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Summary

Background. Lifestyle therapy with resistance training is a potent measure to counteract age-related
loss in muscle strength and mass. Unfortunately, many individuals fail to respond in the expected
manner to such treatment. This phenomenon is particularly common among older adults and those
with chronic diseases such as chronic obstructive pulmonary disease (COPD) and may involve
endocrine characteristics such as low vitamin D status and low-grade inflammation, as well as
suboptimal training protocols.

Aims. The Granheim COPD Study consisted of two studies; a preparatory study and a RCT study.
COPD is associated with impaired cardiorespiratory capacity, but it remains uncertain if this affects
muscular performance. Therefore, in the preparatory study, the aim was to compare muscular
performance in three resistance exercises of the legs involving different amounts of active muscle
mass in COPD and healthy control (Healthy) persons (Paper ). In the RCT study, the aim was to
investigate the effects of 12 weeks of vitamin D3 supplementation-only, followed by 13 weeks of
combined vitamin D3 supplementation and resistance training, on muscle functional and biological
training-associated adaptations in a mixed group of older adults, and also to compare the muscle
functional and biological effects of resistance training for COPD and Healthy, as well as high-load vs
low-load resistance training (Paper lI-IV).

Participants and methods. In the preparatory study, 11 COPD (GOLD grade Il/Ill; forced expiratory
volume in first second (FEV:1), 53+14% of predicted value; age 6618 years) and 12 Healthy (FEV;,
117+12% of predicted value; age 62+7 years) participants performed tests of muscular performance
in three resistance exercises with different complexity and physiological demand; (i) one-legged
knee extension, (ii) one- and (iii) two-legged leg press. In the RCT study, 95 older individuals (56-77
years) were randomly assigned to receive either vitamin Ds or placebo supplementation, stratified
by health status (COPD, n=24; Healthy, n=71) and sex. The intervention was initiated by 12 weeks of
supplementation-only (two weeks with 10 000 international units (IU) vitamin Dy'day™, thereafter 10
weeks with 2 000 IUday™?), followed by 13 weeks of combined supplementation (2 000 IU-day?) and
supervised whole-body resistance training (twice weekly). In the training sessions, leg exercises were
performed unilaterally, with one leg randomized to high-load training (10 repetitions maximum; RM)
and the contralateral leg randomized to low-load training (30RM). This unilateral training protocol
served two purposes: i) to circumvent issues relating to conduction of training with two-legged
exercises and ii) to investigate the relative efficacy of two different training modalities. Outcome
measures included multiple assessments of muscle strength (nvarianies=7), endurance performance
(Nvariables=6), Muscle mass (Nvariables=2), Muscle quality, muscle biology (m. vastus lateralis; muscle fiber
characteristics, RNA content including transcriptome) and health-related variables (body
composition, lung function, blood, health-related quality of life). For a subset of participants (COPD,
n=11; Healthy, n=12), outcome measures also included mitochondrial quantity (citrate synthase
activity) and respiratory capacity. For core outcome domains (muscle strength/mass/quality and
lower-limb/whole-body endurance performance), weighted combined factors were calculated from
the range of singular assessments.

Main results. In the preparatory study, muscular performance was impaired for COPD in two-legged
leg press compared to Healthy, but not in one-legged leg press, suggesting that the cardiorespiratory



limitations inherent to the disease seems to negatively influence the performance in resistance
exercises involving larger amounts of active muscle mass (>one-legged leg press) (Paper ). In the RCT
study, 13 weeks of resistance training increased muscle strength (13%), muscle mass (9%) and
endurance performance (one-legged, 23%; whole-body, 8%), assessed as weighted combined
factors, and were associated with beneficial changes in health variables (e.g. visceral fat, -6%; low-
density lipoprotein levels, -4%) and muscle tissue characteristics such as muscle fiber type
proportions (e.g. lIX, -3%-points), myonuclei-fiber™ (30%), total RNA/rRNA abundances (15%/6-19%),
and transcriptome profiles (e.g. 312 differentially expressed genes). Vitamin D; supplementation did
not affect training-associated changes for any of the main outcome domains, despite robust
increases in serum 25(0OH)D levels (A49% vs placebo) (Paper II). In secondary analyses, resistance
training with vitamin D3 supplementation resulted in higher expression of gene sets involved in
vascular functions in muscle tissue and larger strength gains in participants with high fat mass,
compared to resistance training-only (Paper I). In the RCT study, COPD participants displayed well-
known disease-related pathophysiologies compared to Healthy at baseline, including impaired lung
function, higher levels of systemic low-grade inflammation (serum c-reactive protein levels), lower
muscle mass and functionality, and muscle biological aberrancies such as lower mitochondrial
oxidative capacity, higher proportions of muscle fiber type IIA and 11X and genome-wide differences
in transcriptome profiles (differential mRNA expression of 227 genes) (Paper llI-IV). However, despite
these adversities, COPD participants showed similar or larger improvements to resistance training
for health and muscle functional and biological variables compared to Healthy (Paper llI-IV). 10RM
and 30RM training were associated with similar ratings of perceived exertion. When combining the
data from the two study clusters (i.e. COPD and Healthy), 30RM training led to more pronounced
increases in lower-body muscle mass compared to 10RM, while 10RM training led to a larger fiber
type conversion from 11X to lIA and larger improvements in cycling economy compared to 30RM, but
this was not associated with differential changes in muscle strength and muscle performance
between the two exercise modalities. Furthermore, 10RM resistance training was associated with
improved ability to maintain bone mineral density compared to 30RM resistance training.

Conclusions. Vitamin D; supplementation did not affect muscular responses to resistance training.
This rejects the notion that vitamin D3 supplementation is necessary to obtain adequate muscular
responses to resistance training in the general older population, at least for the enrolled clusters of
COPD and Healthy participants with mostly sufficient vitamin D levels at pre-RCT. Although COPD
participants showed clear functional and biological deviations compared to Healthy at baseline,
which previously has been speculated to be associated with impaired training responsiveness, they
did not show such impaired responses to resistance training in this training setting. Generally, low-
load resistance training was associated with larger lower-body muscle mass gains and similar muscle
strength and performance improvements compared to high-load resistance training, and can
therefore be advocated as an effective resistance training modality alternative for older adults.
Importantly, the beneficial effects of high-load resistance training on bone health, emphasizes that
resistance training programs for this population should include elements of such training. In general,
the training intervention was associated with pronounced health effects, emphasizing the potency of
resistance training for preventing/relieving sarcopenia in the general older population and for
improving COPD-specific pathophysiologies.



Sammendrag

Bakgrunn. Styrketrening er et effektivt livsstilstiltak for & motvirke aldersrelatert tap av muskelstyrke
og -masse. Effektene av slik type behandling ser imidlertid ut til & vaere av individuell karakter hvor
flere ikke oppnar betydningsfulle fysiske forbedringer. Dette fenomenet er spesielt vanlig blant eldre
personer og de med kroniske sykdommer som kronisk obstruktiv lungesykdom (KOLS). Det er
tidligere foreslatt at dette kan settes i sammenheng med bl.a. hormonelle variabler som lav vitamin
D-status, systemisk inflammasjon og suboptimale treningsprotokoller.

Formdl. The Granheim COPD Study bestod av to studier; en forberedende studie og en RCT-studie.
KOLS er assosiert med redusert kardiorespiratorisk kapasitet, men det er forelgpig usikkert om dette
kan pavirke den muskulaere prestasjonen. | den forberedende studien var formalet derfor a
sammenligne muskulaer prestasjon blant KOLS-rammede (KOLS) og friske kontrollpersoner (Friske) i
tre styrketreningsgvelser for beina som involverer ulik mengde aktiv muskelmasse (Artikkel 1). | RCT-
studien var formalet a undersgke effektene av 12 uker med vitamin Ds-tilskudd, etterfulgt av 13 uker
med kombinert vitamin Ds-tilskudd og styrketrening, pa muskelfunksjons- og muskelbiologiske
treningstilpasninger i en gruppe med eldre personer med og uten KOLS (Artikkel Il), samt &
sammenlikne treningseffektene hos KOLS og Friske (Artikkel l11-IV), og undersgke betydningen av
hgymotstands- sammenlignet med lavmotstandstrening for de samme variablene.

Deltakere og metode. | den forberedende studien gjennomfgrte 11 personer med KOLS (GOLD grad
1I/111; ekspirasjonsvolum pa ett sekund (FEV1), 53114% av forventet verdi; alder 668 ar) og 12 Friske
(FEV1, 117£12% av forventet verdi; alder 6217 ar) deltakere tester av muskulaer prestasjon i tre
styrketreningsgvelser med ulik kompleksitet og fysiologiske krav; (i) ettbeins kneekstensjon, (ii) en-
og (iii) tobeins beinpress. | RCT-studien ble 95 eldre individer (56-77 ar) tilfeldig fordelt til 3 motta
enten vitamin Ds eller placebo-tilskudd. Dette ble stratifisert etter helsestatus (KOLS, n=24; Friske,
n=71) og kjgnn. Intervensjonen ble startet med 12 uker med kun tilskudd (to uker med 10 000
internasjonale enheter (IE) vitamin Dydag™, deretter 10 uker med 2 000 IE-dag™?), etterfulgt av 13
ukers kombinert tilskudd (2 000 IE-dag?) og veiledet helkropps styrketrening to ganger i uken. Under
treningsgktene ble beingvelsene utfgrt unilateralt, hvor ett tilfeldig bein trente med hgy motstand
(10 repetisjoner maksimum; RM), mens det kontralaterale beinet trente med lav motstand (30RM).
Denne unilaterale treningsprotokollen hadde to formal: i) 8 omga potensielle kardiorespiratoriske
begrensninger ved gjennomfgring av trening med tobeins styrkegvelser hos KOLS og ii) for & kunne
sammenligne effektene av to ulike styrketreningsmetoder. Utfallsvariablene inkluderte flere mal pa
muskelstyrke (Nvariabler=7), utholdenhetsprestasjon (Nvariabier=6), muskelmasse (Nvariabler=2),
muskelkvalitet, muskelbiologi (m. vastus lateralis; muskelfiberegenskaper, RNA-mengde med
transkriptom) samt helserelaterte variabler (kroppssammensetning, lungefunksjon, blodvariabler,
helserelatert livskvalitet). For et utvalg av studiedeltakere (KOLS, n=11; Friske, n=12) ble ogsa
mitokondriemengde (sitrat syntase-aktivitet) og mitokondriell respirasjonskapasitet malt. For RCT-
studiens kjerneutfallsdomener (muskelstyrke/-masse/-kvalitet og ettbeins og helkropps
utholdenhetsprestasjon), ble vektede kombinerte faktorer kalkulert utfra enkeltvariablene.

Hovedresultater. | den forberedende studien ble den muskulzere prestasjonen redusert for KOLS ved
tobeins beinpress, men ikke ved ettbeins beinpress. Dette tyder pa at de kardiorespiratoriske
begrensningene ved KOLS ser ut til @ pavirke den muskulaere prestasjonen negativt ved styrkegvelser
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som engasjerer en stgrre mengde aktiv muskelmasse (>ettbeins beinpress) (Artikkel 1). | RCT-studien
forte 13 ukers styrketrening til gkt muskelstyrke (13%), gkt muskelmasse (9%) og forbedrede
utholdenhetsprestasjoner (ettbeins utholdenhetsprestasjon, 23%; helkropps
utholdenhetsprestasjon, 8%). Treningsintervensjonen var ogsa assosiert med gunstige endringer i
helsevariabler (f.eks. visceralt fett, -6%; konsentrasjon av LDL-kolesterol, -4%) og
muskelkarakteristikker som endret muskelfibersammensetning (f.eks. andelen 11X, -3%-poeng), antall
muskelcellekjerner-fiber™ (30%), total RNA/rRNA-mengde (15%/6-19%) og endret transkriptom
(f.eks. 312 differensielt uttrykte gener). Tilskudd av vitamin D3 pavirket ikke treningsresponsen for
noen av kjerneutfallsdomenene, til tross for at vitamin Ds-supplementeringen fgrte til en solid
gkning i 25(0OH)D-serumniva (A49% sammenlignet med placebo) (Artikkel Il). | sekundaere analyser
ble det observert at styrketrening med vitamin Ds-tilskudd fgrte til et hgyere uttrykk av gensett
involvert i vaskulzere funksjoner i muskelvev, samt stgrre forbedring av muskelstyrke for deltakere
med hgy fettmasse, sammenlignet med styrketrening alene (Artikkel I1). Deltakerne med KOLS i RCT-
studien hadde kjente KOLS-relaterte patofysiologier ved studiestart. Dette inkluderte nedsatt
lungefunksjon, hgyere nivaer av systemisk, lavgradig betennelse (serumnivaer av c-reaktivt protein),
mindre muskelmasse og darligere muskelfunksjon, samt at de hadde muskelbiologiske forstyrrelser
som lavere mitokondriell, oksidativ kapasitet, stgrre andel muskelfibertype II1A og I1X og ulikt
transkriptom (227 gener hadde forskjellig mRNA-uttrykk mellom KOLS og Friske) (Artikkel HI-IV). Til
tross for disse biologiske uregelmessighetene, viste imidlertid studiedeltakerne med KOLS enten like
eller stgrre styrketreningseffekter for alle helse-, samt muskelfunksjonelle- og biologiske variabler
sammenlignet med Friske (Artikkel II-IV). 10RM og 30RM-styrketrening fgrte til lik grad av opplevd
anstrengelse. Ved a se pa resultatene etter sammenslaing av dataene fra de to studiegruppene
(KOLS og Friske), sa man at 30RM-styrketrening fgrte til stgrre gkning av underkroppsmuskelmasse
enn 10RM, mens 10RM-styrketrening fgrte til stgrre fibertypeovergang fra type IIX til lI1A, samt st@rre
forbedringer i arbeidspkonomi ved sykling. Disse ulike responsene mellom 10RM- og 30RM-
styrketrening fgrte imidlertid ikke til ulike forbedringer i muskelstyrke og muskulzr prestasjon
mellom de to treningsmetodene, men 10RM-styrketrening var assosiert med gkt evne til 3
opprettholde beinmineraltettheten sammenlignet med 30RM-styrketrening.

Konklusjoner. Tilskudd av vitamin D; pavirket ikke de muskulaere effektene av styrketrening. Dette
motbeviser at vitamin Ds-tilskudd er ngdvendig for 3 oppna optimale muskulzere effekter av
styrketrening for den generelle, eldre befolkningen, iallfall for disse studiedeltakerne som stort sett
hadde suffisiente vitamin D-nivaer ved studiestart. Selv om deltakerne med KOLS viste tydelige
funksjonelle og biologiske forskjeller sammenlignet med Friske pa variabler som tidligere har blitt
assosiert med a redusere treningseffekten, viste de ingen tegn til slik redusert effekt av styrketrening
i denne treningssettingen sammenliknet med effektene hos Friske. Generelt var lavmotstandstrening
(dvs.30RM) assosiert med stgrre gkning av muskelmasse i underkroppen, samt lignende effekter
som hgymotstandstrening (dvs. 10RM) for & forbedre muskelstyrke og muskulaer prestasjon.
Lavmotstandstrening kan derfor ses pa som et effektivt alternativ til hgymotstandstrening for den
eldre befolkning. Hgymotstandstrening pa sin side var assosiert med gunstige effekter pa

beinhelsen. Dette understreker at styrketreningsprogrammer for denne gruppen mennesker bgr
inneholde innslag av slik type trening. Generelt var treningsintervensjonen assosiert med gunstige
helseeffekter. Dette understreker potensialet til styrketrening for & forebygge og lindre utviklingen
av sarkopeni i den generelle eldre befolkningen, samt for & forbedre KOLS-spesifikke patofysiologier.
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Introduction

1 Introduction

Aging is associated with progressive loss of muscle strength and mass, accompanied by declines in
physical performance. In 2016, ~11 million Europeans (>65 years of age) were estimated to have
sarcopenia,® a formally recognized disease characterized by severe loss of muscle quantity and
quality.! Sarcopenia increases the likelihood of adverse health events such as falls, fractures, physical
disability, morbidity and mortality,>® which further fuels muscle deterioration, resulting in a spiraling
decrease in overall health and health-related quality of life.*® In Europe, the prevalence of
sarcopenia is expected to increase to at least ~19 million by 2045, coinciding with increasing
proportions of older adults, potentiated by suboptimal nutrition and increasing incidences of causal
morbidities such as systemic inflammatory diseases.”® For elderly to stay healthy, active and
independent, efficient lifestyle measures to prevent, treat and reverse sarcopenia are warranted.”®
To this end, lifestyle therapy with resistance training is an attractive, low-cost and potent
intervention.>¥® Unfortunately, the benefits of such interventions are not always consistent,
especially in the older population, with selected individuals and populations showing impaired
abilities to increase muscle strength and mass.>!2 At present, this training-response-spectrum is of

13,14

unknown causality, though it interdepends on factors such as genetics, epigenetics,'* and

1516 endocrine variables (e.g. vitamin

composites of the inner physiological milieu, including nutrition,
D),*8 and hallmarks of health such as low-grade chronic inflammation,*® oxygen saturation levels,?®
and potentially also the type of training program (e.g. training with different exercise loads).?! This
makes chronically diseased populations such as persons with chronic obstructive pulmonary disease
(COPD) particularly vulnerable, as they show deviant levels for several of the potential determinants
of training responses, and indeed typically display accelerated decay in muscle strength and
mass.?*?* To circumvent such issues, combinatorial lifestyle protocols targeting and correcting such
suboptimal factors may be necessary for adequate resistance training-induced muscle adaptations
to occur, thus ensuring efficient treatment for both preventing and rehabilitating sarcopenia.

Vitamin D and its impact on muscle function and biology. Over the last two decades, vitamin D
has emerged as a potential determinant of muscle functionality and biology.?* There seems to be a
robust relationship between heterogeneity in vitamin D status and traits such as physical

2527 and susceptibility to falling,?® suggesting a causal association between vitamin D

performance
and muscle functions, and potentially also the risk of developing sarcopenia.? Vitamin D
insufficiency is particularly prevalent in older adults, measured as 25-hydroxycholecalciferol
(25(0OH)D) serum levels <50 nmol-L?, and especially in older adults living in the Northern

3031 where cutaneous vitamin D synthesis is minuscule or absent during winter

Hemisphere,
months.32 Accordingly, exogenous vitamin D supplementation is gaining momentum as a potential
ergogenic aid for preventing and treating sarcopenia.?®° Unfortunately, the presumed benefits of
vitamin D supplementation deduced from observational studies are not necessarily supported by
data from interventional studies. While some studies and meta-analyses report favorable effects of
vitamin D supplementation per se on muscle strength®-3° and falling incidences,3*3” with benefits
being more pronounced in persons with low baseline values (<30 nmol-L™?)*® and in older persons,®
others do not.3**2 These discrepancies may not be surprising, as exercise training is arguably
necessary to provoke improvements in muscle functions.** However, a similar ambiguity is present in

the few studies that have assessed the effects of vitamin D supplementation on outcomes of
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resistance training.**’ Indeed, none of the existing studies report clear benefits of vitamin D
supplementation for alterations in muscle strength,**” muscle mass,** or incidences of falling.**%
Still, a recent meta-analysis concluded that vitamin D supplementation provides benefits for
training-associated changes in lower body muscle strength.*

Consequently, we have limited and conflicting knowledge about the combined effects of
vitamin D supplementation and resistance training for muscle functions and biology in humans. The
present confusion may partly be attributed to methodological uncertainties in available studies,
potentially lowering their ecological validity and explaining their lack of coherence with the resulting
meta-analysis data.*® This includes heterogeneous study populations (varying from young adults*>*’
to older adults?” to elderly**®) with large differences in baseline 25(0OH)D levels (average 31 nmol-L?
48 — 71 nmol'L'*“7), large variation in vitamin D dosage (from 400 IU-day™ “® — 4 000 IU-day %),

4446 suboptimal training protocols*+*® (failing

lack of familiarization to maximal muscle strength tests,
to comply to current guidelines, advocating resistance training with controlled maximal effort?49),
low compliance to training,**® and a lack of dietary assessment during the intervention.*447 Also,
neither of the studies has included a period of vitamin D supplementation prior to resistance
training, which may be necessary to prime muscle cells for adaptations, potentially acting to alter
epigenetic signatures, which has been observed in other cell types, such as T-cells>® and oral cancer
cells.>! Furthermore, the effects of vitamin D supplementation on muscle fiber characteristics and
biology remain poorly understood and unclear.>?

In theory, vitamin D may potentiate muscle fiber responsiveness in two ways. Either directly
by acting through vitamin D receptors in muscle fibers or progenitor cells, perhaps inducing
intramuscular signaling pathways such as the p38 mitogen-activated protein kinase pathway,>** or
indirectly by interacting with systemic signaling cascades, for example by inducing testosterone
signalling®® and thereby facilitating muscle plasticity. Our lack of insight is underlined by the
longstanding uncertainty of the presence of vitamin D receptors in muscle tissue,*® though several
indications advocate its expression. First, there seem to be associations between mutations in the
vitamin D receptor and muscle weakness in both humans and mice.>”*® Second, muscle-specific
knock-out of the vitamin D receptor in mice deteriorates muscle strength and mass in a manner that
resembles sarcopenia.>>® The prevailing uncertainty is fueled by a seeming lack of effects of vitamin
D supplementation per se on the muscle transcriptome in vitamin D-insufficient frail elderly, though
also in that study, the vitamin D dosage was relatively low (400 IU-day?).5!

To date, a mere single study has assessed the effects of vitamin D supplementations on
resistance-training induced muscle biological adaptations in humans, and as such assessing only a
limited selection of traits and failing to disclose conclusive findings.*” Furthermore, to date, no
studies has elucidated on and distinguished between the effects of vitamin D3 supplementation per
se on muscle functionality and biology and its concerted effects together with resistance training.
Such an investigation is arguably possible using a study design where an initial vitamin D
supplementation period is followed by a resistance-training period. If the vitamin D
supplementation-only protocol prior to resistance training successfully increases vitamin D status
compared to placebo supplementation, this would enable assessment of the effects of resistance
training in participants with pre-training differences in vitamin D status. Indeed, this would also be a
plausible necessity for muscle cells to adapt to resistance training. Therefore, there is clearly a need
for more research investigating the broad range of potential muscle biological implications of

2
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combined vitamin D supplementation and resistance training, especially for the older population
where combinational interventions aiming to counteract the age-related decline in muscle mass and
function are particularly warranted.
Training protocols and COPD rehabilitation. For persons with COPD, limb muscle dysfunction is highly
prevalent and has important clinical implications such as reductions in functional capacity, health-
related quality of life and also life expectancy.®% For its prevention and reversal, physical training is
recognized as a prerequisite and the most potent intervention available.®*® However, the
magnitude of response to exercise training in COPD is highly variable, with some persons showing
only small or no benefits.®> Some evidence indicates that such suboptimal responses to exercise
training may be linked to the cardiorespiratory limitations inherent to the disease, leaving COPD
persons with inability to tolerate sufficient intensity and/or duration of exercise to provoke muscle
cell adaptations. Despite this, whole-body endurance exercise (e.g. cycling and walking), which
requires a substantial cardiorespiratory demand during execution, is the most commonly applied
exercise modality in pulmonary rehabilitation.®* To resolve this issue, resistance exercise is a readily
available exercise modality, activating smaller amounts of muscle mass over a shorter time span
than whole-body endurance exercises,® and thus requires less from the cardiorespiratory system.
This strategy should ensure optimal muscle activation regardless of blood oxygenation levels,
enabling activation of key cellular signaling pathways and thus induce favorable muscle adaptations.
Even positive effects on skeletal muscle mitochondria has recently been displayed after resistance
training in COPD, in which increased citrate synthase activity and hydroxyacyl coenzyme A
dehydrogenase protein levels has been shown after eight weeks of low-load resistance training.®’
Thus, resistance training may provide a stimulus to augment muscular oxidative capacity in COPD.
However, whether that is also reflected in increased skeletal muscle mitochondrial respiration and
whether the response is only specific to low-load resistance training remains to be elucidated.
Generally, the magnitude of resistance training-associated adaptations of muscle strength
and muscle function remains largely ambiguous in COPD, with available studies displaying a large
span of variation in training adaptations.®>872 This heterogeneity in training responses may result
from differences in study design, including differences in resistance training protocols. Indeed, the
cardiorespiratory limitations of COPD patients may call for specific modifications of resistance
training exercises in order to further reduce the physiological demand.”® At present, we know little
about this perspective, with only a couple of studies investigating the acute responses to different
resistance exercise modalities.”*”® These studies show that, using elastic bands, unilaterally
performed leg resistance exercises result in superior exercise workloads compared to conventional
bilateral exercises in severe to very severe COPD (GOLD® grade IlI/1V, predicted forced expiratory
volume in one second (FEV1) <50%), but not in healthy persons, which indeed indicates a
cardiorespiratory exercise limitation in COPD persons. However, no analysis was performed of the
interaction between difference in exercise workload™® from single- to two-limb exercises and study
clusters (COPD vs. healthy participants). Thus, it is still uncertain if COPD persons show progressively
lowered muscular performance in resistance exercises with increasing complexity and active muscle
mass compared to healthy persons. It also remains unknown if this applies to COPD of less severity
(e.g. GOLD grade I1/1ll, FEV1predictes=30-80%), and if it is applicable to isolated resistance exercises
performed in apparatus.
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Training responsiveness in COPD vs healthy persons. Persons with COPD are particularly prone to
accelerated decay of muscle strength and mass with advancing age. This deterioration is
accompanied by systemic co-morbidities such as reduced levels of testosterone,”” vitamin D?*78 and
oxygen saturation levels,?® and elevated levels of low-grade inflammation.” These pathophysiologies
can arguably leave COPD persons in a state of anabolic resistance,® resulting in impaired abilities to
adapt to exercise training.**#82 This is to some extent also supported by the available literature,
showing that muscular responses to exercise training may be attenuated in COPD compared to
healthy control persons.®338> After whole-body endurance training, fewer genes were significantly
altered in COPD compared to healthy persons,® and the muscle angiogenic training response seems
to be blunted.®® Importantly, this may be ascribed the inability to achieve sufficient exercise
intensities to enable muscle cell adaptations during whole-body exercises in COPD. However, also
during resistance training with a low amount of active muscle mass (i.e. 30 maximal repetitions of
one-legged knee extensions executed with a knee angular speed of 180°sec’), which should enable
similar muscle-specific exercise intensities in COPD and healthy participants, COPD was still
associated with blunted increases in proteins related to catabolic, anabolic and transcription
processes, although changes in mRNA expressions for a selection of genes were broadly similar.®
Notably, for proteins regulating myogenesis (i.e. MyoD, myogenin and myostatin), similar protein
level responses to resistance training were shown in COPD and healthy participants.® Thus, the
muscle biological responsiveness to resistance training in COPD remains equivocal. Moreover, this is
also the case for the observations of muscle functional responses to resistance training in COPD,
with available studies ranging from negligible or trivial training responses®®*®° to substantial and
clinically relevant responses.’%’! Indeed, the COPD population is reported to have a high prevalence
of non-responders to pulmonary rehabilitation programs including exercise training,52258” which
once more indicates that training responsiveness may be limited in COPD.

However, only a mere single study has previously compared functional and biological
adaptations to resistance training between COPD and healthy controls (ISRCTN ID: 22764439),83888°
and as such was conducted with a relatively short training intervention (8 weeks), a rather
untraditional training protocol with little clinical and practical relevance (isokinetic knee extensions
conducted in a dynamometer), and a limited selection of outcome variables. Whereas the study
failed to disclose COPD-related impairments in muscle strength and muscle growth responses, it
seems premature to dismiss the notion that COPD-related pathophysiologies may impair resistance

2283 egpecially because of the blunted protein responses observed in that

training responsiveness,
particular study.® Consequently, the assumed impaired resistance training responsiveness in COPD
obviously warrants further investigation.

Exercise load and its impact on resistance training-associated adaptations. The external exercise
load is one of the most common adjustable variables during resistance exercise, and is clearly of
importance for the amount and type of muscle functional and biological adaptations resulting from
such training.*® Current training guidelines recommend relatively high exercise loads, i.e. 60-100% of
one-repetition maximum (1RM) performed with quite few repetitions per exercise set (4-12
repetitions), as the most potent strategy to achieve muscle strength and hypertrophy in anyone
from novices to resistance-trained individuals.*® This has been claimed based on the postulate that
heavy loading is required to fully recruit higher threshold motor units,® and consequently it has
been reasonable to assume that optimal improvements in muscle strength and hypertrophy can only
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be achieved through the use of high loads. However, in recent years, this view has been challenged
by the scientific community, at least for young healthy individuals.®>*3 For that population,
resistance exercise with low-loads conducted to muscular failure seems to translate into similar
long-term training-induced increases in muscle mass as high-load resistance training.>*™*3 This seems
as such to be decoupled from the degree of voluntary muscle activation during exercise, for which
low-load resistance exercises carried out to muscular failure consistently show lower mean and peak
electrical amplitude (using surface electromyography) compared to exercises conducted with high-
loads.®*7 Possibly, this may be explained by greater alterations of other important factors for
muscle hypertrophy during low-load resistance training, e.g. exercise volume®® and degree of

999 35 well as longer time under tension for the muscle fiber type | low-

metabolic perturbations,
threshold motor units which may possess a greater stimulus for muscle fiber type |
hypertrophy.1%1% |mportantly, comparison of muscle functional and biological adaptations to low-
load and high-load resistance training remains largely unstudied in other populations such as in older
adults and those with chronic diseases. The training effects in these populations may not necessarily
reflect those seen in young healthy adults, as e.g. aging may influence the degree of voluntary
muscle activation.1%271%4 Qlder adults also show some dissimilar muscle transcriptional and
translational responses to resistance training compared to those seen in young adults,*%>2%” which
seems to result in a reduced anabolic response compared to young counterparts.}%%1% These
potential divergences between older and young individuals makes it therefore difficult to employ the
prevailing resistance training guidelines to ensure optimal training responses for this population. For
different patient groups such as the COPD population, current training prescriptions are even more
difficult to employ as exercise responses may be affected by disease-specific pathophysiologies as
well, such as increased low-grade inflammation and lower oxygen availability in COPD.
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2 Research aims and hypotheses

The overall aim of The Granheim COPD Study was to investigate the impact of vitamin Ds
supplementation, chronic obstructive pulmonary disease and exercise load on resistance training-
associated adaptations in older adults. Two separate studies were conducted; a preparatory study
and a randomized controlled trial (RCT study).

The specific aims of the papers were:
. To compare muscular performance in three resistance exercises of the legs involving
different amounts of active muscle mass in COPD and healthy control persons (Paper |,
preparatory study)

Il. To investigate the effects of 12 weeks of vitamin D3 supplementation-only, followed by 13
weeks of combined vitamin D; supplementation and resistance training, on muscle
functional and biological training-associated adaptations in a mixed group of older adults
with stable COPD or normal lung function (Paper Il, RCT study)

IIl. a) To investigate the inherent differences in muscle functionality and biology between the
COPD and healthy control (Healthy) study clusters
b) To compare the effects of 13 weeks of resistance training for the COPD and the Healthy
study participants on muscle functional and biological outcomes
c) To investigate the interaction between high-load and low-load resistance training (10 vs
30 repetitions maximum, RM) and training responsiveness for the two study clusters
separately (Paper lll, RCT study)

IV. To determine the effects of 13 weeks of resistance training on mitochondrial respiratory
capacity in m. vastus lateralis for COPD and healthy control persons, and to investigate the
potential influence of resistance training load (10RM vs 30RM) (Paper IV, RCT study)

Additional aim (only elucidated in this thesis):
To compare the muscle functional and biological effects of high-load and low-load resistance

training (10RM vs 30RM) for a mixed group of older adults with stable COPD or normal lung
function (RCT study)

Main hypotheses:
A. Muscular performance in COPD persons would be increasingly impaired with increasing
amount of active muscle mass compared to Healthy persons (Paper I, preparatory study)
B. Vitamin D3 supplementation would enhance the muscle functional and muscle biological
resistance training-associated effects compared to resistance training-only (Paper I, RCT
Study)
C. COPD persons would display impaired muscle functional and muscle biological resistance
training-associated responses compared to Healthy persons (Paper Ill, RCT Study)
D. Resistance training would increase mitochondrial respiration in both COPD and Healthy
persons (Paper IV, RCT Study)
E. High-load (10RM) and low-load (30RM) resistance training would result in similar
muscular adaptations (RCT Study)
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3 Methods

Detailed description of study designs and methods for the preparatory study (Paper |) and the RCT
study (Paper II-1V) in The Granheim COPD Study are provided in Papers | and Il, respectively. In
addition, for the RCT study, the data also resulted in a qualitative paper written in Norwegian
(Appendix 1), which is not included in the assessment of the thesis.

3.1 Study ethics

Both studies (i.e. the preparatory study and the RCT study) were approved by the Regional
Committee for Medical and Health Research Ethics — South-East Norway (reference no. 2013/1094)
as parts of The Granheim COPD Study, preregistered at clinicaltrials.gov (ClinicalTrials.gov identifier:
NCT02598830), and conducted according to the Declaration of Helsinki. All participants were
informed about the potential risks and discomforts associated with the study and gave their written
informed consent prior to study enrolment.

3.2 Participants

Persons with either a medical diagnosis of stable, moderate COPD (GOLD grade Il or lll, predicted
FEV1 between 30-80% and FEV./FVC (forced ventilatory capacity) <70% after reversibility testing) or
normal lung function (Healthy) were separately recruited for the preparatory study and the RCT
study (Table 1). Each participant conducted only one study protocol, i.e. the preparatory study or the
RCT study. For CONSORT flowchart of the RCT study, see Appendix Il. For a more detailed overview of
baseline characteristics for supplementation arms and study clusters in the RCT study, see Paper Il
(Table 1) and Paper Ill (Table 1), respectively.

Table 1 Participant characteristics

Age Bod BMI FVC FEV. FEV,/FVC

Study Cluster/arm N (yeirs) mass (‘I’(g) (kg'm-?) (L) (% preld.) (‘17{)
Prep. COPD cluster 11(69) 66+8 70 +£14 26+5 27+11 53+14 49+13
study Healthy cluster 12(79) 62+7 76+12 25+3 4.1+0.8 117 £ 12 72t6

Vitamin Dzarm 34 (20 ?; 9 COPD) 68+5 74 +17 26+4 3.4+0.8 86 +24 66 + 14
RCT Placebo arm 44 (25 9; 11 COPD) 67+4 76 £ 16 26+5 3.7+1.0 96 + 26 7013
study COPD cluster 20(89) 69+5 73+18 25+5 3.2+0.9 57+11 47 +8

Healthy cluster 58 (37 9) 67+t4 76 £16 26+5 3.6+0.9 104 + 16 756

Characteristics of the participants completing the study protocols. For the RCT study, participant
characteristics are presented as both per supplementation arm and per study cluster. BMI, body mass index;
FVC, forced vital capacity; FEV1, forced expiratory volume in one second; @, females; &, males.

