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Entropic half-life (ENT½) and statistical persistence decay (SPD) was recently introduced as measures of
time dependency in stride time intervals during walking. The present study investigated the effect of data
length on ENT½ and SPD and additionally applied these measures to stride length and stride speed inter-
vals. First, stride times were collected from subjects during one hour of treadmill walking. ENT½ and SPD
were calculated from a range of stride numbers between 250 and 2500. Secondly, stride times, stride
lengths and stride speeds were collected from subjects during 16 min of treadmill walking. ENT½ and
SPD were calculated from the stride times, stride lengths and stride speeds. The ENT½ values reached
a plateau between 1000 and 2500 strides whereas the SPD increased linearly with the number of
included strides. This suggests that ENT½ can be compared if 1000 strides or more are included, but only
SPD obtained from same number of strides should be compared. The ENT½ and SPD of the stride times
were significantly longer compared to that of the stride lengths and stride speeds. This indicates that the
time dependency is greater in the motor control of stride time compared to that of stride lengths and
stride speeds.
� 2020 The Authors. Published by Elsevier Ltd. This is an open access article under theCCBY license (http://

creativecommons.org/licenses/by/4.0/).
1. Introduction

A key feature of human walking is the time dependency in the
stride-to-stride fluctuation of stride time (ST), stride length (SL)
and stride speed (SS) (Hausdorff et al., 1995; Hausdorff et al.,
1996; Terrier and Deriaz, 2011, 2012; Terrier et al., 2005). Several
studies have characterized this time dependency using entropy
measures and detrended fluctuation analysis (DFA) to improve
the fundamental understanding of walking motor control as well
as describing the impairment induced by various diseases (Afsar
et al., 2016; Alkjaer et al., 2015; Gates and Dingwell, 2007;
Hausdorff, 2009; Hausdorff et al., 1997; Kaipust et al., 2012).
Entropy measures quantify the regularity of a time series and
among several different entropy algorithms, and sample entropy
(SaEn) is the most popular one (Yentes et al., 2013). Additionally,
DFA returns a scaling exponent describing the degree of statistical
persistence or anti-persistence in a time series. However, while
both methods quantify different characteristics of the time depen-
dency in a time series, they do not return an output on an inter-
pretable physiological or physical time scale. Thus, comparing
the outcomes to other biomechanical or neurophysiological mea-
surements is difficult.

Recently, Von Tscharner and colleagues introduced entropic
half-life (ENT½) which estimates the elapsed time until the pre-
dictability in a time series is halved (Baltich et al., 2014; Federolf
et al., 2015; Zandiyeh and Von Tscharner, 2013). ENT½ is based
on consecutive calculations of SaEn on rescaled versions of the
original time series with increasing randomization (Zandiyeh and
Von Tscharner, 2013). When applied to movement variables, ENT½
quantifies how long time elapses before the influence of previous
movements on future movements has reduced substantially.
Recently, we applied ENT½ to ST intervals recorded during over-
ground and treadmill walking in order to estimate the time depen-
dency of human gait in an interpretable scale (number of strides)
(Raffalt and Yentes, 2018). We observed that the predictability in
ST intervals was halved within 11 and 14 consecutive strides dur-
ing overground and treadmill walking, respectively, and with no
significant differences between the two conditions (Raffalt and
Yentes, 2018). In addition to ENT½, we introduced statistical per-
sistence decay (SPD) which is based on the same rescaling method
and applies DFA to estimate the deterioration of statistical persis-
tence over time in a time series. We observed that the statistical
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persistence in ST intervals was deteriorated into uncorrelated
noise within ~50 strides during walking (Raffalt and Yentes, 2018).

