between HSEBT
composite scores and mean radial error were significant for
the dominant (CSgom r = 0.622, p < 0.05) and approached
significance for the non-dominant foot (CSon-domt = 0.584,

p = 0.059). Significant correlations between mean radial
error and extension movement pattern composite scores for
both the dominant foot (CSgom excr = 0.756, p < 0.05) and
non-dominant foot (CSnon-dom extT = 0.656, p < 0.05) were
observed (Table 1). Both the L135 (r=0.725, p <0.05) and
R135 (r = 0.698, p < 0.05) reaches on the dominant foot
and the R135 reach (r = 0.839, p < 0.05) on the non-domi-
nant foot were significantly correlated with the mean radial
throwing error. These significant findings corresponded
with greater coefficients of determination ranging from
0.34 to 0.70 (Figure 4).

Table 1. Correlations HSEBT

ements and throwing performance.

Measurement Measurement (mean+SD) Throwing velocity Mean radial error
R45 (cm) 79.8+59 315 (p=.345) 124 (p=717)
L45 (cm) 682462 205 (p=.546) 488 (p=.128)
L135 (cm) 874456 126 (p=713) 725 (p=.012)*
R135 (cm) 634+118 275 (p=413) 1698 (p=017)*
Dominant  RROT () 122.9+7.0 -242 (p=473) 128 (p=.780)
LROT (°) 1213+ 12.0 -551 (p=.079) 072 (p=.834)
CS (cm) 297.8+24.1 326 (p=328) 622 (p=.041)*
CSiex (cm) 148.0+ 11.2 280 (p=.404) 334 (p=315)
CSext (cm) 150.7 + 17.4 243 (p=472) 756 (p=.007)*
R45 (cm) 68.5+ 6.6 -.020 (p=.953) 361 (p=276)
L45 (cm) 80.7+ 4.6 141 (p=679) .009 (p=979)
L135 (cm) 61.1+114 111 (p=.745) 483 (p=.132)
. RI135(cm) 87.0+ 6.1 -.062 (p=856) 839 (p=.001)*
N““'d"t'“" RROT (°) 114.1+103 -.064 (p=.852) -.075 (p=.826)
nan LROT () 1252+ 10.1 -393 (p=.232) 226 (p=.503)
CS (cm) 298.2+24.1 1026 (p=939) 584 (p=.059)
CSiiex (cm) 149.2 4 10.2 1050 (p=.883) 237 (p=.483)
CSext (cm) 148.1+17.5 055 (p=873) 1656 (p=.028)*

* p <0.05. L=Left; R=Right; R45=Right anterolateral (45°) reach; R135=Right posterolateral (135°) reach; L135=Left posterol-
ateral (135°) reach; L45=Left anterolateral (45°) reach; RROT=Right rotational reach; LROT=Left rotational reach
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Discussion

The current study could not confirm the hypothesized pos-
itive relationship between HSEBT reaches and throwing
performance. Specifically, no correlations were found be-
tween HSEBT reaches and throwing velocity and HSEBT
reaches correlated negatively with throwing accuracy (pos-
itive correlation with mean radial error). These results sug-
gest that within the group of world-class players tested in
the current study, increased dynamic joint mobility, as as-
sessed through the HSEBT, is not a beneficial factor for
throwing performance. Compared to other athletes that
were tested so far (Eriksrud et al., 2017; 2018) the athletes
in the current study showed unusually large reach dis-
tances. Therefore we speculate that a ceiling effect could
explain that no correlation was found with throwing veloc-
ity, while the negative relationship with throwing accuracy
might indicate that some of the players may have surpassed
an optimum in joint mobility.

A secondary result of the current study was that
there was neither a trade-off, nor a correlation between
throwing velocity and throwing accuracy. This is a finding
that agrees well with previous observations (Garcia et al.,
2013; van den Tillaar and Ettema, 2003; 2006).

Throwing velocity

The throwing velocities measured in the current study are
comparable to what has been reported elsewhere for elite
female handball players (Granados et al., 2007; 2008; Vila
etal., 2012). Tests of functional mobility and dynamic pos-
tural control, both HSEBT reaches and composite scores,
did not correlate with throwing velocity. Hip extension,
pelvic rotation, trunk rotation and extension are joint

movements associated, on the one hand, with the approach,
cocking and acceleration phase of the throw (van den
Tillaar and Ettema, 2007; Wagner et al., 2011), and on the
other hand, with the different posterior reaches (Eriksrud
et al., 2018). Furthermore, Wagner and co-workers found
that maximum trunk and pelvic rotation during the throw
were correlated with throwing velocity (Wagner et al.,
2011). Therefore it seemed plausible to expect a correlation
between HSEBT results and throwing velocity. Our find-
ings, however, did not support this assumption. Consider-
ing that all subjects were elite level handball players, they
could all have had sufficient joint mobility to generate high
throwing velocities (ceiling effect). In fact, comparisons of
L135 and R135 reach measurements for both the dominant
and non-dominant foot to available reference data showed
that the handball players have reach measurements greater
than established minimal detectable change (Eriksrud et
al., 2017). However, such differences could not be ob-
served for flexion and rotational movements patterns
(Eriksrud et al., 2017). These comparisons might indicate
that the players in the current study have sufficient func-
tional mobility and dynamic postural control associated
with the cocking and acceleration phase for the generation
of high throwing velocities.

Based on current and previous findings, it appears
that ROM, functional mobility and dynamic postural con-
trol measurements do not predict throwing velocity. Thus,
mobility and dynamic postural control measurements
should perhaps be analysed in combination with measures
of other neuromuscular qualities to better understand the
underlying factors influencing throwing velocity. Muscu-
lar strength and power are more studied than mobility and
have been found to be significantly correlated with throw-
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ing velocity (Chelly et al., 2010; Cherif et al., 2016;
Debanne and Laffaye, 2011; Fleck et al., 1992; Gorostiaga
et al., 2005; Granados et al., 2007; Manchado et al., 2013;
Marques et al., 2007). Specifically, power tests (kneeling
medicine ball throw) and strength and power training
(overhead medicine ball throwing) that target joint move-
ments similar to those observed in the posterior overhead
reaches (shoulder flexion, hip and trunk extension) have
been found to be correlated with throwing velocity
(Debanne and Laffaye, 2011; Hermassi et al., 2015).

Throwing accuracy
The throwing accuracy observed in the current study
(0.32+0.09m) was comparable with previous findings (van
den Tillaar and Ettema, 2003; 2006; Wagner et al., 2010;
2011; Zapartidis et al., 2007). Unlike throwing velocity,
accuracy has not received the same attention in the litera-
ture. The effect of instructions (Garcia et al., 2013; van den
Tillaar and Ettema, 2003; 2006), age and sex (Gromeier et
al., 2017), fatigue (Nuno et al., 2016; Zapartidis et al.,
2007), performance level (Rousanoglou et al., 2015; van
den Tillaar and Ettema, 2006), temporal constraints
(Rousanoglou et al., 2015), throwing techniques (Wagner
et al.,, 2010) and laterality (van den Tillaar and Ettema,
2009a) on throwing accuracy have been explored. How-
ever, only two studies explored the influence of neuromus-
cular qualities, such as strength and power, on accuracy
(Raeder et al., 2015; Zapartidis et al., 2007). Accuracy was
found to decrease with fatigue, while shoulder strength and
throwing velocity did not (Zapartidis et al., 2007), indicat-
ing that there is no relationship between shoulder strength
and throwing accuracy. This finding was supported by
Raeder et al. (2015), who reported medicine ball training
improved strength, power, velocity, but not throwing accu-
racy. To the best of the authors” knowledge no studies so
far explored the influence of clinical tests of mobility or
dynamic postural control on accuracy. In addition, mobility
data available from kinematic studies, maximum joint po-
sitions obtained during the cocking and acceleration phase
or magnitude of joint movements utilized during the throw,
have been used to analyze throwing velocity (van den
Tillaar and Ettema, 2007; Wagner et al., 2010; 2011) but
not accuracy, with one exception (Urban et al., 2015). Ur-
ban and co-workers showed that decreased movement kin-
ematics from stable to unstable throwing conditions lead to
decreased throwing velocity with no influence on accuracy
(Urban et al., 2015). However, the population studied had
a much lower throwing velocity (16 m-s-1) than what was
observed in the current study. Furthermore, the influence
of mobility and dynamic postural control on accuracy in
other comparable overhead and throwing sports has also
received little attention. In baseball, static stretching did
not influence accuracy (Haag et al., 2010), while better
static balance in baseball (Marsh et al., 2004) and lacrosse
(Marsh et al., 2010) improved accuracy (Marsh et al.,
2010).