33 Study designs

Preparatory study. All participants in the preparatory study attended 7 days of performance testing,
distributed over 4 weeks (Figure 1). Test days were separated by at least 48 hours. On test days 1-3,
1RM tests were conducted in one-legged knee extension, one-legged leg press and two-legged leg
press. On these test days, participants alternated between starting the test session with one-legged
(knee extension and leg press) and two-legged exercises (leg press), giving each participant one
attempt with fully rested lower limbs for each test modality. These data were subsequently utilized
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to calculate relative workload for tests of muscular performance, which were defined as the number
of repetitions achieved over the course of three sets, with 2 minutes of rest in-between, at a load
corresponding to 60% of 1RM. Tests of muscular performance were performed on test days 4-7
(Figure 1; two separate test days for one-legged exercises and two separate test days for the two-
legged exercise). The choice of one-legged knee extension, as well as one- and two-legged leg press
as test exercises were motivated by the different amounts of active muscle mass and thus dissimilar
cardiorespiratory demands associated with these exercises. For each of the three muscular
performance tests, the best result was used in further analyzes.

Muscular Muscular
Anthropometry performance performance
Muscular {one-legged knee Muscular {one-legged knee
4 min performance extension and erformance extension and
step-test Splrometry (two-legged one-legged (two-legged one-legged
IRM 1RM 1RM leg press) leg press) leg press) leg press)
Test day 1 2 3 4 5 6 ‘ 7

4 weeks
(test days were separated by at least 48 h)

Figure 1. Protocol for the preparatory study. 1RM, tests of one repetition maximum in one-legged knee
extension, and one- and two-legged leg press.

RCT study. Participants were randomly assigned into one of the two study arms (vitamin D3 vs
placebo arm), using concealed allocation, stratified by sex and health status (COPD vs Healthy). The
RCT was initiated by 12 weeks of supplementation-only (two weeks with 10 000 IU vitamin Dz day™
followed by 10 weeks with 2 000 IU-day™, or placebo supplementation), followed by 13 weeks of
combined supplementation (2 000 IU vitamin Dy'day™? or placebo) and resistance training. Like the
vitamin D3 capsules, the placebo capsules contained cold-pressed olive oil and were as such identical
in appearance to the vitamin D; capsules. Pharma Nord ApS (Vejle, Denmark) procured the two
supplements. All participants consumed 500 mg calcium-day™® (Nycoplus, Takada AS, Asker, Norway).
Throughout the entirety of the study, participants completed a weekly health survey every Sunday
evening, which included information about experienced health and potential discomforts with the
nutritional supplementation. For a timeline of the study protocol, see Figure 2.

The training intervention consisted of two weekly full-body training sessions for all
participants. Leg exercises (knee extension, leg press, knee flexion) were performed unilaterally,
with one of the legs of each participant being randomly assigned to three sets of 10RM and the
contralateral leg to perform three sets of 30RM. Upper-body exercises (chest press, lat pulldown)
were performed bilaterally, consisting of two sets of 10RM. All sessions were supervised by qualified
personnel. The effectiveness of the training intervention was assessed as a wide range of outcome
measures (Figure 2), including multiple assessments of endurance performance, muscle strength and
mass, measures of lung function, one-legged/two-legged maximal oxygen consumption (VO,max),
oxygen cost/gross efficiency, health-related quality of life, and collection of blood and m. vastus
lateralis biopsies (both legs).
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Biopsiespgsr
Bloodpgsr
Lung functiongosy
Biopsy Biopsiesg, Qualitative US/DXAposy
Bloods, Blood interviews STRpasr
Lung functiong, US/DXAg, Musc.perf.pasy
STR x2 STR Biopsies
Muse.perf. x2 STR Musc.perf Blood VO maxpgss
SF-36/CATg, STR  Musc.perf VO,maxg, STRg, Func. pos
PAL  Blood  Muscperf. Fune.g Muse.perf.p, Diet diary SF-36/CATpasr
—a ) [ —

‘ 2
T
Pre-RCT Pre intro. RT Post intro. RT Post-RCT
L ®

Supplementation period
Placebo or vitamin D;(avg 2 500 IU vitamin D day”, i.e. 10 000 iU day™* the first two weeks, followed by 2 000 IU-day’)

T T T T T T
3‘4‘5‘6‘7‘8‘9‘!0‘11 12[13‘1&‘15‘16‘17 18 19[20[21[22‘23

24 25‘26[27‘28‘2@‘30‘

‘Week ‘-2 -1 ‘1
1

7 intro tr. sessions 19 training sessions

13 week training intervention
26 training sessions

Figure 2. Timeline of the study protocol (BL and POST indicates the defined baseline and post-test
measurement for the specific outcome measure, respectively). Methodological notes on retrieval of outcome
measures: i) Blood and muscle measurements. Prior to collection of blood and muscle biopsies, participants were
instructed to attend an overnight fast and to avoid heavy physical activity for the last 48 h. Blood samples were
analyzed for serum concentrations of 25-hydroxycholecalciferol (25(0H)D), 1,25-dihydroxycholecalciferol
(1,25(0OH)2D), hormones, lipids, and markers of iron metabolism and tissue damage, as previously described.**°
Muscle biopsies were analyzed for muscle fiber type proportions, myonuclei content, muscle fiber cross-
sectional area (CSA), and rRNA and mRNA content (total RNA, rRNA subspecies, myosin heavy chain isoforms |,
IIA and 11X, and whole-genome transcriptome), as previously described.*'%'*2 Transcriptome analysis was
restricted to a subset of participants (COPD, n=19; Healthy, n=34). ii) Lung function. Spirometry testing was
performed following the guidelines from the American Thoracic Society and the European Respiratory
Society.! Participants with COPD were tested before and after inhalation of two bronchodilators
(salbutamol/ipratropiumbromid). iii) Muscle strength and performance (STR and Musc. perf). Muscle strength was
assessed as one-repetition maximum (1RM) in unilateral knee extension and leg press, bilateral chest press,
and handgrip. Muscle performance was defined as the number of repetitions achieved at 50% of pre-study
1RM and was assessed using unilateral knee extension and bilateral chest press. Isokinetic unilateral knee-
extension torque was tested at three angular speeds (60°, 120° and 240°sec’}; Humac Norm, CSMi, Stoughton,
MA, USA). iv) Health-related quality of life (SF-36 and CAT). All participants completed the Short Form (36-item)
Health Survey (SF-36™). COPD participants also completed the COPD Assessment Test (CAT®) questionnaire. v)
Physical activity level (PAL). All participants completed a questionnaire (self-produced) regarding regular weekly
activity habits. The results (time spent for different activities) were translated into energy expenditure
(kcals'week™) during activities using number of metabolic equivalents (METs) provided in Jetté, Sydney, and
Blimchen.** vi) One-legged cycling and bicycling performance (1-LC and VO2max). Participants conducted one-
legged cycling tests (Excalibur Sport, Lode BV, Groningen, the Netherlands) to assess O2-costs and mechanical
efficiency®*® during submaximal cycling, and maximal one-legged oxygen consumption (VOz2max) and maximal
workload. Maximal two-legged cycling VO2max and workload were tested on a separate day. Oxygen
consumption was measured using the JAEGER Oxycon Pro™ system (Carefusion GmbH, Héchberg, Germany).
vii) Muscle thickness and body composition (US/DXA). Muscle thickness of m. vastus lateralis and m. rectus femoris
were measured using B-mode ultrasonography (SmartUs EXT-1M, Telemed, Vilnius, Lithuania). Body
composition was measured using dual-energy X-ray absorptiometry (DXA; Lunar Prodigy, GE Healthcare,
Madison, WI, USA). viii) Functional performance (Func.). Functional tests were conducted as the maximal number
of sit-to-stands during one minute (seat height: 45 cm) and as the number of steps onto a 20 cm step box
during 6 minutes. Qualitative interviews were performed for a subset of participants in the COPD cluster (n=8;
Week 19). The interviews were recorded with a dictation machine and subsequently transcribed and analyzed
using systematic text condensation.*® During week 24, all participants conducted a dietary registration, in which
they logged their dietary intake for three days, including one weekend day.

3.4  Statistical analyses
Data in text and tables are presented as means with standard deviations, unless otherwise stated. In
figures, error bars denote 95% confidence limits of the mean. Statistical significance was set to
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p<0.05. Statistical analyses were performed using SPSS Statistics package version 24 (IBM, Chicago,
IL, USA) and R software.!'’ Figures were made using Prism Software (GraphPad 8, San Diego, CA,
USA) and Microsoft Office PowerPoint 2016 (Microsoft Corp., Redmond, WA, USA).

Preparatory study. Differences between COPD and Healthy in muscular performance were
examined using mixed-design ANOVAs with study clusters (i.e. COPD and Healthy) acting as the
between-clusters factor and type of exercise (i.e. one-legged knee extension, one-legged leg press
and two-legged leg press) acting as within-cluster factors. When a significant F value occurred, a
Sidak post hoc test was used to determine differences between and within clusters.

RCT study. Investigation of the effects of vitamin D3 supplementation on a diverse set of
research questions and outcome measures was the primary objective of this study, as defined in the
pre-registration of the study protocol (ClinicalTrials.gov Identifier: NCT02598830). As also described in
the pre-registration, this was performed using different defined baseline time points and time
frames (outlined in Figure 2; see the Methodological considerations paragraph for rationales
underlying the different baseline time points). Alongside the results presented in this thesis, a more
thorough analysis of the vitamin D; RCT perspective are covered in Paper II, while the objectives of
the RCT study related to the investigation of the muscle functional and biological adaptations to
resistance training in COPD and Healthy participants are reported in this thesis, as well as in Paper IlI
and IV. For the last objective of the RCT study, i.e. to compare the muscle functional and biological
adaptations to 10RM and 30RM resistance training for all participants in the RCT study combined,
this is only highlighted in this thesis’ Results and discussion chapter.

In Paper Il, for continuous variables, linear mixed-effects models were used to examine the
effects of vitamin D3 supplementation (compared to placebo), with relative change scores from
baseline being defined as the dependent variable and the supplementation arms being defined as
the fixed effect of interest. The two different exercise loads (10RM and 30RM) were added to the
models as repeated measures/observations (for unilateral outcome measures), and baseline values
were used as co-variates. For all participants, random intercepts were specified. For all unilateral leg
variables, interaction effects were explored between the fixed effect and study clusters
(COPD/Healthy) and exercise loads (10RM/30RM). For other variables, interactions were
investigated between the fixed effect (vitamin Ds vs placebo) and study clusters. For non-continuous
variables, such as muscle fiber type proportions (IHC and qPCR), rRNA and mRNA content (qPCR and
transcriptome), and variables from the weekly health survey, generalized linear mixed-effects
models were used to examine differences in responses for the fixed effect (vitamin Ds/placebo
supplementation).

In Paper IlI, linear mixed-effects models were used to examine differences between study
clusters (i.e. COPD and Healthy) both at baseline and as responses to resistance training. For
continues data, additional analyses were performed in order to examine if adaptations to resistance
training were decoupled from the inherent disease-related study cluster differences; statistical
models with both relative and absolute change scores from baseline were conducted. The effect of
sex (female/male) was implemented into all models, and analyses included evaluation of interaction
effects with sex and exercise loads (10RM/30RM) when applicable.

In Paper IV, linear mixed-effects models were used to examine the effects of resistance
training on mitochondrial function in COPD and Healthy participants, and also to separately

10
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investigate the potential influence of exercise load (10RM/30RM) on changes in mitochondrial
function in the COPD and Healthy study clusters.

For analyses only presented in this thesis, i.e. the comparison of 10RM and 30RM resistance
training on muscle functional and biological adaptations for all participants in the RCT study
combined, linear mixed-effects models were used to examine differences in relative changes from
baseline for each outcome variable, with exercise load (10RM/30RM) defined as the fixed effect. The
two different exercise loads (10RM and 30RM) were added to the models as repeated
measures/observations. Interaction effects between the fixed effect and sex (female/male) and
study clusters (COPD/Healthy) was also explored.

Generally, for most outcome measures, the main effect of time (i.e. to check if there was a
significant change from baseline for an outcome measure irrespective of supplementation arm,
study cluster and exercise load) was examined using mixed modelling, using absolute values of the
dependent variable and time points as repeated measures/observations.

For selected outcome measures, specific considerations had to be integrated. For
transcriptome analyses, genes were regarded as differentially expressed when the absolute log, fold
change/difference were greater than 0.5 and the adjusted p-value (false discovery rate adjusted per
model coefficient) was below 5%.1** Moreover, enrichment analyses were performed on hallmark,
KEGG and gene ontology gene sets, using two approaches. First, a non-parametric rank test was
performed based on gene-specific minimum significant differences (MSD). Second, gene set
enrichment analysis (GSEA) was performed to quantify directional regulation of the gene set.
Consensus results between the two tests were interpreted as having larger biological meaning. All
gene sets were retrieved using the molecular signature database (version 7.1.).228 For all
immunohistochemical variables (muscle fiber CSA, fiber type proportion, and myonuclear content),
statistical models were weighted for numbers of counted fibers per biopsy. This was done to account
for the reduced reliability accompanying fewer observations/fibers.''° Notably, for myonuclear
content analyses, we also experienced suboptimal immunostaining for a large proportion of the
biopsies. Consequently, ~50% of the biopsies could not be processed be the automated CellProfiler
software!® used for myonuclei counting (see Appendix lll, supplementary material for Paper ll),
leaving the myonuclei analyses with reduced statistical power. Some caution is thus warranted for
interpretation of these data.

3.5 Methodological considerations
For the RCT study, a number of methodological considerations formed the basis for how the study
protocol eventually was performed, as well as for how the collected data was analyzed.

Study design-measures to increase the validity of muscle functional outcome variables. To ensure
valid analyses of training-associated effects on muscle-related features in the RCT study, some
precautionary measures were deemed necessary. For muscle strength and muscle performance
measures, baseline levels were defined to be equivalent to values collected after 3 % weeks of
introduction to resistance training (Figure 2), rather than values collected before its onset, as noted
in the preregistration of the study (NCT02598830). At this time point, the initial adaptations to
training were likely to have occurred, preferably non-hypertrophic effects relating to technical,
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psychological and neural learning effects,'*® phenomena that are particularly prominent in older

persons.’?! Using this time point as baseline arguably strengthens the association between changes
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in muscle strength and muscle mass. To further improve validity and minimize the confounding
effects of non-hypertrophic increases in strength and performance, all participants conducted a
series of repeated tests prior to baseline tests, including five repeated 1RM and muscular
performance tests in knee extension and chest press, three familiarization tests for 1RM leg press
and two familiarization tests for isokinetic strength.

Dietary supplementation. The vitamin D; RCT study consisted of two periods; a
supplementation-only period (12 weeks), succeeded by a combined supplementation and
resistance-training period (13 weeks). Two motives were emphasized for the initial
supplementation-only period. First, the period was implemented to investigate the effects of vitamin
Ds supplementation per se on markers of vitamin D biology (e.g. 25(0OH)D and 1,25-
dihydroxycholecalciferol (1,25(0OH).D), i.e. the storage form and the bioactive form of vitamin D,
respectively), as well as its effects on muscle function and biology. In this manner, we wanted to
elucidate on and distinguish between the effects of vitamin D3 supplementation per se and the
effects of vitamin D3 supplementation in concert with resistance training. Second, if the vitamin D3
supplementation-only protocol successfully would increase the vitamin D status compared to
placebo supplementation, this would enable investigation of the effects of resistance training in
participants with differences in vitamin D status prior to the resistance training intervention. It
seems plausible that the pre-training supplementation period may be necessary to prime muscle
cells for adaptations, potentially acting by changing epigenetic traits, which has been observed in
other cell types, such as T-cells®® and oral cancer cells.>!

In order to increase the integrity of the vitamin D3 supplementation RCT results, a number of
precautionary measures were incorporated into the study protocol. 1) During study conduct, all
participants were instructed to restrict vitamin D intake from food sources to <400 IU-day! and to
abstain from solarium and travels to southern and/or sunny areas. 2) The intervention was
conducted in Lillehammer, Norway (latitude 61°N) from September to May, ensuring low or no
natural vitamin D synthesis by the skin from sunlight UVB radiation.?? 3) Placebo capsules were
identical in appearance to vitamin D3 capsules, which ensured that it was impossible for the
participants to differentiate between the two supplements. 4) Daily supplementation of calcium was
incorporated to the study protocol for all participants to ensure adequate calcium levels, a chemical
element important for some vitamin D effects to take place.?

To aid recovery and ensure adequate protein intake after training, participants ingested half
a protein bar immediately after each training session (~15g protein; Big 100, Proteinfabrikken,
Sandefjord, Norway).

Contralateral exercise design. A contralateral lower-limb exercise design was chosen to
compare the effects of two different resistance training modalities, 10RM and 30RM. Such a study
design has previously been highlighted to provide greater statistical power and reducing the time
and cost of a study,*?® as such an approach reduces the between-person variability and enables
within-person comparison, but has also been criticized for certain aspects. The main criticism is
related to the hypothesized crossover training effects that occurs between the exercised limb and
the contralateral limb, i.e. that unilateral resistance training induces an increase in systemic,
anabolic hormones (e.g. growth hormone, insulin-like growth factor, testosterone) and releases
different myokines from the exercising muscle, which theoretically can influence the contralateral
limb.12 However, these potential effects are in all likelihood negligible, as neither mRNA
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abundance,'?® mitochondrial content,*?*%¢ capillarization,*?” muscle protein synthesis*?® nor muscle
hypertrophy'?*1% responses in the exercised/trained limb seems to translate into responses in the
non-exercised/trained limb. For this reason, we considered it to be unlikely that the contralateral
design in the current study confounded the muscle biological measures. However, neural learning
effects, i.e. factors related to motor unit recruitment, are seemingly more prone to crossover-limb
training effects.'?® As previously noted, to prevent such effects from affecting analyses, an extensive
training and testing familiarization protocol was performed.

Another rationale for choosing a one-legged exercise protocol was the lower amount of
active muscle mass compared to conventional two-legged exercises, and thus the reduced
cardiorespiratory demands of such exercises. This was regarded as favorable for the COPD persons
performing the training protocol. Indeed, COPD persons seems to show larger training volumes™'
and performance in one-legged exercises compared to two-legged exercises. This may translate into
superior training adaptations if the inherent low cardiorespiratory fitness makes it difficult to
achieve the necessary exercise intensities during two-legged exercises to provoke muscle cell
adaptations.??% Indeed, the preparatory study was conducted with the aim to compare the
muscular performance between COPD and Healthy in three resistance exercises with different
cardiopulmonary demands and complexity.

Analytical considerations. The participants in the RCT study constituted a quite heterogeneous
study group, which included both female and male participants, and persons with and without a
COPD diagnosis. This was in line with our intention to study responses to vitamin D3
supplementation and resistance training in the general population of resistance training-naive older
adults, potentially increasing the ecological validity and impact of the RCT results. However, to the
contrary, some people will claim that introducing a patient group will lead to a possible risk of
selection bias, i.e. that proper randomization is not achieved, which implies that the study group is
not representative of the population intended to be studied.’! E.g. it may be conceivable to argue
that COPD persons, which suffer from pathophysiologies such as reduced oxygen saturation levels
and elevated levels of low-grade inflammation may have an interaction effect with vitamin D3, and
the diagnosis may thus interfere the vitamin Ds-analyses. To circumvent this possible issue, two
precautionary measures were deemed necessary: First, randomization to vitamin D3 and placebo
arms were stratified by COPD diagnosis (yes/no) and sex (female/male), ensuring that both
supplementation arms had the same proportion of female and male participants with and without a
COPD diagnosis. Second, during statistical analyses, a mixed modelling-approach was employed, as it
enables to examine multiple between-person and within-person (also referred to as repeated-
measures) factors. That feature enabled to, based on the fixed factor of interest (i.e. vitamin
Ds/placebo, COPD/Healthy, 10RM/30RM), also check for possible interaction effects with other
relevant factors. For transparency, all statistical analyses of main effects and interaction effects for
the vitamin D3 vs placebo supplementation RCT-perspective are provided in Appendix IlI
(supplementary section of Paper Il). This rigorous overview is not provided for the ancillary studies
of resistance training-associated changes in COPD vs Healthy participants and 10RM vs 30RM
resistance training, but are instead commented on in the main text whenever relevant. Moreover,
for analyses of vitamin D3 vs placebo supplementation and COPD vs Healthy responses to resistance
training, we used the mixed modelling-approach to specify two different observations of the
dependent variable (i.e. the response to resistance training; pre to post measures) per participant,
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i.e. both the response to 10RM and 30RM resistance training. This arguably increased the statistical
power of these analyses.’® Importantly, a check for interactions with exercise load were performed.

The meta-analysis perspective. The inclusion of a heterogeneous study group is also underlined
by the rationale behind the general biobank The Trainome,*** which is situated at Inland Norway
University of Applied Sciences (INN), campus Lillehammer, within which samples from the present
study are integrated. The biobank represents the long-term strategy (2014-2039) of the research
environment at INN-Lillehammer and aims to decipher the causality behind individual variations in
responses to lifestyle therapy, with the overall objective to develop computational frameworks for
personalized lifestyle therapy prescription. At present, four comparable training intervention studies
with different participant characteristics have been completed or are currently being conducted
(n=185 participants). One of these other training intervention studies, i.e. The Alpha & Omega Study
(ClinicalTrials.gov identifier: NCT04279951), which is in its data collection phase (April 2021), are using
the same training protocol as in the RCT study of The Granheim COPD Study, though conducted
using different study clusters (resistance training-naive persons in the age of 30-60 years, with or
without obesity). Together, these two data sets will enhance our knowledge about how different
factors and person characteristics (e.g. age, sex, obesity, COPD) affect muscle functional and
biological adaptations to 10RM and 30RM resistance-training loads. Notably, for analyses of data
from The Granheim COPD Study, the general effects of 10RM vs 30RM resistance training are not
presented in debt in any of the papers accompanying this thesis, but are rather highlighted in the
Results and discussion chapter.

The choice of primary outcomes in vitamin Ds-based analyses and the rationale behind weighted
combined-factors analyses. In retrospect, the pre-identified primary objective for the vitamin D3 RCT-
perspective of the study was not ideal (i.e. the effects of resistance training with vitamin Ds
supplementation on muscle fiber cross-sectional area (CSA) and proportions; NCT02598830). The
underlying rationale behind the choice was to investigate the effects of vitamin D3 supplementation
on a set of unbiased biological variables, adhering to the existing notion that vitamin D may affect
muscle fiber size and fiber type proportions.'3* We thus clearly underestimated the reliability issues
riddled with histological measures, which indeed were evident in the data set (Figure 3). Accordingly,
in order to achieve reliable assessment of muscle hypertrophy, and thus to avoid relying on muscle
fiber CSA data alone, we developed a lower-body muscle mass factor, in which change scores from a
collection of muscle mass-related outcomes were combined in a weighted manner (Table 2). Similar
approaches have previously been used to reduce the variability associated with singular outcome
measures when investigating biological phenotypes related to high- and low-responders to
resistance training.’®>137 Careful investigation of the computed muscle mass factor suggested that it
increased the biological value of muscle mass-related analyses (for more information, see Appendix
Il and IV, supplementary material to Paper Il and Ill, respectively). Following this logic, combined
factors were also computed for other outcome domains, including lower-body maximal muscle
strength, lower-body muscle quality, and one-legged and whole-body endurance performance (Table
2; see the table text for a brief description of how the factors were computed) and are presented as
core outcome domains in Paper II, lll and IV. Importantly, neither of these factors have been
independently validated, but factor analyses revealed correlations between the underlying outcome
variables for all factors, indicating biological coherence (Appendix Ill and IV). In Paper I, muscle fiber
CSA was included in the muscle mass factor. This was not continued in Paper Ill, IV and this thesis,
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due to its poor association with other muscle mass measures in cluster-specific analyses.
Importantly, the removal of muscle fiber CSA from the muscle mass factor in Paper Il did not alter
any results or interpretations.

Figure 3. Sample-resample reliability measures of immunohistochemical assessments of muscle fiber cross-
sectional area (A-D) and muscle fiber proportions (E-G) in m. vastus lateralis sampled at pre-RCT and pre-
introduction to resistance training (pre-intro RT; i.e. no resistance training conducted between the two
sampling events). In A-B, data are presented as means with 95% confidence limits. In C-G, data are presented
as individual values in p-plots, emphasizing the relationship between differences in muscle fiber characteristics
measured at the two time points and the lowest number of fibers counted at any time point. In general, these
data display increasing differences in sample-resample muscle characteristics with decreasing number of
analyzed fibers. RT, resistance training. Rough analyses suggested that we would have needed >250 fibers of
each fiber type to achieve a reliable assessment of CSA and >600 fibers to achieve reliable assessment of fiber
type proportions, of which our material contained an average of 118+64/137+69 fibers (type I/type Il, range O-
428/11-424) and 4621265 fibers (range 26-1982), respectively.
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Factors

One-legged Whole-body
Lower-body Lower-body Lower-boc}‘y endurarnce endurance
muscle strength muscle mass muscle quality performance
1RM knee Maximal workload
extension and "‘"'mﬁ' workload bicycling
leg press Leg lean mass Muscle strength factor cyclingq-leg and

peak torque knee
extension at 60,
180 and 240°isec

V. lateralis and
r. femoris thickness

muscle mass factor

# of repetitions at
50%of 1RM knee
sxlenslnnp,e_gc-r

and
# of sit-to-stands
ina1-min test

Vitamin D arm
Placebo arm

@0.6+0.1 20.4+0.1
¢0.6+0.1 20.4+0.1

d0.7+0.1 20.6+0.1
&0.7+0.1 20.6+0.1

¢0.8+£0.1 £0.6£0.1
d0.8+0.1 £0.6£0.1

d0.3+0.1 £0.3+0.1
d0.4+0.1 20.3+0.1

30.5+0.1 £0.5+0.1
J0.6+0.2 20.5£0.1

COPD cluster
Healthy cluster

d0.5+0.1 20.3+0.1
3'0.6£0.1 20.4£0.1

d0.6+0.1 20.5:0.1
0.7+0.1 20.6+0.1

d0.740.1 20.6£0.1
§0.9+0.1 £0.7:0.1

d'0.2£0.0 £0.2+0.0
d0.4+0.1 20.3+0.1

d0.4+0.1 20.3£0.1
d0.7+0.1 £0.6+0.1

Table 2. Combined factors for the core outcome domains lower-body muscle strength, lower-body muscle
mass, one-legged endurance performance and whole-body endurance performance were computed from
various outcome measures, as defined in the upper panel. In the table, baseline characteristics of
supplementation arms and study clusters in the RCT study. Brief description of how the factors were computed:
First, for each singular outcome measure, each study participants’ values (baseline and post) were normalized
to the highest value recorded during the study of any participant, resulting in individual scores <1. Thereafter,
outcome domain factors were calculated as the mean of the normalized values for each variable for each
participant.

Ethical considerations. Despite the fact that both the preparatory study and the RCT study
were approved by The Regional Committee for Medical and Health Research Ethics — South-East
Norway and were carried out according to the Declaration of Helsinki, participation in such
interventions may include some potential risks and discomforts. All participants were informed
about these issues both written and orally and gave their informed consent prior to study
enrolment.

In the RCT study, muscle biopsies from m. vastus lateralis and venous blood samples were
sampled in order to measure muscle and blood characteristics and changes thereof with vitamin Ds
supplementation and resistance training. Taken into account the invasive nature of such
assessments, a potential risk of infection was present. However, these risks were minimized by using
the microbiopsy procedure for muscle sampling.’3® This method does not require incision through
the skin, as the skin is rather punctuated using the needle; thereby markedly reducing the
invasiveness of this method compared to the more commonly used Bergstrom method. The use of
disposable needles, sterile conditions and experienced operators further secured the muscle and
blood sampling procedures. No infections were reported after the 539 biopsies and the 392 blood
samples collected in the current study. Nevertheless, some participants displayed hematomas with
subsequent thigh pain for days after the biopsy sampling, and a handful of the muscle sampling
events were associated with thigh pain lasting from a few days to 3 weeks. In those occasions,
participants received daily follow-up from the study manager and, if required, participants were
examined by the responsible medical doctor in the study.

Vitamin D3 supplementation can, in extreme cases, lead to vitamin D toxicity (i.e.
hypervitaminosis D), normally defined as serum 25(0OH)D levels >375 nmol-L'.** Such levels are
associated with consumption of vitamin Ds in the range of >40 000 — 50 000 IU-day™ for 26

140141 e, 3 far larger dosage than in the present RCT. Adding to this, no significant increases in

weeks,
serum calcium levels were observed, commonly known as the first manifestation of vitamin D3

toxicity,'3° and the vitamin D3 arm did not report any pronounced digestion or sleep problems,
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dermal irritations or issues with the urinary system or the vestibular system in their weekly health
survey compared to those reported in the placebo arm.

Heavy resistance training involves a potential risk of injury. All training sessions were
therefore supervised by qualified personnel to ensure correct technical execution. If pain was still
experienced during exercise, modifications were made to the training program such as brief periods
of reduced training volume or even not perform training exercises on the problematic leg were
provided (n=3).
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4 Results and discussion

4.1 Characteristics of COPD vs Healthy participants

In the RCT, COPD participants displayed clear and well-known disease-related aberrancies compared
to Healthy participants, including impaired lung function, higher levels of systemic low-grade
inflammation (c-reactive proteinserum levels), lower levels of bone mineral density, muscle mass and
muscle functionality, as well as muscle biological aberrancies such as lower mitochondrial oxidative
capacity, higher proportion of muscle fiber type I1X and differential mRNA expression of 227 genes
(Figure 4A). The COPD phenotype thus resembled observations previously made in the COPD
population, 22831427144 \ith exception of the larger muscle fiber type | CSA in COPD compared to
Healthy (Figure 4A). This contrasts previous studies, who have reported smaller or similar CSA of type
| fibers in COPD.1#3145148 |f this is representative for the COPD population, this may point to a
compensatory mechanism for a more accelerated loss of motor units in these COPD participants
than during normal aging in healthy persons,*” whereby reduced quantities of muscle fibers are
compensated for by increased sizes of remaining fibers, as previously reported in rodents.#®

In the preparatory study, the COPD phenotype clearly had an impact on muscular
performance. Generally, COPD was associated with impaired muscular performance compared to
Healthy (Figures 4B, 4D), and this was exacerbated during the two-legged leg press exercise, which
was the exercise performed associated with the largest physiological demand. More specifically, for
Healthy, muscular performance increased progressively with increasing complexity of the exercise,
and thus with the amount of active muscle mass: one-legged knee extension < one-legged leg press
< two-legged leg press (Figures 4B, 4D). For COPD, a similar increase was seen going from one-legged
knee extension to one-legged leg press, but not from one-legged leg press to two-legged leg press,
where no significant increase occurred (Figures 4B, 4D). This progressive increase was highlighted in a
subset of analyses where we calculated one- and two-legged leg press performance as relative
performance compared to one-legged knee extension (Figures 4C, 4E). In these analyses, there were
significant interaction effects between study cluster and two-legged leg press performance (Figure
4C, Figure 4E), highlighting that muscular performance was impaired during two-legged leg press in
COPD compared to Healthy participants.

The results suggest that for persons with moderate COPD (GOLD grade II/111), the
cardiorespiratory limitations inherent to the disease has negative consequences for performance in
resistance exercises involving larger amounts of active muscle mass (>one-legged leg press).
Previously, similar observations have been made for COPD persons with more severe diaghoses,’*”®
but not in the present population of moderate COPD, and not in connection with isolated resistance
exercises performed in apparatus. Additionally, the findings provide support for the use of unilateral
training protocols in the RCT study, although it is largely unstudied if a larger acute muscle-specific
exercise volume will translate into superior long-term resistance training adaptations for this
population. But indeed, one-legged resistance training in COPD has recently been associated with
greater resistance training-associated effects on functional capacity (6-minute walking distance)
compared to a conventional two-legged resistance exercise training-approach.®” The results may also
be interpreted as supportive for combining the Healthy and COPD clusters in the vitamin D3 RCT
analyses, as the COPD persons apparently were not limited by their cardiorespiratory fitness in such
exercises as performed during the training intervention in the RCT study.
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Figure 4. A) Comparison of baseline characteristics for COPD and Healthy participants in the RCT study,
including body composition, lung function, blood variables, muscle characteristics, muscle strength and
endurance performances. *, as defined by Baumgartner et al.1*%; #, cortisol levels were significantly lower in

19



Results and discussion

COPD compared to Healthy at pre-intro RT; A, average difference between COPD and Healthy (COPD —
Healthy). Green and red text denotes higher scores in COPD compared to Healthy and vice versa, respectively.
Alpha level at p<0.05. B-E) Muscular performance in resistance exercises for COPD and Healthy participants
performed as three sets to exhaustion at 60% of 1RM. Muscular performance was measured as B, total
number of repetitions to exhaustion, C, number of repetitions to exhaustion in one-legged and two-legged leg
press relative to one-legged knee extension, D, total exercise volume (kg - repetitions) per leg and E, total
exercise volume for one-legged leg press and two-legged leg press™e relative to one-legged knee extension.
Data are means with 95% confidence levels. Two-legged leg press™, two-legged leg press divided by two; CS,
citrate synthase; Perr, fatty acid oxidation capacity; Pc, complex-1 linked respiration; P, total oxidative
phosphorylation capacity; ETS, maximal uncoupled respiration; Ly, leak respiration; *, significant difference
between study clusters; #, significant different from one-legged knee extension; £, significant different from
one-legged leg press. Alpha level at p<0.05.

4.2 General observations on the conduct and quality of the RCT, and the effects of
vitamin D3 supplementation per se on muscle function and biology

Before assessing the results of the RCT, it is vital to reaffirm that the protocols used held sufficient
quality, with particular emphasize on whether the training protocol and the vitamin Ds
supplementation were conducted successfully. It is also of importance to rule out the effects of
vitamin D3 supplementation per se (weeks 1-12 of the RCT, Figure 2), before embarking on the
analyses of the main objective of the RCT, i.e. the effects of combined vitamin D; supplementation
and resistance training on muscle functional and biological training-associated adaptations. In this
way, we can arguably differentiate between the effects of vitamin D3 supplementation per se and
vitamin D3 supplementation + resistance training.

General quality and efficacy of the resistance training protocol. The training protocol was
associated with a low drop-out rate (n=4, 5%; COPD, n=2) and high adherence (98%, range 81-100%),
likely ensured by close follow-up from qualified personnel, including supervision of all training
sessions (for details, see Appendix I: A qualitative analysis of motivational factors for resistance training in
chronic obstructive pulmonary disease: experiences from The Granheim COPD Study). Overall, for all study
participants taken together, this was reflected by considerable increases in exercise volume
throughout the training intervention. Exercise volume (kg * repetitions) increased by 20% (knee
extension) and 30% (leg press) from the 15 to the 4" week of training, by 48% and 54% from the 1%
to the 8" week, and by 65% and 68% from the 1% to the last week of training, which resembles or
exceeds training progression in similar studies on previously untrained participants.’>** These
increases (knee extension and leg press combined) were similar between vitamin D3z and placebo
supplementation arms (p=0.199-0.478) and COPD and Healthy study clusters (p=0.091-0.142), with
exception of the change from the 1% to the 4% training week, which was different between study
clusters (COPD, 18%; Healthy, 28%; p=0.023). For both knee extension and leg press exercises,
exercise volume was generally higher for 30RM compared to 10RM (A18%, p=0.001; A76%, p<0.001),
which is typically seen in young healthy adults as well.”® For 1RM muscle strength improvement per
session, the intervention showed relative efficiencies of 0.9% (knee extension) and 1.4% (leg press)
improvement, which resemble or exceeds previous findings in untrained older adults (i.e. 0.5-1.0%
per session).’>¥"153 The intervention also led to pronounced improvements in whole-body functional
performance, including maximal workload achieved during two-legged cycling (12 watts/8% 1,
p<0.001), 6-min step test performance (14 steps/7%", p<0.001), and 1-min sit-to-stand
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performance (2 sit-to-stands/8% 1, p<0.001). This was accompanied by reductions in cycling oxygen
cost (4% ; p<0.001) and improved gross efficiency (0.6%-points, p=0.001).