A critical aspect when applying DFA and SaEn is the number of
included data points and comparison of results between studies
with different number of data points should be made with caution
(see Eke et al. (2000), Eke et al. (2002), Delignieres et al. (2005),
Yentes et al. (2013), Yentes et al. (2018), Marmelat and
Meidinger (2019)). Furthermore, the outcomes estimate the rela-
tive degree of regularity and persistency/anti-persistency, respec-
tively. In contrast, ENT½ and SPD return outputs in an
interpretable scale (e.g. the number of strides (Raffalt and Yentes,
2018) or miliseconds (Baltich et al., 2014)). It is crucial to the
exploration of this advantage and future comparisons with other
biomechanical or neurophysiological measurements as well as
between studies using different data lengths that any potential
data length bias can be validly adjusted for. Thus, the main purpose
of the present study was to investigate the effect of data length on
ENT½ and SPD and verify that the both methods can validly be
used on data sets of various lengths. We included the ST data
recorded during treadmill walking in our previous study and re-
analyzed it for time series lengths of 250–2500 strides (Raffalt
and Yentes, 2018). Furthermore, to verify these results we analyzed
ST data recorded from a similar subject group during treadmill
walking but of a shorter duration. For the methods to be valid,
the analyses of the two data sets should reveal similar results.

In our previous study, we applied ENT½ and SPD to ST intervals.
However, the dynamics of stride-to-stride fluctuations depends on
the variable in question (e.g. ST, SL and SS) suggesting that differ-
ent control strategies are utilized for different variables (Decker
et al., 2013; Dingwell et al., 2010). Thus, it has been observed that
the fluctuations in SS during treadmill walking exhibit an uncorre-
lated noise-like pattern in contrast to ST and SL which shows sta-
tistical persistence (Decker et al., 2013; Dingwell and Cusumano,
2015; Dingwell et al., 2010; Terrier and Deriaz, 2012). The sec-
ondary purpose of the present study was to investigate ENT½
and SPD in ST, SL and SS fluctuations during treadmill walking.
Additionally, to compare the present study with previously
reported results, DFA was calculated on these time series.
2. Method

The present study included a reanalysis of data from two sepa-
rate experiments. The first experiment has been described by
Raffalt and Yentes (2018) and Yentes et al. (2018) and the second
experiment has been described in Wiens et al. (2017).

2.1. Subjects

The first experiment included 14 subjects with an age
(mean ± SD) of 25.0 ± 4.2 years, body mass of 69.4 ± 16.9 kg and
height of 170.8 ± 11.9 cm, and the second experiment included
10 subjects with an age of 21.1 ± 1.5 years, body mass of 71.6 ± 10
.0 kg and height of 172.8 ± 11.1 cm. The subjects had no diagnosed
lower limb injuries within the past years and no neurological dis-
orders. Upon arrival to the laboratory, the experimental protocol
was explained to the subjects and they gave their informed written
consent to participate. The two studies were approved by the Insti-
tutional Review Board of the University of Nebraska Medical Cen-
ter and were carried out in accordance with the approved
guidelines.

2.2. Experimental setup

During the first experiment, the subjects walked for one hour on
a treadmill (AMTI, Watertown, MA) at their self-selected preferred
walking speed. This speed was established by repeatedly increas-
ing and decreasing the speed of the treadmill above and below
what was reported as most comfortable by the subject. Foots-
witches (TrignoTM 4-channel FSR Sensor, Delsys Inc., Natrick, MA)
placed under both heels which recorded heel strikes at 148 Hz.
No objective measures of fatigue development were obtained,
however, none of subjects reported fatigue to influence their gait.

During the second experiment, the subjects walked for 16 min
on a treadmill (Bertec, Columbus, Ohio) at their self-selected pre-
ferred walking speed (determined as in the first experiment). The
three dimensional position of reflective markers placed on the heel
and the first metatarsal on both feet was recorded at 100 Hz by
eight infrared cameras (Vicon, Oxford, UK).

2.3. Data analysis

For the first experiment, heel strikes were identified from the
footswitches and the time between consecutive heel strikes on
the right leg was calculated for 2500 strides for each subject. Addi-
tional ST interval time series were created with 250, 500, 750,
1000, 1250, 1500, 1750, 2000, 2250 and 2500 strides included.
For the second experiment, heel strike was identified as a local
maximum in the heel marker data in the anterior-posterior direc-
tion indicating a change from a forward motion during the end of
swing phase to a backward motion during the contact phase (Zeni
et al., 2008). ST, SL and SS were extracted from the individual num-
ber of strides completed during the walking trial. ENT½ and SPD
were calculated from the ST interval time series from both exper-
iments and additionally, from the SL and SS intervals extracted
from the second experiment.