Considering the limited information available on
the influence of dynamic postural control and functional
mobility on throwing accuracy current findings provide

valuable information on this important throwing perfor-
mance factor. Our findings showed that greater posterior
overhead hand reach measurements were correlated with
lower throwing accuracy. One speculative interpretation
of this finding might be that posterior overhead reaches
quantify proprioceptive and balance demands associated
with throwing. Measures of proprioception are correlated
with successful basketball free-throw performance (Sevrez
and Bourdin, 2015), but not throwing accuracy in baseball
(Freeston et al., 2015) or lacrosse (Marsh et al., 2010).
Based on their findings, Freeston et al. (2015), argued that
proprioception of the entire kinetic chain should be as-
sessed since proprioception of the shoulder joint in isola-
tion did not correlate with throwing accuracy. If proprio-
ception is measured by the HSEBT and more accurate
throwers have better proprioception, then lower posterior
overhead reach measurements represent better, or a better
use of proprioceptive information. It might be that some
players stopped at a maximum reach position at a lower
reach measurement based on proprioceptive input from dif-
ferent joints or at a safer margin to limits of stability. New-
ton established that hand reaches have directional specific
limits of stability (Newton, 2001) whereby it might be that
more accurate throwers control these limits of stability in
the posterior directions with a greater margin safety for sta-
bility purposes.

Limitations

One limitation — or strength, depending on the viewpoint
— of the current study is the high performance level of the
recruited handball players. Generalization of the findings
in the current study beyond an international level female
team handball population should be done cautiously. Ex-
ploration of how different performance levels, age and sex
influence the relationship between HSEBT measurements
and throwing performance seems warranted.

Clinical perspective

Full kinetic chain testing of functional mobility and dy-
namic postural control using the HSEBT might have dif-
ferent applications in team handball beyond assessment of
throwing performance. Shoulder problems are one of the
injury areas with the greatest impact on participation in
team handball (Clarsen et al., 2014). Isolated tests of shoul-
der mobility have a variable capacity to predict shoulder
injuries (Andersson et al., 2018; Clarsen et al., 2014). The
HSEBT may offer important clinical information by ad-
dressing full kinetic chain movement tasks. Specifically,
dynamic positioning of the scapula to stabilize the gleno-
humeral joint is dependent on segmental coordination of
the entire kinematic chain (Kibler and Sciascia, 2016),
which could be addressed by the HSEBT.

Conclusion

Overhead team handball throwing velocity and accuracy in
elite female players were not beneficially influenced by
functional mobility and dynamic postural control as meas-
ured by the HSEBT. There may be other reasons why elite
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handball players may want to train and test functional mo-
bility and dynamic postural control utilizing the kinetic
chain as in the HSEBT, particularly with regard to injury
prevention; however, the current study suggests that no
beneficial effect on throwing performance should be ex-
pected in an elite population.
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Key points

e This study is the first to explore the influence of dy-
namic postural and functional mobility on team
handball throwing performance.

e Dynamic postural control and functional mobility as
measured by the HSEBT did not positively affect
throwing performance in an elite female population.

e Neither a trade-off nor a correlation between throw-
ing velocity and accuracy were observed.

e The influence of different performance levels, age
and sex on the relationship between HSEBT
measurements and throwing performance should be
explored.
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Abstract

The influence of anthropometric measurements, age, sex and activity level have been found to
influence tests of dynamic postural control such as the star excursion balance test (SEBT). The hand
reach star excursion balance test (HSEBT) measures different aspects of dynamic postural control.
The purpose of the present study was to explore the influence of these factors on the HSEBT. A
convenience sample of 223 subjects performed four horizontal (L45, R45, L135 and R135) and two
rotational (LROT and RROT) reaches. The influence of anthropometric measurements (height, arm
length, leg length and wingspan) on reach measurements were assessed using stepwise multiple
linear regression. Influence of age (young: <20 years; adult: >20 years), sex (male; female) and
activity level (athletes; recreational) on reach measurements were analyzed using independent
samples t-test (p<.05) and interpreted using effect size (Cohens d) and established values of minimal
detectable change (MDC). Wingspan explained a significant portion of the variance of only R45
(34.6%) and L45 (11.7%) reach measurements and normalized (percentage of wingspan). A medium
effect of age, sex and activity level was observed for normalized L45 and R45 reaches (d=.50 to
.72). Group differences greater than MDC values and a medium effect for age (d=.55) and activity
level (d=.75) were observed for the R135 reach. L45 and R45 reaches should be normalized to
wingspan, but not the other reaches. Between individual or group comparisons should consider age,
activity level and sex as potential covariates.

1 Introduction

The hand reach star excursion balance test (HSEBT) has proven to be a valid and reliable
measurement tool for dynamic postural control (Eriksrud et al., 2017). The hand reaches performed
on each foot capture different aspects of dynamic postural control as compared to the well-
established star excursion balance test (SEBT) (Eriksrud et al., 2018). Furthermore, it measures
functional mobility, i.e. the combined utilization of the ranges of motion (ROMs) of multiple joints
for the accomplishment of activities of daily living and athletic performance in an ecological manner.
In comparison to the SEBT the HSEBT elicits greater lower extremity and trunk movements with
additional hip (extension) and upper extremity joint movements. Specifically, when compared to
conventional ROM data, 8 of 22 joint movements were within these normative ranges (Eriksrud et
al., 2018).
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Factors Influencing HSEBT Reach Performance

Currently, other hand reach tests such as the functional reach test (FR) (Duncan et al., 1990),
standing lateral reach (Brauer et al., 1999), multidirectional reach test (Newton, 2001) and upper
quarter Y balance test (Gorman et al., 2012a) are used to assess mobility and dynamic postural
control. However, these tests are reaches in the horizontal plane that elicit small trunk and lower
extremity joint movements (Duncan et al., 1990; Brauer et al., 1999; Newton, 2001), or are
performed in positions non-specific to standing (i.e. planked position) (Gorman et al., 2012a). Since
many actions in sports and activities of daily living are based on hand interactions with the
environment (e.g. pushing, pulling, reaching, throwing) the HSEBT represents an alternative
assessment offering better specificity in relation to such tasks (Eriksrud et al., 2018).

Patients with low back pain (LBP) have an altered lumbopelvofemoral rhythm (Laird et al., 2014)
commonly assessed in standing flexion movements. However, lower extremity position, width and
angulation, influence this rhythm with implications on postural stability (Zhou et al., 2016). Changes
in stance not only influence base of support (BOS) but also lower extremity joint movements
associated with the flexion task. The HSEBT can assess the lumbopelvofemoral rhythm not only in
different flexion movements, but also in extension, lateral flexion and rotational movement patterns
in a standardized manner. It may provide a better measurement tool to document such a rhythm, for
example, in patients with LBP.

The HSEBT also appears to be a good addition to the assessment tools used for the evaluation of risk
of falling, considering that falling often occurs while reaching, leaning (Nachreiner et al., 2007) or
bending (Duckham et al., 2013). The functional reach test (FR), a single item hand reach test, has
been reported to predict risk of falling (Scott et al., 2007). However, falls occur in multiple directions
and it might be important to assess different directions to gain information about more multifaceted
boundary conditions. In fact, Newton established that horizontal reaches in the anterior-posterior and
medial-lateral direction quantify different limits of stability (Newton, 2001). The HSEBT therefore
represents a promising addition to the assessment tools in fall risk management considering the high
similarity of some of its tests with the movements already established as risk factors.