The arguably successful completion of the resistance training intervention was accompanied
by marked muscle biological adaptations when combining the results from all study participants.
This included significant increases in muscle mass (lean body mass, 0.7 kg/1.4%, p<0.001; leg lean
mass, 0.14 kg/1.9% 1, p<0.001; m. vastus lateralis thickness, 1.4 mm/7%1, p<0.001; m. rectus
femoris thickness, 1.9 mm/14%1, p<0.001), muscle fiber-CSA (type I, 360 um2/14%", p<0.001; type
I, 599 um2/22%, p<0.001), increases in myonuclei number per fiber (type |, 36%", p=0.018; type
I, 20% 1, p=0.011), alterations in muscle fiber proportions (e.g. type IIX muscle fiber proportion
changed from 10% to 7%, p<0.001), and robust alterations in muscle transcriptome profiles (499 and
312 differentially expressed genes compared to baseline at 3 % weeks and post-RCT, respectively).
Further, the study intervention was associated with beneficial health effects such as reduced serum
levels of triglycerides and low-density lipoprotein/LDL, reduced fat mass (total and visceral fat), and
improved self-reported health and health-related quality of life.

Sarcopenia. Overall, the resistance training intervention proved effective for treating age-
related loss in muscle mass, leading to 1.4% increases in total lean body mass. This reduced the
number of participants that could be defined as sarcopenic from 16% (11 persons) to 12% (8
persons), with sarcopenia being defined as appendicular lean mass (kg)/m? greater than two
standard deviations below the sex-specific means of young adults.'*® Speculatively, the increase in
total lean mass was supported by increased levels of serum creatinine in both supplementation arms
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(+6%). Although serum creatinine is generally used for evaluation of renal function,™* creatinine

production and levels also increase with increases in total muscle mass.'>#15°

During the training intervention neither of the participants experienced training-related
injuries, and only five participants (6%) reported discomforts with training towards the end of the
intervention. Of the four participants that withdrew from the study during the resistance training
intervention, neither were associated with training injuries.

General efficacy of the vitamin Ds supplementation protocol. The initial 14 days of high doses of
vitamin D3 (10 000 IU-day?) efficiently increased vitamin D status (measured as serum 25(0OH)D
levels) in the vitamin D; arm, which was subsequently maintained at a high level during the rest of
the study intervention using maintenance doses of vitamin D3 (2 000 IU-day™) (Figure 5). Conversely,
in the placebo arm, 25(OH)D levels either declined or was unaltered compared to baseline levels
(Figure 5). This led to robustly elevated levels in the vitamin D3 arm compared to the placebo arm
during the entirety of the study conduct (A45-49 nmol-L}) (Figure 5). In the vitamin D3 arm, all
participants were vitamin D-sufficient at the onset of resistance training (as well as at all other time
points), as classified by the National Academy of Medicine ([25(0OH)D] >50 nmol-L?),3! while in the
placebo arm, 5-13 participants were vitamin D-insufficient during the study intervention. After the
initial 14 days with high daily doses of vitamin D3, the marked increase in 25(OH)D in the vitamin D3
arm were accompanied by robust increases in 1,25(0H),D levels (the bioactive form of vitamin D)
compared to the placebo arm (Figure 5). However, the rapid elevation of 1,25(0OH).D levels was
subsequently reversed towards baseline levels during the rest of the study conduct when the
participants in the vitamin Dz arm consumed lower doses of vitamin Ds (Figure 5).
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According to the weekly health survey, vitamin D3 supplementation was not associated with
adverse health issues compared to placebo supplementation, including digestion problems, sleep
problems, urinary system issues, dermal irritations or vestibular system issues.

Habitual dietary intake. During the training intervention, the habitual dietary intake was
similar between the two supplementation arms, as well as between the two study clusters regarding
protein (vitamin Ds, 1.3 gkg'day?; placebo, 1.3 gkgday?; COPD, 1.2 gkgday’; Healthy, 1.3 gkgday
1), fat (vitamin D3, 1.0 gkg:day®; placebo, 1.0 gkgday™; COPD, 1.0 gkgday?; Healthy, 1.0 gkgday?)
and carbohydrate consumption (vitamin Ds, 2.5 gkg'day?; placebo, 2.9 gkg:day?; COPD, 2.6 gkg'day
1, Healthy, 2.7 gkgday?), emphasizing equal nutritional status.

Effects of 12 weeks of vitamin D3 supplementation-only (weeks 1-12) on muscle strength,
performance and characteristics. \/itamin D3 supplementation itself had no effect on upper- and lower-
body muscle strength and performance. Surprisingly, the only exception was 1RM knee extension,
for which vitamin D3 led to negative changes compared to placebo (A-8.4%; p=0.008), opposing the
seemingly accepted dogma that vitamin D supplementation per se exerts positive effects on leg
muscle strength.331%¢ Notably, for all muscle strength and muscular performance variables, the initial
12 week supplementation period without resistance training was associated with improved
performance in all performance tests. In this time period, an extensive test-retest protocol with five
test sessions with assessment of 1RM muscle strength and muscular performance were conducted.
These improvements occurred without any apparent changes in muscle cell characteristics in thigh
muscle, including muscle fiber CSA (type I, 4%, p=0.573; type Il, 9%, p=0.312), muscle fiber type
proportions (p=0.127-0.901), and total RNA/rRNA expression (p=0.604-1.000). They were hence

120 effectuated by repeated

likely caused by technical, psychological and neural learning effects,
exposure to testing prior to and during the supplementation period (see Figure 2). Such effects have
previously been seen to be more pronounced in older persons,'?! in which these results further
emphasizes the importance of familiarization to performance tests to ensure stable and less
confounded baseline measurements.

Overall, the 12-weeks supplementation-only period did not lead to marked changes in mRNA
transcriptome profiles when combining values from the two supplementation arms. Vitamin D3
supplementation was, however, associated with differential changes in the expression of a selected
genes compared to placebo; 27 genes and 27 genes<, . This included increased expression of B-cell
lymphoma 6 and prolyl 4-hydroxylase subunit alpha-1 (BCL6 and P4HA1), both of which are known

),*7"%%% and decreased expression of

to oppose accumulation of reactive oxygen species (ROS
angiopoietin-like protein 4 (ANGPTL4), which is closely correlated with levels of mitochondrial
respiration.’® These findings were reaffirmed by gene enrichment analyses, which showed a general
reduction in the expression of gene sets relating to both oxidative and glycolytic metabolism in the
vitamin D3 arm. This is in line with previous observations whereby vitamin D has been shown to
counteract ROS and mitochondrial oxidative stress.!! The seemingly negative effect of vitamin D3
supplementation for expression of mitochondrial genes may thus be due to reduced mitochondrial
turnover, albeit this is clearly a speculative interpretation. Of note, expression of the vitamin D

receptor (VDR) was identified in the data set, but was not affected by supplementation.
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4.3  The impact of vitamin D3 supplementation on resistance training-associated
adaptations

Effects of vitamin D3 supplementation on resistance training-associated changes in myofiber cross-sectional
area and proportions (primary outcomes). In contrast to the main hypothesis, vitamin Ds;
supplementation did not enhance resistance training-associated increases in muscle fiber cross-
sectional area or changes in muscle fiber proportions (Figure 5, Primary outcomes). Hence, the results
does not support the prevailing notion that vitamin D affects such variables in a favorable manner
(e.g. elucidated in the review from Ceglia'®*), at least not in the enrolled group of study participants
(older adults with and without COPD) and within the time frame of the study.

Effect of vitamin D3 supplementation on training-associated changes in maximal muscle strength
and lower-limb muscle mass. Participants in both vitamin D; and placebo arms showed increases for all
measure of muscle strength and mass (except handgrip strength), assessed from baseline (i.e. after 3
% weeks of resistance training) to after finalization of the resistance training intervention: 12-25%
for upper- and lower body 1RM muscle strength, 6-11% for maximal leg muscle torque, 7-19% for
muscle thickness, and 1-3% for leg lean mass (Figure 5, Secondary outcomes). As expected, after
combining these measures into weighted muscle strength and muscle mass factors, and the derived
muscle quality factor (Amuscle strength factor/Amuscle mass factor), similar increases were
observed (Figure 5, Core outcomes). Overall, vitamin D3 supplementation did not affect any of these
outcome measures compared to placebo in the participants. This was primarily evaluated as changes
in the calculated weighted muscle strength, muscle mass and muscle quality factors (Figure 5, Core
outcomes), and secondarily as changes in each of the underlying outcome measures (Figure 5,
Secondary outcomes). Vitamin D3 supplementation thus had no main effect on training-associated
changes in muscle functionality or gross muscle biology. While this conclusion coheres with the few
comparable studies assessing the effect of combined vitamin Ds intake and resistance training, 4%
it contrasts the conclusion drawn in the only available meta-analysis on this subject, wherein vitamin
Ds supplementation was associated with augmented increases in muscle strength in older adults.*
Notably, among the selection of ten specific outcome measures, two did not conform with the main
finding. Vitamin D; was associated with beneficial effects for changes in 1RM knee extension (Figure
5, Secondary outcomes) and muscle thickness of m. rectus femoris (Figure 5, Secondary outcomes). For
1RM knee extension, the effect was interrelated with the negative development seen from pre-RCT
to pre-introduction to training in the vitamin D; arm (see Effects of 12 weeks of vitamin D3
supplementation-only (weeks 1-12) on muscle strength, performance and characteristics). Indeed, when
assessing the effect of vitamin D3 on 1RM knee extension from pre- to post-RCT (rather than from
baseline at post-introduction to training), no beneficial effect was observed compared to placebo (A-
2% (95% Cl, -12, 7), p=0.628). As for muscle thickness in m. rectus femoris, we did not collect data
pre-RCT and can thus not deduce if this variable followed the same pattern as 1RM knee extension.
The observed benefits of vitamin D; supplementation for changes in m. rectus femoris thickness
contrasts observations made for m. vastus lateralis thickness (Figure 5, Secondary outcomes), and even
oppose those made for lean mass of the legs, which tended to increase less in the vitamin D3 arm
compared to the placebo arm (Figure 5, Secondary outcomes, p=0.090).

Effects of vitamin D3 supplementation on training-associated changes in one-legged and whole-
body endurance performance. Participants in both vitamin D; and placebo arms showed improvements
in one-legged and whole-body endurance performance over the course of the resistance training
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intervention: 37-52% increases in one-legged knee extension and bilateral chest press performance,
7-9% increases in maximal power output in one- and two-legged cycling , 3-5 % reductions in O,
costs of submaximal one-legged cycling, and 6-10% increases in functional performance (sit-to-stand
test and 6-min step test) (Figure 5, Secondary outcomes). In accordance with this, marked increases
were observed in weighted one-legged and whole-body endurance performance factors (Figure 5,
Core outcomes). These effects cohere well with previously observed benefits of resistance training for
endurance variables in older adults.'®*"%* However, vitamin D3 supplementation did not affect any of
these outcome measures compared to placebo, neither for weighted endurance performance
factors (Figure 5, Core outcomes), nor for any of the specific outcome measures (Figure 5, Secondary
outcomes).

Effects of vitamin D3 supplementation on training-associated changes in muscle fiber characteristics
and transcriptomics. Participants in both vitamin D3 and placebo arms showed marked changes in
muscle fiber characteristics over the course of the training intervention. These included decreased
type IIX muscle fiber proportions from 10% to 7%, increased type IIA proportions from 26% to 29%,
increased type IIA/IIX hybrid fibers abundances from 2.6% to 3.2%, and 25-48% increases in
myonuclei number per muscle fiber (Figure 5). Changes in 11X and lIA proportions were verified using
gPCR, showing decreased levels of type IIX mRNA abundance and increased levels of type IIA mRNA
(Figure 5, Secondary outcomes), calculated using the gene family-profiling approach.'®® These analyses
also revealed increased proportions of type | mRNA after the training intervention, potentially
caused by increased type | protein turnover. The observed changes in muscle fiber-type
characteristics in response to resistance training corroborate well with previous studies in older
adults,*%%71%8 though increased numbers of myonuclei per muscle fiber are not consistently
reported.!®® Vitamin D; supplementation did not affect training-associated changes in muscle fiber
proportions or myonuclei content compared to placebo (Figure 5).

Irrespective of supplementation arm, the training intervention resulted in 1.14-1.16 fold
increases in total RNA per unit muscle tissue weight, a proxy marker for ribosomal RNA content that
has previously been associated with training-induced changes in muscle growth and strength.112170
Similar increases were found for the mature ribosomal species 18s (1.18 fold) and 28s (1.16 fold), in
addition to the 45s pre-ribosomal rRNA (1.19 fold) using gPCR. No changes were observed for 5.8s
(1.07 fold, p=0.722) or 5s (1.06, p=0.940) following the entire training intervention. Notably, for
analyses of total RNA and ribosomal RNA, an additional time point were included in main analyses,
i.e. in muscle biopsies sampled after introduction to training (3 % weeks, 7 sessions), as early
increases in total RNA seem to associate with long-term chronic responses to training, making it a
potential hallmark of muscle plasticity.''? As expected, 3 % weeks of training led to marked increases
in total RNA (1.10-1.21 fold) and expression of all ribosomal RNA species (1.13-1.27 fold). Whereas
these changes corroborates quite well with changes observed in healthy, young persons,'!? with the
notable exception of less pronounced relative increases, they contradict previous observations of no
resistance training-associated increases in total RNA per unit muscle tissue weight in older
persons.'’! Vitamin Ds supplementation did not affect training-associated changes in total RNA or
rRNA expression compared to placebo (Figure 5, Secondary outcomes).

The training intervention led to marked changes in muscle mRNA transcriptome profiles in
the two supplementation arms combined, with 499 genes being differentially expressed after 3 %
weeks of resistance training (post-intro RT; 436 genes”, 63 genesy ) and 312 genes being
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differentially expressed after 13 weeks of resistance training (post-RCT; 255 genes, 57 genes,)
(Paper I; Figure 11A, 11B). VDR was expressed, but unaffected by combined vitamin Ds
supplementation and resistance training, contradicting previous observations of a positive
association between supplementation-induced improvements in 25(0OH)D status and VDR expression
in leukocytes,'’? myoblasts/myotubes'’® and skeletal muscle'’. GO enrichment analyses revealed
increased expression of gene sets associated with extracellular matrix, blood vessel morphogenesis
and leukocyte migration at both 3 % and 13 weeks (Paper II; Figure 11C), as well as increased
expression of the inflammatory response gene set at 3 % weeks. Conversely, decreased expression
was observed for gene sets involved in ribosomal functions at both 3 % and 13 weeks (Paper II; Figure
11C). This could be interpreted as contradicting the likely important role of de novo ribosomal
biogenesis for training-associated muscular adaptations.?'?1° Notably, these analyses were
performed using traditional library size-based normalization, which basically provides target gene
expression relative to the expression of all other genes.!'! In an alternative set of transcriptome
analyses, which rather was performed using a normalization procedure that corrects for muscle
sample weight and thus provides gene expression analyses per sample size (tissue-offset
normalization),'!! the negative effects of resistance training on ribosomal gene expression was not
evident. This was the only major difference between library size and tissue-offset normalization in
the present study setting.

Vitamin D3 supplementation had no effect on training-associated changes in gene
expression, neither at 3 % weeks (Paper Il; Figure 11D) nor at 13 weeks resistance training (Paper Ii;
Figure 11E), suggesting that no single gene was differentially affected by combined vitamin D3
supplementation and resistance training. In contrast to this, enrichment analyses showed traces of
vitamin Ds-sensitive changes in expression at both 3 % and 13 weeks of resistance training (Paper II;
Figure 11F). At 3 % weeks, there was differential expression of gene sets involved in i.e. cell junctions,
blood vessel morphogenesis and muscle cell differentiation. These initial responses to resistance
training should be interpreted with caution, as they were only evident in one of the two analyses
(GSEA or rank-based analyses; Paper I, Figure 11F). At 13 weeks, the vitamin D; arm showed
increased expression of gene sets involved in endothelial proliferation and blood vessel
morphogenesis compared to placebo (consensus between GSEA and rank-based analyses; Paper I,
Figure 11F). This agrees with the previously observed positive relationship between 25(OH)D-status
and endothelial function, potentially interacting through the endothelium-derived vasodilator, nitric
oxide.?®! Indeed, this coheres well with a recent study, which showed favorable effects of combined
vitamin D3 supplementation and resistance training for flow-mediated dilation of blood vessels and
blood pressure in postmenopausal women.”> Unfortunately, endothelial function was not assessed
in the current study.

Effects of vitamin D3 on hormones in blood and health-related outcome measures.

Steroid hormones. Vitamin D3 supplementation did not affect levels of anabolic steroid
hormones such as testosterone. This was in discordance with our initial hypothesis, as we presumed
a positive association between vitamin D levels (measured as 25(0H)D) and testosterone levels,
based on previous observations from vitamin D3 supplementation studies®® and cohort studies.'’®
However, our finding is in line with several other vitamin D supplementation studies, which has
failed to observe any effects on testosterone levels in blood.’”"17® Conversely, vitamin D3
supplementation seemed to affect serum cortisol levels compared to placebo (A48 nmol - L%,
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p=0.038), though no main effect of time was observed (i.e. the observed increase in the vitamin Ds;
arm was not statistically significant, p=0.374) and there was no statistical difference between
supplementation arms at the end of the intervention (p = 0.053).

Lung function. When pooling the data from all study participants, the 28 week long RCT was
associated with an undesirable -1.95% reduction in FVC (p=0.006). This was somewhat surprising, as
exercise is generally believed to be beneficial for lung functionality, including resistance training,’%"®
but may be due to a general age-related decline, as the magnitude of the changes resemble those
seen in corresponding age cohorts over a similar time frame.2® Notably, other measures of lung
function, such as FEV,, predicted FEV; and FEV1/FVC, were not affected by the intervention per se.
However, there was a negative effects of vitamin D3 supplementation on FEV1/FVC (A-2.9 %-points, p
=0.012), which was surprising since previous research has shown beneficial effects of vitamin D
supplementation on lung function.’®! The detrimental effect of vitamin D3 supplementation on
FEV1/FVC showed a clear interaction with study clusters, and as such was only evident in COPD
persons in the vitamin D3 arm, which showed A-8.4% reductions compared to placebo. This
subgroup analysis was however clearly weakened by the small sample size (COPD, n=9 vs n=11,
vitamin D3 vs placebo). The negative effect of vitamin D; on FEV:/FVC did not interact with pre-RCT
levels of FEV1/FVC, but surprisingly, in another subgroup-analysis including both COPD and Healthy
participants, the lowest quartile of pre-RCT 25(OH)D levels in the vitamin D; arm was associated with
larger decrement in FEV1/FVC than the corresponding quartile of placebo arm participants (A-5.4 %-
points, p=0.009). This observation is difficult to explain, as it indirectly opposes the notion that
vitamin D deficiency leads to impaired lung functions.'® More research is clearly needed to elucidate
on the consequences of resistance training and vitamin D3 supplementation for lung functionality.

Bone health. Vitamin D3 supplementation did not affect bone mineral density (Figure 5).
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Figure 5. Effects of combined vitamin D3 supplementation and resistance training in older adults (with and
without COPD). In the upper panel, vitamin D status (o, 25-hydroxycholecalciferol (25(0H)D); A, 1,25-
dihydroxycholecalciferol (1,25(0OH)2D) for the two supplementation arms during the RCT, and the two training
modalities (high-load and low-load resistance training; 10RM and 30RM, respectively) performed by both
supplementation arms during the 13 week training intervention. The training intervention part of the RCT is
blue-shaded in the figure. In the middle panel, the effects of combined vitamin D3 supplementation and
resistance training on the study’s primary outcomes (NCT02598830; changes in muscle fiber cross-sectional area
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and fiber type proportions) and core outcome domains (lower-body muscle strength, lower-body muscle mass,
lower-body muscle quality, one-legged endurance performance and whole-body endurance performance). For
the muscle fiber cross-sectional area-figures, data are presented as means with 95% confidence intervals. For
the rest of variables, data are presented as average percent or percent-point changes. 4, difference in change
between supplementation arms (vitamin Ds — placebo). In the lower panel, an overview of the effects of
combined vitamin D3 supplementation and resistance training on the study’s secondary outcomes. Alpha level
at p<0.05. Red and blue text denotes the vitamin Dzand placebo arm, respectively. =, p>0.05 for comparison of
the changes in the vitamin D3 and placebo arm; #, p<0.05 for comparison of the changes in the vitamin D3 and
placebo arm.

Remarks on the vitamin D3 supplementation RCT objective. |t seems clear that vitamin D3
supplementation did not affect muscle functional and biological characteristics in the present study
group. This was particularly exemplified in the transcriptome analyses, where not a single gene was
found to be vitamin Ds-sensitive after a period of resistance training, which is surprising given the
accepted dogma that vitamin D primarily acts as a transcriptional regulator.>® However, although
there was a general lack of effects of vitamin D; supplementation, the data set contained a couple of
interesting observations. First, in the muscle transcriptome data, combined vitamin D3
supplementation and resistance training had effects on gene sets relating to endothelial and
vascular biology. Although speculatively, this may indicate that vitamin D3 supplementation affects
cardiovascular functions and biology, albeit in the current research setting this did not translate into
alterations in endurance performance. Possibly, if combining vitamin D; supplementation and other
training modalities such as endurance training, such changes in vascular gene regulation may be
more accompanied by changes in functional improvements. Second, in participants with high
baseline fat proportions/high body mass index, vitamin D3 supplementation was associated with
increased resistance training-associated changes in muscle strength and muscle quality, but not for
other core outcome domains (outlined in Appendix Ill, supplementary material for Paper Il). As no
such effect was observed for muscle quantity, the potential benefit of vitamin D3 supplementation
for accretion of muscle strength in participants with high proportions of fat may point to improved
motoneuron function, and thereby increased muscle activation, as the causal factor. Indeed,
motoneuron function has been suggested to be affected by vitamin D supplementation in rodents.'83
These perspectives needs further research.

Despite the arguable success of the vitamin D3 supplementation protocol, there are still
aspects of the vitamin D; supplementation that remain unresolved, and that may have affected the
conclusions and outcomes of the study. First, in skeletal muscle, adequate vitamin D signaling may
occur at 25(0H)D levels lower than the defined clinical cutoff (insufficient, <50 nmol-L?).3! Indeed,
studies have suggested that vitamin D insufficiency affects human skeletal muscle in an adverse
manner only at concentrations <30 nmol'L%,*3 which was only relevant for one participant in the
placebo arm at the onset of the resistance training intervention. In that case, this would leave our
25(0OH)D quartile-based analysis (outlined in Appendix Ill, supplementary material for Paper Il) with
limited biological value. However, in a recent study, no beneficial effects were seen of 12 weeks of
vitamin D3 supplementation (8000 IU-day™) for resistance-training associated changes in lean body
mass and a range of muscle strength measures in young vitamin D-deficient male adults (<50 nmol'L°

1. average at pre-training, 36 nmol-L}; post-training, 142 nmolL?),®

suggesting that vitamin D3
supplementation does not affect muscular functions or trainability in persons with markedly

suboptimal baseline 25(0OH)D levels. Second, serum 25(OH)D levels may be a poor proxy marker for
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vitamin D biology as it largely fails to reflect 1,25(0OH),D levels, the metabolically active form of
vitamin D.!% As such, the initial two weeks of high-dosage vitamin D3 supplementation successfully
increased the 1,25(0H),D levels compared to the response in the placebo arm, emphasizing that
supplementation is indeed capable of increasing levels of metabolically active vitamin D, at least at
high doses and within a short time frame. However, the subsequent 2500 IU-day dosage did not
result in significant changes compared to pre-RCT levels. Whereas this could be interpreted as a
result of insufficient vitamin Ds; dosage, this seems unlikely as 25(0OH)D levels was clearly elevated,
and it is likely rather due to autoregulatory feedback-mechanisms, potentially sustaining 1,25(0OH).D
levels within a set and individual physiological range. Third, muscle cells may themselves possess the
apparatus to convert 25(0OH)D into 1,25(0H),D, as they express the 25-Hydroxyvitamin D 1-alpha-
hydroxylase (CYP27B1) protein. Indeed, in in vitro experiments on murine myoblast and myotubes,
25(0OH)D and 1,25(0H),D treatment seem to lead to similar increases in expression of vitamin D
markers such as VDR mRNA, suggesting that peripheral regulation of vitamin D synthesis may be a
relevant manner for regulating its biological activity.'”® Fourth, while 25(0OH)D was assessed as total
25(0H)D levels in the present study, levels of unbound 25(OH)D (i.e. not bound to vitamin D binding
protein or albumin; ~0.03%) may represent a more accurate measure of vitamin D status in a clinical
setting.’®” Indeed, in mice lacking vitamin D binding protein, and therefore displaying very low total
25(0OH)D levels (~8 nmol-L?), no signs of vitamin D deficiency were seen unless they were put on a
vitamin D-deficient diet.® Fifth, in the present study, the resistance training intervention lasted for
only 13 weeks. Speculatively, this may have been too short for vitamin D3 supplementation to
manifest its potential benefits for muscle plasticity, despite the presence of a 12-week lead-in
supplementation period. Arguably, however, if vitamin D status and signaling are indeed important
for muscle biological adaptations to training, even the relatively short intervention should have led
to detectable changes in muscle biology, such as its transcriptome. This was not observed, neither in
general, nor for specific vitamin D-responsive genes such as the vitamin D receptor.'’* Sixth, the
study protocol was unavoidably associated with large interindividual variation in responses. This
variation may have been related to vitamin D3 supplementation per se, resistance training per se or
to a combination of the two, and may have affected groupwise comparisons. More research is
clearly needed to elucidate on all these perspectives. However, for the enrolled study participants
with mostly sufficient vitamin D levels at pre-RCT, the conclusion is clear; vitamin Ds
supplementation did not affect muscular responses to resistance training, thus rejecting the notion
that vitamin D3 supplementation is necessary for obtaining adequate muscular responses to
resistance training in the general population of older adults.

4.4  The impact of chronic obstructive pulmonary disease on resistance training-
associated adaptations

Muscle strength, muscle mass, muscle quality and one-legged endurance performance. Overall, COPD
showed larger training-associated increases in lower-body muscle strength and mass compared to
Healthy (the two legs/training modalities combined), measured as relative changes in combined
weighted factors from baseline, with no difference being observed between the two study clusters
for absolute changes (Figure 6, Core outcomes). For the singular measures composing the lower-body
muscle strength factor (i.e. 1RM knee extension and leg press + knee extension torque executed at
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knee angular speeds of 60°, 180° and 240°sec™), no differences in either relative or absolute
changes were observed between study clusters, with exception of relative change of knee extension
torque at 240°sec™, which was in favor of the COPD study cluster (Figure 6, Specific outcomes).
Similarly, for the individual measures underlying the muscle mass factor (leg lean mass + m. vastus
lateralis/m. rectus femoris muscle thickness), changes were not significantly different between study
clusters, except larger relative change in m. rectus femoris thickness in COPD (Figure 6, Specific
outcomes). The COPD and Healthy study clusters showed similarly scaled improvements in muscle
quality (Amuscle strength factor/Amuscle mass factor) and one-legged endurance performance
factors (Figure 6, Specific outcomes). Notably, COPD showed a larger relative improvement in one-
legged cycling maximal workload compared to the response among Healthy counterparts (Figure 6,
Specific outcomes). Taken together, COPD thus showed marked and hitherto largely unrecognized
responsiveness to resistance training, contradicting previous suggestions of a negative impact of co-
morbidities such as low cardiorespiratory fitness, decreased oxygen levels® and chronic low-grade
systemic inflammation.”®&

Cycling and functional performance. COPD and Healthy showed pronounced and similarly
scaled training-associated improvements in whole-body endurance performance, measured as
changes from baseline, including 6-min step test performance, 1-min sit-to-stand performance and
maximal workload achieved during two-legged cycling (Figure 6, Core outcomes and Specific outcomes).
Surprisingly, COPD and Healthy also showed similar changes in performance for these outcome
measures in absolute terms, with exception of 6-min step test performance (Figure 6, Specific
outcomes), for which Healthy showed larger improvements (Figure 6, Specific outcomes), arguably
relating to the considerable cardiorespiratory demand of this test, leaving COPD with disease-
specific constraints. For other performance indices such as cycling oxygen cost and gross efficiency,
which were measured using a one-legged cycling protocol, COPD showed larger relative
improvements compared to Healthy (Figure 6, Specific outcomes).

Together, these observations reiterate on the substantial benefits of resistance training for
persons with COPD, even for performance measures that pose large whole-body metabolic

1901t seems

demands, which has previously been suggested to be irresponsive to such training.
plausible that the observed improvements in 6-min step test performance, 1-min sit-to-stand
performance and two-legged cycling were associated with improvements in cycling oxygen
cost/gross efficiency and muscle strength, as neither COPD nor Healthy showed training-associated
changes in maximal oxygen consumption, with improvements in anaerobic capacity being a potential
contributor (not measured).

Muscle characteristics. Muscle fiber histology. Whereas COPD and Healthy displayed similar
increases in type Il fiber CSA in vastus lateralis in response to resistance training (Figure 6, Specific
outcomes), only Healthy showed significant increases in type | fiber CSA, with no statistical difference
being observed between study clusters (Figure 6, Specific outcomes). For Healthy, the increase in CSA
was accompanied by increased myonucleifiber? in both fiber types (36%/25% for type I/11), leading
to decreased myonuclear domain size estimates in type | fibers (-10%). In COPD, no such effects
were observed. Despite the lack of difference between the two study clusters for these variables
(Figure 6, Specific outcomes), the data hints at blunted plasticity of type | muscle fibers in COPD only,
potentially relating to their altered biological characteristics at baseline (e.g. larger CSA of type |
muscle fibers) or to blunted myonuclear accretion.
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Both COPD and Healthy displayed training-associated reductions in type 11X muscle fiber
proportions. While this reduction was more pronounced in COPD when measured at the protein
level (immunohistochemistry), it was more pronounced in Healthy when measured at the mRNA
level (Figure 6, Specific outcomes), suggesting differential orchestration of muscle fiber shifts between
study clusters, possibly relating to their inherently different muscle fiber proportions at baseline.

Muscle RNA content. In general, COPD and Healthy showed similar increases in ribosomal RNA
abundance per unit muscle tissue weight, measured as both total RNA and rRNA expression, and
measured after both 3 % week (1.19/1.29 and 1.15/1.16 fold increases, total RNA/rRNA abundances)
and after finalization of the training intervention (1.13/1.18 and 1.05/1.17 fold increases). While
these changes in ribosomal RNA content were generally similar between COPD and Healthy, a few
noteworthy differences were evident, including a more robust early increase in 45s pre-rRNA
abundance N in COPD (Figure 6, Specific outcomes) and a trend towards reduced changes in response
to 13 weeks training in COPD, which was evident by an absence of time effects for all rRNA species.
The early increases in ribosomal content seen in both COPD and Healthy resemble those seen after

similar interventions in untrained young individuals,*?

and may be important for muscle growth
capabilities over the entirety of the study period,***’° accommodating increases in protein synthesis
capacity, thus potentially contributing to the pronounced muscular responses to resistance training
seen in both study clusters.

Even though resistance training led to marked changes in mRNA transcriptome profiles in
both COPD and Healthy, no single transcript showed differential responses to training between the
two study clusters. This was evident both at 3 % weeks and 13 weeks, despite clear differences in
transcriptome profiles at baseline (Figure 4 and Paper ll, Figure 3A). In contrast, enrichment analyses
revealed traces of differential changes, with COPD showing more pronounced increases in
expression of genes relating to oxidative phosphorylation after 3% weeks (GSEA), and, in particular,
more pronounced decreases in genes associated with myogenesis after 13 weeks (consensus) (Figure
6, Specific outcomes and Paper lll, Figure 3C). Interestingly, as these two gene sets represented the
most prominent differences between COPD and Healthy at baseline (Figure 4 and Paper Ill, Figure 3A-
B), and as resistance training led to directional changes that mitigated these differences, training
arguably shifted the COPD phenotype in a healthy direction.

Mitochondrial function. In a subset of study participants (COPD, n=11; Healthy, n=12),
mitochondrial measurements were carried out (pre-intro RT and post-RCT, Figure 2). Overall,
resistance training was associated with beneficial improvements in mitochondrial functions and
capacity in the COPD cluster-only. Specifically, in COPD, resistance training led to increased citrate
synthase activity (35-43%), thus essentially restoring citrate synthase activity to healthy pre-intro RT
levels. In Healthy, no change was observed (p=0.365), yet no statistical difference in resistance
training-associated increase in citrate synthase activity was evident between the two study clusters
(Figure 6, Specific outcomes). The increase in citrate synthase activity in COPD contrast a previous
study which failed to observe increased citrate synthase activity following a low-load resistance
training protocol in COPD,% despite applying a higher training frequency than in the current study
(three times per week). This may potentially be explained by that the lack of performing the
resistance exercises to volitional exhaustion made the exercise effort insufficient to stimulate
mitochondrial biogenesis. Furthermore, in COPD, resistance training led to improved mass-specific
mitochondrial respiration of fatty acids (13%", p=0.033) and total oxidative phosphorylation (9%,
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p=0.035), and tended to lead to increased complex-I respiration (10%", p=0.079), while no
significant alterations were observed for leak respiration (7%, p=0.340) or electron transfer system
capacity (11%1, p=0.115). In Healthy, significant time effects were lacking for all respiratory states;
yet, the changes in the two study clusters were not statistically different (Appendix V, supplementary
material for Paper IV). In both COPD and Healthy, mRNA levels of mitochondrial genes changed
markedly with resistance training (Appendix V), but no MitoPathway!*! category and only one
mitochondrial gene (TXNRD2) were differentially affected by resistance training in COPD compared
to Healthy, indicating similar mRNA responses to resistance training for mitochondrial genes in COPD
and Healthy. Overall, the results displays that in COPD, resistance training was a potent intervention
to increase mass-specific mitochondrial respiration and oxidative enzyme activity. In healthy,
mitochondrial function remained unaltered, although mRNA responses to resistance training were
largely similar between COPD and Healthy.

Blood and health-related outcomes. Overall, COPD and Healthy showed similar training-
associated increases in whole-body and appendicular lean mass (Figure 6, Specific outcomes). This was
accompanied by increased appendicular skeletal muscle mass index relative to the sex-specific mean
of young, healthy adults'*® (COPD, from 84% to 86%; Healthy, from 95% to 97%), suggesting that the
intervention was effective for reversing age-related decline in muscle mass. For blood variables such
as markers of systemic inflammation and hormone, lipid and iron biology, no noteworthy effects
were observed of the intervention, nor were any differential changes observed between COPD and
Healthy (Figure 6, Specific outcomes)

Lung function. For COPD overall, the study intervention did not affect any of the lung function
variables, evaluated as changes from pre-RCT to post-RCT, implying no effects on the intervention in
general on this core epidemiological trait. This seems reasonable given the irreversible nature of the
respiratory impairments of COPD, yet contradicting the beneficial effects observed in Hoff et al.”® In
contrast, for Healthy, the intervention was associated with reduced FVC and FEV; (-2.7% and -1.5%,
respectively). Rather than being a consequence of the intervention protocol per se, this may be due
to a general age-related decline, as the magnitude of the changes resemble those seen in
corresponding age cohorts over a similar time frame.! Unfortunately, the study was conducted
without a negative control group not receiving the intervention protocol, which obviously reduces
the interpretations of these analyses. As mentioned previously, subgroup analyses also revealed that
vitamin D3 supplementation in COPD was associated with detrimental effects on FEV1/FVC (A-8.4%
reductions compared to placebo). This finding remains difficult to explain as it opposes previous
research showing beneficial effects of vitamin D supplementation on lung function,® and should
also be interpreted with caution as the analysis was clearly weakened by the small sample size
(COPD, n=9 vs n=11, vitamin Ds vs placebo).