2.3.1. Entropic half-life
The method of ENT½ has been described in details elsewhere

(Baltich et al., 2014; Raffalt and Yentes, 2018; Zandiyeh and Von
Tscharner, 2013) and briefly below. The original ST interval time
series was gradually randomized through successive reshaping
where the first reshape time series (RTS) was equal to the original
time series (e.g. [1-2-3-4-5-6-7-8-9-10-11-12]). The second and
third RTS were then reorganized for the every second and third
data point, respectively (e.g. [1-3-5-7-9-11-2-4-6-8-10-12] and
[1-4-7-10-2-5-8-11-3-6-9-12]), and so on. The time series was
reshaped 100 times where each reshaping resulted in an increased
distance between subsequent strides. SaEn was calculated
with m = 2 and r = 0.2 on each RTS and normalized according to
equation (1):

Normalized SaEn ¼ SaEnRS � SaEnOR

SaEnRAN � SaEnOR
ð1Þ

where SaEnRS was the SaEn of the reshaped time series, SaEnOR was
the SaEn of the original time series and SaEnRAN was the average
SaEn of 50 randomized time series created by a random permuta-
tion of the original time series. Finally, the normalized SaEn values
from the RTS were plotted in a semi logarithmic plot as a function of
stride number. ENT½ was identified as the stride number corre-
sponding to the first normalized SaEn value above 0.5 (Raffalt and
Yentes, 2018). To verify parameter consistency, the ENT½ was cal-
culated withm = 2 and 3 and r = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7 and 0.8.

2.3.2. Statistical persistence decay
SPD uses the same RTS as the ENT½ and calculates the scaling

exponent using DFA with a box size range of [2,N] and a scaling
region of 10–30 as previously described (Raffalt and Yentes,
2018). Critical limits were established using equation (2):

Critical limits ¼ laRAN � 2 � raRAN ð2Þ



Fig. 1. The relationship between strides and ENT½with linear, quadratic and power
regression fit. 95% confidence and 95% prediction bands are added.
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where laRAN and raRAN are the average scaling exponent and corre-
sponding standard deviation of 100 random time series created by a
random permutation of the time series. As the order of the RTS
becomes increasingly randomized with each rescaling, the statisti-
cal persistence changed towards the critical limit. The number of
strides corresponding to the first scaling exponent within the criti-
cal limit was identified as the SPD. Thus, SPD indicates a change in
the time series fluctuations from persistence/anti-persistence
towards uncorrelated noise.

2.3.3. Detrended fluctuation analysis
Detrended fluctuation analysis was applied to calculate the

scaling exponent from the ST, SL and SS time series of the second
experiment. Scaling exponents above 0.5 indicate statistical persis-
tency, scaling exponents below 0.5 indicate statistical persistency
and scaling exponents close to 0.5 indicate an uncorrelated struc-
ture in the time series in question.

2.3.4. Theoretical signals
The present study also included the analysis of four theoretical

signals (brown noise, pink noise, white noise and a Lorenz attractor
signal) of 10 different lengths from 250 to 2500 data points. The
analysis and results are presented in the supplementary material
and summarized in the results and discussion.

2.4. Statistics

To investigate the effect of included data points on the ENT½
and SPD, a one-way ANOVA for repeated measures with time series
length as independent factor with 10 levels (i.e. 10 different time
series lengths) was applied to the results from the first experiment.
In case of a significant effect of time series length, the nature of the
relationship between the dependent variables and time was estab-
lished by a linear, quadratic and power regression analysis, respec-
tively. The best fitting regression equation was determined by the
size of the percentage of variance explained by the regression (r2)
and reported with corresponding 95% confidence intervals, 95%
prediction intervals and p-value. To validate the regression equa-
tions for ENT½ and SPD extracted from the first experiment, they
were used to predict the ENT½ and SPD values using the individual
number of strides from the second experiment. The predicted val-
ues were then compared to the calculate values and the level of
agreement was evaluated by a Bland-Altman plot. Additionally,
to investigate the effect of using either ST intervals, SL or SS on
the ENT½, SPD and scaling exponent, a repeated measures ANOVA
on ranks was applied with a Student-Newman-Keuls post hoc test.
Level of significance was set at 5%. All calculations were performed
in Sigmaplot (Systat Software, Inc. 2014, version 13.0, Germany).
3. Results

3.1. Time series length

There was a significant effect of the number of strides on the
ENT½ from the first experiment (F = 3.835, p < 0.001). The post
hoc test revealed that the ENT½ at 250 strides were significantly
lower than the ENT½ at 2500, 2250, 2000, 1750 and 1250 strides
but no other differences in ENT½ were observed (Fig. 1). The rela-
tionship between the number of strides and ENT½ could be
described with significant linear, quadratic and power law rela-
tionships (Table 1). The percentage of variance for the three regres-
sion analyses was low (<5%) but highest for the quadratic
regression (3.8%).