Shoulder dysfunction and injuries are common in throwing sports (Clarsen et al., 2014). Energy
contribution and transfer through the kinetic chain to the shoulder have been described (Roach and
Lieberman, 2014). For example, an increased leg drive in the tennis serve has been found to be
associated with smaller shoulder and elbow torques while achieving the same serve speeds (Elliott et
al., 2003), thus, potentially decreasing shoulder and elbow injury risks. Furthermore, restricting
mobility of the torso by bracing resulted in a significant reduction in joint power generation
throughout the kinetic chain, elastic storage of energy at the shoulder, and throwing velocity (Roach
and Lieberman, 2014). Considering the importance of the full kinetic chain to shoulder function, the
HSEBT may be a good alternative measure for shoulder function and dysfunction.

In the comparable SEBT, outcomes are known to be influenced by anthropometry, age, activity level
and sex. Specifically, leg length was the anthropometric measurement found to explain a significant
portion of the variance in the SEBT reaches (range R?: .02 to .23). Therefore, SEBT was normalized
to this anthropometric variable (Gribble and Hertel, 2003). Physical activities influence SEBT
measures, specifically, between differences between sports have been observed (Bressel et al., 2007)
with equivocal findings between athletes and recreational active individuals (Thorpe and Ebersole,
2008; Sabin et al., 2010; Ambegaonkar et al., 2013). The SEBT measures are also affected by sex,
however there is a controversy with respect to the direction of the relationship. Sex has been found to
have an equivocal effect on SEBT reach measures with no effect (Gribble and Hertel, 2003), greater
reach measures in males than females (Gorman et al., 2012b; Holden et al., 2016), and vice versa
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(Gribble et al., 2009; Holden et al., 2016). In adolescents and young adults, the SEBT reaches were
found to increase with age (Holden et al., 2016; Gonzalo-Skok et al., 2017; McCann et al., 2017).

Therefore, the purpose of the current study was to determine the influence of anthropometric
measurements, age, sex and activity level on HSEBT reaches and to provide reference values for
future comparisons.

2 Methods

2.1 Participants

A convenience sample of 223 subjects participated in the study. Recreational active (n=57) and
handball players (n=12) were recruited. We defined recreationally active as individuals that regularly
participated in physical activity for at least 30 minutes four times a week. Furthermore, 154 athletes
competing at the Youth Olympic Games (YOG) were recruited.

2.2 Testers and environment

Participation was voluntary and subjects were tested in different environments. The recreational
active and the throwing athletes gave written informed consent prior to being tested by two
experienced testers in the biomechanics laboratory of the university. The YOG athletes were
evaluated at the Learn & Share area at the YOG Winter Games 2016 by four additional experienced
testers (trainers and physical therapists). As a part of this experience the athletes had the opportunity
compare their HSEBT reach measurements to anonymous data from World and Olympic champions
in their respective sport. The following anonymous data were obtained and stored electronically:
number as an identifier without any key, anthropometry (number, height, leg length, wing span and
arm length), sex, sport and year of birth. Information about the study was shown on a computer
screen in English. Based on the recommendation of the International Olympic Committee this
information was also available in writing in the following languages: Norwegian, Chinese, English,
French, Japanese, German, Korean and Russian. Then informed consent was obtained by checking a
box on the computer screen. These procedures were discussed and formulated with lawyers from the
Norwegian Sports Federation, and the study was approved and authorized by the Norwegian Data
Protection agency and the Regional Committees for Medical and Health Research Ethics. The study
was conducted according to the Declaration of Helsinki.

2.3 Anthropometric measurements

Height was obtained using a Seca model 217 stadiometer (Seca GmbH. & Co. Hamburg. Germany).
Leg length was measured from the greater trochanter to the floor of one leg, arm length was
measured from acromion to middle digit with shoulder abducted to 90° of one arm, and wingspan
from middle digit to middle digit with both shoulders abducted to 90°. All measures were done with a
standard tape measure (centimeter (cm)).

2.4 Testing procedures

Subjects were tested on a subset (six) of the ten hand reaches that make up the HSEBT (Eriksrud et
al., 2017; Eriksrud et al., 2018). For clarity, HSEBT testing procedures are summarized here. The
HSEBT reaches are defined from the anatomical position where the anterior (A0) and posterior
(P180) reaches divide the body into left (L) and right (R) halves. Each half is then divided into
reaches at 45-degree increments (R45, R90, R135, L135, L90 and R45). Of these eight reaches the
R45, R135, L135 and L45 were tested on each foot. All of these are unilateral hand reaches and the
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hand selected to perform the reach was based on crossing midline (line connecting the A0 and P180
reach direction) with the opposite hand placed on the hip. Reach measurements were obtained on a
mat with imprinted reaching directions with marks at two cm intervals and nine concentric circles at
10 cm intervals with the outer circle (90 cm radius) marked at 10-degree intervals (Athletic
Knowledge Nordic AB, Stockholm, Sweden). The foot tested (stance foot) was placed in the center
of the mat while the other foot (support foot) was placed (toe touch) at a 135-degree angle relative to
the reaching direction between the 20 and 30 cm concentric circle. Maximum reach measurements
from the center of the testing mat to the most distal point of the middle digit was then obtained.
Specifically, position of the middle digit on the testing mat (light touch and no support) (R45 and
L45), and from a plumb line projecting the position of the middle digit to the testing mat (R135 and
L135) were obtained. Based on sagittal plane hip joint movements at maximum reach position, the
R45 and L45 are considered flexion while the R135 and the L135 are considered extension
movements. In addition, both left and right rotational reaches (LROT and RROT) were measured.
For the rotational reaches the stance foot is placed in the middle of the testing mat with the support
foot positioned parallel between the 20 and 30 cm concentric circle and allowed to rotate in the
direction of the reach. Rotational reaches are bilateral hand reaches with the middle digits on top of
each other. Maximum reach position was projected onto the concentric circles and quantified as the
difference from A0 (0 degrees). Pictures of maximum reach positions standing on the right foot is
presented in Figure 1. For all reaches, subjects were instructed to reach or rotate as far as possible at
their own rate and then return to the starting position while maintaining balance. A minimum of three
practice trials were given for each test to ensure that the test was understood, after which the
maximum reach of three valid test trials were recorded for analysis.

***Insert Figure 1 about here***

2.5 Statistical analysis

Descriptive statistics (mean and standard deviation (SD)) of participant characteristics
(anthropometric measurements and age) and reach measurements (R45, R135, L135, R135, LROT
and RROT) shown in Figure 1 were calculated using Excel for Mac OS 10.10.5 (Apple Inc.,
Cupertino, CA, USA), version 14.4.8 (Microsoft Corp., Redmond, WA, USA). Mirrored reach test
measurements on the left and right foot were compared using paired samples t-test. Side differences
were interpreted based on effect size (Cohen’s d) as follows: trivial<0.2; small 0.2 to 0.5; medium 0.5
to 0.8; large >0.8 (Cohen, 1988), and minimal detectable change (MDC) from test-retest reliability
(Eriksrud et al., 2017).

The influence of anthropometric measures (height, wingspan, arm length, leg length and trunk), age,
sex and activity level (athletes; recreational) on HSEBT measurements was determined using
multiple regression analysis (IBM SPSS, v 21.0, IBM, Armonk, NY, USA). Measurements for the
same tests on the left and right foot (e.g. left foot R45 reach and right foot L45 reach) were averaged.
Linearity was assessed by visual inspection of scatter plots of studentized residuals and predicted
values. Multicollinearity was assessed using variable inflation factor (VIF) with a cutoff of >10.
Independences of residuals were analyzed using Durbin-Watson statistics with cutoff values <1 and
>3. Homoscedasticity was assessed by visual inspection of the scatter plots of the standardized
predicted values of the model and the standardized residuals. Normality of residuals was determined
by visual inspection the histograms of standardized residuals and probability-probability plots.
Casewise diagnostics were set to three standard deviations to determine if 1% or less of the subjects
had standardized residuals outside this distribution. Specifically, a random sample, 75% of
participants, were used to generate the initial model using forward stepwise regression based on a
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statistical significance (t-test). The model was then validated on the remaining 25% of the
participants using forced entry. The validation model was then compared to the initial model based
on change of R? values, and independent variables that significantly contributed (p<.05) to the model
were retained. Pearson correlation coefficients of the retained variables to their respective HSEBT
reaches were then calculated. The criterion for normalization of HSEBT reaches to anthropometric
measures was based on significant correlation coefficients and R? values or changes greater than the
coefficient of variation (CV) of the respective reach (Eriksrud et al., 2017).