Health-related quality of life. For COPD, the intervention was associated with marked
improvements in several aspects of health-related quality of life. These included reduced experience
of limitations of physical functioning and improved social function and mental health, with only
marginal effects being seen in Healthy, but no significant difference in responses between COPD and
Healthy (Paper Ill, Table 6) While these changes of course may be directly related to the resistance
training intervention and the muscle functional improvements, they may also be related to other
aspects of the study protocol, such as performing training sessions in a social setting and the close
follow-up each participant received from study personnel, as the COPD persons highlighted in the

32



Results and discussion

qualitative interviews conducted during the training period (Appendix I, A qualitative analysis of
motivational factors for resistance training in chronic obstructive pulmonary disease: experiences from The
Granheim COPD Study). As the intervention was conducted without a control group (not receiving the
intervention protocol), caution is warranted for interpretation of these data.

CORE OUTCOMES (computed factors) |

Responses to resistance training, COPD vs Healthy

Lean body mass:
COPD 2% = Healthy 1%
COPD 0.8 kg = Healthy 0.6 kg

Leqg lean body mass:

1RM leq press:
COPD 26% = Healthy 22%
COPD 27 kg = Healthy 30 kg

ARM knee extension;
COPD 18% = Healthy 13%

Knee extension endurance:
COPD 37% = Healthy 49%
COPD 7 reps =

Healthy 10 reps

Chest press endurance;
COPD 43% = Healthy 48%

&-min step test:

COPD 6% = Healthy 8%

COPD 6 steps # Healthy 17 steps NB!
1-min sit-to-stand test:

COPD 10% = Healthy 7%

Lower-body
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Muscle endurance Functional performance
Muscle quantity Muscle strength performance and cycling assessments Health variables

Bone mineral density:
COPD 0.3% = Healthy -0.6%
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Healthy -0.008 g/cm?

Total fat mass:
COPD 0% # Healthy -4% NB!
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= Heal 1 5 COPD -0.1 kg = Healthy -1.0 kg
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Figure 6. Comparison of the responses to resistance training in COPD and Healthy. In the upper panel, the
effects of resistance training in COPD and Healthy on the study’s core outcome domains (lower-body muscle
strength, lower-body muscle mass, lower-body muscle quality, one-legged endurance performance and whole-
body endurance performance) and on singular outcome variables, measured as both relative and absolute
change terms. Blue and orange text denotes the COPD and Healthy study cluster, respectively. A, difference in

change between study clusters (COPD - Healthy). Alpha level at p<0.05. =, p>0.05 for comparison of the
changes in the COPD and Healthy study cluster; #, p<0.05 for comparison of the changes in the COPD and

Healthy study cluster.

Remarks on the COPD vs Healthy objective of the RCT. COPD-related pathophysiologies, such as

reduced testosterone,”” vitamin D’® and oxygen saturation levels?%1%2

low-grade inflammation,” are generally believed to drive metabolism into a chronic catabolic

state.?%77%0 This has also been suggested to lead to impaired responses to resistance training,
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which are essential measures for preventing and treating disease-related reductions in skeletal
muscle mass and strength in COPD. However, in the RCT study, even though COPD participants
displayed clear and well-known disease-related aberrancies compared to Healthy at baseline (Figure
4A), resistance training led to improvements in muscle strength, muscle mass, muscle quality and
endurance performance that resembled or exceeded those seen in Healthy, contrasting the initial
hypothesis. These observations were accompanied by similar alterations in muscle biology, including
changes in hallmark traits such as muscle fiber characteristics, rRNA content and transcriptome
profiles. Together, these data suggest that COPD-related etiologies and pathophysiologies do not
impair responsiveness to resistance training, at least not for skeletal muscle characteristics, and at
least not in the enrolled cluster of COPD participants (GOLD grade II-1ll) and within the time frame of
the study.

4.5 The impact of exercise load on resistance training-associated adaptations
For comparisons of the efficacies of 10RM and 30RM resistance training modalities, data from the
two study clusters (i.e. COPD and Healthy) were pooled.

Lower-body muscle mass, muscle strength, muscle quality and bone mineral density. For lower-
body muscle mass, 30RM resistance training was associated with larger improvements compared to
10RM resistance training (Figure 7A). For the individual outcome measures composing this factor (i.e.
leg lean mass + m. vastus lateralis/m. rectus femoris muscle thickness), the average numerical
changes also pointed towards favorable gains of 30RM but these changes were not statistically
different between 10RM and 30RM resistance training (Figure 8B). This reiterates on the potential
power of using combined weighted factors based on multiple outcome measures for assessing main

outcome domains, as previously described,**

presumably acting by reducing the methodological
variability associated with its singular measurements. Notably, the statistically significant larger
response of 30RM training on lower-body muscle mass were not present for study cluster-specific
analyses (Figure 7B-C), probably due to the lower statistical power associated with such analyses.

For improving lower-body muscle strength, the effects of 10RM and 30RM resistance
training were similar (Figure 7A). Of note, 10RM resistance training displayed a larger increase in 1RM
knee extension compared to 30RM resistance training (Figure 8A), but this finding was not confirmed
by the results for the other lower-body muscle strength outcome measures (Figure 8A), thus no
overall effect of 10RM resistance training. For improving muscle quality, i.e. when combining the
training modality-specific results for the muscle strength factor with the corresponding change in the
muscle mass factor (Amuscle strength factor/Amuscle mass factor), 10RM resistance training was
associated with a tendency towards a larger effect compared to 30RM resistance training (p=0.075;
Figure 8A). Notably, the effects observed analyzing the pooled data of all study participants were not
evident in study cluster-specific analyses (Figure 7B-C).

To maintain bone mineral density in the legs, 10RM resistance training was associated with
beneficial effects (p=0.054; Figure 8C). This emphasizes the significance of high-load resistance
training for delaying the inevitable decrease in bone mineral density with advancing age,** thereby
reducing the risk of fractures after falling,°*%” and thus also life expectancy.!®® The effect of
resistance training on bone mineral density was as such more evident than the effect of vitamin Ds
supplementation, which indeed showed no such effect, although it previously has been clearly linked
to beneficial effects on bone health.?? Of note, the decrease in bone mineral density observed with
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30RM resistance training was probably related to a natural age-related decrease,** and not a
detrimental effect of this training modality.

Together, these observations suggest that 30RM training is a feasible and efficient resistance
training modality for both COPD and healthy older persons, which also offers similar effects on
maximal muscle strength and muscle performance, superior effect in terms of muscle mass gains,
but less effect on bone mineral density and muscle quality compared to 10RM training. Notably, the
two training modalities were associated with similar ratings of perceived exertion, measured by
asking the participants how hard the workout was perceived for each leg on the Borg 6-20 scale!®®
(10RM, 16.2%1.5; 30RM, 16.3+1.5; p=0.567)), even though the general impression from the
participants was that they preferred to perform 10RM over 30RM resistance training.

To the best of my knowledge, this is the first study to compare the effects of low-load and
high-load resistance training for muscle functional and gross muscle biological effects in a group of
older adults. Indeed, the larger muscle mass accretion associated with low-load resistance training
and the similar muscle strength improvements between exercise loads in the RCT study contrasts to
a certain extent the training responses commonly seen in young healthy adults, although similar
responses also are present.?’ In the younger population, high-load resistance training performed to
volitional exhaustion are generally associated with similar®®3 or greater muscle hypertrophy,2°1.202
and larger muscle strength gains compared to low-load resistance training.2°193201202 Thjs disparity
in responses may be due to age-related changes in skeletal muscle environment and
epigenetics,2%32% [eaving young and older persons with dissimilar muscle phenotypes, which possibly
can lead to different molecular responses. This may also be related to the lowered ability in older
persons to fully activate skeletal muscle during resistance exercise,'>2%* which may even be
hypothesized to be differently affected following high- and low-load resistance training in older and
young persons. The mechanisms underlying the observed effects clearly needs further study.

Figure 7. Comparison of changes to high-load (10 repetitions maximum; RM) and low-load (30RM) resistance
training on weighted factors of the core outcome domains, i.e. lower-body muscle strength, lower-body
muscle mass, one-legged endurance performance and lower-body muscle quality. In (A), comparison of the
effects of 10RM and 30RM for all study participants combined, whereas in (B) and (C), the same comparison
was performed for COPD-only and Healthy-only, respectively. P-values in (A) represents the comparison of
change scores between 10RM and 30RM resistance training. Alpha level at p<0.05. *, statistically different
response to 10RM and 30RM resistance training.
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Figure 8. Comparison of changes related to high-load (10 repetitions maximum; RM) and low-load (30RM)
resistance training on measures of lower-body unilateral muscle strength (A), muscle mass (B) and bone
mineral density (C). P-values represents the comparison of change scores between 10RM and 30RM resistance
training. Alpha level at p<0.05. *, statistically different response to 10RM and 30RM resistance training; 1RM,
one repetition maximum; Nm, newton-meters.

One-legged endurance measures. For one-legged endurance performance, the 10RM and
30RM resistance training improvements were similar, both measured as the weighted combined
factor (Figure 8A), and as each of its containing variables (i.e. one-legged knee extension
performance and maximal workload achieved during one-legged cycling; Figure 9). This does not
resemble with previous findings seen in young healthy persons, where high-load resistance training
(3-5RM) was associated with larger improvements in muscular endurance (i.e. repetitions achieved
at a load corresponding to 60% of 1RM) compared to low-load training (20-28RM).* Furthermore,
they observed larger gains in muscle strength and muscle hypertrophy with high-load training
compared to low-load training, and as such further emphasized the different training responses in
that study sample compared to the responses observed in the RCT study. Of note, the test protocol
was also slightly different from the muscular performance test protocol used in the RCT study,
where the external load was set to 50% of 1RMpre-rer. The similar improvements between exercise
load modalities in maximal workload achieved during one-legged cycling can probably be ascribed
different alterations of the underlying performance-determining factors for this measurement;
whereas there was a tendency towards larger changes in VO;maXone-legged cyciing for 30RM resistance
training (Figure 9), greater improvements in cycling oxygen cost and gross efficiency were observed
for 10RM resistance training (Figure 9).
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Figure 9. Comparison of changes related to high-load (10 repetitions maximum; RM) and low-load (30RM)
resistance training on one-legged endurance measures. Muscular performance was defined as the number of
repetitions achieved at 50% of pre-study 1RM in the knee extension exercise. The rest of the variables are
collected during maximal (maximal workload and VO.max) and submaximal (cycling oxygen cost and gross
efficiency) one-legged cycling. P-values represents the comparison of change scores between 10RM and 30RM
resistance training. Alpha level at p<0.05. *, statistically different response to 10RM and 30RM resistance
training; VO2peak, maximal oxygen consumption achieved during one-legged cycling.

Muscle fiber cross-sectional area and proportions, and muscle mitochondrial function. For muscle
fiber type | and type Il cross-sectional area, the two exercise load modalities were associated with
similar resistance training-associated changes (Figure 10A). However, in study cluster-specific
analyses, COPD showed tendencies towards blunted plasticity of type | muscle fibers, with responses
to 30RM resistance training almost statistically larger compared to 10RM resistance training (A22%,
p=0.060; (Paper lll, Figure 6). Such study cluster interactions were not observed for muscle fiber type
Il hypertrophy. For muscle fiber type proportions, 10RM resistance training led to a more
pronounced decrease in IIX proportion compared to 30RM resistance training (Figure 10B), whereas
10RM and 30RM resistance training altered fiber type | and fiber type lIA proportions in a similar
manner (Figure 10B). In study cluster-specific analyses, this seemed to be valid for both COPD and
Healthy (COPD, A-2.6%-points, p=0.073; Healthy, A-1.7%-points, p=0.015). The findings may indicate
that 30RM resistance training did not enable to maximally activate the largest motor units, i.e. the
type IIX fibers, thus resembling with previous studies showing generally lower mean and peak
muscle activation when exercising with a low vs a high resistance training load carried out to
muscular failure.®**” Of note, neither this nor the lower mechanical tension associated with low-load
training®® translated into impaired muscle fiber hypertrophic responses, measured neither directly
using immunohistochemistry nor indirectly using gross measures of muscle mass (dual energy x-ray
absorptiometry/ultrasound measures). This emphasizes that other factors as well are of importance
for muscle hypertrophy, which indeed may be more altered by low-load than high-load resistance
exercise (e.g. total exercise volume,®® degree of metabolic perturbations,®®® and time under tension
for low-threshold motor units®1),
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At post-RT, muscle mitochondrial quantity (citrate synthase activity) and respiratory capacity
were not significantly different between exercise load modalities in neither COPD nor Healthy. Still
mentionable, in COPD, 30RM was associated with higher intrinsic oxidative phosphorylation (total
oxidative phosphorylation/citrate synthase activity) (A11%, p=0.065) and intrinsic electron transfer
system capacity (electron transfer system capacity/citrate synthase activity) (A13%, p=0.060) at
post-RT. Notably for these analyses, only the 30RM leg biopsies were analyzed pre-RT, which
prevented to measure muscle mitochondrial changes for the 10RM leg.

Figure 10. Comparison of the changes related to high-load (10 repetitions maximum; RM) and low-load (30RM)
resistance training on m. vastus lateralis fiber cross-sectional area (A) and fiber type proportions (B), measured
using immunohistochemistry. P-values represents the comparison of change scores between 10RM and 30RM
resistance training. Alpha level at p<0.05. *, statistically different response to 10RM and 30RM resistance
training; CSA, cross-sectional area.

Remarks on the resistance exercise-load objective of the RCT. Traditionally, high-load resistance
training has been viewed as necessary to achieve optimal muscle strength and hypertrophy
responses in anyone from novices to resistance-trained individuals.*® This has been claimed based on
the postulate that heavy loading is required to fully recruit higher threshold motor units,*® and
consequently it has been reasonable to assume that optimal improvements in muscle strength and
hypertrophy only can be achieved through the use of high loads. Recently, this view has been
challenged for young healthy individuals, where low-load training has been shown to result in

91-93 or even enhanced,?® muscle hypertrophic responses compared to high-load resistance

similar,
training, while high-load resistance training still seems to lead to larger improvements in muscle
Strength.21'91'93'201'202

In the RCT study, we largely verify that low-load resistance training can be a feasible training
modality alternative to conventional high-load resistance training also in the general older
population. Indeed, when combining the results from all participants in the RCT study, 30RM
resistance training executed to volitional exhaustion was associated with generally larger muscle
mass gains than 10RM training. However, this did not seem to translate into superior muscle

strength or endurance performances for the study participants, although both training modalities
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were associated with pronounced improvements for these measures. For some variables, traces
towards superior effects for one of the exercise load modalities were observed. This was evident for
changes in cycling oxygen cost/gross efficiency (LORM>30RM), VO2mMaXone-legged cycling (LORM<30RM),
change in muscle fiber type IIX proportion (10RM>30RM), and muscle fiber type | size in the COPD
cluster (10RM<30RM). However, 10RM resistance training was associated with better abilities to
maintain bone mineral density, which emphasizes that resistance training programs for this
population as a rule should include elements of high-load resistance training. Of note, analyses of
the impact of resistance training load on changes in mRNA transcriptome profiles were not finished
at the time this thesis was submitted.

39



Perspectives

5

Conclusions

The primary findings were:

In older adults with moderate COPD (GOLD grade II-1ll), muscular performance was
impaired in two-legged leg press, but not in one-legged leg press. This advocates the use
of one-legged resistance exercises for persons with COPD (Paper |, preparatory study)

In older adults with or without COPD, vitamin Ds supplementation did not lead to
beneficial effects in resistance training-associated changes in muscle function or
characteristics, although it efficiently improved vitamin D-status without any adverse
effects. This rejects the notion that vitamin D; supplementation is necessary to obtain
adequate muscular responses to resistance training in the general older population.
Secondary analyses revealed positive effects of vitamin D3 supplementation for gene
sets involved in vascular functions and for muscle strength improvement for participants
with high proportions of fat mass, which advocates further research to elucidate on
these specific biological characteristics (Paper Il, RCT study)

For the RCT study participants, COPD displayed well-known disease-related
pathophysiologies, including elevated levels of systemic low-grade inflammation,
reduced muscle mass and functionality, and muscle biological aberrancies. In these
persons, the resistance training program led to pronounced improvements for a range of
health and muscle functional and biological variables, resembling or exceeding those
seen in Healthy. Contrary to our hypothesis, COPD was not associated with impaired
responsiveness to resistance exercise training, which rather posed a potent measure to
relieve disease-related pathophysiologies (Paper Ill, RCT study)

Resistance training was a potent measure to restore muscle mitochondrial quantity and
respiratory capacity in COPD (Paper IV, RCT study)

Overall for the RCT study participants, low-load resistance training was associated with
larger increases in lower-body muscle mass, while high-load resistance training resulted
in a larger decrease in muscle fiber type IIX proportion, larger improvements in cycling
economy/gross efficiency, and counteracted decreases in bone mineral density over the
course of the intervention. Low-load resistance training performed to volitional failure
can be recognized as a feasible and effective alternative to high-load training in the
general older population when considering muscle mass/strength/performance
enhancement. The slightly diverging and complementing effects of the two training
modalities for the range of the outcome measures may advocate that they should be
combined in a given training program for older adults to facilitate optimal responses
(RCT study)
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6 Perspectives
As the prevalence of sarcopenia is markedly escalating,?° coinciding with increasing proportions of
older adults, efficient lifestyle measures to prevent, treat and reverse sarcopenia are warranted to
facilitate elderly to stay healthy, active and independent. With this in mind, the aim of The Granheim
COPD Study was to investigate how a combinatorial lifestyle protocol involving both dietary
manipulation of vitamin D3 supplementation and two different resistance-training strategies (high-
load and low-load resistance training) would affect indices of muscle function and biology in
resistance training-naive COPD and healthy older persons. Whereas vitamin D3 supplementation did
not lead to beneficial effects on muscle functions or characteristics, resistance training was
associated with marked improvements. Thus, resistance training stood out as the most potent
measure to alter such variables. The effects of resistance training were in general similar or larger in
COPD compared to Healthy, not enhanced by vitamin D3 supplementation, and not affected by
exercise load for the muscle functional measures, albeit training load-specific observations related to
alterations in e.g. cycling economy/efficiency, fiber type proportions and bone mineral density. The
study also showed that resistance training in COPD can provoke muscle mitochondrial
improvements, a feature previously only observed after endurance training for this patient group.
For persons with COPD, there is growing evidence for the use of one-legged exercise
protocols for rehabilitation purposes, thus circumventing the cardiorespiratory limitations inherent
to the condition, facilitating higher degrees of muscle activation and muscle mass-specific intensities

during exercise compared to conventional whole-body exercises for these type of individuals,”*7>2%7

which seems to translate into superior functional improvements after both endurance training?®®
and resistance training.%” With such an exercise approach in the RCT study, the training responses
seemed to resemble or exceed those seen in Healthy. Training with lower systemic physiological
demands is also considered to be beneficial for the emotional perception of training in such patients,

209210 3nd thus likely provides a feeling of safety

as it is associated with lower degrees of dyspnea,
and acts to stimulate long-term motivation for training. Future studies on exercise training
rehabilitation of COPD persons should further elucidate on efficient training protocols for this
population that can enhance clinically important measures such as well-being, health-related quality
of life and level of activities of daily living, and may counteract worsening of the disease and prevent
adverse health events. Currently for exercise training rehabilitation of COPD, questions about which
persons that should perform exercise training with reduced levels of active muscle, and how exercise
training protocols should be organized regarding implementation of resistance training, endurance
training, or a combination of these two exercise training modalities remains largely unstudied for
different COPD phenotypes.

Within lifestyle therapy, it is an intriguing vision that therapy protocols in the future can be
prescriptions, e.g. a prescription of type and dosage of exercise training, which is based on biological
characteristics such as an individual’s muscle transcriptome, instead of knowledge originated from
interventions on whole groups/clusters, such as today. The individual response to a training
intervention is largely differing, so also in the current RCT study. If one could successfully link
different biological profiles to distinct responses for various types of exercise interventions, it should
arguably be possibly to prescribe personalized exercise training therapy. In this regard are the use of
unilateral training protocols of particular interest. This enables to study if one intervention is
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associated with greater muscle functional and biological improvements compared to another
intervention within the same individual, given the presence of the same genetic material for both
interventions. Such individual exercise training prescription may be readily available to distinguish
responders to 10RM from 30RM and vice versa in the current RCT study data set. This data set is
also, together with other exercise training intervention data sets, integrated into the general
biobank The Trainome at INN-Lillehammer, which is created with the same rationale of personalized
lifestyle therapy in mind.
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1 | INTRODUCTION

For individuals suffering from chronic obstructive lung dis-
ease (COPD), physical exercise is a prerequisite for adequate
treatment and rehabilitation. It counteracts the muscle patho-
physiology inherent to the disease and improves health-related

Abstract

Chronic obstructive lung disease (COPD) is associated with impaired muscle func-
tions in addition to the impaired cardiopulmonary capacity inherent to the disease.
The purpose of this study was to compare muscular performance between COPD sub-
jects (COPD, n = 11, GOLD grade II/III; FEV, = 53 + 14% predicted; 61 + 7 years)
and healthy controls (HC, n = 12, 66 + 8 years) in three resistance exercises with
different complexity: (a) one-legged knee extension (1KE), and (b) one- and (c) two-
legged leg press (1LP and 2LP, respectively). For each exercise, muscular perfor-
mance was defined as repetitions to exhaustion at 60% of one-repetition maximum or
overall exercise volume, calculated as the sum of three exercise sets. In HC, muscu-
lar performance increased progressively with increasing physiological complexity:
1KE < 1LP < 2LP. Using 1KE as reference value, muscular performance increased
by 1.9 (repetitions) or 4.6-fold (volume) in 1LP and 3.1 or 7.1-fold in 2LP. In COPD,
similar increases occurred going from 1KE to 1LP (1.9 or 4.4-fold change), but not
from 1LP to 2LP, where no further increase occurred. In conclusion, in COPD, per-
formance is impaired in exercises involving larger amounts of muscle mass (>1LP),

advocating utilization of one-legged resistance protocols for rehabilitation purposes.

KEYWORDS
cardiorespiratory capacity, chronic obstructive lung disease, muscular performance, resistance training,

strength training, unilateral training

quality of life and activities of daily liVing.l'3 Unfortunately,
exercise training is a demanding task for such patients. The
accompanying increase in oxygen consumption in working
muscles rapidly exceeds the oxygen-delivery capacity of the
cardiopulmonary system,4 leaving muscles in a state of ox-
ygen deficiency. This occurs already at low intensities and
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upon activation of small bulks of muscle (>4 kg), resulting
in dyspnea, discomfort, and impaired exercise performa.nce.5
Accordingly, it is difficult to achieve necessary exercise in-
tensities to provoke muscle cell adaptations,6‘7 which hinders
efficient rehabilitative training.s'g Despite this, whole-body
endurance exercise training, such as cycling or walking, is
the most commonly applied exercise modality in pulmonary
rehabilitation. '

Fortunately, there are ways to solve this issue and to fa-
cilitate ergogenic adaptations to exercise training in COPD
patients. A readily available solution would be to make use
of exercise protocols with lower physiological demands such
as resistance exercises, activating smaller amounts of muscle
mass.* This strategy should ensure maximal muscle activa-
tion regardless of blood oxygenation levels, enabling activa-
tion of key cellular signaling pathways, and inducing muscle
adaptations. In line with this, resistance training has gained
momentum in COPD rehabilitation during the last decade,
counteracting the muscle dysfunctions accompanying the
disease, improving muscle strength and endurance, and in-
creasing muscle mass.'""* However, the magnitude of these
effects remains equivocal, with available studies displaying
a large span of variation in training adaptations, ranging
from negligible or trivial'*'> to substantial and highly rel-
evant.'®"” Indeed, many patients do not respond to training
at all.*® To date, this heterogeneity has been ascribed patho-
physiologies accompanying the disease, such as a low-grade
systemic inflammation,'®!° though this is unlikely to explain
the between-studies variation. Rather, the heterogeneous re-
sponse patterns may result from differences in study design,
including differences in resistance training protocols. Indeed,
the cardiopulmonary limitations of COPD patients may call
for specific modifications to resistance training exercises in
order to further reduce the physiological demand.” At pres-
ent, we know little about this perspective, with only a handful
of studies investigating the efficacy of different resistance ex-
ercise modalities.*""

Conventional resistance training of the legs typically in-
volves two-legged exercises. In moderate to severe COPD,
this is likely to involve too much muscle mass to allow for
optimal activation (and arguably adaptation).m'24 Intuitively,
this is readily solvable by using one-legged resistance exer-
cises, which naturally reduces the amount of active muscle
mass. In a recent study, unilateral resistance exercises resulted
in superior exercise workloads using elastic bands compared
to bilateral exercises in severe to very severe COPD (GOLD
grade III/IV), but not in healthy subjects,n‘23 though analy-
sis of interaction effect for difference in exercise workload™
2 from single- to two-limb exercises and group (COPD vs
healthy) was not performed. This complicates to examine if
COPD patients show progressively lowered muscular per-
formance in resistance exercises with increasing complexity
compared to healthy subjects. It also remains unknown if this
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applies to COPD of less severity (GOLD grade II/I1I), and if
it is applicable to isolated resistance exercises performed in
apparatus, perhaps exacerbated by increasing physiological
complexities of exercises. For endurance exercises, such uni-
lateral training seems to translate into superior training adap-
tations for COPD subjects.zs’26

The purpose of this study was to compare muscular per-
formance in three resistance exercises of the legs involving
different degrees of active muscle mass in COPD and healthy
control subjects (one-legged knee extension, and one- and
two-legged leg press). We hypothesized that muscular per-
formance in COPD patients would be increasingly impaired
with increasing amount of active muscle mass compared to
healthy subjects. Muscular performance was defined as rep-
etitions to exhaustion at 60% of 1RM or overall exercise vol-
ume, both calculated as the sum of three sets for each exercise.

2 | METHODS

The study was approved by the Regional Ethics Committee
of the Norwegian Research Council for Science and the
Humanities as a part of “The Granheim COPD Study” (refer-
ence nr: 2013/1094) and was preregistered at clinicaltrials.
gov (NCT02598830). All subjects signed informed consent.
The study was conducted according to the Declaration of
Helsinki.

21 |

Twelve subjects with COPD and 11 healthy control subjects
participated in the study. For background variables, see Table
1. COPD subjects were recruited from a pulmonary rehabili-
tation center (Granheim Lung Hospital), while healthy con-
trols were recruited through acquaintances. All subjects were
>55 years of age. COPD subjects had GOLD stage II-III
(FEV, predicted <80 to >30% and FEV1/FVC <70%) and
did not smoke at the time of inclusion and throughout the
test period. Healthy controls had normal lung function (FEV,
predicted >80% and FEV;/FVC >70%). Exclusion criteria
were unstable cardiac disorders and comorbidities that could
impair the ability to perform lifts with the lower limbs. COPD
subjects received medication as prescribed by their medical
doctor (Table 1). None of the subjects utilized supplemental
oxygen regularly. Subject characteristics unrelated to mus-
cle strength and performance were similar between groups,
except for lung function, oxygen saturation of hemoglobin
(SpO,), and medication use (Table 1).

Subjects

2.2 | Experimental design

All subjects attended 7 days of performance testing, distrib-
uted over a period of 4 weeks. Test days were separated by
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TABLE 1 Subject characteristics
COPD sub- HC subjects
jects (n = 11) n=12) P

Sex (3/9) 5/6 57 .86
Age 65.5+8.1 61.8 +6.7 24
Height (cm) 165+ 12 173 £ 10 11
Weight (kg) 70.1 + 145 76.4 + 11.5 .26
BMI 25.6 £5.1 255426 93
SpO, at rest 94 + 4% 98+ 1% .01
Lung function

FVC (L) 27+ 1.1 41+08 .00

FEV /FVC (%) 49+ 13 72+6 .00

FEV, (% predicted) 53+ 14 117 £ 12 .00

PEF (L/s) 47419 8.1+ 1.7 .00

GOLD II/IIT 7/4 — —
Medication

B,-agonists 10 — —

Muscarinic antagonists 1 — —

Corticosteroids 1 — —

4-min step-test (steps) 92 +25 137 £ 25 .00

Note: Values are numbers or mean + standard deviations.

Abbreviations: BMI, body mass index; COPD, chronic obstructive pulmonary
disease; FEV, forced expiratory volume in one second; FVC, forced vital ca-
pacity; HC, healthy control; PEF, peak expiratory flow; SpO,, oxygen saturation
of hemoglobin.

at least 48 hours. On day 1, subjects performed spirometry
testing, anthropometric measurements, 4-minute step-test,
and familiarization to one-repetition maximum (1RM) tests
in one-legged knee extension (1KE), one-legged leg press
(1LP), and two-legged leg press (2LP). On days 2-3, sub-
jects performed 1RM tests. These data were subsequently
utilized to calculate relative workload for tests of muscular
performance (60% of 1RM), which were performed on days
4-7 (two test days for the one-legged exercises and two test
days for the two-legged exercise). All tests were supervised
by the same physical training instructor, except for spirom-
etry tests, which were conducted by the same nurse special-
ist. Apparatus settings were adjusted to the needs and were
utilized for all tests.

2.3 | Test protocols

2.3.1 | Spirometry and anthropometry

Spirometry testing (Jaeger MasterScreen PFT; Carefusion)
was conducted before the other physical tests. The pro-
tocol followed guidelines from the American Thoracic
Society and the European Respiratory Society.27 COPD
patients were tested before and after inhalation of two

bronchodilators (salbutamol, 0.2 mg and ipratropiumbro-
mid, 20 pg). See Table 1 for values on lung function after
optimal bronchodilation.

2.3.2 | Fitness test

Subjects performed a 4-minute step-test to evaluate the sub-
jects’ general fitness level. A 20-cm high step box with a
non-slip rubber surface (Reebok Step; Reebok) was used.
Subjects were asked to perform as many steps as possible
within four minutes, placing both legs on the box with the
hip fully extended during each step up. Moderate verbal mo-
tivation was given throughout the test. Data are presented in
Table 1.

2.3.3 | Muscular strength

Muscular strength was measured as IRM in one-legged knee
extension (Technogym, Technogym SpA), one- and two-
legged leg press (Gym80 Sygnum Legpress, Gym80 mbH).
Warm-up consisted of 5 minutes of low-intensity bicycling
on a bicycle ergometer, followed by three sets of 12, 8, and
6 repetitions with low, increasing workloads. Subsequently,
a maximum of five 1RM attempts were conducted for each
exercise. All three exercises were tested in two separate ses-
sions, and the best result was used for further analysis. One-
legged muscle strength was tested on both legs, with one leg
performing 1RM in one-legged knee extension and the other
leg performing 1RM in one-legged leg press, allocated to the
two legs in a randomized manner. On the two test days, sub-
jects alternated between starting with one-legged exercises
(1KE and 1LP) and two-legged exercise (2LP), giving each
subject an attempt for each exercise modality with fully rested
lower limbs. In one-legged knee extension, the 1RM attempt
was approved if the knee angle exceeded 170°. In one- and
two-legged leg press, the IRM attempt was approved if the
knee angle reached 90° in the eccentric phase, with subse-
quent full extension of the knee joint in the concentric phase.

2.3.4 | Muscular performance

Muscular performance was assessed in one-legged knee
extension, one- and two-legged leg press, and was defined
as the number of repetitions achieved at 60% of 1RM.
Repetitions were quantified as the total number of repeti-
tions achieved over the course of three sets, with 2 minutes
of rest in-between. Each of the three exercise performance
tests was conducted twice during the test period, on sepa-
rate days. One-legged muscular performance tests (1LP and
1KE) were conducted within the same session, with one
leg performing one-legged knee extension and the other
leg performing one-legged leg press, allocated to the two
legs in accordance with 1RM testing. The relative order
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of one-legged and two-legged test days was randomized
between subjects; half the subjects started with one-legged
testing and half the subjects started with two-legged test-
ing. The session following one-legged testing was always
two-legged testing and vice versa. For each of the three
muscular performance tests, the best result was used for
further analyses.

Exercises were performed as previously described. Warm-
up consisted of 5 minutes of low-intensity cycling on a cycle
ergometer, followed by two sets of 12 and 8 repetitions at
loads corresponding to 15% and 30% of 1RM, respectively.
During muscular performance tests, subjects were instructed
to lift at a composed and controlled pace, with no rest longer
than 1 second in the lower or upper position. Moderate ver-
bal motivation was given to all subjects. Blood lactate con-
centration (Lactate Pro, ARKRAY Inc) and SpO, (CMS 50F
Oximeter, Innovo Medical) were measured at rest and after
tests. Rating of dyspnea (Borg CR10)® was registered imme-
diately after the test.

24 |

Differences between groups (COPD vs healthy control sub-
jects) were assessed using unpaired Student's #-tests for nu-

Statistical analysis

meric data and Pearson's chi-squared test for nominal data
(sex). Differences between independent groups with repeated
measures were assessed using mixed-design ANOVAs with
groups (ie, COPD and healthy control subjects) as between-
factor and type of exercise (1KE, 1LP, and 2LP) as within-
group factors. When a significant F value occurred, a Sidak
post hoc test was used to determine differences between and
within groups. The relationship between percent difference
in muscular performance between one-legged knee exten-
sion and two-legged leg press and lung function was tested
by Pearson's correlation. Statistical significance was set at
P < .05, and data are expressed as means =+ standard devia-
tion in text and means + 95% confidence intervals in fig-
ures. Statistical analyses were performed using IBM SPSS
Statistics package (version 24) and figures made using Prism
Software (GraphPad 8).

3 | RESULTS

31 |

In general, COPD showed lower 1RM strength than healthy
controls (Fy,; = 5.7, P = .027; Figure 1). In one-leg-
ged knee extension, COPD and healthy controls achieved
33 + 12 and 42 + 9 kg, respectively (P = .052). In one- and
two-legged leg press, corresponding values were 75 + 22
and 98 + 18 kg (P = .012), and 78 + 21 and 93 + 17 kg
(P =.091, measured as IRM'®), respectively. Within each
of the groups, no difference was seen between 1RM-1LP

Maximal strength
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FIGURE 1 Maximal strength per leg for healthy control and

COPD subjects. Data are means with 95% confidence levels. 1KE,
one-legged knee extension; 1LP, one-legged leg press; 2LP "¢,
two-legged leg press divided by two; COPD, chronic obstructive
pulmonary disease; HC, healthy control. *Significant difference
between groups (P < .05); #significant different from 1KE (P < .05)

and IRM™"°€2LP performance (COPD, P = .656; healthy
controls, P = .137).