There was a significant effect of the number of strides on the
SPD from the first experiment (F = 36.490, p < 0.001). The SPD
increased with increase in strides and the post hoc test revealed
a general pattern of a significant increase in SPD when the ana-
lyzed number of strides was increased with 750 strides (Fig. 2).
The relationship between the number of strides and SPD could
be described with significant linear, quadratic and power law rela-
tionship (Table 1). The percentage of variance for the three regres-
sion analyses was approximately 57%.

3.2. Predictions of ENT½ and SPD

The Bland-Altman plots for the calculated and predicted ENT½
and SPD showed moderate agreement both between the calculated
and the predicted ENT½ and between the calculated and the pre-
dicted SPD with all data points but one within the mean ± 1.96S
D band (Fig. 3). The mean offset of ENT½ was approximately 0
strides and 5 for the SPD, however, with skewness in the data point
distribution.

3.3. Stride-to-stride fluctuation variables

The ENT½, SPD and scaling exponent of the ST, SL and SS in the
second experiment are presented in Table 2. There was an effect of
variable (ST, SL and SS) on the ENT½ (Chi-square = 11.03,
p = 0.003), SPD (Chi-square = 15.24, p < 0.001) and scaling expo-
nent (Chi-square = 20.00, p < 0.001). The post- hoc test revealed
that ENT½ was significantly higher in ST variable compared to SL
and SS variables (Fig. 4). The SPD and the scaling exponent were



Table 1
Linear, quadratic and power regression analyses of the relationship between strides and ENT and between strides and SPD.

Entropic half-life

Regression type Linear Quadratic Power
Equation y = ax + b y = ax2 + bx + c y = axb

r 0.1975 0.2230 0.2111
r2 0.0390 0.0497 0.0446
r2 adjusted 0.0320 0.0359 0.0376
p-value 0.0193 0.0304 0.0123

Coefficients
a ± SEM 0.0048 ± 0.0020 �3.948�10�6 ± 3.173�10�6 0.4047 ± 0.7094
b ± SEM 5.414 ± 3.119 0.0156 ± 0.009 0.4743 ± 0.2359
c ± SEM NA �0.0143 ± 5.3595 NA
Statistical persistence decay

Regression type Linear Quadratic Power
Equation y = ax + b y = ax2 + bx + c y = axb

r 0.7606 0.7608 0.7607
r2 0.5785 0.5788 0.5786
r2 adjusted 0.5755 0.5726 0.5755
p-value < 0.0001 < 0.0001 < 0.0001

Coefficients
a ± SEM 0.021 ± 0.0015 6.493�10�7 ± 2.4251�10�6 0.0105 ± 0.009
b ± SEM �1.8143 ± 2.3712 0.0193 ± 0.0068 1.0853 ± 0.1127
c ± SEM NA �0.9214 ± 4.0963 NA

Fig. 2. The relationship between strides and SPD with linear, quadratic and power
regression fit. 95% confidence and 95% prediction bands are added.
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significantly higher for the ST variable compared to SL and SS vari-
ables. Additionally, the SPD and scaling exponent were signifi-
cantly higher for the SL variable compared to the SS variable.
3.4. Parameter consistency

The test for parameter consistency of the entropic half-life cal-
culated from the second experiment showed that while m = 3
appeared more robust compared to m = 2 for ST, both m = 2 and
3 was equally affected by changes in the r parameter for SS
(Fig. 5). For SL m = 2 was more robust at low r values and m = 3
was more robust at high r values.

3.5. Theoretical signals

The analyses presented in the supplementary material showed
that there was no effect of time series length on the ENT½ when
applied to the theoretical signals. In contrast, SPD increased for
brown noise, pink noise and the Lorenz attractor signal with
increasing time series length while no effect of time series length
was observed for the white noise signal.