Independent samples t-tests were then used to explore significant differences between age groups
(young:<20 years; adult: >20 years), sex (M; F) and activity level (recreational; athletes).
Homogeneity of variance was assessed using Levene’s test and normal distribution was assessed
using Shapiro Wilks’s test. In the presence a significant Shapiro Wilk's the test z-scores of both
skewness and kurtosis were calculated to explore the necessity for data transformation. Effect size
was calculated using Cohen’s d and interpreted as described above (Cohen, 1988). Outliers were
removed based the criteria described by Hoaglin and Iglewics (Hoaglin and Iglewicz, 1987).

3 Results

Mean values of all variables measured of both athletic (sorted by sport) and recreational populations
are provided in Table 1. Table 2 presents mean values for age, anthropometric measures and HSEBT
reach measurements organized by groups (sex, age and activity level). In addition, significance of
group differences, effect sizes and established MDC values are presented (Table 2). The male group
was older than the female group (d=.83) with greater anthropometric measures (range ¢=0.94 to
1.51). The adult group also had greater anthropometric measures than the young group (range d=0.56
to 1.17). Recreational active were older than athletes (4=2.00) with greater anthropometric measures
(range d=0.64 to 1.26). Females, young participants and athletes demonstrated significantly greater
normalized L45 and R45 reach measurements (p<.001) with medium effect sizes. Trivial effects were
observed for the non-normalized comparisons for these reaches with one exception: males had
greater R45 reach measurements than females (small effect) with a group difference greater than
MDC values. Small to medium effects for sex, activity level and age were observed for the R135
reach. Specifically, the athletic group had reach measurements greater than MDC values, while the
observed difference between the young and the adult group (7.6 cm) is within the range of MDC
values. The athlete group had significantly greater L135 reach measurements than the recreational
group (small effect). The observed group difference (4.1 cm) is within the range of MDC values.
Trivial to small effects were observed for age, sex and activity level on rotational reach
measurements (Table 2).

***Insert Table 1 and 2 about here***

3.1 Regression analysis

Multicollinearity (VIF ranged from 1.000 to 4.152) was not observed. Homogeneity of variance was
observed, with residuals being independent (Durbin-Watson ranged from 1.699 to 2.397). Wingspan
explained 34.6 and 11.7% of the variance in the R45 and L45 reach measurements, respectively. Leg
length explained 2.7% of the L135 reach (Table 3). No anthropometric variable could explain a
significant portion of the variance in the R135, LROT and RROT reaches. Based on the
aforementioned criteria, only the L45 and R45 measurements were normalized to wingspan and
expressed as a percentage of wingspan. In R45 and L45 reaches, sex and leg length had a non-
significant contribution in the validation model (Appendix 1). In addition, activity level and age
explained 3.3 and 6.5%% of the L135 and R135 reaches respectively (Table 3).
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***Insert Table 3 about here***
4 Discussion

4.1 Influence of anthropometry

Anthropometric measures influence HSEBT reach measurements differently, therefore reach specific
normalization should be used. Flexion movement patterns yielded expected results: wingspan
explained 11.7 and 34.6% of the variation in reach measurements. In addition, normalizing flexion
movement patterns to wingspan resulted in significant differences for all groups (age, sex and
activity level). However, extension movement patterns unexpectedly were not influenced by any of
the anthropometric measures. Leg length did explain 2.7% of the variation in the R135 reach
measurement. However, this is less than the previously established CV (Eriksrud et al., 2017). In
addition, leg length did not significantly correlate with the R135 reach measurement, suggesting
normalization to leg length is not needed. As expected, the rotational reaches do not require
normalization. The reach specific considerations for HSEBT normalization differ from the
normalization procedures proposed by Gribble and co-workers for the SEBT (Gribble and Hertel,
2003). In their study leg length was found to have greater coefficients of determination than height to
SEBT reaches (.02 to .23), with significant correlations in 6 of 8 SEBT reach measurements (Gribble
and Hertel, 2003). Although lateral and posterolateral reaches were not significantly correlated with
leg length, all SEBT reaches are normalized to this measure and since then widely applied (Gribble et
al., 2012). In fact, leg length explained 4% of the variance of the posterolateral reach measurement
(Gribble and Hertel, 2003), which is less than the CV for test-retest reliability (4.4%) (Plisky et al.,
2006). The normalization of HSEBT measurements to anthropometric variables which explain
variation beyond error, as done in the current study, appears to be a more appropriate procedure.

4.2 Influence of age

There appears to be an effect of age on HSEBT reach measurements. Specifically, the young group
has greater measurements in three of six reaches. Medium effects of age were observed for the
normalized L45 and R45 reaches, as well as for the R135 reach. However, the group difference
observed for the R135 reach (7.6 cm) is within the range of MDC values (Table 2). In their study
Eriksrud and co-workers recommend 7 cm as an MDC for extension movement patterns based on
calculations and clinical experience (Eriksrud et al., 2017). It is important to note that the MDC
values in this study were calculated based on a 95% confidence interval, which is more conservative
and generate greater values than the 90% confidence interval commonly used (Haley and Fragala-
Pinkham, 2006). Consequently, we interpreted from our findings that the young participants had
greater R135 reach measurements. The combination of significant group differences, effect sizes and
comparison to established MDC values (R135) allows for a more robust interpretation of our
findings. However, age did not explain a significant portion of the variation of any of the reach
measurements in the regression analysis. Thus, it appears that age should be considered cautiously
when performing between individual or group comparisons for the normalized L45 and R45 as well
as for the R135 reach.

These findings contradict the influence of age on other measures of dynamic postural control such as
the SEBT, where reach measurements increase with age (Holden et al., 2016; Gonzalo-Skok et al.,
2017; McCann et al., 2017). However, these findings are based on young populations. Older
basketball players (16 years) had increased SEBT measurements in some directions when compared
to younger players (14 years) (Gonzalo-Skok et al., 2017). In a similar age group Holden and co-
workers reported that 13-year-olds increased all SEBT reaches tested over a 24-month period
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(Holden et al., 2016), while McCann and co-workers reported that older (20 years) had greater SEBT
reach measures than younger (15 years) football players (McCann et al., 2017). However, only one
study reported effect sizes (Gonzalo-Skok et al., 2017), and these studies did not compare group
differences to recommended MDC values (5-7cm; 6-8% of leg length) (Munro and Herrington,
2010). Comparisons to these MDC values would change the interpretation of findings in the
aforementioned studies. Older basketball players would still have greater SEBT reaches (Gonzalo-
Skok et al., 2017) whereas older football players would not (McCann et al., 2017) in comparison to
their younger counterparts. In addition, the observed increase in SEBT reaches over a 24-month
period would only apply to the posterolateral reach (Holden et al., 2016). In the current study we
calculated not only if group differences were significant, but also effect sizes before determining if
group differences were greater than MDC values. This is a more robust analysis in comparison to
what has been done for the SEBT, and allows us to be more certain about the effect of age on
HSEBT reaches.

4.3 Influence activity level

Athletes have greater HSEBT reach measurements than recreationally active for three of six reaches.
These reaches are the same as for the age group comparisons: normalized L.45 and R45 reaches as
well as the R135 reach. These group comparisons had medium effects, and the group difference for
the R135 reach was greater than MDC values. Furthermore, activity level explained 3.3 and 6.5% of
the variance of the L135 and R135 reaches. However, these values are less than most of the observed
CV'’s for these reaches (5.2 to 14.6%) (Eriksrud et al., 2017). In addition, the observed influence of
activity level on these HSEBT reaches are influenced by age, since the athlete group was
significantly younger than the recreational group (large effect) (Table 2). Based on these findings,
activity level should be considered when performing between individual or group comparisons for
the normalized L45 and R45 as well as the R135 reach.