3.2 | Muscular performance in
resistance exercises

There was an interaction effect for groups and exercises on
muscular performance, measured as both total number of rep-
etitions achieved during three sets of resistance exercises at
60% of 1RM (F, 4, = 7.3, P = .002; Figure 2A) and as exer-
cise volume (F, 4, = 8.3, P = .001; Figure 2C). In all three
exercises, healthy controls generally managed to conduct
more repetitions and higher exercise volumes than COPD,
except for in one-legged leg press, where there was no dif-
ference in repetition to exhaustion between groups (P = .10).
For healthy controls, muscular performance increased pro-
gressively with increasing complexity and physiological de-
mand of the exercise: 1KE < ILP < 2LP (P < .05; Figure
2A,C). For COPD, a similar increase was seen going from
one-legged knee extension to one-legged leg press (P = .004,
repetitions to exhaustion; P < .001, exercise volume), but
not from one- to two-legged leg press, where no increase oc-
curred (P = .932, repetitions to exhaustion; P = .852, exercise
volume; Figure 2A,C). This progressive increase was high-
lighted in a subset of analysis where we calculated one- and
two-legged leg press performance as relative performance to
one-legged knee extension (Figure 2B,D). In this subanalysis,
there was a significant interaction effect for groups and exer-
cises for both repetitions to exhaustion (F; ,; =9.2, P =.006)
and exercise volume (F,; = 5.5, P = .029), highlighting
that muscular performance was impaired during two-legged
leg press in COPD compared to healthy controls. In healthy
controls, muscular performance in one-legged leg press was
1.9 + 0.7 fold (repetitions; Figure 2B) and 4.6 + 1.8 (volume;
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FIGURE 2 Exercise performance
in resistance exercises for healthy control

il

and COPD subjects performed as three sets

to exhaustion at 60% of 1RM. Exercise

performance was measured as A, total

number of repetitions to exhaustion, B,

% number of repetitions to exhaustion in 1LP
and 2LP relative to 1KE, C, total exercise
volume (kg - repetitions) per leg and D,
total exercise volume for 1LP and 2LP ™'

relative to 1KE. Data are means with 95%
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Figure 2D) fold higher than in one-legged knee extension
(P < .001). A further increase was seen going from one- to
two-legged leg press, which was 3.1 + 1.6 fold (repetitions;
Figure 2B) and 7.1 + 3.8 fold (volume; Figure 2D) higher
than in one-legged knee extension (P < .001). In COPD, mus-
cular performance increased in a similar manner going from
one-legged knee extension to one-legged leg press (1.9 + 0.7
fold, repetitions; 4.4 + 1.3 fold, volume; P < .005) (Figure
2B.D), with no differences between COPD and healthy con-
trols (P = .992, repetitions; P = .823, volume). However, in
COPD, no further increase was seen going from one-legged
to two-legged leg press (2.1 & 0.7 fold higher than 1KE, repe-
titions; 5.1 + 1.3 fold higher than 1KE, volume; P = .403 and
0.226, respectively) (Figure 2B,D). This resulted in tenden-
cies to higher performance in two-legged leg press relative to
one-legged knee extension in healthy controls compared to
COPD subjects (3.1 vs 2.1 fold and 7.1 vs 5.1 fold, P = .055
and 0.118, respectively; Figure 2B,D).

Chronic obstructive lung disease and healthy control
subjects displayed similar within-session occurrences of
muscular fatigue, measured as differences in muscular per-
formance between set 3 and 1 in each exercise (1KE, healthy
controls = —18%, COPD = —23%, P = .874; 1LP, healthy
controls = —15%, COPD = —23%, P = .720; 2LP, healthy
controls = —23%, COPD = —27%, P = .144). In a merged
data set encompassing data from both groups, there was a
significant correlation between differences in muscular per-
formance of one-legged knee extension and two-legged leg

Resistance exercise modality

press and predicted FEV, (Pearson r = .49, P = .018). This
suggests that impaired lung function was associated with im-
paired muscular performance during two-legged leg press.

During muscular performance tests, COPD generally dis-
played greater falls in oxygen saturation (F; 5, =9.9, P = .005)
and higher degrees of dyspnea (F 5, = 9.5, P = .006) within
each of the three different resistance exercises compared to
healthy controls (Table 2). In both COPD and healthy con-
trol subjects, there was a significant increase in dyspnea with
increasing complexity and physiological demands of the ex-
ercises (1KE < 1LP < 2LP; P < .001). This increase was
not evident for oxygen saturation. Healthy controls displayed
greater increases in blood lactate concentration from before
to after exercises (F 5; = 5.9, P <.05; Table 2).

4 | DISCUSSION
The primary finding of this study is that patients with mod-
erate to severe COPD (GOLD grade II or III) display lower
muscular performance in the legs compared to healthy con-
trols. This difference increases with the complexity of the
exercise, that is, the amount of active muscle mass and as-
sociated increases in physiological demands. In particular,
in COPD, muscular performance was clearly impaired going
from one-legged exercises to two-legged leg press, compared
to healthy controls. Whereas the overall reduction in muscu-
lar performance seen in COPD compared to healthy controls
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TABLE 2 Physiological responses to muscular performance tests

One-legged knee extension

One-legged leg press

WILEY-L®

Two-legged leg press

b/w b/w b/w
COPD Healthy groups COPD Healthy groups COPD Healthy groups
SpO, (% change) -30+21 -20+10 P=.16 —-31+£20 -13+10 P=01 -3.6+29 -14+12 P=03
[BLa™] (% change) 236 + 101 365+225 P=.10 240 + 108 352162 P=07 355+ 83" 539+278 P=.05
Degree of dyspnea 45421 29+08 P=02 56+16 39+12 P=01 63+16 4416 P=01
(0-10)

Note: SpO, and [BLa™] values are presented as percentage change from rest. All values presented as means + standard deviations.

[BLa"], blood lactate concentration; degree of dyspnea (1-10); b/w, between; SpO,, oxygen saturation of hemoglobin.

*Significant different from one-legged knee extension (P < .05).
**Significant different from one-legged leg press (P < .05).

is likely due to suboptimal muscle functionality,19 the exag-
gerated reductions seen in COPD in two-legged leg press is
likely due to the cardiopulmonary limitations inherent to the
disease.” This agrees with previous data on endurance-> and
resistance-like exercises.’>% Overall, these data underline
the suitability of one-legged resistance exercises in subjects
with COPD, advocating their use in rehabilitation programs.

Overall, COPD subjects displayed lower muscular per-
formance in all exercises compared to healthy controls (total
repetitions to exhaustion, —23%, —24%, and —49% for 1KE,
1LP, and 2LP, respectively; overall exercise volume, —41%,
—42%, and —56% for 1KE, 1LP, and 2LP, respectively). The
reduced performance in one-legged knee extension corrob-
orates with previous observations of ~30% reductions in
one-legged knee extension performance in subjects with
moderate COPD compared to healthy controls.***! For one-
legged exercises, the attenuation in muscular performance
is likely due to the muscle pathophysiology inherent to the
disease, including reduced proportions of type I muscle fi-
bers, increased proportions of type II (specially 1IX) fibers,
and reduced oxidative capacity.lg“n’33 Furthermore, the pre-
vious studies have shown that subjects with moderate to se-
vere COPD (such as the participants in this study) are not
limited by ventilatory capacity during one-legged knee ex-
tension exercises.”** Our data supports this perspective, with
COPD and healthy control subjects showing similar increases
in muscular performance going from one-legged knee exten-
sion to one-legged leg press. This increase occurred without
concomitant increase in lactate concentration, suggesting that
oxygen supply was sufficient to fuel the increase in working
muscle mass in one-legged leg press.

Chronic obstructive lung disease subjects were unable
to increase muscular performance going from one-legged
leg press to two-legged leg press. This contrasts data from
healthy controls, who displayed 65% and 52% increases in
performance (repetitions and volume, respectively), and
agrees with data from previous studies.>>® In effect, this
led to an exaggerated difference between COPD and healthy
control subjects in muscular performance in two-legged leg

press, which cannot be attributed muscular dysfunctions.
Instead, the causative explanation likely resides in the car-
diopulmonary limitations inherent to the COPD disease.
Unfortunately, we do not have cardiorespiratory measure-
ments to support this view. However, it is logical that the
increase in working muscle mass accompanying going from
one-legged leg press to two-legged leg press led to oxygen
requirements that surpassed the oxygen-delivery capacity
of the cardiopulmonary system, hence impairing muscle
function and performance. This is supported by data from
Nyberg et al,?® who found evidence for ventilatory lim-
itation in COPD patients at workloads corresponding to
two-legged knee extension exercise. There, a decrease in
muscular performance_leg for COPD subjects was present
going from one- to two-limb exercises, but whether this
decrease was different from what the healthy subjects ex-
perienced was not evaluated. Nyberg et al® performed
their study on COPD patients with more severe pulmonary
obstruction (38% vs 53% of predicted FEV,), which may
explain the absence of impaired muscular performance in
one-legged leg press in the present data. In our study, the
crossing point between exercising with sufficient amounts
of oxygen and exercising with insufficient amounts of ox-
ygen occurred around or slightly after activation of muscle
mass corresponding to one-legged leg press.

In the present data set, a comparison of 1RM data from
healthy subjects and COPD provides an unexpected obser-
vation. In healthy controls, IRM ™8 in two-legged leg press
was 6% lower than 1RM in one-legged leg press (though
without reaching statistical significance). This phenom-
enon is frequently described in the literature and is coined
the bilateral deficit.® In contrast, in COPD, 1IRM ™' in
two-legged leg press was 5% higher (non-significant) than
1RM in one-legged leg press, suggesting that the bilateral
deficit was absent in these patients. This is not common, but
has been previously observed in populations such as well-
trained individuals.*®*' This absence of a bilateral deficit in
COPD is likely due to underperformance in one-legged leg
press 1RM tests (and not overperformance in two-legged leg
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press), perhaps related to poor technical performance caused
by instability of the exercising limb or psychological factors.
Regardless of causation, this phenomenon may have affected
muscular performance during one-legged leg press testing,
arguably lowering loads corresponding to 60% of 1RM and
increasing estimates of muscular performance measured as
repetitions to exhaustion,*® potentially disguising impairing
effects of cardiopulmonary limitations. Accordingly, for this
exercise, there was no difference between COPD and healthy
subjects in repetitions to exhaustion at 60% of 1RM (P = .10).
This indirectly supports the notion that IRM estimates for
one-legged leg press were too low, as each of the two other
exercises revealed clear reductions in muscular performance
in COPD compared to healthy controls. Indeed, after taking
into account workload (ie, exercise volume), one-legged leg
press was also associated with marked reductions in muscu-
lar performance in COPD. Importantly, this potential issue
does not change the take-home message in our data: muscular
performance in COPD subjects is impaired in two-legged leg
press, advocating the use of resistance exercises with lower
amounts of active muscle mass.

4.1 | Perspectives

‘We have shown that COPD subjects display impaired muscu-
lar performance in resistance exercises compared to healthy
controls. This impairment was exacerbated in exercises in-
volving larger amounts of muscle mass (>one-legged leg
press), suggesting that performance in such exercises was
negatively influenced by the cardiopulmonary limitations in-
herent to the disease. A similar observation has previously
been made in COPD patients with more severe diagnoses,n’23
but not in the present patient population and not in connec-
tion with isolated resistance exercises performed in appara-
tus. This is also the first study to explicitly show that COPD
patients show progressively lowered muscular performance
in resistance exercises compared to healthy controls. Our
data advocate implementation of resistance exercises target-
ing smaller amounts of muscle mass into rehabilitation pro-
grams for COPD subjects, including one-legged exercises.
Importantly, in healthy adults, one-legged resistance
training leads to similar improvements of muscle functions
as two-legged training, measured as strength and hypertro-
phy.42’44 For COPD patients, there seems to be “a thresh-
old” of muscle mass that can be exercised before muscular
performance is limited by the cardiopulmonary capacity. In
our study, this threshold seemed to occur around the mus-
cle mass needed to perform one-legged leg press, though
this remains circumstantial, as it was beyond the scope
of the project to set such a threshold. Adding to this, the
threshold is probably of individual character, determined
by the subjects’ cardiorespiratory capacity and the severity
of the disease. Based on our data, we cannot conclude that

one-legged resistance training will bring higher efficacy
to COPD rehabilitation, which may resolve the seemingly
lowered responses to training observed in this popula-
tion. However, such training may enable COPD patients
to perform resistance training on equal terms as healthy
individuals, freeing them from the obstructions of cardio-
pulmonary limitations. Future studies should aim to target
this perspective.
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Abstract

Background Lifestyle therapy with resistance training is a potent measure to counteract age-related loss in muscle strength
and mass. Unfortunately, many individuals fail to respond in the expected manner. This phenomenon is particularly common
among older adults and those with chronic diseases (e.g. chronic obstructive pulmonary disease, COPD) and may involve en-
docrine variables such as vitamin D. At present, the effects of vitamin D supplementation on responses to resistance training
remain largely unexplored.

Methods Ninety-five male and female participants (healthy, n = 71; COPD, n = 24; age 68 + 5 years) were randomly assigned
to receive either vitamin D3 or placebo supplementation for 28 weeks in a double-blinded manner (latitude 61°N, September—
May). Seventy-eight participants completed the RCT, which was initiated by 12 weeks of supplementation-only (two weeks
with 10 000 1U/day, followed by 2000 IU/day), followed by 13 weeks of combined supplementation (2000 IU/day) and super-
vised whole-body resistance training (twice weekly), interspersed with testing and measurements. Outcome measures in-
cluded multiple assessments of muscle strength (N,grianes = 7), €ndurance performance (n = 6), and muscle mass (n = 3,
legs, primary), as well as muscle quality (legs), muscle biology (m. vastus lateralis; muscle fibre characteristics, transcriptome),
and health-related variables (e.g. visceral fat mass and blood lipid profile). For main outcome domains such as muscle strength
and muscle mass, weighted combined factors were calculated from the range of singular assessments.

Results Overall, 13 weeks of resistance training increased muscle strength (13% + 8%), muscle mass (9% * 8%), and endur-
ance performance (one-legged, 23% + 15%; whole-body, 8% * 7%), assessed as weighted combined factors, and were associ-
ated with changes in health variables (e.g. visceral fat, —6% * 21%,; [LDL]serum, —4% * 14%) and muscle tissue characteristics
such as fibre type proportions (e.g. 11X, —3% points), myonuclei per fibre (30% + 65%), total RNA/rRNA abundances (15%/
6-19%), and transcriptome profiles (e.g. 312 differentially expressed genes). Vitamin D5 supplementation did not affect
training-associated changes for any of the main outcome domains, despite robust increases in [25(0OH)D]serum (A49% vs.
placebo). No conditional effects were observed for COPD vs. healthy or pre-RCT [25(OH)D]serum- In secondary analyses, vitamin
D; affected expression of gene sets involved in vascular functions in muscle tissue and strength gains in participants with high
fat mass, which advocates further study.

Conclusions  Vitamin D3 supplementation did not affect muscular responses to resistance training in older adults with or
without COPD.

Keywords Strength training; Cholecalciferol; Muscle plasticity
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Introduction

Aging is associated with progressive loss of muscle strength
and mass, accompanied by declines in physical performance.
In 2016, this had escalated into ~11 million Europeans
(>65 years of age) suffering from sarcopenia,® a formally
recognized disease characterized by severe loss of muscle
quantity and quality.* Sarcopenia increases the likelihood of
adverse events such as falling, fractures, physical disability,
morbidity and mortality,>* further fuelling muscle deteriora-
tion, resulting in a spiralling decrease in overall health and
health-related quality of life.*® In Europe, the prevalence of
sarcopenia is expected to increase to at least ~19 million
by 2045,% coinciding with increasing proportions of older
adults, potentiated by suboptimal nutrition and increasing in-
cidences of causal morbidities such as systemic inflammatory
diseases.”® For elderly to stay healthy, active and indepen-
dent, efficient interventions are warranted for its prevention,
treatment and reversal.”® To this end, lifestyle therapy with
resistance training is an attractive, low-cost and potent
intervention.”° Unfortunately, the benefits of such interven-
tions are not always consistent, especially in the older popu-
lation, with selected individuals and populations showing
impaired abilities to increase muscle strength and mass.**?
At present, this training-response-spectrum has an unknown
causality, although it interdepends on factors such as
genetics,*** epigenetics,”* and composites of the inner
physiological milieu, including nutrition,*>*® endocrine vari-
ables (e.g. vitamin D),*”*® and hallmarks of health such as
low-grade chronic inflammation.'® There is thus a need for
development of combinatorial lifestyle protocols that target
and correct these factors alongside resistance training,
thereby allowing adequate muscle adaptations to occur.
Over the last two decades, vitamin D has emerged as a
potential determinant of muscle functionality and biology.?®
There seems to be a robust relationship between heteroge-
neity in vitamin D status and traits such as physical
performance?*™3 and susceptibility to falling,?* suggesting a
causal association between vitamin D and increased risk of
sarcopenia.?” As such, vitamin D status varies substantially
in the human population, both in an annual cycle, and
between individuals and groups of individuals.?®?” Vitamin
D insufficiency is particularly prevalent in older adults, mea-
sured as 25-hydroxyvitamin D (25(OH)D) levels <50 nmol/L,
and especially in older adults living in the Northern
Hemisphere,?’*® where cutaneous vitamin D synthesis is
miniscule or absent during winter months.?® In accordance
with this, exogenous vitamin D supplementation is gaining
momentum as a potential ergogenic aid for preventing and
treating sarcopenia.?® Unfortunately, the presumed benefits

of vitamin D supplementation deduced from crossover stud-
ies are not necessary supported by data from interventional
studies. While some studies and meta-analyses report
favourable effects of vitamin D supplementation per se on
muscle strength®*>? and falling,**** with benefits being
more pronounced in subjects with low baseline values
(<30 nmol/L)*® and in older subjects,® others do not.3¢73°
These discrepancies may not be surprising, as resistance
training is arguably necessary to provoke changes in muscle
functions.*® However, a similar ambiguity is present in the
few studies that have assessed the effects of vitamin D
supplementation on outcomes of resistance training.**™**
While none of these studies report clear benefits of vitamin
D supplementation for alterations in muscle strength,**™*4
muscle mass,*>* or incidences of falling,**** a recent
meta-analysis still concluded that it provides benefits for
training-associated changes in lower body muscle strength.*°

Consequently, we have limited and conflicting knowledge
about the combined effects of vitamin D supplementation
and resistance training for muscle functions and biology
in humans. The present confusion may partly be attributed
to methodological uncertainties in available studies, poten-
tially lowering their ecological validity and explaining
their lack of coherence with the resulting meta-analysis
data. This includes heterogeneous study populations
(varying from young adults**** to older adults* to
elderly*™*?) with large differences in baseline 25(0H)D levels
(average 31 nmol/L**~71 nmol/L**), large variation in vitamin
D dosage (from 400 IU/day**~4000 IU/day*?), lack of
familiarization to strength tests,*** suboptimal training
protocols*™*? (failing to comply to current guidelines, advo-
cating resistance training with controlled maximal effort*>4¢),
low compliance to training,***> and a lack of dietary assess-
ment during the intervention.***44 Also, neither of the stud-
ies included a period of vitamin D supplementation prior to
resistance training, which may be necessary to prime muscle
cells for adaptations, potentially acting by changing epige-
netic traits, which has been observed in other cell types, such
as T-cells*” and oral squamous cell carcinoma cells.*® Further-
more, the effects of vitamin D supplementation on muscle
fibre characteristics and biology remain poorly understood
and unclear.*® In theory, vitamin D may potentiate muscle
fibre responsiveness in two ways. Either directly by acting
through vitamin D receptors in muscle fibres or progenitor
cells, perhaps inducing intramuscular signalling pathways
such as the p38 mitogen-activated protein kinase
pathway,”®* or indirectly by interacting with systemic signal-
ling event, perhaps inducing testosterone signalling®® and
thereby facilitating muscle plasticity. Our lack of insight is
underlined by the longstanding uncertainty of the presence
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of vitamin D receptors in muscle tissue,”® although several

indications advocate its expression. First, there seems to be
associations between mutations in the vitamin D receptor
and muscle weakness in both humans and mice.”**> Second,
muscle-specific knock-out of the vitamin D receptor in mice
deteriorates muscle strength and mass in a manner that re-
semble sarcopenia.’®®’ The prevailing uncertainty is fuelled
by a seeming lack of effects of vitamin D supplementation
per se on the muscle transcriptome in vitamin D-insufficient
frail elderly, although also in that study the vitamin D dosage
was relatively low (400 1U/day).”® To date, a mere single
study has assessed the effects of vitamin D supplementations
on resistance training-induced muscle biological adaptations
in humans, and as such assessing only a limited selection of
traits and failing to disclose conclusive findings.**

The aim of the present study was to investigate the
effects of 12 weeks of vitamin D3 supplementation only
(the initial two weeks with 10 000 international units
(IU)/day, succeeded by 10 weeks with 2000 IU/day), followed
by 13 weeks of combined vitamin D3 supplementation
(2000 IU/day) and resistance training, on training-associated
adaptations in a mixed population of older subjects. The
RCT thus allowed assessment of responses to both vitamin
D; supplementation-only and combined vitamin D3 supple-
mentation and resistance training. The study population
included individuals that were either at risk of developing
sarcopenia (age or disease, i.e. COPD patients)°>® or showed
diagnostic indications of sarcopenia (16.4% of the partici-
pants had appendicular lean mass (kg)/m? greater than two
standard deviations below the sex-specific means of young
adults).? Outcome measures included a large range of
muscle strength and endurance performance tests, multiple
assessments of muscle mass, muscle quality, in-depth analy-
ses of muscle biology including muscle fibre characteristics
and analyses of the muscle transcriptome, and a range of
health-related measures including body composition, blood
variables and self-reported health variables.

Methods
Study ethics and participants

The study was approved by the Regional Committee for
Medical and Health Research Ethics - South-East Norway
(reference no: 2013/1094) and was preregistered at
ClinicalTrials.gov (ClinicalTrials.gov Identifier: NCT02598830).
All participants were informed about the potential risks and
discomforts associated with the study and gave their
informed consent prior to study enrolment. The study was
conducted according to the Declaration of Helsinki.
Ninety-five male and female participants (age 68 * 5 years,
range 56-77) were enrolled into the study (Figure 1).

Eligibility criteria were consumption of less than 400 interna-
tional units (IU) of vitamin D3 per day for the two months
leading up to the study, and either normal lung function or
medical diagnosis of COPD (GOLD®? grade Il or Ill, FEV,
predicted between 80% - 30%, FEV,/FVC < 70% after
reversibility testing with inhalation of salbutamol and
ipratropiumbromid). Exclusion criteria were unstable cardio-
vascular disease, chronic granulomatous disease, known
active malignancy within the last five years, serious psychiat-
ric comorbidity, steroid use the previous two months and
musculoskeletal disorders preventing the participant from
participating in the resistance training programme. Initially,
all participants were screened using spirometry and a medical
questionnaire. For healthy participants, this formed the basis
for inclusion. For COPD participants and participants with un-
clear disease status, the initial screening was followed by con-
sultation with a medical doctor to ensure that they met
diagnostic criteria corresponding to GOLD grade Il or lll,
followed by inclusion. All participants were recreationally ac-
tive, but none had partaken in systematic resistance training
for the 12 months leading up to the study. During study
conduct, all participants were instructed to restrict vitamin
D intake from food sources to <400 IU/day and to abstain
from solarium and travels to southern and/or sunny areas.

Participants were randomly assigned into one of the two
study arms (vitamin D3 vs. placebo) using concealed
allocation, stratified by sex and health status (COPD vs.
non-COPD) (Figure 1 and Table 1). An off-site third party
performed the randomization. During the initial two weeks
of the study, the vitamin D3 arm consumed 10 000 IU vita-
min Ds/day, followed by 2000 IU/day for the remainder of
the study period. Placebo capsules contained cold-pressed
olive oil and were identical in appearance to vitamin D3
capsules. Pharma Nord ApS (Vejle, Denmark) produced
the two supplements, complying with Good Manufacturing
Practice requirements. All participants consumed 500 mg
calcium/day (Nycoplus, Takeda AS, Asker, Norway). Vitamin
D status was primarily assessed as 25(OH)D levels in blood
(Figure 2), corroborating with previous studies,®® and
secondarily as 1,25 dihydroxycholecalciferol (1,25(0OH),D;
the biologically active form). 25(0OH)D is accepted to be
the most reliable measure of vitamin D status,®* as it is
unaffected by parathyroid hormone (PTH) activity, and is
more stable and represents more accurate measurements
compared with 1,25(0H),D.%*

Of the 95 participants included in the study, one with-
drew from the study prior to onset on supplementation,
12 withdrew prior to onset of resistance training (vitamin
D; arm, n = 9; placebo arm, n = 3), and 4 participants
withdrew during the resistance training period (vitamin Ds
arm, n = 3; placebo arm, n = 1) (Figure 1). In summary,
78 participants completed the study; 58 healthy partici-
pants and 20 COPD participants. For participant characteris-
tics, see Table 1.
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Follow-Up |
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F
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Pain after biopsy sampling (n=1)
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Excluded from analysis (n=0)

Analyzed (n=44)
Excluded from analysis (n=0)

Figure 1 CONSORT flow chart of the study.

Study conduct

The study was conducted as a double-blind randomized
clinical trial (RCT), consisting of an initial 12 weeks of
supplementation-only (in average, 3333 IU vitamin Ds/day
or placebo; 14 days of 10 000 IU vitamin D3/day, 10 weeks
of 2000 1U/day), followed by 13 weeks of combined supple-
mentation (2000 IU vitamin Ds/day or placebo) and resis-
tance training (Figure 2). During study conduct, supplement
allocation was blinded for both participants and investigators.
Unblinding was performed after completion of primary out-
come measure clean-up and analyses. The intervention was
conducted at Lillehammer, Norway (latitude 61°N) from
September to May, ensuring low or no natural vitamin D
synthesis by the skin from sunlight UVB radiation.?® Prior to

onset of the supplementation protocol (i.e. pre-RCT), partici-
pants undertook two weeks of baseline testing and tissue/
blood sampling (Figure 2, Weeks —2 and —1), including test-
ing of unilateral strength and muscle performance (tested
twice, separated by at least 48 h; the first test was performed
at ~95% of maximal effort), lung function, and collection of
fasting blood and rested-state muscle biopsy, sampled from
m. vastus lateralis of the dominant leg using the microbiopsy
technique (Bard Magnum, Bard, Covington, GA, USA). There-
after, participants were randomized to the two supplementa-
tion arms. After two weeks of supplementation, a second
blood sample was collected (Figure 2, Week 2) to validate
the efficacy of vitamin D; supplementation for blood 25
(OH)D and 1,25(0H),D levels. Prior to introduction to
resistance training, the participants conducted repeated
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Table 1 Participant characteristics
Vitamin D3 arm Placebo arm
Participants (n) 46 48
Females (n) 24 27
COPD subjects (n) 12 12
Age (years + SD) 69 £5 67 + 4
Weight (kg + SD) 75 =17 75+ 16
Lean mass (kg + SD) 48 = 11 48 £ 9
Fat percentage (% = SD) 35+6 34 +9
Body mass index (kg/m2 + SD) 26 £5 26 =5
1RM knee extension (kg + SD) 18+8 187
1RM chest press (kg = SD) 47 =17 45 £ 16
Withdrawn prior to intro. RT (n) 9 3
Withdrawn after intro. RT (n) 3 1
Renal function
Creatinine (umol/L) 78 =18 80 + 22
Est. GFR (mL/min/1.73 mz) 80 = 15 79 =15
CKD stage 3, i.e. est. GFR of 30-59 (n) 2 3
Lung function
FVC (L = SD) 34+08 3.6 0.9
FEV,/FVC (% = SD) 67 =15 69 + 14
FEV, (% predicted * SD) 87 + 24 94 + 26
PEF (L/s + SD) 69=*24 7.1 =21
Habitual dietary data
Kilocalories/day = SD 1777 = 529 1985 + 611
Protein (g/kg/day + SD) 1.26 = 0.40 1.27 £ 0.36
Fat (g/kg/day + SD) 0.99 + 0.47 1.05 + 0.38
Carbohydrates (g/kg/day + SD) 2.46 = 1.05 2.88 = 1.03
Alcohol (units/day + SD) 0.76 = 0.92 0.67 = 1.04
Vitamin D (IU/day + SD) 281 = 235 331 = 260
Other vitamin D exposures
Number of hours outdoors per week 8.8 £ 6.0 8964
Fish for dinner per week 1.9+0.38 1.8 0.7
Fish for other meals per week 20=*17 1.6 1.1
Cod liver oil (teaspoons per week) 1.2 +3.8 1.6 = 3.4
Cod liver oil (capsules per week) 1.5+ 3.8 2.0 £3.8
Number of eggs eaten per week 32+18 29+22
Adherence
Adherence to supplementation plan (%) 99 (91-100) 99 (93-100)
Adherence to the training protocol (%) 98 (81-100) 98 (81-100)
Knee Knee
Training volume (kg x repetitions) Leg press extension RPE Leg press extension RPE
Training week 1 (Introduction period, week 1) 4074 (1741) 298 (143) 15.4 (1.4) 4307 (1737) 360 (206) 15.4 (1.5)
Training week 4 (Training period, week 1) 5117 (2199) 364 (187) 15.9 (1.4) 5393 (2247) 407 (201) 16.0 (1.3)
Training week 8 (Training period, week 5) 6071 (2710) 446 (233) 16.5 (1.5) 6200 (2638) 495 (255) 16.6 (1.3)
Training week 13 (Training period, week 10) 6698 (3183) 489 (255) 17.0 (1.3) 6706 (2598) 550 (293) 17.1(1.2)

1RM, one repetition maximum; CKD, chronic kidney disease; FEV, forced expiratory volume in 1's; FVC, forced vital capacity; GFR, glomer-
ular filtration rate (calculated using the Modification of Diet in Renal Disease study equation; IU, international units; PEF, peak expiratory
flow; RT, resistance training; RPE, rating of perceived exertion (6-20).

performance tests at several occasions (Figure 2, Week
—2-Week 13), including unilateral maximal strength and mus-
cular performance, isokinetic unilateral knee-extension
torque, measures of functional capacity (i.e. 6-min step and
1-min sit-to-stand test), submaximal and maximal one-legged
cycling, and maximal bicycling. During the last week before in-
troduction to resistance training (Figure 2, Week 13), bilateral
rested-state biopsies and a fasted blood sample were col-
lected, muscle thickness of m. vastus lateralis and m. rectus
femoris were measured using ultrasound (SmartUs EXT-1 M;
Telemed, Vilnius, Lithuania), and body composition was

measured using dual-energy X-ray absorptiometry scan
(DXA; Lunar Prodigy, GE Healthcare, Chicago, IL, USA).

The training intervention consisted of 13 weeks of two
weekly whole-body resistance training sessions (Figure 2,
Week 14-27). Leg exercises were performed unilaterally to
allow within-participant differentiation of resistance training
load. Accordingly, for each participant, the two legs were ran-
domly assigned to perform either three sets with 10 repeti-
tions to exhaustion (high-load resistance exercise) or three
sets with 30 repetitions to exhaustion (low-load resistance
exercise); that is, each participant performed both protocols

Journal of Cachexia, Sarcopenia and Muscle 2021
DOI: 10.1002/jcsm.12688



K.S. Mglmen et al.

Biopsy
Blood
Lung function
STRx2 STR
Musc.perf. x2 Blood ~ Musc.per.
~—

STR
Musc.perf.

Biopsies

Musc.perf.
VO max
Func.

Biopsies
Blood
STR
Musc.perf.

Diet diary

Biopsies
Blood
Lung function
USIDXA
STR
Musc.perd,

VO,max
Func.

|Wnk| S|4 5 5|T|3 | Ll 10]11 12 |13 | 14 15||ﬁ[11’|18 19|m[21|22|23|24 25‘26 27‘28[29‘.”?
-
Supplementation period
Placebo or avg. 2 500 IU vitamin D - day (i.e. 10 000 IU - day™* the first two weeks, followed by 2 000 IU - day™ )
Tintro tr. sessions 19 training sessions
Time frames
(i.e. baseline
and end time
points) for
specific
measures
Pre-RCT Pre intro. RT Post intro. RT Post-RCT
B 140+ b
,C b,c,d
- c,d b,c,d -
120
g
£ 100
2 a
T
S 8o
= ae E i
a X
a,e,f
601 f.g g
1505
c p=0.009
140
= p=R:377 p=0.224
o 130- p=0.747
o
E
£ 420
a
=
E 110
el
o~
~ 100+
20+
D RT week 1 RT week 4 RT week 8 RT week 13
200
180 %ﬂﬂ.to
g
O Vitamin D, 3 T 00 r_m %
> E
o
M Placebo 25 w 61
ER .
ET 0§
= 120
1004 C0m
B0

E rerceived exertion (6-20)

Vitamin D, 15.4

Placebo 15.5

16.0

16.6

17.1
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tension from the first week of training. STR, maximal strength test; Musc.perf., test of muscular performance; 1-LC, one-legged cycling test; Func., test of
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in each session. For the upper-body, resistance exercises
were performed bilaterally, consisting of two sets of 10 repe-
titions to exhaustion. After seven training sessions (i.e. after
3.5 weeks of training; post-introduction to resistance train-
ing), participants performed a selected battery of tests and
measurements (Figure 2, i.e. Week 17-18), including rested-
state bilateral muscle biopsies, a fasted blood sample, and
measures of muscle strength, performance and torque. These
tests were conducted for two reasons i) to assess the initial
response to resistance training and ii) to reduce the impact
of neural adaptations for training-associated increases in per-
formance (i.e. Week 17-18 was defined as baseline for these
performance measurements). After the training intervention
(post-RCT), the complete battery of tests and measurements
were repeated (Figure 2, i.e. Week 28-30). During week 24,
participants conducted a dietary registration, in which they
logged their dietary intake for 3 days, including one weekend
day (Table 1). Throughout the entirety of the study, partici-
pants completed a weekly health survey every Sunday eve-
ning, which included information about supplementation
compliance, self-reported health and potential discomforts
caused by the nutritional supplement, such as digestive is-
sues, sleep issues, issues with the urinary system, issues with
the vestibular system, and dermal irritations. Moderate ver-
bal motivation was given to all participants during all perfor-
mance tests.

Resistance-exercise training protocol

All participants performed the same whole-body resistance-
exercise training programme, consisting of the following ex-
ercises (listed in order of conductance): unilateral leg press,
unilateral knee extension, unilateral knee flexion, chest press,
and lat pulldown. Leg exercises were performed as three
series of 10 repetitions (high-load) and 30 repetitions (low-
load) to exhaustion (10RM and 30RM, respectively), and
upper-body exercises were performed as two series of 10
repetitions (high-load) to exhaustion, as previously described.
Exercises and sets were separated by 2 min of rest. For leg ex-
ercises, all three sets for one leg were conducted before the
other leg was exercised. The order in which the two legs were
exercised was switched between each session. For all exer-
cises, training loads were adjusted from session to session,
i.e. when participants managed to perform more than 12 or
35 repetitions per set for high- and low-load training, respec-
tively. All sessions were supervised by qualified personnel to
ensure correct technical execution and to ensure maximal ef-
forts through verbal encouragement. To aid recovery and to
ensure adequate protein intake after training, participants
ingested half a protein bar immediately after each training
session (~15 g protein; Big 100, Proteinfabrikken, Sandefjord,
Norway).