4. Discussion

The main purpose of the present study was to investigate the
effect of data length on the calculation of ENT½ and SPD in gait
data and verify that both methods can validly be used on data sets
of different lengths. Furthermore, the present study aimed at
applying the two methods to SL and SS time series in addition to
the ST intervals time series previously presented (Raffalt and
Yentes, 2018). Recommendations based on the present study are
summarized in Table 3.

ENT½ and SPD quantify the time dependency and while ENT½
is related to the predictability in the signal, the SPD is related to
the statistical persistency or anti-persistency of the signal. Apply-
ing SaEn and DFA on each reshaped time series enables assessment
of how long time elapses before information from previous data
points no longer affect future data points. When applied to random
signals with no correlation between data points, both measures
return very low values and, when applied to brown noise, pink
noise or a Lorenz attractor signal, the ENT½ and SPD are signifi-
cantly higher, indicating that these signals have greater time
dependency (see Supplementary material and (Raffalt and
Yentes, 2018). When applied to gait, these methods quantify how
information from previous completed strides is influencing future



Fig. 3. Bland-Altman plots of the calculated ENT½ and SPD and the predicted ENT½ and SPD. ENT½: Bias ± SD [95% confidence intervals] = �0.251 ± 14.4 [�11.61 – 11.11],
limits of agreement [lower and upper limits 95% confidence intervals] = �28.50 – 28.00 [lower limit: �48.17 – �8.82, upper limit: 8.32 – 47.67]. SPD: Bias ± SD [95%
confidence intervals] = �4.519 ± 4.217 [�12.78 – 3.75], limits of agreement [lower and upper limits 95% confidence intervals] = �7.59 – �1.44 [lower limit: �18.11 – �7.46,
upper limit: �1.58 – 9.07].
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strides. Low values indicate that limited information from the cur-
rent stride will be influencing the next stride. Thus, each new stride
can be considered a completely new task, which would raise the
demand for cognitive processing of sensory information. In con-
trast, higher values of ENT½ and SPD indicate that considerable
information from previous strides influencing future strides.
4.1. Effect of data series length

Similar to other nonlinear tools, both ENT½ and SPD were
affected by the number of included data points (in this case the
number of strides) (Marmelat and Meidinger, 2019; Yentes et al.,
2018; Yentes et al., 2013). The outcome of both methods increased
with increasing number of included strides. While the quadratic
relationship between strides and ENT½ only explained a very
limited amount of the variance, the linear relationship between
strides and SPD explained a considerable amount.

From the first experiment, the ENT½ of the ST increased from 3
strides when using 250 strides to 14 strides when including 2500
strides. When 1000 strides or more were included, the ENT½
reached a plateau and did not change significantly. This would sug-
gest that including 1000 strides or more would ensure a robust
valid estimation of the ENT½. This observation also validates the
conclusion reached in our previous study, where 2500 strides were
included and the predictability in ST was halved within 14 strides
during treadmill and rule out the possibility that the results was
biased by the number of included strides. Furthermore, this obser-
vation has methodological implications as including 1000 strides
would require relative long experimental trials. Considering an
average ST of 1 s, this would require more than 16 min of walking.
While this should not constitute a problem for healthy individuals,



Table 2
Outcome from the second experiment.

Subject
number

Number of
strides

Entropic half-life Statistical persistence decay Scaling exponent

Stride
time

Stride
length

Stride
speed

Stride
time

Stride
length

Stride
speed

Stride
time

Stride
length

Stride
speed

1 690 6 3 3 16 1 1 0.77 0.65 0.55
2 769 4 3 5 18 2 1 1.00 0.84 0.53
3 820 7 5 3 22 4 1 1.14 0.91 0.47
4 848 5 4 3 24 3 2 1.07 0.98 0.75
5 810 NC NC 3 23 23 1 1.19 0.98 0.39
6 859 7 3 4 10 11 1 1.05 0.86 0.33
7 851 7 3 4 20 1 1 0.92 0.42 0.22
8 621 6 4 3 15 1 1 0.87 0.61 0.24
9 771 48 46 3 22 22 1 1.45 1.16 0.54
10 816 22 17 2 22 22 2 1.23 1.17 0.77

Mean 785.5 12.4 9.8 3.3 19.2 9 1.2 1.07 0.86 0.48
Median 813 7.0 4.0 3.0 21 3.5 1 1.06 0.88 0.50
SD 76.7 14.4 14.3 0.8 4.4 9.7 0.4 0.20 0.24 0.19
Min 621 4.0 3.0 2.0 10 1 1 0.77 0.42 0.22
Max 859 48.0 46.0 5.0 24 23 2 1.45 1.17 0.77

NC: could not be calculated.