The influence of activity level on SEBT reaches has been found to be equivocal. Specifically, female
modern dancers have better reach performance in some, but not all reach directions, in comparison to
active non-dancers (Ambegaonkar et al., 2013). In a study comparing basketball players Sabin and
co-workers found that active controls had greater SEBT reach measurements than basketball players
(Sabin et al., 2010). Thorpe and co-workers found that female soccer players (NCAA division 1) had
greater SEBT reach measurements than their recreationally active counterparts (Thorpe and Ebersole,
2008). In addition, there are SEBT reach differences between athletes participating in different
sports. Specifically, soccer players have greater SEBT reaches than basketball players, while there is
no difference between gymnasts and soccer players (Bressel et al., 2007). However, these studies
neither report effect sizes nor compare to MDC values as advocated by Munro and co-workers
(Munro and Herrington, 2010). Comparing group differences to MDC values in the aforementioned
studies influence interpretation of findings. Specifically, dancers would not have demonstrated
greater SEBT reaches than non-dancers (Ambegaonkar et al., 2013), and basketball players would
only have lower SEBT measurements in the anterior direction, and not in the medial and posterior
(Sabin et al., 2010). Furthermore, soccer players would still have greater anterior and posterior
reaches than their active controls (Thorpe and Ebersole, 2008). Overall, these findings indicate that
there might not only be activity but also sports specific adaptations of dynamic postural as measured
by the SEBT. In the current study it was not possible to determine sport specific adaptations due to
the small sample sizes of the different sports included (Table 1), but the influence of activity level
(athletic vs. recreational participation) could be analyzed. Since we calculated effect sizes and
compared the group difference to established MDC values (R135), the inference that activity level
leads to greater L45, R45 and R135 measurements is justified. However, some caution should be
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applied to the interpretation of these findings considering the that the athletic population was
significantly younger (large effect), and that a smaller percentage of the reach measurement variance
(3.3 t0 6.5%) of only the L135 and R135 reaches could be explained by activity level.

4.4 Influence of sex

Females had significantly greater HSEBT reach measurements for normalized L45 and R45 reaches
with a medium effect. These findings could be influenced by the female group being younger than
the male group (4=0.83) since younger participants have greater normalized L45 and R45 reach
measurements as discussed previously. It is interesting to note that males have significantly greater
absolute R45 reach measurements with a small effect and a group difference less than MDC values.
Normalization to wingspan changes this relationship completely with females having greater
measurements (d=0.64). These findings might be due to males having a greater wingspan (10.9 cm;
d=1.51), and that the R45 reach is where wingspan accounts for the greatest variation of the
measurement (34.6%). Thus, females are better able to combine different joint movements to
maximize R45 reach measurements despite having unfavorable anthropometrics.

Similar to our findings physically active females have been found to have greater SEBT reach
measures than their male counterparts (Gribble et al., 2009). However, in their study Gribble and co-
workers found no influence of sex on normalized SEBT reach measurements, and males having
greater absolute SEBT reach measurements (Gribble and Hertel, 2003). Contrary to our findings,
others have found males (Sabin et al., 2010) and athletic males (Gorman et al., 2012b) to have greater
SEBT measures than their female counterparts. In the aforementioned studies neither effect sizes
were reported nor were group differences compared to MDC values (Munro and Herrington, 2010).
The group differences presented by Gribble and co-workers (Gribble and Hertel, 2003) are less than
the established MDC values except for the posterior reach, while the group differences presented by
Gribble and co-workers in their later study (Gribble et al., 2009) were all lower than established
MDC values (visual interpretation from graphs). The values presented by Gorman and co-workers
cannot be compared to MDC values since it is impossible to extract them from the graphs presented
(Gorman et al., 2012b). Thus, it appears that sex has a small influence on SEBT reach measurements.
Since sex had a medium effect and explained 4.2 and 8.9% of the variance of the R45 and L45 reach
measurements respectively, greater than most CV'’s for R45 and L45 reaches (3.0 to 5.2%) (Eriksrud
et al., 2017), it appears that sex influence these HSEBT reaches. However, sex was not found to have
a significant contribution to the validation model for the R45 and L45 reaches. Thus, the
interpretation of sex influencing these reaches should be done cautiously.

4.5 Outlook, clinical implications and limitations

The current study established that HSEBT flexion movement patterns should be normalized to
wingspan. However, wingspan explains only 34.6 and 11.7% of the variation in R45 and L45 reach
measurements respectively. This leaves a large percentage of the variance to be determined by other
factors. To date the HSEBT has been proven to be reliable and valid (Eriksrud et al., 2017) and
measuring different aspects of dynamic postural control than the SEBT (Eriksrud et al., 2018). SEBT
reaches have been found to reflect different neuromuscular functions such as proprioception (Belley
et al., 2016), lower extremity strength (Hubbard et al., 2007; Crossley et al., 2011; Norris and
Trudelle-Jackson, 2011), muscular power (Booysen et al., 2015) and balance (Hubbard et al., 2007).
A better understanding of the influence of neuromuscular functions on HSEBT reach measurements
should be explored.
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The current study has shown that age, sex and activity level influence HSEBT measurements and
consequently should be considered when performing between individual and group comparisons. The
age groups compared in the current study were teenagers (age 17.1+ .6) and young adults (age
24.3£3.4). To better understand the influence of age on the HSEBT, larger age ranges (>10 years)
should be tested with measurements organized in age groups, as done for ROM data (Bell and
Hoshizaki, 1981). This will allow for the development of reference values and the exploration of how
HSEBT reach develops the across the life span. The development of such reference values can be
important. Specifically, in an older population they can be useful in fall risk management, since the
HSEBT is situation specific to risky movements such as reaching, leaning (Nachreiner et al., 2007)
and bending (Duckham et al., 2013).

The HSEBT can be used to measure sports and activity dependent adaptations and characteristics and
their influence on performance. In the current study, due to small sport specific sample sizes, we
could only explore the influence of activity level and not sport specific adaptations and
characteristics. Even if between sport comparisons were not done, we have presented reference data
for different winter sports for future comparisons. The authors expect that athletes participating in
different sports will have different HSEBT reach capacities. Specifically, sports where the use of the
upper extremities is fundamental to the activity (golf, tennis, volleyball, overhead throwing sports
etc.) are expected to show greater reach measures as compared to sports where the upper extremities
are less important (i.e. soccer). In addition, specific cut-off values for athletic performances can be
determined. For instance, it might be that extension movement pattern measurements up to a certain
value increase tennis serve speed, while a further increase does not. Such reference and performance
specific cut-off values can be useful in the development and rehabilitation of athletes.