Spirometry

Spirometry testing was performed using either the Oxycon
Pro” with the TripleV digital volume sensor (Carefusion
GmbH, Hochberg, Germany) or the Spirare SPS320 ultrasonic
spirometer (Diagnostica AS, Oslo, Norway) following guide-
lines from the American Thoracic Society and the European
Respiratory Society.®® Importantly, for each particular partici-
pant, all spirometry tests were performed using the same
system. Participants with COPD were tested before and after
inhalation of two bronchodilators (salbutamol, 0.2 mg and
ipratropiumbromid, 20 pg).

Muscle strength and performance

Maximal muscle strength was assessed as one repetition
maximum (1RM) in unilateral knee extension and leg press
(Technogym, Cesena, Italy) and bilateral chest press (Panatta,
Apiro, Italy). Each test started with specific warm-up,
consisting of 10, 6, and 3 repetitions at 40%, 70%, and 85%
of the anticipated maximum. Thereafter, 1RM was found by
increasing the resistance progressively until the weight
could not be lifted through the full range of motion. Loads
were increased in intervals of 1.25, 2.5, and 1.25 kg for
knee extension, leg press, and chest press, respectively. Two
minutes of rest was provided between attempts. Maximal
handgrip strength was measured for the dominant hand
using a hand-held dynamometer (Baseline®, Fabrication
Enterprises, Inc., Elmsford, NY, USA). Each test session
consisted of three attempts, and the average score was
used in further analyses.

Muscle performance was defined as the maximal number
of repetitions achieved at 50% of pre-RCT 1RM and was
assessed in unilateral knee extension and bilateral chest
press. Participants were instructed to lift at a composed
and controlled pace, with <1 s breaks in the lower and upper
position. Whenever this requirement was not met, or partic-
ipants failed to lift the weight through the full range of mo-
tion, the test was aborted.

Isokinetic unilateral knee-extension torque was assessed
using a dynamometer (Humac Norm, CSMi, Stoughton, MA,
USA). Participants were seated and secured with the knee
joint aligned with the rotation axis of the dynamometer. Max-
imal isokinetic torque was tested at three angular speeds
(60°, 120°, and 240° per second) with 2 min of rest provided
between each of them. Prior to each test session, participants
were familiarized with the test protocol by performing three
submaximal efforts at each angular speed. Participants were
given three attempts performed in immediate succession.
The highest value was used in further analyses.

For all tests of unilateral strength and performance, the
dominant leg was tested first. Seat position and general
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settings for each test were noted for each participant and
reproduced at each time-point.

One-legged cycling and bicycling performance

Participants conducted one-legged cycling tests (Excalibur
Sport, Lode BV, Groningen, the Netherlands) to assess O,-costs
of submaximal cycling, and maximal one-legged oxygen con-
sumption (VO,may) and power output (W,nay). Each test was
initiated by 2 x 5 min submaximal workloads at 30 and 40
watts (healthy), respectively, or 20 and 30 watts (COPD) with
a cadence of 60 revolutions per minute. Loads were individu-
ally adjusted if the predefined workload was higher than
50% of the W, achieved during the familiarization session.
Thereafter, a maximal step-wise incremental protocol was
conducted (10 and 5 watts/min for healthy and COPD partici-
pants, respectively). Starting loads were individually adjusted
to elicit exhaustion after 6-10 min of cycling, based on results
from the familiarization session. The cadence was freely
chosen (>50 rpm). The test was terminated when cadence fell
below 50 rpm. For all participants, submaximal and maximal
performance on the dominant leg was tested first. After test-
ing of the first leg, participants were allowed 20 min rest
and/or low-intensity cycling, before testing of the other leg.
During one-legged cycling tests, a 10 kg counterweight was
attached to the contralateral ergometer crank to facilitate
smooth cycling. The foot of the non-exercising leg was rested
on a chair placed in front of the subject. Breath-to-breath mea-
surements of pulmonary oxygen consumption and ventilation
(JAEGER Oxycon PRO™; Carefusion GmbH, Hochberg,
Germany) and heart rate (Polar Electro Oy, Kempele, Finland)
was monitored continuously during all tests. The average oxy-
gen consumption during the last 2 min of each submaximal
workload was defined as the O,-cost, while VOymax Was
defined as the highest average oxygen consumption measured
over a period of 30-s. Measurement of capillary lactate
concentration (Biosen C-line, EKF Diagnostics, Barleben,
Germany) was performed after finalization of tests.

Testing of maximal bilateral cycling VOsmax and W ., was
performed on a separate day. A step-wise incremental proto-
col (20 and 15 watts/min for healthy men and women,
respectively; 10 watts/min for participants with COPD) was
conducted. Oxygen consumption was measured continuously
using a computerized metabolic system with mixing chamber
(JAEGER Oxycon PRO™; Carefusion GmbH, Hochberg,
Germany). Prior to each cycling test, the gas analyser was
calibrated using certified calibration gases with known con-
centrations, and the flow turbine (TripleV; JAEGER,
Carefusion GmbH, Hochberg, Germany) was calibrated using
the metabolic system’s automatic volume calibration, or a
3L, 5530 series calibration syringe (Hans Rudolph Inc., Kansas
City, MO, USA), for one-legged and bicycling tests,
respectively.

Functional performance

One-minute sit-to-stand and 6-min step tests were conducted
in consecutive order on the same test day. Each test session
was initiated with 10 min warm-up of low-intensity bicycling.
Briefly, during the 1-min sit-to-stand tests, participants were
instructed to fold their arms and sit/stand up for as many
times possible during a 1-min period. The seat was 45 cm
from the floor. Sit-to-stand repetitions were approved if both
knees and hip joints were fully extended after each seating.
Three minutes after the 1-min sit-to-stand test, the 6-min
step test was conducted. Briefly, participants were instructed
to perform as many steps as possible onto a 20 cm high step
box with a non-slip rubber surface within 6 min (Reebok Step;
Boston, MA, USA). During each step, participants were
instructed to place both legs on the box, with the hip fully
extended.

Muscle thickness by ultrasound and dual-energy
X-ray absorptiometry-derived body mass measures

Prior to measurements of muscle thickness and DXA mea-
surements, the participants were instructed to attend an
overnight fast and avoid heavy physical activity for the last
24 h leading up to the event.

Muscle thickness of m. vastus lateralis and m. rectus
femoris were measured using B-mode ultrasonography
(SmartUs EXT-1 M, Telemed, Vilnius, Lithuania) with a
39 mm 12 MHz, linear array probe. Transverse images were
obtained ~60% distally from the trochanter major towards
the femoral lateral epicondyle. Three images were captured
for each muscle, where the probe was relocated to the
same position between each image. The position of the
probe was marked on the skin and subsequently marked
on a soft transparent plastic sheet superimposed on the
thigh. Landmarks such as moles and scars were also
marked on the plastic sheet for relocation of the scanned
areas during post-training measurements. During analysis,
pre and post images from the same participant were
analysed consecutively using the Fiji software®® and by
two independent researchers. The average muscle thickness
of the three images captured per muscle was used for fur-
ther analyses.

Body composition was determined using DXA (Lunar
Prodigy, GE Healthcare, Madison, WI, USA) and was analysed
using the manufacturer’s software, in accordance with the
manufacturer’s protocol. Leg lean mass was defined as the
region distally of collum femoris. Care was taken to match
the region of interest on pre and post images. Analyses of
both muscle thickness and body composition were per-
formed in a blinded manner regarding participant identity
and time point of the measurement.
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Blood sampling and measurements, and muscle
biopsy sampling

Prior to collection of blood and muscle biopsies, participants
were instructed to attend an overnight fast and to avoid
heavy physical activity for the last 48 h leading up to the
event. All blood samples and muscle biopsies were collected
between 08:00 and 11:00 a.m. Blood samples were collected
from an antecubital vein into serum-separating tubes and
kept at room temperature for 30 min before centrifugation
(2600 g, 15 min). Serum was aliquoted and stored at —80°C
until further processing. Serum concentrations of total
testosterone, cortisol, growth hormone, insulin-like growth-
factor 1 (IGF-1), sex-hormone binding globulin (SHBG) and
androstenedione were measured using an Immulite 2000
analyser with kits from the Immulite Immunoassay System
menu (Siemens Medical Solutions Diagnostics, Malvern, PA,
USA). Serum 25(OH)D, parathyroid hormone, calcium, albu-
min, creatinine, creatine kinase, aspartate aminotransferase,
C-reactive protein, triglycerides, low-density lipoprotein,
high-density lipoprotein, thyroid hormones and iron metabo-
lism variables were measured using a Roche Cobas 6000
analyser and kits from Roche (Roche Diagnostics, Rotkreuz,
Switzerland). In a subset of participants, 1,25(0OH),D levels
in serum were measured at Week —1, Week 2, Week 13
and Week 28 (vitamin D3 arm, n = 19; placebo arm, n = 21)
using enzyme immunoassays with kits from Immunodiagnos-
tic Systems (IDS, Boldon, Tyne & Wear, UK).

Muscle biopsies were sampled from m. vastus lateralis un-
der local anaesthesia (Lidocaine, 10 mg/mL, AstraZenaca AS,
Oslo, Norway) using a 12-gauge needle (Universal Plus,
Medax, San Possidonio, Italy) operated with a spring-loaded
biopsy instrument (Bard Magnum, Bard, Covington, GA,
USA), as previously described.®’ Biopsies were sampled at
1/3 of the distance from the patella to the anterior superior
iliac spine. The tissue was quickly dissected free of blood
and visible connective tissue in ice-cold sterile saline solution
(0.9% NaCl). Samples for immunohistochemistry were trans-
ferred to a 4% formalin solution for fixation for 24-72 h,
before further preparation. Samples for RNA analyses were
blotted dry, snap-frozen in isopentane (—80°C) and stored
at —80°C until further processing.

Immunohistochemistry

Formalin-fixed muscle biopsies were processed rapidly using
a Shandon Excelsior ES (Thermo Fisher Scientific, Waltham,
MA, USA), whereupon biopsies were paraffin-embedded
and sectioned into transverse sections (4 um). Antigen
retrieval was performed at 97°C for 20 min in a target
retrieval solution (cat. no. DM828, Agilent Dako, Santa Clara,
CA, USA) using a PT link (PT 200, Agilent Dako, Santa Clara,
CA, USA). Staining was performed using a DAKO Autostainer

Link 48 (Agilent Dako, Santa Clara, CA, USA). For determina-
tion of muscle fibre types, cross-sections were first treated
with protease 2 (cat. no. 760-2019, Roche Diagnostics,
Rotkreuz, Switzerland), before they were triple-stained using
2.5 pg/mL BA-F8, BF-35 and 6H1 (all from Developmental
Studies Hybridoma Bank, University of lowa, lowa City, IA,
USA; BA-F8 and BF-35 deposited by Schiaffino, S., Uni. of Pa-
dova, Italy; 6H1 deposited by Lucas, C., Uni. of Sydney,
Australia). Visualization of the primary antibodies was
achieved by incubation of appropriate secondary antibodies,
diluted 1:400: goat anti-mouse Alexa Fluor (Thermo Fisher
Scientific, Waltham, MA, USA) 350 (IgGy2b, cat. no.
A21140), 488 (IgGy1, cat. no. A21121) and 594 (IgM H + L,
cat. no. A21044) for BA-F8, BF-35 and 6H1, respectively.

For determination of muscle fibre cross-sectional area
(CSA) and numbers of myonuclei per muscle fibre type, a dif-
ferent tissue cross-section was double-stained using primary
antibodies against muscle fibre membrane (dystrophin, di-
luted 1:100, cat. no. PA1-21011; Thermo Fisher Scientific,
Waltham, MA, USA) and myosin heavy chain | (diluted
1:2000, cat. no. M8421, Sigma-Aldrich, Saint-Louis, MO,
USA). Visualization was achieved using the secondary anti-
bodies Alexa Fluor 594 (IgG H + L, diluted 1:400, cat. no.
A11037) and 488 (IgG1y1, diluted 1:400, cat. no. A21121), re-
spectively (Thermo Fisher Scientific, Waltham, MA, USA).
Muscle sections were then covered with a coverslip and
glued with EverBrite” Hardset Mounting Medium with DAPI
(cat. no. 23004, Biotium Inc., Fremont, CA, USA), to visualize
cell nuclei.

Images of stained cross-sections were captured using a
high-resolution camera (Axiocam, Zeiss, Oberkochen,
Germany) mounted on a light microscope (Axioskop-2, Zeiss,
Oberkochen, Germany), with a fluorescent light source
(X-Cite 120, EXFO Photonic Solutions Inc., Mississauga,
Canada). Multiple images were taken using 20x objectives
to capture the entirety of each cross-section. For representa-
tive images, see Figure 3. All analyses of muscle fibre charac-
teristics were performed using automated procedures,
ensuring unbiased quantification.

Analyses of muscle fibre type proportions were performed
using the Cell Counter function in the Fiji software,®®
whereby muscle fibres were categorized as either type |, type
IIA, type IIX or hybrid fibres type IIA/IIX. Sections and/or
images with insufficient staining to distinguish between fibre
types were excluded. Muscle fibre type-specific CSA (type | or
type |1l) were calculated using the TEMA software
(CheckVision, Hadsund, Denmark). Myonuclei were counted
using the CellProfiler software.®®

Total RNA extraction and qgPCR

Approximately 10-20 mg of wet muscle tissue (average
13 + 4 mg, range 3-26 mg) was homogenized in a total
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Figure 3 Representative immunohistochemistry images of (A) myosin heavy chain | (green) and cell membrane (red), (B) myonuclei (blue) and cell
membrane (dystrophin, red), and (C) myosin heavy chain | (blue), IIA (green), IIX (red), and IIA/IIX hybrids (orange). Images in (A) and (B) are from
the same tissue cross-section: triple-staining myosin heavy chain I, dystrophin and cell nuclei.

volume of 1 mL TRIzol reagent (Invitrogen, Carlsbad, CA, USA)
using 0.5 mm RNase-free zirconium oxide beads and a bead
homogenizer (Bullet Blender, Next Advance, Averill Park, NY,
USA), as previously described.®” To enable analysis of target
gene expression per unit tissue weight, an exogenous RNA
control (A polyA External Standard Kit, Takara Bio Inc., Shiga,
Japan) was added at a fixed amount (0.04 ng/mL of Trizol re-
agent) per extraction prior to homogenization, as previously
described.®*’° Following phase separation, 450 pL of the
upper phase was transferred to a new tube and RNA was pre-
cipitated using isopropanol. The resulting RNA pellet was
washed three times with 75% ethanol, eluted in 30 pL TE
buffer, and diluted to 100 ng RNA/pL, following quantification
of total RNA concentration using uDrop plate and the
Multiskan GO microplate spectrophotometer (Thermo
Fisher Scientific, Waltham, MA, USA). RNA integrity was
assessed using capillary electrophoresis (Experion Automated
Electrophoresis Station using RNA StdSens Assay, Bio-Rad,
Hercules, CA, USA) with average integrity score (RNA quality
indicator; RQI): 8.9 + 0.8.

Five hundred nanograms of RNA were reverse transcribed
using anchored oligo-dT (Thermo Fisher Scientific, Waltham,
MA, USA), random hexamer primers (Thermo Fisher
Scientific, Waltham, MA, USA) and Super-Script IV Reverse
Transcriptase (Invitrogen, Carlsbad, CA, USA), according to
manufacturers’ instructions. All samples were reverse tran-
scribed in duplicates and diluted 1:50 prior to quantitative
real-time polymerase chain reaction (qPCR). gPCR reactions
were conducted using a fast-cycling real-time detection sys-
tem (Applied Biosystems 7500 fast Real-Time PCR Systems,
Life Technologies AS), with total volumes of 10 pL, containing
2 uL cDNA (1:25 dilutions), target gene-specific primers (final
concentration 0.5 uM) and a commercial master mix (2x SYBR
Select Master Mix, Applied Biosystems, Life Technologies
Corp., Carlsbad, CA, USA). qPCR reactions consisted of 40 cy-
cles (3 s 95°C denaturing and 30 s 60°C annealing).
Melt-curve analyses were performed for all reactions to ver-
ify single-product amplification. Gene-specific primers were

designed using Primer3Plus’* and synthesized by Thermo
Scientific, except for the external RNA control, for which
primers were supplied with the kit (A polyA External Standard
Kit, Takara Bio Inc., Shiga, Japan). Raw fluorescence data were
exported from the platform-specific software and amplifica-
tion curves were modelled using a best-fit sigmoidal
model using the gpcR-package’? written for R.”> Threshold
cycles (Ct) were estimated from the models by the
second-derivate maximum method with technical duplicates
modelled independently. Amplification efficiencies were esti-
mated for every reaction.”® For every primer pair, mean am-
plification efficiencies (E) were utilized to transform data to
the linear scale using Et. Primer sequences and primer
characteristics (i.e. average primer efficiencies and Ct values)
are presented in Supporting Information, Table S1. Gene
expression data were log-transformed prior to statistical
analysis. As Ct values, but not primer efficiencies depend on
RNA integrity,”” RQI scores were used as a random variable
on a per-target basis to control for potential degradation dur-
ing statistical analyses (see below).

RNA sequencing

RNA sequencing was performed on pairwise muscle samples
collected before the RCT (vitamin D3, n = 11; placebo, n = 13),
after 12 weeks of supplementation-only (vitamin D3, n = 24;
placebo, n = 29), after 3.5 weeks of introduction to resistance
training (vitamin D3, n = 23; placebo, n = 28), and after
13 weeks of resistance training (vitamin D3 arm, n = 24; pla-
cebo arm, n = 29). Samples was selected based on quality
of total RNA samples (RQl > 7.0, avg 9.0 + 0.5). Participants
with complete sets of muscle biopsies were prioritized. For
each muscle sample, mRNA sequencing libraries were pre-
pared from 1000 ng of total RNA using TruSeq Stranded Total
RNA Library Prep (lllumina, San Diego, CA, USA). Paired-end
sequencing (150 bp) was performed using an Illumina HiSeq
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3000 (lllumina, San Diego, CA, USA) at the Norwegian
Sequencing Centre, Oslo, Norway.

Data analyses and statistics

As defined in the pre-registration of the study protocol
(ClinicalTrials.gov Identifier: NCT02598830), the effects of vi-
tamin D3 supplementation for different outcome measures
were evaluated using different baseline time points (outlined
in Figure 2). For transparency, statistical comparisons of all
outcome measures and all relevant time points are presented
in Supporting Information, Tables S2 and S3. These tables also
specify the statistical models used for each specific variable
and analysis. In general, for continuous variables, the effects
of vitamin D3 supplementation (compared with placebo)
were investigated using linear mixed-effects models with
the relative change from baseline being defined as the
dependent variable and the supplementation arms being de-
fined as the fixed effect. The two different training loads
(high- and low-load) were added to the model as repeated
measures/observations (for unilateral outcome measures),
and baseline values were used as co-variates. For all partici-
pants, random intercepts were specified. For all unilateral
leg variables, interaction effects were explored between the
fixed effect and health status (COPD vs. non-COPD) and train-
ing loads. For other variables, interactions were investigated
between the fixed effect (vitamin D3 vs. placebo) and health
status, with the exception for blood variables, for which the
interaction with sex was also examined. For all statistical
analyses of immunohistochemical variables (muscle fibre
CSA, fibre type proportion, and myonuclei per fibre), the
models were weighted for the number of counted fibres
per biopsy. This was carried out to account for the
reduced reliability accompanying fewer observations/fibres
(see Supporting Information, Figure S2). For non-continuous
variables, a different statistical approach was used to investi-
gate the effects of the vitamin D3 supplementation. For fibre
type proportions (immunohistochemistry) and variables from
the weekly health survey, a generalized linear mixed model
(GLMM) with binomial error distribution and link function
was used to examine differences in changes between supple-
mentation arms (time*supplementation arm interactions).
For gene family-based analyses of myosin heavy-chain mRNA
data,”® a GLMM with negative binomial distribution/link
function (log-link) was used following transformation to tran-
script counts.”” Target gene mRNA abundance, expressed as
per unit muscle weight using the external reference gene,
were analysed using mixed linear models with within-model
normalization through the addition of random effects of
technical replicates. To allow for gene-specific variances, var-
iance functions were specified per strata (per gene). RQl
scores were included in the model on a per target basis to
control for RNA degradation. The number of observations

per statistical analysis is presented in Supporting Information,
Table S2. For most outcome measures, the main effect of
time was examined using mixed modelling, using absolute
values for the dependent variable and time points as re-
peated measures/observations with random intercepts for
each subject (Supporting Information, Table S2 for complete
overview).

During transcriptome analyses, gene counts were modelled
using negative binomial GLMM with the total library size
modelled as a fixed effect’® together with sex and study con-
ditions (time point and supplementation arms). The effect of
resistance training on gene counts was assessed as i) the ef-
fect of time and ii) its interaction with supplementation arm
(vitamin D3 and placebo supplementation). For analyses of
the effect of time, differential expression was evaluated using
GLMMs containing only the time factor, combining all data ir-
respective of supplementation arm. For analyses of the effect
of supplementation over time, differential expression was
evaluated using GLMMs containing the interaction between
time and supplementation arm. The supplementation-only
period was modelled independently of the training period.
In all models, a single random effect was used, giving each
participant an individual intercept. Models were iteratively
fitted using glmmTMB.”® Model adequacy was tested for each
model fit by assessing uniformity of simulated residuals.®® A
total of 15 093 genes were included in the RNA-seq data set
after initial filtering, and 0.4-3.7% of these were subsequently
removed due to violation of the uniformity assumption
(P < 0.05). Genes were identified as differentially expressed
when the absolute log, fold-change was greater than 0.5
and the adjusted P-value (false discovery rate adjusted per
model coefficient) was below 5%. Enrichment analyses of
gene ontology (GO) gene sets were performed using two
approaches. First, a non-parametric rank test®82  was
performed based on gene-specific minimum significant differ-
ences (MSD). MSD was defined as the lower limit of the 95%
confidence interval (Cl, based on estimated standard errors)
around the log fold-change (FC) when log (FC) > 0 and the
negative inverse of the upper 95% Cl when log (FC) < 0. Genes
with MSD < 0 were further ranked based on P-values. The
rank test assessed non-directional changes in gene sets. Sec-
ond, gene set enrichment analysis (GSEA)®* was performed
to quantify directional regulation of the gene set. GSEA was
performed using the fgsea package,®® with —logo(P-values)
*log,(fold-change) acting as the gene level metric.®> Consen-
sus results between the two analyses were given higher
importance. GO gene sets (biological process, cellular compo-
nent and molecular function), as well as Hallmark and KEGG
gene sets were retrieved from the molecular signature data-
base (version 7.1).8% Overview of enrichment analyses with
exact P-values are presented in Supporting Information,
Tables S5, S6, and S8-S10.

To achieve reliable assessment of the main outcome do-
mains muscle strength, muscle mass, one-legged endurance
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performance and whole-body endurance performance, and
thus to lower the risk of statistical errors, combined factors
were calculated for outcome measures. For complete over-
view over the composition of each factor, see Supporting
Information, Table S4. During factor calculation, each of the
underlying variables were normalized to the participant with
the highest value recorded during the RCT, resulting in
individual scores <1. Thereafter, outcome domain factors
were calculated as the mean of the normalized values for
each variable for each subject (e.g. the muscle mass factor
of the legs included muscle thickness, leg lean mass, and
muscle fibre CSA). To evaluate the biological coherence of
these factors, a factor analysis was performed to ensure
correlation between the combined factors and their underly-
ing outcome variables (Supporting Information, Table $4).5
To assess the effect of vitamin D; supplementation for
changes in these combined factors, linear mixed-effects
models were used, as previously described. In addition, these
factors were used to investigate the influence of pre-RCT
levels of 25(0OH)D, body fat proportions and body mass index
on the effects of vitamin D3 supplementation. To perform
these analyses, each of the two supplementation arms were
divided into quartiles, defined by baseline 25(0H)D, body
fat percentage and body mass index levels, respectively
(quartile 1, lowest, ... quartile 4, highest). For each of the
calculated factors, the effect of quartile and the interaction
between quartile and supplementation arm was examined
using mixed modelling.

Statistical significance was set to P < 0.05. In the text, data
are presented as means t standard deviation. In figures, data
are shown as adjusted, estimated marginal means of relative
changes and differences in relative changes between supple-
mentation arms, with 95% confidence intervals, unless other-
wise stated. Statistical analyses were performed using SPSS
Statistics package version 24 (IBM, Chicago, IL, USA) and R
software.”> Figures were made using Prism Software
(GraphPad 8, San Diego, CA, USA) and R software.”®

Results and discussion

Effects of vitamin Dz supplementation on 25(0OH)D
and 1,25(0H),D in blood

At pre-RCT, participants in vitamin D3 and placebo interven-
tion arms had similar [25(OH)D] levels in serum (80 nmol/L
vs. 78 nmol/L, range: 24-144 nmol/L, Figure 2). [25(OH)D]
levels did not differ between participants with different
health status (i.e. with or without COPD diagnosis). In
the vitamin D3 arm, the study was initiated by 14 days
of high-dosage vitamin D3 intake (10 000 IU per day), which
led to 42 nmol/L increases in [25(0OH)D] (to 122 + 24 nmol/L;
range = 82-175 nmol/L; P < 0.001), with no change in the

placebo arm (79 + 31 nmol/L; range = 36-167 nmol/L) (Figure
2). During the remainder of the study (weeks 3-30), vitamin
D5 was ingested at 2000 IU per day, which led to stabilization
of [25(OH)D] at elevated levels compared with the placebo
arm (Week 13, A45 nmol/L; Week 17, A49 nmol/L; Week 29,
A46 nmol/L; Figure 2), resembling the efficacy of previous
studies with comparable study protocols (~2500 IU per
day).®85° Conversely, in the placebo arm, [25(OH)D] either de-
clined or was similar to pre-RCT levels (Week 13, —8 nmol/L;
Week 17, —11 nmol/L; Week 29, —6 nmol/L; Figure 2), corrob-
orating with changes typically seen in Northern populations
during winter months,?” with the notable observation that
values were slightly higher than expected.?®

After the initial 14 days of supplementation-only, the
marked increases in 25(0OH)D in the vitamin D3 arm were ac-
companied by robust increases in [1,25(0H),D] compared
with the placebo arm (vitamin Ds, +17 pmol/L; placebo,
—7 pmol/L; A24 pmol/L, P = 0.004; Figure 2). During this time
frame, change scores for [1,25(0OH),D] were correlated with
change scores for [25(0OH)D] (r = 0.429, P = 0.006; data not
shown). At Week 13 and 29, the statistical difference in
changes in [1,25(0OH),D] between supplementation arms
had disappeared (A11 pmol/L, P = 0.377, and A12 pmol/L,
P = 0.224; Figure 2), and the correlation between changes
in [1,25(0OH),D] and [25(OH)D] was no longer evident
(r = 0.169-0.243, P = 0.131-0.298; data not shown). The
initial period of high-dosage vitamin D5 supplementation thus
led to rapid elevations in 1,25(0OH),D levels, which was subse-
quently reversed towards baseline levels during the follow-up
period with maintenance intake (2000 IU/day), although
vitamin Dz supplementation was still associated with
increased numerically values and the levels of individual
variation was large. In all but three samples, measures
of [1,25(0H),D] were within the normal range for adults
(39-193 pmol/L), as defined by the manufacturer,® with all
deviating samples being >193 pmol/L (vitamin D3, n = 2;
placebo, n = 1).

At the onset of introduction to training (Week 13) and
throughout the training intervention (Week 17, Week 29),
participants in the vitamin D3 arm were all vitamin D-suffi-
cient, as classified by the National Academy of Medicine
([25(0H)D] > 50 nmol/L),%” while in the placebo arm, 13
(Week 13), 12 (Week 17) and 5 (Week 29) participants were
vitamin D-insufficient. In both supplementation arms, cal-
cium was ingested at 500 mg/day throughout the interven-
tion. Despite this, no changes were seen in calcium or
albumin-corrected calcium levels in blood at any time point
(Supporting Information, Table S11). Levels of the parathyroid
hormone decreased throughout the intervention (P = 0.035;
Supporting Information, Table S11), most likely caused by
an autoregulatory response to increased calcium intake.’*
Vitamin D3 supplementation did not alter this response.
Compliance to the supplementation protocol was high in
both intervention arms (vitamin D3, 99.3%; placebo, 99.3%;
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P =0.998). Together, these observations suggest that vitamin
D; supplementation led to improved vitamin D-status during
the intervention, measured as 25(0OH)D, whereas placebo led
to reduced or maintained levels, with approximately 1/3™ of
placebo-receiving participants showing levels associated with
impaired muscle functionality (<50 nmol/L) at the onset of
resistance training.21'22'92

Effects of vitamin D3 supplementation on
resistance training-associated changes in myofibre
cross-sectional area and proportions (primary
objectives)

In contrast to our main hypotheses, vitamin D3 supplementa-
tion did not enhance resistance training-associated increases
in muscle fibre cross-sectional area or changes in muscle fibre
proportions (Figure 4; pre-defined as primary objectives of
the study), despite clear improvements in vitamin D status
(25(0OH)D). The results are presented in more detail in
later sections (Effects of vitamin D3 supplementation on
training-associated changes in maximal muscle strength and
lower-limb muscle mass and Effects of vitamin D;
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Effects of 12 weeks of vitamin D y-supplementation
only (weeks 1-12) on muscle strength,
performance and characteristics

The main purpose of the initial 12 weeks of vitamin D3
supplementation-only was to ensure physiologically elevated
[25(0OH)D] for a prolonged period prior to onset of resistance
training, thus potentially priming muscle cells for plasticity.
Vitamin D3 supplementation itself had no effect on upper-
and lower-body muscle strength and performance, muscle fi-
bre area and characteristics (m. vastus lateralis), or hormone
concentrations in blood compared with placebo (Supporting
Information, Figure S1 and Table S2), showing no interaction
with health status. Surprisingly, the only exception was 1RM
knee extension, for which vitamin D3 led to negative changes
compared with placebo (A—8.4%; P = 0.008), opposing the
seemingly accepted dogma that vitamin D supplementation
per se exerts positive effects on leg muscle strength.3>%3
Notably, for all muscle strength and muscular performance
variables, the initial 12 week supplementation period was
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Figure 4 Primary outcome objectives of the study; effects of combined vitamin D3 supplementation and resistance training on changes in muscle fibre
cross-sectional area (A, B) and fibre type proportions (C-E) in older adults. Alpha level at P < 0.05. Data are presented as means with 95% confidence

intervals.
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associated with improved performance in all performance
tests (5-71%; for details, see Supporting Information,
Figure S1). These improvements occurred without any appar-
ent changes in muscle cell characteristics in thigh muscle, in-
cluding muscle fibre CSA (type I, 4%, P = 0.573; type Il, 9%,
P = 0.312), muscle fibre type proportions (P = 0.127-0.901),
and total RNA/rRNA expression (P = 0.604-1.000)
(Supporting Information, Figure S1). They were hence likely
caused by technical, psychological and neural learning
effects,®* effectuated by repeated exposure to testing prior
to and during the supplementation period (Supporting
Information, Figure S1), as is typically seen in older
subjects.” Indeed, dynamic exercises like knee extension
and chest press are associated with lower intra-rater reliabil-
ity than the grip strength test,* which remains unaffected by
test-retest,”® as was likely the case in the present study.
Overall, the 12-weeks supplementation-only period did
not lead to marked changes in mRNA transcriptome pro-
files in the two supplementation arms combined (vitamin
D3, n = 11; placebo, n = 13). Vitamin D3 supplementation
was, however, associated with differential changes in the

oy
N

A s

expression of a selected genes compared with placebo; 27
genes I and 27 genes | (Figure 5A and Supporting
Information, Table S7). This included increased expression
of B-cell lymphoma 6 and prolyl 4-hydroxylase subunit
alpha-1 (BCL6 and P4HAI; Figure 5A), both of which are
known to oppose accumulation of reactive oxygen species
(ROS),°58 and decreased expression of angiopoietin-like
protein 4 (ANGPTL4; Figure 5A), which is closely correlated
with levels of mitochondrial respiration.®® These findings
were reaffirmed by gene enrichment analyses, which
showed a general reduction in the expression of gene sets
relating to both oxidative and glycolytic metabolism in the
vitamin D3 arm (Figure 5B and Supporting Information,
Tables S5-S6). This is in line with previous observations
whereby vitamin D has been shown to counteract ROS
and mitochondrial oxidative stress.’® The seemingly nega-
tive effect of vitamin Ds; supplementation for expression
of mitochondrial genes may thus be due to reduced
mitochondrial turnover. Of note, expression of the vitamin
D receptor (VDR) was observed in the data set, but was
not affected by supplementation.
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Figure 5 Effects of 12 weeks of vitamin D5 supplementation-only on whole-genome transcriptome profiles in m. vastus lateralis of older adults. After
12 weeks of supplementation-only, numerous genes were differentially expressed between the vitamin D3 and the placebo arm (A); A,
pre-introduction to resistance training/pre-RCT). Gene ontology (GO) enrichment analyses showed that these genes were primarily related to mito-
chondrial function and cell cortex/cell-substrate junction (B); positive/negative GSEA-normalized enrichment scores indicates higher/lower expression
of gene sets in the vitamin D3 arm compared with the placebo arm). The seven differentially expressed gene sets were clustered into two distinct

groups of genes (C).
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Introductory observations on the quality and
general efficacy of the resistance training protocol
(weeks 13-28)

Before assessing the effects of combined vitamin Ds
supplementation and resistance training, it is vital to reaffirm
that the protocols and methods held sufficient validity and
reliability, including a general assessment of the efficacy of
the resistance training intervention. All training sessions were
supervised by qualified personnel, as suggested by others,*®
which likely contributed to the very low drop-out rate
(n = 4 during the training period, ~5%, Table 1), and ensured
high adherence to the protocol (98%, range 81-100%, Table
1) and appropriate training progression throughout the
intervention (Figure 2). Training volume (repetitions x kg)
increased by 20% (knee extension) and 30% (leg press) from
Week 14 (the first week of training) to Week 18 (the 4th
week of training), by 48% and 54% to Week 22 (the 8th week
of training) and by 65% and 68% to Week 27 (the last week of
training) (Figure 2). This resembles or exceeds training pro-
gression seen in similar studies on previously untrained
participants'®°2 and was accompanied by progressive
increases in perceived exercise intensities (using the Borg
RPE-scale’®) (Figure 2). For these training characteristics,
no differences were observed between supplementation
arms (P = 0.897—-0.980). The arguably successful completion
of the resistance training intervention was accompanied
by marked functional and biological adaptations in the
participants, including increased muscle strength and perfor-
mance (e.g. 22% and 72% increases in 1RM and muscular
performance in knee extension, respectively, P < 0.05,
Supporting Information, Figure S1), increased muscle mass
(e.g. 16-24% increases in muscle fibre CSA for m. vastus
lateralis, P < 0.05, Supporting Information, Figure S1),
increases in myonuclei number per fibre (30-37%, P < 0.05,
Supporting Information, Figure S1), alterations in muscle fibre
proportions (e.g. type 11X fibre proportions changed from 10%
to 7%, P < 0.05, Supporting Information, Figure S1), and
robust alterations in muscle transcriptome profiles (499 and
312 differentially expressed genes at post-introduction resis-
tance training and post-RCT, compared with pre-introduction
to resistance training, Figure 11A,B). Importantly, neither of
these muscle fibre characteristics changed from pre-RCT to
before onset of resistance training (Week 13), suggesting
that muscle biopsies sampled before and after the
supplement-only period could be regarded as a sampling-
resampling event (Supporting Information, Figure S1). For
muscle strength, the intervention had relative efficiencies of
0.86% (knee extension) and 1.43% (leg press) increase per
session, which resemble or exceeds expectations based on
previous studies of untrained older adults (0.5-1.0% per
session), 104106

Analytical measures to increase the validity of
vitamin D y-based analyses

To ensure valid analyses of the effects of vitamin D3
supplementation on muscle-related features, two precaution-
ary measures were deemed to be necessary. First, for muscle
strength and muscle performance (apparatus exercises),
we defined baseline levels to be equivalent to values
collected after 3.5 weeks of introduction to resistance
training (main analyses, Figure 2), rather than values
collected before its onset, as noted in the preregistration of
the study (NCT02598830). At this time point, initial adapta-
tions to training were likely to have occurred, preferably
non-hypertrophic effects relating to technical, psychological
and neural learning effects,®* phenomena that are particu-
larly prominent in older subjects.’® Using this time point as
baseline arguably strengthens the association between
changes in muscle strength and muscle mass, which was
the main perspective of our vitamin Ds-based analyses. For
other outcome measures, baseline levels were either defined
as values obtained at the onset of introduction to resistance
training (Figure 2, Week 13; muscle biological data, muscle
thickness, body composition, endurance-related outcome
measures) or as values obtained pre-RCT (Week —1, Figure 2;
self-reported health, blood variables, lung function).