Fig. 4. Entropic half-life, statistical persistence decay and scaling exponent for the stride time, stride length and stride speed time series from the second experiment.

Fig. 5. Parameter consistency of r and m input parameter for stride time, stride length and stride speed time series.
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Table 3
Recommendations.

Recommendations for ENT½ and SPD applied to ST, SL and SS

Included a minimum of 1000 consecutive strides for the quantification of ENT½ in walking
ENT½ studies with a different number of strides can be compared if the aforementioned recommendation is followed
SPD values from studies with a different number of included strides should be compared with caution
Baseline values of both ENT½ and SPD should be established through multiple pre intervention trials
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it could be a challenge for individuals with walking impairments.
While it could be tempting to solve this limitation by concatenate
several shorter trials (e.g. 100 strides) into one long trial, we do not
recommend this. Concatenation of shorter walking trials would
disrupt the inter-stride correlation and potentially bias the results.
A recent study observed questionable reliability when applying
SaEn on concatenated time series (Orter et al., 2019).

For the SPD no plateau was reached with increasing number of
included strides. Thus, as more information (i.e. strides) is included
in the formation of statistical persistency, the more ‘disruption’ is
needed to remove this. This apparent data point-dependency of
the SPD suggests that the robustness of the statistical persistency
can be quantified as the slope of the data-point vs SPD plot. The
steeper the slope, the more disruption is needed to interfere with
the statistical persistency. It is beyond the scope of this study to
determine if this statistical persistence robustness can be manipu-
lated by altered task constraints and future studies should explore
this. However, based on the results of the present study, comparing
SPD values calculated from different numbers of data points would
be ill-advised.

The results ENT½ and SPD on the theoretical signals presented
in the supplementary material were well in line with the observa-
tions on the ST intervals and emphasize the importance of using
equal time series length when applying SPD.

4.2. Entropic half-life and statistical persistence decay in different data
sets

The regression equations derived from the first experiment per-
formed moderately in predicting the ENT½ and SPD outcome from
the second experiment, indicating that results from two different
experiments should be compared with caution unless the same
number of strides is used. One reason for the moderate predictions
could be the considerable inter-subject variation in both ENT½ and
SPD but also the limited number of observations. The standard
deviation of ENT½ from the first experiment when including
1000–2500 strides ranged from 15 to 22 strides. Equally, the stan-
dard deviation of ENT½ from the second experiment when on aver-
aged 785 strides were included was 14.4. The standard deviation of
SPD increased from 9 to 20 strides when 1000 and 2500 strides
were included, respectively. Acknowledging this considerable
inter-subject variation, it is advisable to use multiple trials before
and after interventions or between changing test conditions for
each subject to achieve a valid estimation of ENT½ and SPD when
conducting a repeated measures design study. This is well in line
with recommendations made for other commonly used nonlinear
tools in gait research (Raffalt and Yentes, 2018).

4.3. Fluctuations in stride-to-stride characteristics

The results of the DFA revealed that both ST and SL fluctuations
exhibited statistical persistency and SS fluctuations exhibited sta-
tistical anti-persistency confirmed the observations of previous
studies (Decker et al., 2013; Dingwell et al., 2010). The ENT½
results revealed that significantly more strides were completed
before the influence of previous ST intervals on future ST intervals
was reduced substantially compared to that of SL intervals.
Furthermore, relative few strides were required to remove the
influence of previous SS intervals on future SS intervals. Similar
results were observed for the SPD. Combined with the DFA results,
this indicates that structure of the ST and SL fluctuations where a
long stride is statistically likely to be followed by an even longer
stride also possessed a long time dependency. In contrast, the
structure of the SS fluctuations where a long stride is statistically
likely to be followed by shorter stride possessed a short time
dependency. In agreement with previous studies (Decker et al.,
2013; Dingwell et al., 2010), this suggests that control of SS during
treadmill walking rely on rapid adjustments in order to maintain a
constant position in the middle of the treadmill belt.
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