5 Conclusion

Flexion movement patterns (L45 and R45 reaches) should be normalized to wingspan, since a
significant variation of these measurements is explained by this measure. In fact, only when
normalized L45 and R45 reach measurements were compared, group differences for age, sex and
activity level became significant. On the contrary, extension movement patterns do not need to be
normalized to anthropometric measures since only leg length had a small influence on the L135 reach
measurement. Neither anthropometric measures nor age, sex and activity level influence the
rotational reaches. Thus, reference and predictive values for research and clinical purposes should be
based on flexion movement patterns normalized to wingspan. In a young and adult population it
appears that age, sex and activity level influence HSEBT reach measurements.
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11  Data Availability Statement

The datasets for this study can be found in the Harvard Dataverse
(https://dataverse.harvard.edu/dataset.xhtml?persistentld=doi: 10.7910/DVN/NONG4 X &version=DR
AFT)

12 Figure legends

Figure 1. Maximum reach position of HSEBT reaches standing on the right foot
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558  Table 3. Stepwise multiple linear regression of HSEBT tests

Test B SEB B R? 222
R45 Step 1
Constant 11.96 7.22 %23
Wingspan .39 041 59% 346 264
R45 Step 2
Constant  -3.93 8.45 207
Wingspan .47 047 .62+ 560
Sex 307 92 24%  388(AR=.042) /0
R45 Step 3
Constant .62 8.58 24
Wingspan .58 069  .89%x 375
Sex 3.1 .90 24%% Rl
Leglength -279 .12 -22% 407 (AR?*=.019) 578
L45 Step 1
Constant 22.71  9.69 L5_§l
Wingspan .26 055 34% 117 293
L45 Step 2
Constant -3.86  11.13 ggé
Wingspan 40 062 .53** 287
Sex 515 121 .35%% 206 (AR>=.089) 380
L135 Step 1
Constant 87,38 .83 502
Activity 386 1.67 -18% 033 235
L135 Step 2
Constant  59.67 12.86 235
Activity -4.64 1.69 S22%* 598
Leg length .32 15 7% 060 (AR=.027) 204
R135
0U
Constant 64.68 1.08 603
Activity =721 217 - .065 604
LNE

RROT
NE 507
LROT
NE g

612 *p<o0s o

613  =xp<ol

614  #=+xp<o01

615 Abbreviations: B=Unstandardized coefficient; B=Standardized beta coefficient; SE=Standard error; R?: Coefficient of determination; NE=No

g%g variables entered into the equation; R=Right, L=Left; 45=45 degree relative to anterior surface of body; 135=135 degrees relative to anterior

surface of body: ROT=Rotation.
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Appendix 1. Validation of the multiple linear regression of HSEBT tests

Initial model (75%) Validation model (25%)
Test B SEB B R? B SE B B R?
R45 Step 1
Constant 11.96 7.22
Wingspan .39 .041 S59%% 346
R45 Step 2
Constant -3.93 845
Wingspan .47 047 .62%*
Sex 3.07 .92 24%* 388 (AR*=.042)
R45 Step 3 Forced entry
Constant .62 8.58 13.85 14.944
Wingspan .58 .069 Rk .30 .14 52%
Sex 3.1 .90 24%* 2.27 1.73 22
Leg length -279 .12 -22*% 407 (AR*=.019) 135 242 12 288
L45 Step 1
Constant 22.71  9.69
Wingspan .26 055 34 117
L45 Step 2 Forced entry
Constant -3.86  11.13 13.00 17.11
Wingspan .40 .062 S53%* 32 .095 50%*
Sex 5.15 1.21 35%% 206 (AR?>=.089) 93 2.02 .068 215
L135 Step 1
Constant 87,38 .83
Activity -3.86 1.67  -18% .033
L135 Step 2 Forced entry
Constant 59.67 12.86 44.16 19.64
Activity -4.64  1.69  -22%* -7.35 2.71 - 42%*
Leg length .32 15 A7* .060 (AR?=.027) 49 22 .34% 134
R135 Forced entry
Constant 64.68 1.08 66.07 1.69
Activity 2721 217 - .065 -1420  3.17 - 53k 28
RROT Forced entry
NE NE
LROT Forced entry
NE NE
*p<.05
#¥p<.01
#HHp<,001

Abbreviations: B=Unstandardized coefficient; B=Standardized beta coefficient; SE=Standard error; R?: Coefficient of determination; NE=No
variables entered into the equation; R=Right, L=Left; 45=45 degree relative to anterior surface of body; 135=135 degrees relative to anterior
surface of body: ROT=Rotation.
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Appendices

Appendix VI. Approval letters from the Norwegian Centre for Research Data



Norsk samfunnsvitenskapelig datatjeneste AS
NORWEGIAN SOCIAL SCIENCE DATA SERVICES

Harald Harfagres gate 29
N-5007 Bergen

Ola Eriksrud Norway
Seksjon for fysisk prestasjonsevne Tel AT SSo8et 1
N idr h kol Fax: +47-55 58 96 50

otges idrettshogskole nsd@nsd ub.no
Postboks 4014 www nsd.uib no
0806 OSLO Org.nr. 985 321 884
VAr dato: 26.06.2013 Vér ref:34752 / 3/ AMS Deres dato: Deres ref:

TILBAKEMELDING PA MELDING OM BEHANDLING AV PERSONOPPLYSNINGER

Vi viser til melding om behandling av petsonopplysninget, mottatt 14.06.2013. Meldingen gjelder prosjektet:

34752 Validation of Functional Mobility Screen
Behandlingsansvarlig Norges idrettshagskole, ved institusjonens overste leder
Daglig ansvarlig Ola Eriksrud

Personvernombudet har vurdert prosjektet og finner at behandlingen av personopplysninger er meldepliktig i
henhold til personopplysningsloven § 31. Behandlingen tilfredsstiller kravene i personopplysningsloven.

Personvernombudets vurdering forutsetter at prosjektet gjennomfores i trid med opplysningene gitt {
meldeskjemaet, kotrespondanse med ombudet, ombudets kommentarer samt personopplysningsloven og
helseregisterloven med forsktifter. Behandlingen av personopplysninger kan settes i gang.

Det gjores oppmerksom pa at det skal gis ny melding dersom behandlingen endres i forhold til de opplysninger
som ligger til grunn for petsonvernombudets vurdering. Endringsmeldinger gis via et eget skjema

http: nsd.uib.no/personvern/meldeplikt/skjemahtml. Det skal ogsé gis melding etter tre 4r dersom
prosjektet fortsatt pagar. Meldinger skal skje skriftlig til ombudet.

Personvernombudet har lagt ut opplysninget om prosjektet i en offentlig database,
http://pvo.nsd.no/ptrosjekt.

Personvernombudet vil ved prosjektets avslutning, 31.12.2013, rette en henvendelse angiende status for
behandlingen av personopplysninger.

Vemnlig hilsen
A als W
Viéé& Namtvedt Kvalheim
Anne-Mette Somby

Anne-Mette Somby tlf: 55 58 24 10
Vedlegg: Prosjektvurdering

Avdelingskontorer / District Offices:
0SLO NSD. Universitetet 1 Oslo, Postboks 1055 Blindern, 0316 Oslo. Tel: +47-22 85 52 11, nsd@uio.no
TRONDHEIM: NSD. Norges teknisk-naturvitenskapelige universitet, 7491 Trondheim Tel +47-73 59 19 07 kyrre svarva@svt ntnu no
TROMS@. NSD. SVF, Universitetet i Tromsg, 9037 Tromsg. Tel: +47-77 64 43 36 nsdmaa@sv.uit no



On 12/11/15 11:49, "Katrine Utaaker Segadal” <katrine.segadal@nsd.no>
wrote:

Hei,

Viser til mottatt meldeskjema for prosjektet 40996 "Inter-rater and
intra-rater reliability of functional mobility screen".

Ved en feiltakelse ble det aldri sendt en skriftlig tilbakemelding pa
denne prosjektmeldingen fra oss. I fglge meldeskjema skulle prosjektet
avsluttes og data anonymiseres 20. juni 2015.

Kan du bekrefte at prosjektet er avsluttet og at det ikke lenger
behandles personopplysninger i prosjektet?

Med vennlig hilsen/Kind regards

Katrine Utaaker Segadal

Seksjonsleder/Head of Section

+47 55583542 |+47 970 86 236

nsd.no | twitter.com/NSDdata



Norsk samfunnsvitenskapelig datatjeneste AS
NORWEGIAN SOCIAL SCIENCE DATA SERVICES

Harald Harfagres gate 29
N-5007 Bergen

Norway

Ola Eriksrud Tel: +47-55 58 2117

. . . Fax: +47-55 58 96 50
Seksjon for fysisk prestasjonsevne nsd@nsduib.no
Norges idrettshogskole www.nsd.uib.no

Org.nr. 985 321 884

Postboks 4014
0806 OSLO
Vér dato 28.01.2016 Var ref: 40996/3/KS/LR Deres dato: Deres ref:

TILBAKEMELDING PA MELDESKJEMA
Vi viser til meldeskjema og senete kotrespondanse angiende prosjektet:
40996 Inter-rater and intra-rater reliability of functional mobility screen

Ved en inkurie ble det ikke gitt en skriftlig tilbakemelding pé prosjektmeldingen. Veileder bekrefter per
epost 29.12.2015 at prosjektet nj er avsluttet og datamaterialet anonymisert.