To further minimize the confounding effects of
non-hypertrophic increases in strength and performance, all
participants conducted a series of repeated tests prior to base-
line tests, including five repeated 1RM and muscular perfor-
mance tests in knee extension and chest press (Supporting
Information, Figure S1a,b,e,f), respectively, four of which was
conducted prior to onset of introduction to training. As ex-
pected, this led to marked and progressive increases in
strength/performance levels for all test procedures compared
with pre-RCT values (e.g. 4-8 — 14% for 1RM knee extension,
3-5 - 13% for 1RM bench press; the first test was conducted
at ~95% of maximal effort and was thus removed from analy-
ses) (Supporting Information, Figure S1). For leg press, three
tests were performed prior to the defined baseline test at
post-introduction to resistance training, resulting in similarly
scaled improvements as observed for knee extension and
chest press (Supporting Information, Figure S1, 14%; the first
test was conducted at ~¥95% of maximal effort and was thus re-
moved from analyses). These improvements occurred without
any apparent hypertrophy in m. vastus lateralis of the domi-
nant leg, measured as muscle fibre CSA (pre-RCT wvs.
pre-introduction to resistance training; type I, P = 0.573;
type I, P = 0.312), as previously presented (Supporting
Information, Figure S1g), strengthening the notion that the im-
provements were due to other factors. After adopting the
post-introduction-to-training time point as baseline for the
strength outcome measures, the efficiency of the intervention

Journal of Cachexia, Sarcopenia and Muscle 2021
DOI: 10.1002/jcsm.12688



16

K.S. Mglmen et al.

on muscle strength was still somewhat higher than expected
based on previous observations'®% (1RM knee extension,
0.8% per session; 1RM leg press, 1.3% per session). Notably,
while these former studies contained less extensive measures
to ensure reproducibility, they reported low test-retest
variability, which does not concur with our results,*%4-10¢

Second, for analyses of the effects of vitamin D3 supple-
mentation on changes in muscle mass, we found it necessary
to reconsider our choice of using changes in muscle fibre CSA
and fibre type proportions in m. vastus lateralis as the pri-
mary objective of the study. These data were associated with
large degrees of sampling-to-resampling variation, as evalu-
ated using repeated muscle biopsies from the dominant leg,
sampled at weeks —1 and 13, i.e. prior to introduction to
resistance training (Supporting Information, Figure S2). Simi-
lar issues have been previously reported for such analyses,**’
although not in all studies*®®2% and are likely exacerbated in
older adults, for whom larger spatial heterogeneity are pres-
ent in muscle fibre characteristics compared with young
adults,**° possibly relating to the age-related remodeling of
motor units.’*? Despite these issues, the data provided
sufficient resolution to disclose marked increases in muscle
fibre CSA and changes in muscle fibre proportions over the
entirety of the training intervention, as previously presented
(Figure 4 and Supporting Information, Figure S1).

In order to achieve reliable assessment of changes in mus-
cle mass, we thus had to take on a different approach. In-
stead of relying on muscle fibre CSA data alone, we
developed a combined muscle mass factor, in which change
scores from a collection of muscle mass-related outcome
measures were combined in a weighted manner (Supporting
Information, Table S4). This factor included data on muscle fi-
bre CSA, leg lean mass (DXA) and muscle thickness (m. rectus
femoris, m. vastus lateralis; ultrasound), all of which are
known to correlate.’**™*** Careful investigation of the
computed muscle mass factor suggested that it increased
the biological value of muscle mass-related analyses (for
more information, see Supporting Information, Table S4). As
such, it changed markedly from baseline to post-RCT (9%,
P < 0.001, Supporting Information, Table S4). Following this
logic, combined factors were also computed for other core
outcome domains, including maximal muscle strength and
one-legged and whole-body endurance performance
(Supporting Information, Table S4).

Effects of vitamin D3 supplementation on
training-associated changes in maximal muscle
strength and lower-limb muscle mass

Participants in both vitamin D3 and placebo arms showed
increases for every measure of muscle strength and mass,
assessed from baseline to after finalization of the resistance
training intervention: 12-25% for upper- and lower body

1RM muscle strength, 6-11% for leg muscle torque, 7-26%
for muscle fibre CSA and muscle thickness and 1-3% for leg
lean mass (Figures 6 and 7). Unsurprisingly, after combining
these measures into weighted muscle strength and muscle
mass factors, similarly scaled increases were observed
(13% * 8% and 9% * 8%, respectively; Figures 6 and 7), which
was also the case for a calculated score of relative muscle
quality (Amuscle strength factor/Amuscle mass factor;
4% + 10%, Figure 7).

Overall, vitamin D3 supplementation did not affect these
outcome measures compared with placebo in the partici-
pants, primarily evaluated as changes in muscle strength
and muscle mass factors (strength, A2.5% (95% CI, —1.0,
6.0), P = 0.194; mass, A0.4% (95% Cl, —3.5, 4.3), P = 0.940,
Figures 6 and 7), and secondarily as changes in each of the
underlying outcome measures (i.e. seven measures of muscle
strength and three measures of muscle mass; Figures 6 and
7). This lack of a beneficial effect was also evident for changes
in relative muscle quality (A1.9% (95% Cl, —3.0, 6.8),
P = 0.415; Figure 7). Vitamin D3 supplementation thus had
no main effect on training-associated changes in muscle func-
tionality or gross muscle biology. While this conclusion co-
heres with the few comparable studies assessing the effect
of combined vitamin D5 intake and resistance training,%#27%4
it contrasts the conclusion drawn in the only available
meta-analysis on this subject, wherein vitamin D3 supplemen-
tation was associated with augmented increases in muscle
strength in older adults.** Notably, among the selection of
ten specific outcome measures, two did not conform with
the main finding. Vitamin D; was associated with beneficial
effects for changes in 1RM knee extension (A6.8% (95% Cl,
1.3, 12.3), P = 0.016; Figure 6) and muscle thickness of
m. rectus femoris (A7.5% (95% Cl, 1.8, 13.2), P = 0.011; Figure
7). For 1RM knee extension, the effect was interrelated
with the negative development seen from pre-RCT to
pre-introduction to training in the vitamin D3 arm
(Supporting Information, Figure S1). Indeed, when assessing
the effect of vitamin D3 on 1RM knee extension from pre-
to post-RCT (rather than from baseline at post-introduction
to training), no beneficial effect was observed compared with
placebo (A—2% (95% Cl, —12, 7), P = 0.628; Supporting Infor-
mation, Table S2). As for muscle thickness in m. rectus
femoris, we did not collect data pre-RCT and can thus not de-
duce if this variable followed the same pattern as 1RM knee
extension. The observed benefits of vitamin D3 supplementa-
tion for changes in m. rectus femoris thickness contrasts ob-
servations made for m. vastus lateralis thickness (A—0.3%,
P = 0.838), and even oppose those made for lean mass of
the legs, which tended to increase less in the vitamin Dj
arm compared with the placebo arm (A—1.8%, P = 0.090).

So far, analyses have focused on the main effect of vitamin
D; supplementation for training-induced development
of muscle strength and mass, and have thus neglected
potential interactions with other independent variables such
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Figure 6 Effects of combined vitamin D3 supplementation and resistance training on maximal muscle strength in older adults. Changes in muscle
strength from baseline (after three weeks of introduction to resistance training) to post-RCT (A), and differences in changes between vitamin D3
and placebo arms (B). KE, one-legged knee extension; LP, one-legged leg press; CP, chest press; maximal torque measured using one-legged knee ex-
tension at three velocities; 60, 180, and 240° per second; #, significant difference between vitamin D5 and placebo arms; combined strength factor,
weighted combined strength factor of unilateral strength measures (one-repetition maximum in KE and LP, and KE torque at 60, 180, and 240° per
second). Alpha level at P < 0.05. Data are presented as means with 95% confidence intervals.

as pre-RCT levels of 25(0OH)D, health status (COPD vs. non-
COPD) or training modality (high-load, 10RM, vs. low-load,
30RM). The benefits of vitamin Ds supplementation were
expected to be more pronounced in participants with low
baseline levels of 25(OH)D (ClinicalTrials.gov Identifier:
NCT02598830). This hypothesis was based on observations
made in cohort studies, wherein subjects with levels <30-
50 nmol/L are more likely to show adverse muscle
phenotypes.u_23 To investigate this perspective, participants
in each supplementation arm were divided into quartiles
based on pre-RCT 25(OH)D levels in blood (Supporting
Information, Figure S3). This resulted in two lower quartiles,
one for the vitamin D3 arm (vitamin D3, [25(OH)D]-
mean = 49.5 nmol/L, n = 8), and one for the placebo arm
(placebojoy, [25(0H)D]mean = 47.4 nmol/L, n = 12) (Supporting
Information, Figure S3). At the onset of introduction to resis-
tance training, 25(0OH)D levels in vitamin D3, had increased

to 103.3 nmol/L (range 76-138), with all participants being
classified as sufficient (>50 nmol/L),"” whereas 25(OH)D levels
in placeboy,, remained unchanged (45.5 nmol/L, range
22-71), with 9 out of 12 participants being classified as insuf-
ficient (<50 nmol/L). Within each of the pre-RCT 25(OH)D
quartiles, the effect of vitamin D3 and placebo supplementa-
tion on training-induced changes in muscle strength and mass
(using the combined factors) were assessed. With exception of
one quartile (muscle strength factor, quartile 3, P = 0.048;
Supporting Information, Figure S3), no beneficial effects of
vitamin D3 supplementation were observed in any quartile
(e.g. vitamin D3,,,, vs. placeboy,,, muscle strength, A—2.0%
(95% Cl, —8.0, 3.9, P = 0.496) (Supporting Information,
Figure S3). Instead, in vitamin D3, training-associated
changes in muscle mass were reduced compared with
placeboy,, (A—6.5% (95% Cl, —12.7, —0.27), P = 0.041;
Supporting Information, Figure S3), suggesting that vitamin

Journal of Cachexia, Sarcopenia and Muscle 2021
DOI: 10.1002/jcsm.12688



18 K.S. Mglmen et al.
504
A O Vitamin D3
- 40 B Placebo
7]
4
g _ 304
G
-3
£% 20+ %
i
- &
s 10+ }
5 I o & 5
2 ] E
3] 0 o
'10 T T T T II T T
| Typel Typell | RF VL Lm™ Combined muscle Muscle
mass factor quality
Fibre-CSA Muscle thickness
B 304
g 20
s & #
@y
1= 10_
i
=2 I I I
] J- I 4 I ik
-5
£ .
£ a -104
as
g
= =20+
s
-30 T T T T T T T
" Type | Typell I RF VL LMe9 Combined muscle Musl;le
] Fibre-CSA Muscle thickness mass factor quality

Figure 7 Effects of combined vitamin D3 supplementation and resistance training on lower-limb muscle mass in older adults. Changes in lower-limb
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D5 supplementation may even have compromised training ad-
aptations in subjects with low pre-RCT 25(OH)D levels. Adding
to this, participants in the entire spectre of quartiles
responded quite similarly to resistance training, irrespective
of supplementation arms, evident as no interaction between
25(0OH)D quartiles/supplementation arm and changes in mus-
cle strength (P = 0.237) or muscle mass (P = 0.159). Arguably,
the statistical power of these analyses were not sufficiently
high to conclude on this perspective.

The impact of vitamin Dz supplementation for
training-associated changes in muscle strength and muscle
mass factors did not interact with health status (COPD
vs. non-COPD) or training modality (10RM vs. 30RM)
(Supporting Information, Table S2). However, it should be
noted that for selected specific outcome measures, interac-
tions were found with both of these independent variables
(summarized in Supporting Information, Table S2), including
an interaction between changes in type ll-fibore CSA and
COPD/non-COPD, and between changes in 1RM knee exten-
sion/vastus lateralis thickness and 10RM/30RM. In addition
to these interaction analyses, we also investigated the

potential relation between the effects of vitamin Ds
supplementation and baseline body fat proportions, as over-
weight and obese have been shown to have decreased
bioavailability of vitamin D due to deposition of 25(0OH)D in
body fat compartments (while concomitantly showing
attenuated anabolic response to resistance exercise!?®).11®
To this end, we performed quartile-based analyses, as previ-
ously described. These analyses did not reveal an effect of
baseline body fat proportions for changes in [25(OH)D] (fat
percentage, P = 0.432; BMI, P = 0.369) or muscle mass factor
(fat percentage, P = 0.355; BMI, P = 0.293) (Supporting
Information, Figure S4). However, it did have an effect on
changes in the muscle strength factor (fat percentage,
P =0.016; BMI, P = 0.706), that is, in quartilenigh fat percentages
vitamin D3 supplementation was associated with larger
increases in muscle strength compared with placebo (fat
percentage, A 5.8% (95% Cl, 0.5, 11.0), P = 0.032; BMI,
A7.8% (95% Cl, 2.5, 13.1), P = 0.005; Supporting Information,
Figure S4 and Table S2), suggesting beneficial effects of
vitamin D3 supplementations in subjects with high propor-
tions of body fat, opposing our initial expectations.
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Effects of vitamin D3 supplementation on
training-associated changes in one-legged and
whole-body endurance performance

Participants in both vitamin D3 and placebo arms showed im-
provements in one-legged and whole-body endurance perfor-
mance over the course of the resistance training
intervention: 42-74% increases in one-legged muscular per-
formance (Figure 8), 7-9% increases in peak power output
(Wmax) in one- and two-legged cycling (Figure 8), 3-5% reduc-
tions in O, costs of submaximal one-legged cycling
(Supporting Information, Table S2), and 6-10% increases in
functional performance (1-min sit-to-stand test and 6-min
step test, Figure 8). In accordance with this, marked increases
were observed in weighted one-legged and whole-body en-
durance performance factors (one-legged, vitamin Dj
25% + 19%, placebo 22% * 11%; whole-body, vitamin D3
9% + 8%, placebo 7% + 6%; Figure 8). These effects cohere
well with previously observed benefits of resistance training
for endurance variables in older adults.**’°

Vitamin D3 supplementation had no effect for any of these
outcome measures compared with placebo, neither for

1004
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i

Change baseline - post-RCT

s F@

D5

weighted endurance performance factors (one-legged, A2%
(95% ClI, —5, 10), P = 0.773; two-legged, A2% (95% CI, —2,
6), P = 0.636; Figure 8), nor for any of the specific outcome
measures (Figure 8). For combined endurance factors, there
was no interaction between baseline 25(0OH)D quartiles
and effects of vitamin D3 supplementation (one-legged,
P = 0.950; whole-body, P = 0.266; Supporting Information,
Figure S3 and Table S2), nor was there any interactions with
health status (one-legged, P = 0.747, whole-body, P = 0.129,
Supporting Information, Table S2) or training modality
(one-legged, P = 0.719, Supporting Information, Table S2).

Effects of vitamin D3 supplementation on
training-associated changes in muscle fibre
characteristics and transcriptomics

Participants in both vitamin D3 and placebo arms showed
marked changes in muscle fibre characteristics over the
course of the training intervention. These included decreased
type IIX muscle fibre proportions from 10% to 7% (Figure 9),
increased type IIA proportions from 26% to 29% (Figure 9),
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Figure 8 Effects of combined vitamin D3 supplementation and resistance training on one-legged and whole-body endurance performance in older
adults. Changes in endurance performance from baseline (before introduction to resistance training) to post-RCT (A), and differences in changes
between vitamin D3 and placebo arms (B). 1KE, repetitions to failure in one-legged knee extension (50% of pre-intervention 1RM); CP, repetitions
to failure in chest press (50% of pre-intervention 1RM); W,,.,, maximal power output; 6-min step test, maximal number of steps achieved during
6 min; Sit-to-stand, maximal number of sit-to-stands achieved during 1 min; combined 1-leg endurance performance factor, weighted combined
one-legged endurance factor including 1KE muscular performance and one-legged cycling W, weighted combined whole-body endurance factor in-
cluding W, bicycling, 6-min step test and sit-to-stand test. Alpha level at P < 0.05. Data are presented as means with 95% confidence intervals.
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Figure 9 Effects of combined vitamin D5 supplementation and resistance training on muscle fibre type proportions and myonuclei per fibre in m.
vastus lateralis of older adults. Muscle fibre type proportions (A—F) at baseline (before introduction to resistance training) and post-RCT measured
using immunohistochemistry (A—C) and qPCR (gene family profiling (GeneFam)-normalized myosin heavy chain mRNA expression, (D—F), and changes
in myonuclei count per type | and type Il fibre from baseline to post-RCT (G). Significant changes were observed for fibre type IIA and IIX using both
methods (significant increase and decrease, respectively; P < 0.05). For fibre type |, an increased expression was present using qPCR (P < 0.05), but no
change was observed for immunohistochemistry (P = 0.322). P-values denotes the statistical difference between the supplementation arms. RT, resis-

tance training. Data are presented as means with 95% confidence intervals.

increased type IIA/IIX hybrid fibres abundances from 2.6% to
3.2% (Supporting Information, Table S2), and 25-48% in-
creases in myonuclei number per muscle fibre (Figure 9).
Changes in 11X and IIA proportions were verified using qPCR,
showing decreased levels of type IIX mRNA abundance and
increased levels of type IIA (Figure 9), calculated using the
gene family-profiling approach.”® These analyses also re-
vealed increased proportions of type | mRNA after the train-
ing intervention (Figure 9), potentially caused by increased
type | protein turnover. The observed changes in muscle
fibre-type characteristics corroborate well with previous
studies in older adults,2°7*22 although increased numbers
of myonuclei per muscle fibre are not consistently
reported.’®® Vitamin D3 supplementation had no effect on
training-associated changes in muscle fibre proportions or
myonuclei content compared with placebo (Figure 9).

The training intervention resulted in 1.14- to 1.16-fold in-
creases in total RNA per unit muscle tissue weight (Figure
10), a proxy marker for ribosomal RNA content that has pre-
viously been associated with training-induced changes in
muscle growth and strength.®”'2* Similar increases were
found for the mature ribosomal species 18 s (1.18-fold) and
28 s (1.16-fold), in addition to the 45 s pre-ribosomal rRNA

(1.19-fold) using qPCR (Figure 10). No changes were observed
for 5.8 s (1.07-fold, P = 0.722) or 5 s (1.06, P = 0.940) follow-
ing the entire training intervention. Notably, for analyses of
total RNA and ribosomal RNA, an additional time point were
included in main analyses, i.e. in muscle biopsies sampled af-
ter introduction to training (3.5 weeks, 7 sessions), as early
increases in total RNA seem to associate with long-term
chronic responses to training, making it a potential hallmark
of muscle plasticity.®” As expected, 3.5 weeks of training led
to marked increases in total RNA (1.10- to 1.21-fold) and
expression of all ribosomal RNA species (1.13- to 1.27-fold)
(Figure 10). Whereas these changes corroborates quite well
with changes observed in healthy, young subjects,®’ although
with a notable reduction in the relative increase, they
contradict previous observations of no resistance training-
associated increases in total RNA per unit muscle tissue
weight in older subjects.!?® Vitamin D5 supplementation
had no effect on training-associated changes in total RNA or
rRNA expression compared with placebo.

The training intervention led to marked changes in muscle
mMRNA transcriptome profiles in the two supplementation
arms combined, with 499 genes being differentially
expressed (DE) after 3.5 weeks of resistance training
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Figure 10 Effects of combined vitamin D3 supplementation and resistance training on total RNA abundances and rRNA expression in m. vastus lateralis
of older adults. Total RNA (A), 18 s rRNA (B), 28 s rRNA (C), 5.8 s rRNA (D), 5 s rRNA (E), and 45 s pre-rRNA (F) abundances at baseline (before intro-
duction to resistance training) and post-RCT. Significant increases from baseline—post-introduction to resistance training were present for all variables
(P < 0.05). From baseline-post-RCT significant increases were present for all variables (P < 0.05), with the exception of 5.8 s rRNA (P =0.722) and 5 s
rRNA (P = 0.940). RT, resistance training. P-values denotes the statistical difference between the supplementation arms. Alpha level at P < 0.05. Data
are presented relative to amounts of tissue weight. Data are presented as means with 95% confidence intervals.

(post-intro RT; 436 genes 1%, 63 genes |, Figure 11A) and
312 genes being DE after 13 weeks of resistance training
(post-RCT; 255 genes 1, 57 genes ) (Figure 11A,B). VDR
was expressed, but unaffected by combined vitamin Dj
supplementation and resistance training, contradicting
previous observations of a positive association between
supplementation-induced  improvements in  25(OH)D
status and leukocyte,?® myoblast/myotube®’ and skeletal
muscle'*® VDR expression. GO enrichment analyses revealed
increased expression of gene sets associated with extracellu-
lar matrix, blood vessel morphogenesis and leukocyte migra-
tion at both 3.5 and 13 weeks (Figure 11C, Supporting
Information, Table S8), as well as increased expression of
the inflammatory response gene set at 3.5 weeks (Supporting
Information, Table S8). Conversely, decreased expression was
observed for gene sets involved in ribosomal functions at
both 3.5 and 13 weeks (Figure 11C). This could be interpreted
as contradicting the likely important role of de novo
ribosomal biogenesis for training-associated muscular
adaptations.®”*?* Notably, as these analyses were performed
using traditional library size-based normalization, which
basically provided target gene expression relative to the
expression of all other genes.!?® In an alternative set of
transcriptome analyses, which rather included normalization
that corrected for muscle sample weight and thus provided
gene expression analyses per sample size (tissue-offset
normalization),*? the negative effects of resistance training
on ribosomal gene expression was not evident (data not

shown). This was the only major difference between library
size and tissue-offset normalization in the present study
setting.

Vitamin D3 supplementation had no effect on
training-associated changes in gene expression, neither at
3.5 weeks (Figure 11D) nor at 13 weeks (Figure 11E), suggest-
ing that no single gene was differentially affected by
combined vitamin D3 supplementation and resistance
training and resistance training-only. In contrast to this,
enrichment analyses showed traces of vitamin Ds-sensitive
changes in expression at both 3.5 and 13 weeks of resistance
training (Figure 11F and Supporting Information, Tables
S$9-510). After 3.5 weeks of training, there was differential
expression of gene sets involved in cell junctions, blood
vessel morphogenesis and muscle cell differentiation. These
initial responses to resistance training should be interpreted
with caution, as they were only evident in one of the two
analyses (GSEA or rank-based analyses; Figure 11F and
Supporting Information, Tables S9-510). After 13 weeks
of resistance training, the vitamin D3 arm showed
increased expression of gene sets involved in endothelial
proliferation and blood vessel morphogenesis compared with
placebo (Figure 11F). This agrees with the previously
observed positive relationship between 25(OH)D-status and
endothelial function, potentially interacting through the
endothelium-derived vasodilator, nitric oxide.?° Indeed, this
coheres well with a recent study, which showed favorable ef-
fects of combined vitamin D3 supplementation and resistance
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Figure 11 Effects of 3.5/13 weeks of resistance training-only (A-C) and 3.5/13 weeks of combined vitamin D3 supplementation and resistance training
(D-G) on mRNA transcriptome profiles in m. vastus lateralis of older adults. Resistance training-only led to robust changes in gene expression at both
3.5 weeks (A; post-intro resistance training — pre-intro resistance training) and 13 weeks (B; post-RCT — pre-intro resistance training), including in-
creased expression of collagen type IV al and o2 genes (COL4AZ and COL4A2, respectively) and decreased expression of the myosin heavy chain
11X gene (MYHI). The three most enriched gene sets with increased and decreased expression, in addition to the ‘blood vessel morphogenesis’ gene
set are shown in C (light blue, 3.5 weeks; dark blue, 13 weeks; according to the GSEA enrichment score). Combined vitamin D3 supplementation and
resistance training did not lead to differential changes in expression for a singular gene compared with placebo at neither 3.5 weeks (D; A, post-
introduction to resistance training - pre-introduction to resistance training) nor 13 weeks of resistance training (E; A, post-RCT - pre-introduction to
resistance training; orange dots/genes denotes leading edge genes from the ‘blood vessel morphogenesis’ GO gene set, that is, the most highly
enriched gene set between supplementation arms after 13 weeks of resistance training). GO enrichment analyses of differentially regulated gene sets
between the vitamin D3 and the placebo arms following 3.5 weeks (left panel, F) and 13 weeks of resistance training (right panel, F; positive/negative
GSEA-normalized enrichment scores indicates higher/lower expression of gene sets in the vitamin D3 arm compared with the placebo arm). (G) Time-
line for the 10 most affected genes between vitamin D53 and placebo arms belonging to the ‘blood vessel morphogenesis’ GO gene set. RT, resistance
training; Consensus, when both the non-directional rank-based enrichment test and the directional gene-set enrichment analysis (GSEA) turned out
significant. In Figure 11C,F, circle sizes of gene sets are relative to P-values, i.e. larger circles indicate lower P-values (see Supporting Information,
Tables S5-S10 for exact P-values).
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training on flow-mediated dilation of blood vessels and blood
pressure in postmenopausal women.**® Unfortunately, endo-
thelial function was not assessed in the current study.

Effects of vitamin Dz on hormones in blood and
health-related outcome measures

In general, the intervention was associated with beneficial
changes for several health-related variables, including
reduced levels of lipids (triglycerides and low-density lipopro-
tein/LDL), reduced levels of fat mass (total and visceral fat)
and improved self-reported health (Supporting Information,
Table S11). Conversely, a small but undesirable decrease
was observed in lung capacity, measured as forced
ventilatory capacity (FVC) (Supporting Information, Table
S2). The intervention was not associated with changes in
whole-body bone mineral density or changes in serum levels
of hormones, except for decreased levels of parathyroid
hormone (Supporting Information, Table S11), as previously
presented. For most of the health variables, there was no ef-
fect of vitamin D3 supplementation (Supporting Information,
Tables S2 and S11), with exception of cortisol levels in blood,
which increased more in the vitamin D3 arm (Table S11), and
lung function measured as FEV,/FVC-ratios, which declined in
subjects with COPD in the vitamin D3 arm (Supporting
Information, Table S2).

Sarcopenia

The intervention proved effective for treating age-related loss
in muscle mass, leading to 1.4% increases in total lean body
mass (P < 0.001) (Supporting Information, Table S11). This
reduced the number of participants that could be defined
as sarcopenic from 16% (11 subjects) to 12% (8 subjects),
with sarcopenia being defined as appendicular lean mass
(kg)/m? greater than two standard deviations below the
sex-specific means of young adults.’ Speculatively, the
increase in total lean mass was supported by increased levels
of serum creatinine in both supplementation arms (+6%;
Supporting Information, Table S11). Although serum creati-
nine is generally used for evaluation of renal function,*
creatinine production and levels also increases with increases
in total muscle mass.*3%132

Steroid hormones

Vitamin D3 supplementation did not affect levels of anabolic
steroid hormones such as testosterone. This was in discor-
dance with our initial hypothesis, as we presumed a positive
association between vitamin D levels (measured as 25(OH)D)
and testosterone levels, based on previous observations from
vitamin D5 supplementation studies®* and cohort studies.**®
Despite this, our finding is in line with several other vitamin
D supplementation studies, which has reported no effect
on testosterone in blood.****3> Conversely, vitamin D,

supplementation seemed to affect serum cortisol levels com-
pared with placebo (A48 nmol/L, P = 0.038; Supporting Infor-
mation, Table S11), although no main effect of time was
observed (i.e. the observed increase in the vitamin D3 arm
was not statistically significant, P = 0.374) and there was no
statistical difference between supplementation arms at the
end of the intervention (P = 0.053).

Lung function

The small —1.95% reduction in FVC seen after the 28 week
long RCT (P = 0.006; Supporting Information, Table S2) was
surprising, as exercise is generally accepted to be beneficial
for lung functionality, including resistance training.*3%3”
Notably, other measures of lung function, such as forced
ventilatory volume in one second (FEV; and predicted FEV,)
and FEV,/FVC, were not affected by the intervention
(Supporting Information, Table S2).

The negative effects of vitamin D3 on lung function, mea-
sured as FEV1/FVC (A—2.9% points, P = 0.012; Supporting
Information, Table S2), were also surprising. This effect
showed a clear interaction with health status, and as such
was only evident in COPD patients in the vitamin D3 arm,
which showed A—8.4% reductions compared with placebo
(Supporting Information, Table S2). This subgroup analysis
was however clearly weakened by the small sample size
(COPD, n =9 vs. n =11, vitamin D3 vs. placebo). The negative
effect of vitamin D3 on FEV,/FVC did not interact with
pre-RCT levels of FEV,/FVC, but surprisingly, in another sub-
group-analysis, the pre-RCT 25(0OH)D vitamin D3,,,, quartile
was associated with larger decrement in FEV,/FVC than
placeboy,,, (A—5.4% points, P = 0.009; data not shown). This
observation is difficult to explain, as it indirectly opposes the
notion that vitamin D deficiency leads to impaired lung
functions.'*® More research is clearly needed to elucidate
on the consequences of resistance training and vitamin D3
supplementation for lung functionality.

Adverse effects of the intervention

Overall, neither vitamin D3 supplementation nor resistance
training was associated with adverse effects or events during
the intervention, with potential exception of certain aspects
of lung function, as previously discussed, and iron biology
(see Supporting Information, Table S11).

Primarily, a health survey was administered to the partici-
pants on a weekly basis. This included rating of 11 potential
discomforts relating to digestion problems, sleep problems,
issues with the urinary system, issues with the vestibular
system and dermal irritations (Supporting Information, Table
S2). No effect of vitamin D3 supplementation was found for
any of these variables. In the health survey, participants were
also asked to rate their experienced health on a point-scale
from 0-10. This self-reported conception of health
improved from 6.3 + 1.6 to 7.1 + 1.6 (P < 0.001, Supporting
Information, Table S2), with no difference between
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supplementation arms (P = 0.433, Supporting Information,
Table S11).

The intervention was not associated with
training-associated injuries, with only five participants (6%)
reporting discomforts with training towards the end of the in-
tervention and only four participants (5%) withdrawing from
study during the resistance training intervention, neither of
which were due to injuries associated with the training. As
such, serum levels of markers of muscle tissue damage
(creatine kinase and aspartate aminotransferase) even
decreased during the intervention, with no effects of vitamin
D; supplementation (Supporting Information, Table S11).
Supervised resistance training can safely be advocated for
both healthy older adults and persons with COPD.

Concluding remarks

The study was conducted as a double-blinded RCT, address-
ing the effects of 12 weeks of vitamin D3 supplementation
only (i.e. two weeks of 10 000 I1U/day, followed by ten weeks
of 2000 IU/day), and 13 weeks of combined vitamin D3
(2000 IU/day) and resistance training on functional measures,
health markers and muscle biology in a mixed population of
older adults. Vitamin D3 supplementation is often hailed as
an ergogenic aid for optimizing the outcome of resistance
training, and is recommended for a variety of human
populations, ranging from healthy subjects to athletes and
chronically diseased subjects.”-?° Vitamin D is thus presumed
to play an important role in training-associated muscle plas-
ticity. Despite this, its importance for humans remains largely
elusive, with current knowledge stemming predominantly
from animal research,®® and the few existing human studies
providing limited, uncertain and contradicting results.**™** In-
deed, the present data do not support a role for vitamin D in
training-associated muscle plasticity and functionality, at
least not in older adults (with and without moderate COPD)
with suboptimal to adequate baseline levels of 25(OH)D.
More precisely, vitamin D; supplementation had no effect
on core outcome domains such as changes in muscle
strength, muscle mass, endurance performance and general
muscle cell characteristics, and its effects on the muscle
transcriptome was largely limited to gene sets relating to
endothelial and cardiovascular functions. The validity of this
insight is fortified by the thorough methodological and
analytical approach. This included accounting for previous
methodological issues such as a lack of a pre-training supple-
mentation period, low vitamin D dosages, and neglecting to
standardize test/training routines such as supervision of
training sessions, test-retest analyses of functional and
biological outcome measures, familiarization to training and
a low reproducibility of singular outcome measures. The ana-
lytical approach also accounted for the potential confounding
effects of the heterogeneity of the study population, as no

interaction was found between effects of vitamin Ds
supplementation and disease status (healthy vs. COPD), or
differences in pre-RCT vitamin D status, as all [25(OH)D]-
paseline quartiles responded in similar manners.