Personvernombudet avslutter detfor videre oppfolging av prosjektet.

Ta gjerne kontakt dersom noe er uklart.

Vennlig hilsen

Q S (/uu ¢ 4 _
Vigdis Namtvedt Kvalheim

Katrine Utaaker Segadal

Kopi: Stavros Litsos

Avdelingskontorer / District Offices:
OSLO: NSD, Universitetet i Oslo, Postboks 1055 Blindern, 0316 Oslo. Tel: +47-22 85 52 11, nsd@uio.no
TRONDHEIM: NSD, Norges teknisk-naturvitenskapelige universitet, 7491 Trondheim. Tel: +47-73 59 19 07. kyrre svarva@svt.ntnu.no
TROMS@: NSD. HSL, Universitetet i Tromse, 9037 Tromse. Tel: +47-77 64 61 53. solvi.anderssen@uit.no



Norsk samfunnsvitenskapelig datatjeneste AS
NORWEGIAN SOCIAL SCIENCE DATA SERVICES

Ola Eriksrud Harald Harfagres gate 29
Seksjon for fysisk prestasjonsevne Norges idrettshegskole N:5007 Bergen
Norway
Postboks 4014 Tel: +47-55 58 21 17
Fax: +47-55 58 96 50
0806 OSLO nsd@nsd.uib.no
www.nsd.uib.no
Var dato: 03.12.2014 Var ref: 40934 /3 /LT Deres dato: Deres ref: Orgnr- 985 321 884

TILBAKEMELDING PA MELDING OM BEHANDLING AV PERSONOPPLYSNINGER

Vi viser til melding om behandling av personopplysninger, mottatt 26.11.2014. Meldingen gjelder

prosjektet:

40934 Pdvirkning av mobilitet og styrke pd prestasjon i overarmskast
Bebhandlingsansvarlig Norges idrettshagskole, ved institusjonens overste leder
Daglig ansvarlig Ola Eriksrud

Student Fredrik Oksum Swland

Personvernombudet har vurdert prosjektet og finner at behandlingen av personopplysninger er
meldepliktig i henhold til personopplysningsloven § 31. Behandlingen tilfredsstiller kravene i

personopplysningsloven.

Personvernombudets vurdering forutsetter at prosjektet gjennomferes i trdd med opplysningene gitt i
meldeskjemaet, korrespondanse med ombudet, ombudets kommentarer samt personopplysningsloven og

helseregisterloven med forskrifter. Behandlingen av personopplysninger kan settes i gang.

Det gjores oppmerksom pa at det skal gis ny melding dersom behandlingen endres i forhold til de
opplysninger som ligger til grunn for personvernombudets vurdering. Endringsmeldinger gis via et eget
skjema, http://www.nsd.uib.no/personvern/meldeplikt/skjema.html. Det skal ogs8 gis melding etter tre ar
dersom prosjektet fortsatt pdgdr. Meldinger skal skje skriftlig til ombudet.

Personvernombudet har lagt ut opplysninger om prosjektet i en offentlig database,
http://pvo.nsd.no/prosjekt.

Personvernombudet vil ved prosjektets avslutning, 31.12.20135, rette en henvendelse angdende status for

behandlingen av personopplysninger.

Vennlig hilsen

Katrine Utaaker Segadal
Lis Tenold

Kontaktperson: Lis Tenold tlf: 55 58 33 77
Vedlegg: Prosjektvurdering
Kopi: Fredrik Oksum Szland fredriksaeland@gmail.com
Dokumentet er elektronisk produsert og godkjent ved NSDs rutiner for elektronisk godkjenning.

Avdelingskontorer / District Offices.
OSLO: NSD. Universitetet i Oslo, Postboks 1055 Blindern, 0316 Oslo. Tel: +47-22 85 52 11. nsd@uio.no
TRONDHEIM: NSD. Norges teknisk-naturvitenskapelige universitet, 7491 Trondheim. Tel: +47-73 59 19 07. kyrre svarva@svt.ntnu.no
TROMS@: NSD. SVF, Universitetet i Tromsg, 9037 Tromsg. Tel: +47-77 64 43 36. nsdmaa@sv.uit.no



Norsk samfunnsvitenskapelig datatjeneste AS
NORWEGIAN SOCIAL SCIENCE DATA SERVICES

Ola Eriksrud Harald Harfagres gate 29
Seksjon for fysisk prestasjonsevne Norges idrettshagskole N-5007 Bergen
Norway
Postboks 4014 Tel: +47-55 58 21 17
Fax: +47-55 58 96 50
0806 OSLO nsd@nsd.uib.no
www.nsd.uib.no
Vér dato: 03.02.2016 Vér ref: 47006 /3 / MSS Deres dato: Deres ref: Orgnr 985 321 884

TILBAKEMELDING PA MELDING OM BEHANDLING AV PERSONOPPLYSNINGER

Vi viser til melding om behandling av personopplysninger, mottatt 01.02.2016. Meldingen gjelder

prosjektet:

47006 Mobility of athletes patrticipating in Youth Olympic Games
Behandlingsansvarlig ~ Norges idrettshogskole, ved institusjonens overste leder
Daglig ansvarlig Ola Eriksrud

Etter gjennomgang av opplysninger gitt i meldeskjemaet og ovrig dokumentasjon, finner vi at
prosjektet ikke medfgrer meldeplikt eller konsesjonsplikt etter personopplysningslovens §§ 31 og 33.

Dersom prosjektopplegget endres i forhold til de opplysninger som ligger til grunn for var vurdering,
skal prosjektet meldes pa nytt. Endringsmeldinger gis via et eget skjema,
http://www.nsd.uib.no/personvern/meldeplikt/skjema.html.

Vedlagt felger var begrunnelse for hvorfor prosjektet ikke er meldepliktig.

Vennlig hilsen

Katrine Utaaker Segadal
Marie Strand Schildmann

Kontaktperson: Marie Strand Schildmann tIf: 55 58 31 52
Vedlegg: Prosjektvurdering

Dokumentet er elektronisk produsert og godkjent ved NSDs rutiner for elektronisk godkjenning.

Avdelingskontorer / District Offices.
OSLO: NSD. Universitetet i Oslo, Postboks 1055 Blindern, 0316 Oslo. Tel: +47-22 85 52 11. nsd@uio.no
TRONDHEIM: NSD. Norges teknisk-naturvitenskapelige universitet, 7491 Trondheim. Tel: +47-73 59 19 07. kyrre svarva@svt.ntnu.no
TROMS@: NSD. SVF, Universitetet i Tromsg, 9037 Tromsg. Tel: +47-77 64 43 36. nsdmaa@sv.uit.no



Personvernombudet for forskning (E)

Prosjektvurdering - Kommentar

Prosjektnr: 47006

Vi kan ikke se at det behandles personopplysninger med elektroniske hjelpemidler, eller at det opprettes
manuelt personregister som inneholder sensitive personopplysninger. Prosjektet vil dermed ikke omfattes av

meldeplikten etter personopplysningsloven.

Det ligger til grunn for var vurdering at alle opplysninger som behandles elektronisk i forbindelse med
prosjektet er anonyme. Vi viser her til meldeskjema og bekreftelse fra daglig ansvarlig Ola Eriksrud per telefon
den 03.02.2016 pa at det ikke skal innhentes og registreres noen identifiserende opplysninger i forbindelse med

prosjektet.

Daglig ansvarlig er gjort oppmerksom pa at det foreliggende informasjonsskrivet ma revideres slik at det
fremgar helt eksplisitt at det ikke skal registreres personopplysninger om prosjektdeltakerne. Det ma derfor ogsa
fremgd av skrivet at tilbakemeldinger om den enkelte idrettsutgverens score pd mobilitet og balanse, gis

umiddelbart etter testing.

Med anonyme opplysninger forstés opplysninger som ikke pa noe vis kan identifisere enkeltpersoner i et
datamateriale, verken:

-direkte via personentydige kjennetegn (som navn, personnummer, epostadresse el.)

-indirekte via kombinasjon av bakgrunnsvariabler (som bosted/institusjon, kjgnn, alder osv.)

-via kode og koblingsngkkel som viser til personopplysninger (f.eks. en navneliste)

-eller via gjenkjennelige ansikter e.l. pd bilde eller videoopptak.

Vi gjgr oppmerksom pé at muntlig samtykke er like gyldig som skriftlig samtykke. Personvernombudet legger
videre til grunn, dersom skriftlige samtykker likevel skal innhentes, at navn/samtykkeerklaringer ikke knyttes

til opplysningene som registreres.
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Appendix VII. Study IV: Warm-up procedures

The general part consisted of exercises and dynamic stretching as follows: 1) Jog (2 x 20 m),
2) lateral shuffle with focus on arm swings (abduction and adduction) (2 x 20 m), 3) angled
shuffles forward and backwards (2 x 20 m), 4) jog with dominant arm shoulder roll forward
and backwards (2 x 20 m), 5) skip with trunk rotation (2 x 20 m) and 6) skip with bilateral
shoulder roll forward and backwards (2 x 20 m). The exercises were then repeated with the
subject being instructed to slightly increase the intensity of the runs. These exercises took 4

minutes to complete.

Then dynamic stretches were performed, which consisted of three full body dynamic
stretches in the sagittal, frontal and transverse planes: a total of six movements with a total
of three repetitions per leg per movement. Specifically, the subjects started from a neutral

stance position and assumed the following ending positions:
Sagittal plane

e Anterior stretch: Unilateral anterior step with bilateral hands posterior overhead

reach.
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e Posterior stretch: Unilateral posterior step with bilateral hands and foot/ankle reach.

Frontal plane

e Lateral stretch: Unilateral hip abduction step with opposite side bilateral hands

overhead lateral reach.
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e Llateral stretch: Unilateral hip adduction step with opposite side bilateral hands

overhead lateral reach.

Transverse plane

e Hip external rotation: unilateral external rotation step with same side bilateral hands

rotational reach at shoulder height.
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Hip internal rotation: Unilateral internal rotation step with same side bilateral hands

rotational reach at shoulder height.
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Appendix VIII. Marker set study |
Foot (6 markers):

e Right posterior calcaneus (RCA)

e Left posterior calcaneus (LCA)

e Right 5" metatarsal head (RVMH)
e Left 5™ metatarsal head (LVMH)
e Right 1st metatarsal head (RFM1)

e |Left 1st metatarsal head (LFM1)

Shank (12 markers):

e Clusters named from superior to inferior
1. Right shank (RSK1, RSK2, RSK3, RSK4) - #1 proximal and anterior, #3 distal and
anterior
2. Left shank (LSK1, LSK2, LSK3, LSK4) - #1 proximal and anterior, #3 distal and
anterior
e Right lateral malleolus (RFAL)
e Left lateral malleolus (LFAL)
e Right medial malleolus (RTAM)
o Left medial malleolus (LTAM)

Thigh (14 markers):

e Right greater trochanter (RFT)
e Left greater trochanter (LFT)
e Clusters named from superior to inferior
3. Right thigh (RTH1, RTH2, RTH3, RTH4) - #1 proximal and anterior, #3 distal and
anterior
4. Leftthigh (LTH1, LTH2, LTH3, LTH4) - #1 proximal and anterior, #3 distal and
anterior
e Right lateral condyle (RFLE)
o Left lateral condyle (LFLE)
e Right medial condyle (RFME)
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Left medial condyle (LFME)

Pelvis (6 markers):

Right anterior superior iliac spine (RIAS)
Left anterior superior iliac spine (LIAS)
Right posterior superior iliac spine (RIPS)
Left posterior superior iliac spine (LIPS)
Right lateral pelvis (RPEL)

Left lateral pelvis (LPEL)

Thorax (4 markers):

Spinous process C7 (CV7)
Spinous process T10 (TV10)
Superior jugular notch (SJN)

Sternum xiphisternal joint (SXS)

Head (7 markers):

Based upon existing helmet in the lab and markers needed for the definition of the head

segment the following are to be used:

Right anterior head (RAH)
Left anterior head (LAH)
Right lateral head (RLH)
Left lateral head (LLH)
Right posterior head (RPH)
Left posterior head (LPH)
Aphex skull (SAS)

Upper arm segment (14 markers):

Right acromion (RAC)
Left acromion (LAC)
Right rotation center shoulder joint (RSHO)

Left rotation center shoulder joint (LSHO)
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Right humeral lateral epicondyle (RHLE)

Left humeral lateral epicondyle (LHLE)

Right humeral medial epicondyle (RHME)

Left humeral medial epicondyle (LHME)

Right upper arm (RUA1, RUA2, RUA3) - #1 proximal and anterior, #2 proximal and
posterior

Left upper arm (LUA1, LUA2, LUA3) - #1 proximal and anterior, #2 proximal and

posterior

Lower arm segment (10 markers):

Segment coordinate system not calculated for hand reaches.

Right radial styloid process (RRSP)

Left radial styloid process (LRSP)

Right ulnar styloid process (RUSP)

Left ulnar styloid process (LUSP)

Right lower arm (RLA1, RLA2, RLA3) - #1 proximal and anterior, #2 proximal and
posterior

Left lower arm (LLA1, LLA2, LLA3) - #1 proximal and anterior, #2 proximal and

posterior

Hand (2 markers):

Segment coordinate system not calculated for hand reaches. Markers used to define

position of max hand reach distance.

Dorsal surface of the head right 5" metacarpal (RHL5)

Dorsal surface of the head left 5™ metacarpal (LHL5)
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Appendix IX. Validation of the multiple linear regression of HSEBT outcome measurements

Initial model (75%)

Validation model (25%)

Test B SEB B R? B SEB B R?
R45 Step 1

Constant 11.96 7.22

Wingspan .39 .041 59¥** 346

R45 Step 2

Constant -3.93 8.45

Wingspan 47 .047 B2***

Sex 3.07 92 24%*% 388 (AR?=.042)

R45 Step 3 Forced entry

Constant .62 8.58 13.85 14.944

Wingspan .58 .069 89*** .30 .14 .52%*

Sex 3.1 .90 24%** 2.27 1.73 .22

Leg length -.279 12 -.22% .407 (AR?=.019) .135 .242 12 .288
L45 Step 1

Constant 22.71 9.69

Wingspan .26 .055 34¥** 117

L45 Step 2 Forced entry

Constant -3.86 11.13 13.00 17.11

Wingspan .40 .062 53¥** .32 .095 .50%*

Sex 5.15 1.21 35%** .206 (AR?=.089) .93 2.02 .068 .215
L135 Step 1

Constant 87,38 .83

Activity level -3.86 1.67 -.18* .033

L135 Step 2 Forced entry

Constant 59.67 12.86 44.16 19.64

Activity level -4.64 1.69 -22%* -7.35 2.71 - A%

Leg length 32 .15 17* .060 (AR%=.027) | .49 .22 .34* 134
R135 Forced entry

Constant 64.68 1.08 66.07 1.69

Activity level -7.21 2.17 -.25%* .065 -14.20  3.17 -.53%*x .28
RROT Forced entry

NE NE

LROT Forced entry

NE NE

Note: B = Unstandardized coefficient; B = Standardized beta coefficient; SE = Standard error; R? = Coefficient of determination; NE = No
variables entered into the equation; R45 = Right anterolateral (45°) reach; R135 = Right posterolateral (135°) reach; L135 = Left

posterolateral (135°) reach; L45 = Left anterolateral (45°) reach; RROT = Right rotational reach; LROT = Left rotational reach. Statistical
significance denoted as: *p<.05, **p<.01 and ***p<.001.