Despite our substantial efforts to strengthen the ecological
value of the data set, there are aspects of vitamin D biology
that remain unresolved, and that may have affected the con-
clusions and outcomes of the study. First, in skeletal muscle,
adequate vitamin D signaling may occur at 25(0OH)D levels
lower than the defined cutoff (insufficient, <50 nmol/L).?’
Speculatively, all participants in the placebo arm may thus
have been vitamin D-sufficient at the onset of resistance
training, leaving our quartile-based analyses with limited bio-
logical value. Indeed, studies have suggested that vitamin D
insufficiency will affect human muscle in an adverse manner
only at concentrations <30 nmol/L.**® Second, although se-
rum 25(OH)D level is widely regarded as an adequate mea-
sure of vitamin D status,®® it may be a poor proxy marker
for vitamin D biology, as it largely fails to reflect 1,25(0OH),D
levels, the metabolically active form of vitamin D.**° In line
with this, in the present study, [25(OH)D] was not correlated
with [1,25(0H),D] at baseline (data not shown) and was not
increased by long-term vitamin D3 supplementation (at
weeks 13 and 29). Such decoupling of 25(0H)D and 1,25
(OH),D levels have several potential explanations. These in-
clude feedback-mediated regulation of vitamin D biology,
which is largely affected by PTH levels,*** as well as impaired
25(0OH)D — 1,25(0H),D conversion in individuals with patho-
physiological indications such as renal dysfunction.'* The lat-
ter is unlikely to explain the lack of increases in [1,25(0OH),D]
in the present study, as only two participants were indicated
with renal dysfunction (estimated based on levels of
creatinine in serum; Table 1). Rather, the initial two weeks
of high-dosage vitamin Ds; supplementation did lead to
marked increases in [1,25(0OH),D], emphasizing that
supplementation is indeed capable of increasing levels of
metabolically active vitamin D, at least at high doses and
within a short time frame. At weeks 13 and 29 were the
PTH levels suppressed for both supplementation arms
compared with pre-RCT levels. This was possibly related to
the calcium supplement, and may have contributed to the
unaltered 1,25(0H),D levels at these time points. Third,
muscle cells may themselves possess the apparatus to
convert 25(0OH)D into 1,25(0H),D, as they express the
25-Hydroxyvitamin D 1-alpha-hydroxylase (CYP27BI) protein.
Indeed, in in vitro experiments on murine myoblast and
myotubes, 25(0OH)D and 1,25(0H),D treatment seem to lead
to similar increases in the expression of vitamin D markers
such as VDR, suggesting that peripheral regulation of vitamin
D biology is a biological opportunity.*?” Fourth, while 25(0H)
D was assessed as [25(0OH)D];otar in the present study, levels
of unbound 25(0OH)D (i.e. not bound to vitamin D binding
protein or albumin; ~0.03%) may represent a more accurate
measure of vitamin D status in a clinical setting.'*® Indeed,
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in mice lacking vitamin D binding protein, and therefore
displaying very low [25(OH)D]iotar (~¥8 nmol/L), no signs of vi-
tamin D deficiency are seen unless they are put on a vitamin
D deficient diet.*** Fifth, in the present study, the resistance
training intervention lasted for only 13 weeks. Speculatively,
this may have been too short for vitamin D3 supplementation
to manifest its potential benefits for muscle plasticity, despite
the presence of a 12-week lead-in supplementation period.
Arguably, however, if vitamin D status and signaling is indeed
important of muscle biological adaptations to training, even
shorter interventions should lead to detectable changes in
muscle biology, such as its transcriptome. This was not
observed, neither in general, nor for specific vitamin
D-responsive genes such as VDR.*?® Sixth, the study protocol
was unavoidably associated with large interindividual
variation in responses. This variation may have been related
to vitamin D3 supplementation per se, resistance training
per se or to a combination of both, and may have affected
groupwise comparisons. More research is clearly needed to
elucidate on these perspectives.

Despite these uncertainties, it seems clear that vitamin D3
supplementation did not affect muscle biological characteris-
tics in the present study, particularly those measured using
RNA-seq. Indeed, in our transcriptome analyses, not a single
gene was found to be vitamin Ds-sensitive after a period of
resistance training, which is surprising given the accepted
dogma that vitamin D primarily acts as a transcriptional
regulator,®® and that the VDR was rather highly expressed
in the data set, although it did not change with vitamin D3
supplementation. Moreover, gene sets that were identified
as vitamin Ds-sensitive in gene enrichment analyses were
largely associated with vascular function rather than muscle
cell biology.

Despite the general lack of effects of vitamin D3 supple-
mentation on muscle mass and phenotype (primary objec-
tives of the study), as well as the lack of effects on other
muscle functional and biological traits, the data set
contained a couple of interesting observations. First, in
the muscle transcriptome data, the effects of vitamin D3
supplementation per se on expression of mitochondrial
genes and the effects of combined vitamin D3 supplemen-
tation and resistance training on biomarkers of endothelial
and vascular biology calls for further study. Arguably, these
biological features would be more decisive for adaptations
to endurance-like training, posing the intriguing possibility
that vitamin D3 supplementation may be beneficial for
the outcome of such training. Second, in participants with
high baseline fat proportions/high BMI, vitamin D3 supple-
mentation led to increased training-associated changes in
muscle strength. In these participants, the bioavailability
of vitamin D may have been compromised by the high fat
content (in the placebo arm, although they did not exhibit
lowered 25(OH)D levels), corroborating with previous ob-
servation of interactions between vitamin D biology and

fat mass.?*® While this may indicate that vitamin D exerts
direct effects on muscle biology, as muscle strength is
predominately defined by muscle mass,**° this still seems
unlikely as no such vitamin Ds-effect was seen for other
muscle-specific outcome measures (e.g. muscle mass and
phenotype). The causality may thus involve other physio-
logical adaptations such as motoneuron function,**® which
has indeed been suggested to be affected by vitamin D
supplementation in rodents.**’

In retrospect, the pre-identified primary objectives of the
current study were not ideal (i.e. the effects of vitamin D3
supplementation on muscle fibre CSA and proportions). The
underlying rationale behind this choice was to investigate
the effects of vitamin D3 supplementation on a set of unbi-
ased biological variables (not prone to test-retest fluctua-
tions), adhering to the existing notion that vitamin D may
affect muscle fibre size and fibre type proportions (e.g.
elucidated in the review from Ceglia, 2009%%). This clearly
underestimating the reliability issues associated with
histological measures, which were indeed evident in the data
set (Supporting Information, Figure S2). Importantly, vitamin
D; supplementation was not associated with beneficial
effects for any of the investigated primary or secondary
outcome measures, hence leaving the overall conclusion as
unambiguous.

In conclusion, in older adults with or without COPD,
vitamin D3 supplementation efficiently improved vitamin
D-status without any adverse effects, but did not lead to ben-
eficial effects in resistance training-associated changes in
muscle function or characteristics. This rejects the notion that
vitamin D3 supplementation is necessary to obtain adequate
muscular responses to resistance training in the general older
population. Secondary analyses revealed positive effects of
vitamin D3 supplementation for participants with high
proportions of fat mass and for gene sets involved in vascular
functions, advocating further research to elucidate on these
specific biological characteristics. Finally, the training
programme was well-tolerated and associated with pro-
nounced effects for a variety of health variables, emphasizing
the potency of resistance training for relieving sarcopenia
and maintaining functional capacity in older adults with and
without COPD.
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Abstract

Background. Subjects with chronic obstructive pulmonary disease (COPD) are prone to
accelerated decay of muscle strength and mass with advancing age. This is believed to be
driven by disease-inherent systemic pathophysiologies, which are also assumed to drive
muscle cells into a state of anabolic resistance, leading to impaired abilities to adapt to
resistance exercise training. Currently, this phenomenon remains largely unstudied. In this
study, we aimed to investigate the assumed negative effects of COPD for health- and
muscle-related responsiveness to resistance training using a healthy control-based

translational approach.

Methods. Subjects with COPD (n=20, GOLD II-Ill, FEV1predicted 57£11%, age 69+5) and healthy
controls (Healthy, n=58, FEV1predicted 112+16%, age 67+4) conducted identical whole-body
resistance training interventions for 13 weeks, consisting of two weekly supervised training
sessions. Leg exercises were performed unilaterally, with one leg conducting high-load
training (10RM) and the contralateral leg conducting low-load training (30RM).
Measurements included muscle strength (nvariables=7), endurance performance (Nvariables=6),
muscle mass (nvariables=3), Muscle quality, muscle biology (vastus lateralis; muscle fiber
characteristics, RNA content including transcriptome) and health variables (body
composition, blood). For core outcome domains, weighted combined factors were calculated
from the range of singular assessments. Differences in responses to resistance training

between COPD and Healthy were assessed using mixed-effects models.

Results. COPD displayed well-known pathophysiologies at baseline, including elevated levels
of systemic low-grade inflammation ([c-reactive protein]), reduced muscle mass and

functionality, and muscle biological aberrancies. Despite this, resistance training led to
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improved lower-limb muscle strength (15+8%), muscle mass (7£5%), muscle quality (8+8%)
and lower-limb/whole-body endurance performance (26+12%/8+9%) in COPD, resembling or
exceeded responses in Healthy, measured as both relative and absolute change terms. This
was accompanied by similar changes in hallmarks of muscle biology such as rRNA-content?,
muscle fiber cross-sectional area, type IIX proportionsy,, and changes in mRNA
transcriptomics. Neither of the core outcome domains were differentially affected by

resistance training load.

Conclusions. COPD showed hitherto largely unrecognized responsiveness to resistance
training, rejecting the notion of disease-related impairments and rather advocating such

training as a potent measure to relieve pathophysiologies.

Trial registration. ClinicalTrials.gov ID: NCT02598830. Registered November 6th 2015,

https://clinicaltrials.gov/ct2/show/NCT02598830

KEYWORDS. anabolic resistance, COPD, pathophysiology, skeletal muscle, strength training,

training load
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R, Rennestad BR, Raastad T, Ellefsen S. Chronic Obstructive Pulmonary Disease Does Not
Impair Responses to Resistance Training. medRxiv.
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Introduction

Chronic obstructive pulmonary disease (COPD) is associated with impaired cardiorespiratory
fitness and decreased skeletal muscle mass and strength, leading to reduced levels of daily
activity and reduced quality of life (1,2). This deterioration is accompanied by systemic co-
morbidities such as reduced levels of testosterone (3), vitamin D (4,5) and oxygen saturation
levels (6), and elevated levels of low-grade inflammation (7), which arguably leaves COPD
subjects in a state of anabolic resistance (8), resulting in impaired abilities to adapt to
exercise training (9—11). In particular, these pathophysiologies are believed to impair
adaptations to resistance training, which represent the most potent intervention for
improving muscle functions (12—15) and preventing escalation into late-stage morbidities
such as pulmonary cachexia (16). Despite this general belief, the presence of anabolic
resistance in COPD subjects and its consequences for responses to resistance training remain
circumstantial. A mere single study has compared functional and biological adaptations to
resistance training between COPD and healthy controls (ISRCTN ID: 22764439) (17-19), and
as such was limited by a relatively short training intervention (8 weeks), a rather
untraditional training protocol with little clinical and practical relevance, and a limited
selection of outcome variables. Whereas the study failed to disclose COPD-related
impairments in muscle strength and growth responses, it seems premature to dismiss the
notion that COPD pathophysiologies may impair training responsiveness (20), and there is
clearly need for further study.

The primary aim of the present study was to investigate the assumed negative effects
of COPD pathophysiologies on physiological responses to 13 weeks of resistance training,

with emphasis on a broad range of muscle functional and biological outcome measures. The
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secondary aim was to investigate inherent differences between COPD and Healthy, and to
investigate the interaction between two different resistance training modalities and training
responsiveness (high-load vs. low-load resistance training; 10 vs 30 repetitions maximum,

RM).

Methods

For in-depth description of study protocols and methods, including description of a placebo-
controlled vitamin D3 supplementation protocol (randomized clinical trial), see Figure 1-2
and clinicaltrial.gov (ClinicalTrials.gov Identifier: NCT02598830). The study was designed and
scaled to allow elucidation of the effects of vitamin D3 supplementation for adaptations to
resistance training, as well as to compare training responsiveness between COPD and

Healthy. The vitamin D3 perspective is covered in detail elsewhere (21).

Study ethics and participants. The study was approved by the Regional Committee for Medical
and Health Research Ethics (reference no. 2013/1094), preregistered at clinicaltrials.gov
(NCT02598830), and conducted according to the Declaration of Helsinki. All participants
were informed about the potential risks and discomforts associated with the study and gave
their informed consent prior to study enrolment.

Persons with either medical diagnosis of stable COPD (GOLD grade II-ll (22),
predicted forced expiratory volume in first second (FEV1) between 80%-30%, FEV1/forced
vital capacity (FVC) <70% after reversibility testing, n=24, age 70£5) or normal lung function
(n=70, age 6715) were recruited to the study. For study flow chart, see Figure 1. For baseline

characteristics, see Table 1.

Insert Figure 1 and Table 1 around here
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Study conduct. COPD and Healthy conducted identical 13-week resistance training protocols,
consisting of two weekly full-body training sessions (Figure 2). Leg exercises were performed
unilaterally, with one of the legs of each participant being randomly assigned to perform
three sets of 10RM (high-load) and the contralateral leg to perform three sets of 30RM (low-
load). All sessions were supervised by qualified personnel. The effectiveness of the training
intervention was assessed as a wide range of outcome measures (Figure 2), including
multiple assessments of endurance performance, muscle strength and mass, measures of
work economy/efficiency, and collection of blood and vastus lateralis biopsies (both legs)

(Figure 2).

Insert Figure 2 around here

Blood and muscle measurements. Prior to collection of blood and muscle biopsies, participants
were instructed to attend an overnight fast and to avoid heavy physical activity for the last
48 h. Blood samples were analyzed for serum concentrations of hormones, lipids, and
markers of iron metabolism and tissue damage, as previously described (21). Muscle
biopsies were analyzed for muscle fiber type proportions, myonuclei content, muscle fiber
cross-sectional area (CSA), and rRNA and mRNA content (total RNA, rRNA subspecies, myosin
heavy chain isoforms I, 1A and IIX, and whole-genome transcriptome), as previously
described (21,23,24). Transcriptome analysis was restricted to a subset of participants

(COPD, n=19; Healthy, n=34).

Data analyses and statistics. For continuous variables, linear mixed-effects models were used
to examine differences between COPD and Healthy, both at baseline and as responses to
resistance training. For the latter, relative and absolute changes from baseline were defined

as dependent variables, with COPD/Healthy being defined as the fixed effect. Analyses
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included evaluation of interaction effects with training load (repeated
measures/observations from the high- and low-load training leg were added to the model
for unilateral outcome measures) and sex. The effects of sex were implemented into the
models. Time effects were examined using mixed modelling, with the dependent variable
and time points being defined as repeated measures/observations.

For non-continuous variables (fiber type proportions, rRNA/mRNA content),
generalized linear mixed-effects models were used. In transcriptome analyses, genes were
regarded as differentially expressed when the absolute log; fold-change/difference were
greater than 0.5 and the adjusted p-value (false discovery rate adjusted per model
coefficient) was below 5% (23). Moreover, enrichment analyses were performed on
hallmark, KEGG and gene ontology gene sets, using two approaches. First, a non-parametric
rank test was performed based on gene-specific minimum significant differences. Second,
gene set enrichment analysis (GSEA) was performed to quantify directional regulation of the
gene set. Consensus results were interpreted as having larger biological meaning, while
Hallmark was providing the most meaningful stand-alone interpretation, as it reduces the
analytical noise by taking into account genes that overlap between gene sets (25). All gene
sets were retrieved using the molecular signature database (version 7.1.) (26). Overview of
gene enrichment analyses with exact p-values are presented in Supplementary Table 3.

For all immunohistochemical variables, statistical models were weighted for numbers
of counted fibers per biopsy. This was done to account for the reduced reliability
accompanying fewer observations/fibers (21).

To achieve reliable assessment of core outcome domains, and thus to lower the risk
of statistical errors, combined factors were calculated for outcome measures relating to

lower-body muscle strength (composed of values from the variables 1RM knee extension and
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leg press (1), and peak torque for knee extension at 60, 180 and 240°/sec (Il)), lower-body
muscle mass (leg lean mass (l) and vastus lateralis and rectus femoris thickness (Il)), one-
legged endurance performance (maximal workload achieved during one-legged cycling (l)
and number of repetitions at 50% of 1RM knee extension at pre-study (1)) and whole-body
endurance performance (maximal workload achieved during bicycling (I), maximal number of
steps achieved in a 6-min test (l1), and maximal number of sit-to-stands in a 1-min test (ll1)),
as previously described (21). During factor calculation, each of the underlying variables were
normalized to the participant with the highest value recorded during the RCT, resulting in
individual scores <1. Thereafter, outcome domain factors were calculated as the mean of the
normalized values for each variable for each participant. For details, see Supplementary
Table 1.

Statistical significance was set to p<0.05. In both text and figures, data are presented
as adjusted, marginal means, with or without 95% confidence intervals, unless otherwise
stated. Statistical analyses were performed using SPSS Statistics package version 24 (IBM,
Chicago, IL, USA) and R software (27). Figures were made using Prism Software (GraphPad 8,

San Diego, CA, USA) and R software (27).

Results and discussion

Baseline characteristics: COPD vs Healthy

Exercise capacity, body composition and muscle and blood biology. At baseline, COPD
displayed impaired exercise capacity compared to Healthy, as expected from previous
studies (2,17,19,28). This was evident as impaired whole-body performance (range: -41% to -
54%, Table 1), and lower-body unilateral muscle strength and endurance performance (-17%

to -30%, Table 1), reflecting the cardiorespiratory and muscular limitations inherent to the
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condition (20). In accordance with this, COPD had less lean body mass than Healthy (A-13%,
Table 1), with 45% of COPD showing signs of sarcopenia, as defined by Baumgartner et al.
(29). This difference was unlikely to be due to the miniscule age difference between COPD
and Healthy (-2 years; Table 1), as this would have implied an annual loss of ~2.6 kg lean
mass per year, markedly deviating from the expected loss in this age group (~0.5 kg per year)
(30). The negative effects of COPD for muscle mass was underlined by -9%/-24% smaller
vastus lateralis/rectus femoris thicknesses (Table 1), corresponding well with difference in
leg-specific lean mass (-16%; Table 1), offering potential explanations for the impaired
maximal leg muscle strength. The general impaired exercise capacity in COPD was
presumably decoupled from differences in habitual physical activity patterns prior to the
study intervention (COPD, 4266 + 4035 kcals - week™ (average + standard deviation);
Healthy, 4520 + 2837 kcals - week; p=0.760).

The two study clusters also differed at the muscle biological level, with COPD showing
greater proportions of type lIA and IIX muscle fibers in vastus lateralis compared to Healthy
(32%/23% vs 13%/9%, respectively), with concomitant lowering of proportions of type |
fibers, corroborating with previous studies (31,32). For type | fibers, COPD showed larger
CSA (12%, Table 2) and larger myonuclear domain (CSA per myonuclei) (A20%, Table 2), with
no difference being observed for type Il fibers. This contrasts previous studies, who have
reported smaller or similar CSA in type | fibers in COPD compared to Healthy (28,33,34), but
may point to a compensatory mechanism for the likely loss of motor units in COPD subjects
(35), whereby reduced quantities of muscle fibers are compensated for by increased sizes of
remaining fibers, as previously reported in rodents (36). Furthermore, COPD also affected
whole-genome transcriptome profiles and displayed differential expression of 227 genes

compared to Healthy (151 and 764 ; Figure 3a and Supplementary Table 2). Hallmark
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enrichment analysis revealed lower expression of genes involved in oxidative
phosphorylation (consensus), corroborating with the lower type | proportion, and greater
expression of genes involved in regulation of myogenesis (Rank) (Figure 3a-b, Table 3;
findings confirmed in gene ontology analysis, Supplementary Table 3), which may be related
to the pathophysiological elevation of protein turnover in COPD (37,38).

For other muscle characteristics, such as the content of total RNA and rRNA per
amount of muscle tissue, no differences were observed between COPD and Healthy at
baseline (Table 2).

For blood variables, the COPD cluster showed elevated levels of low-grade
inflammation, measured as c-reactive protein levels, at pre-study compared to Healthy (5.0
vs 1.6 mg'L?) and tended to differ at baseline (p=0.053; Table 4), as expected from previous
studies (7). For other characteristics, such as hormonal status in blood (e.g. testosterone), no

differences were observed between COPD and Healthy at baseline (Table 4).

Insert Figure 3, Table 2 and Table 3 around here

The efficacy of the resistance training intervention: COPD vs Healthy

For both COPD and Healthy, the training intervention was associated with low drop-out rates
(n=4, ~5%; COPD, n=2), high adherence to the protocol (COPD, 97%; Healthy, 98%),
progressive increases in training volume (Figure 2), and robust increases in muscle strength
per training session (e.g. 1RM knee extension, 0.9% ' session''/0.8% ' session™,
COPD/Healthy; 1RM leg press, 1.4% - session’?/1.3% - session’!). The habitual dietary intake
was similar between COPD and Healthy, with protein intake being 1.2 + 0.3 (average *
standard devation) and 1.3 + 0.4 g - kg™ - day, respectively, complying with current
guidelines (39). The vitamin D3 supplementation RCT of the project did not enhance or affect

training-associated changes for any of the primary or secondary outcome measures (21).
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Muscle strength, muscle mass, muscle quality and one-legged endurance performance.
Overall, COPD showed larger training-associated increases in lower-body muscle strength
and mass compared to Healthy (the two legs/training modalities combined), measured as
relative changes in combined factors from baseline (Figure 4A), with no difference being
observed for absolute changes (Figure 4A). COPD and Healthy showed similarly scaled
improvements in muscle quality and one-legged endurance performance (Figure 4A).
Notably, neither of these four core outcome domains were differentially affected by
resistance training load (neither in COPD nor in Healthy), suggesting that 30RM training is an
effective alternative to 10RM training in older individuals (Figure 4B-C). COPD thus showed
marked and hitherto unrecognized responsiveness to resistance training, contradicting
previous suggestions of a negative impact of co-morbidities such as low cardiorespiratory

fitness and chronic low-grade systemic inflammation (7,40).

Insert Figure 4 around here

Cycling and functional performance. COPD and Healthy showed pronounced and
similarly scaled training-associated improvements in whole-body endurance performance,
measured as changes from baseline, including 6-min step test performance, 1-min sit-to-
stand performance and maximal workload achieved during two-legged cycling (Figure 5).
Surprisingly, COPD and Healthy also showed similar changes in performance for these
outcome measures as absolute terms, with exception of 6-min step test performance (A-11
steps, Figure 5), for which Healthy showed larger improvements, arguably related to the
considerable cardiorespiratory demand of this test, leaving COPD with morbidity-specific
restraints. For other performance indices such as cycling economy and gross efficiency,
which were measured using a one-legged cycling protocol, COPD showed larger relative

improvements compared to Healthy (A4%, Figure 5). For these outcome measures, COPD,
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but not Healthy, displayed benefits of 10RM compared to 30RM training (Figure 5),
corresponding to previously observed effects of heavy resistance training in healthy, young
individuals (41).

Together, these observations reiterate on the substantial benefits of resistance
training for subjects with COPD, even for performance measures that pose large whole-body
metabolic demands, which has previously been suggested to be irresponsive to such training
(42). As such, it seems plausible that the observed improvements in 6-min step test
performance, 1-min sit-to-stand performance and two-legged cycling were associated with
improvements in work economy/gross efficiency and muscle strength, as neither COPD nor
Healthy showed training-associated changes in maximal oxygen consumption (Figure 5), with

improvements in anaerobic capacity being a potential contributor (not measured).

Insert Figure 5 around here

Muscle fiber characteristics. Whereas COPD and Healthy displayed similar increases in
type Il fiber CSA in vastus lateralis in response to resistance training (A-6%, p=0.438; Figure
6, upper panel), only Healthy showed increases in type | fiber CSA (16%), with no statistical
difference being observed between study clusters. For Healthy, the increase in CSA was
accompanied by increased myonucleifiber? in both fiber types (36%/25% for type I/1I; Figure
7), leading to decreased myonuclear domain size estimates in type | fibers (-10%, Figure 7).
For COPD, no such effects were observed (Figure 7). Despite the lack of difference between
the two study clusters for these variables, the data hints at blunted plasticity of type | muscle
fibers in COPD only, potentially relating to their altered biological characteristics at baseline
or to blunted myonuclear accretion. Interestingly, in sub-analyses, the blunted type |

responses in COPD seemed to be specific to 10RM training, with a tendency towards
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superior responses to 30RM training (A22%, p=0.060; Figure 6, middle panel). Such a
phenomenon is supported by previous observations in responses to blood-flow-restricted
low-load training (43), which arguably is mimicked by COPD subjects during low-load
training, as they display inherent lowering of oxygen saturation in blood.

Both COPD and Healthy displayed training-associated reductions in type IIX muscle
fiber proportions (Figure 7). While this reduction was more pronounced in COPD when
measured at the protein level (immunohistochemistry), it was more pronounced in Healthy
when measured at the mRNA level, suggesting differential orchestration of muscle fiber
shifts between study clusters, possibly relating to their inherently different muscle fiber

proportions at baseline.

Insert Figures 6 and 7 around here

Muscle RNA content. In general, COPD and Healthy showed similar increases in
ribosomal RNA abundance per unit muscle tissue weight, measured as both total RNA and
rRNA expression, and measured after both 3% week (1.19/1.29 and 1.15/1.16 fold increases,
total RNA/rRNA abundances) and after finalization of the training intervention (1.13/1.18
and 1.05/1.17 fold increases) (Figure 8). While these changes in ribosomal RNA content were
generally similar between COPD and Healthy, a few noteworthy differences were evident,
including a more robust early increase in 45s pre-rRNA abundance in COPD (Figure 8) and a
trend towards reduced changes in response to 13 weeks training in COPD, which led to the
absence of time effects for all rRNA species. The early increases in ribosomal content seen in
both COPD and Healthy resemble those typically seen after similar interventions in untrained
young individuals (24), and may be important for muscle growth capabilities over the

entirety of the study period (24,44), accommodating increases in protein synthesis capacity,
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thus potentially contributing to the pronounced muscular responses to resistance training

seen in both study clusters.

Insert Figure 8 around here

In both COPD and Healthy, resistance training led to marked changes in mRNA
transcriptome profiles, with 499 and 312 differentially expressed genes being observed after
3% and 13 weeks of resistance training, respectively (for general information about
transcriptomic responses, see Mglmen et al. (21)). Overall, at the single-gene level, no
transcripts showed differential responses to training between the two study clusters, neither
at 3% weeks nor at 13 weeks, despite clear differences in transcriptome profiles at baseline
(Figure 3a and Supplementary Table 2). In contrast, enrichment analyses revealed traces of
differential changes (Figure 3C, Table 3 and Supplementary Table 3), with COPD showing
more pronounces increases in expression of genes relating to oxidative phosphorylation
after 3% weeks (GSEA), and, in particular, more pronounced decreases in genes associated
with myogenesis after 13 weeks (consensus) (Figure 3C, Table 3). Interestingly, as these two
gene sets represented the most prominent differences between COPD and Healthy at
baseline (Figure 3A-B), and as resistance training led to directional changes that mitigated
these differences, training arguably shifted the COPD phenotype in a healthy direction.

Blood and health-related outcomes. Overall, COPD and Healthy showed similar training-
associated increases in whole-body and appendicular lean mass (Table 4). This was
accompanied by increased appendicular skeletal muscle mass index relative to the sex-
specific mean of young, healthy adults (COPD, from 84% to 86%; Healthy, from 95% to 97%),
suggesting that the intervention was effective for reversing age-related decline in muscle

mass. For blood variables such as markers of systemic inflammation and hormone, lipid and
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iron biology, no noteworthy effects were observed of the intervention, nor were any

differential changes observed between COPD and Healthy (Table 4).

Insert Table 4 around here

Lung function. For COPD, the training intervention did not affect any of the lung
function variables (Table 5), implying no effects on this core epidemiological trait. This seems
reasonable given the irreversible nature of the respiratory impairments of COPD,
contradicting the beneficial effects observed in Hoff et al. (13) In contrast, for Healthy, the
intervention was associated with reduced FVC and FEV1 (-2.7% and -1.5%, respectively).
Rather than being a consequence of the intervention protocol per se, this may be due to a
general age-related decline, as the magnitude of the changes resemble those seen in

corresponding age cohorts over a similar time frame (45).

Insert Table 5 around here

Health-related quality of life. For COPD, the intervention was associated with marked
improvements in several aspects of health-related quality of life (Table 6). These included
reduced experience of limitations of physical functioning and improved social function and
mental health, with only marginal effects being seen in Healthy. While these changes of
course may be directly related to the resistance training intervention, they may also be
related to other aspects of the study protocol, such as performing training sessions in a
social setting and the close follow-up each participant received from study personnel. As the
intervention was conducted without a control group (not receiving the intervention

protocol), caution is warranted for interpretation of these data.

Insert Table 6 around here
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Concluding remarks

COPD-related pathophysiologies, such as reduced testosterone (3), vitamin D (4) and oxygen
saturation levels (6,46) in blood, and elevated levels of low-grade inflammation (7), are
generally believed to drive metabolism into a chronic catabolic state (3,6,8). This has been
suggested to lead to impaired responses to lifestyle interventions such as resistance training
(6,47), which are essential measures for preventing and treating disease-related reductions
in skeletal muscle mass and strength, counteracting escalation into serious conditions such
as pulmonary cachexia (16). Despite this general belief, the presence of impaired training
responsiveness in COPD is not backed by experimental data, and there is limited de facto
evidence for such impairments. To date, a mere single study has compared responses
between COPD and healthy control subjects (17—-19), and as such failing to lend support to
the prevailing view, though being limited by a relatively short time span (8 weeks) and a
restricted selection of outcome variables. In the present study, we largely disavow the myth
of impaired responsiveness to training in COPD, measured as responses to a 13-week whole-
body resistance training intervention, conducted using an exhaustive follow-up and testing
protocol, which included extensive test-retest validations (for details, see Mglmen et al.
(21)). Whereas COPD participants displayed clear and well-known disease-related
aberrancies compared to Healthy at baseline, including altered skeletal muscle
characteristics and elevated levels of systemic inflammation, they showed similar or superior
improvements for virtually every measure of health, performance and biology. Specifically,
COPD showed greater relative improvements in core outcome domains such as lower-body
muscle strength and mass, and similar relative improvements in muscle quality, one-legged

endurance performance and whole-body endurance performance. These similarities were
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also evident in absolute change terms, suggesting that the improvements seen in COPD was
decoupled from the compromised levels at baseline. These observations were accompanied
by similar alterations in muscle biology, including changes in hallmark traits such as muscle
fiber characteristics, rRNA content and transcriptome profiles. Together, these data suggest
that COPD-related etiologies and pathophysiologies do not impair responsiveness to
resistance training, at least not for skeletal muscle characteristics, and at least not in the
enrolled cluster of COPD participants (GOLD grade Il-111) and within the time frame of the
study.

During planning of the study protocol, two strategies were implemented to resolve
the hypothesized, albeit rejected, negative impact of COPD-specific pathophysiologies for
the efficacy of resistance training. First, as vitamin D insufficiency is common among COPD
subjects (4), and has been suggested to contribute to development of anabolic resistance
(48), dietary habits were manipulated to investigate the effects of vitamin D3
supplementation. Contrary to our hypothesis, vitamin D3 did not enhance responses to
resistance training for any of the outcome variables (21).

Second, the resistance training protocol was conducted using two different training
modalities, 10RM and 30RM resistance training, performed in a contralateral manner. The
efficacies of these training modalities were initially hypothesized to be dissimilarly affected
by COPD-related pathophysiologies, as they convey muscular adaptations through different
signaling cues in the cellular environment (i.e. mechanical tension vs metabolic perturbation)
(49), and may thus well be differentially affected by extracellular signaling such as
inflammation and oxygen availability. While this hypothesis was rejected for all core
outcome domains, with no differences being observed between training modalities and no

evidence being found for the presence of impaired training responsiveness, a noteworthy
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observation was made for muscle fiber-specific traits. Specifically, in COPD, 10RM training
was associated with blunted growth of type | muscle fiber CSA, a phenomenon that was not
observed for responses to 30RM training, suggesting that 30RM offers benefits for muscle
fiber type | hypertrophy. In addition to this, 10RM was associated with greater
improvements in cycling economy and gross efficiency in COPD. These observations warrant
further study.

In conclusion, 13-week resistance training program was well-tolerated by subjects
with COPD and led to pronounced improvements for a range of health and muscle functional
and biological variables, resembling or exceeding those seen in Healthy. COPD was thus not
associated with impaired responsiveness to exercise training, which rather posed a potent

measure to relieve disease-related pathophysiologies.
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Additional information

Supplementary information. This article has an online data supplement.

Abbreviations. COPD, chronic obstructive pulmonary disease; RM, repetition(s) maximum;
FEV,, forced expiratory volume in one second; FVC, forced vital capacity; CSA, cross-sectional

area; GSEA, gene set enrichment analysis
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Figure legends/captions

Figure 1. CONSORT flow chart of the study. The study was conducted as a double-blind
randomized clinical trial, with the primary aim of investigating the effects of vitamin D3
supplementation on resistance training-associated adaptations in a mixed population of
older subjects, including both COPD and healthy control subjects (COPD and Healthy,
respectively) (ClinicalTrials.gov Identifier: NCT02598830). Vitamin D3 supplementation did
not affect any primary or secondary outcome, and no conditional effects were observed for
COPD vs Healthy in that context (21). In the present study, the main purpose was to
compare the effects of resistance training between COPD and Healthy participants (COPD,

n=20; Healthy, n=58).

Figure 2. Schematic overview of the study protocol, including its time line (A; ¥ indicates the
defined baseline measurement for the specific outcome measure), training volumes during
the resistance training (RT) intervention (B), perceived exertion (Borg RPE, 6-20) reported
after training sessions (C), and relative training loads (% of 1RM) during the training period
(D). Training volume is presented as average increases in per-session for lower-body
appendices from the first week of training (kg - repetitions; high-load (10RM) and low-load
(30RM) leg press and knee extension combined). COPD, participants diagnosed with chronic
obstructive pulmonary disease; Healthy, healthy control participants; *, statistical different
from 1th training week; #, statistical difference between COPD and Healthy. Data are
presented as means with 95% confidence limits. Methodological notes on retrieval of
outcome measures: i) Lung function. Spirometry testing was performed following the
guidelines from the American Thoracic Society and the European Respiratory Society (50).

Participants with COPD were tested before and after inhalation of two bronchodilators
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(salbutamol/ipratropiumbromid). ii) Muscle strength and performance (STR and Musc. perf).
Muscle strength was assessed as one-repetition maximum (1RM) in unilateral knee
extension and leg press, bilateral chest press, and handgrip. Muscle performance was
defined as the number of repetitions achieved at 50% of pre-study 1RM and was assessed
using unilateral knee extension and bilateral chest press. Isokinetic unilateral knee-extension
torque was tested at three angular speeds (60°, 120° and 240° - sec’’; Humac Norm, CSMi,
Stoughton, MA, USA). iii) One-legged cycling and bicycling performance (1-LC and VO2max).
Participants conducted one-legged cycling tests (Excalibur Sport, Lode BV, Groningen, the
Netherlands) to assess Oz-costs and mechanical efficiency (51) during submaximal cycling,
and maximal one-legged oxygen consumption (VO,max) and maximal workload. Maximal
two-legged cycling VO2max and workload were tested on a separate day. Oxygen
consumption was measured using the JAEGER Oxycon Pro™ system (Carefusion GmbH,
Hochberg, Germany). iv) Functional performance (Func.). Functional tests were conducted as
the maximal number of sit-to-stands during one minute (seat height: 45 cm) and as the
number of steps onto a 20 cm step box during 6 minutes. v) Health-related quality of life (SF-
36 and CAT). All participants completed the Short Form (36-item) Health Survey (SF-36).
COPD participants also completed the COPD Assessment Test (CAT) questionnaire. vi)
Muscle thickness and body mass composition (US/DXA). Muscle thickness of m. vastus
lateralis and m. rectus femoris were measured using B-mode ultrasonography (SmartUs EXT-
1M, Telemed, Vilnius, Lithuania). Body mass composition was measured using dual-energy X-

ray absorptiometry (DXA; Lunar Prodigy, GE Healthcare, Madison, WI, USA).

Figure 3. Whole-genome transcriptome analyses of m. vastus lateralis in COPD and Healthy.

At baseline, numerous genes were differentially expressed between COPD and Healthy. In
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(A), differences in gene expression between COPD and Healthy are presented with leading
edge genes (i.e. genes that contributes to the enrichment score) from two gene sets
identified as differentially expressed between COPD and Healthy from gene enrichment
analyses (oxidative phosphorylation and myogenesis; see Table 3). In (B), average fold
differences (COPD - Healthy) of genes contributing to baseline differences in oxidative
phosphorylation and myogenesis gene sets are shown as individual data points, and violin
plots shows the distribution of all leading edge genes from each gene set. (C) displays the
average development of each gene set over time, where the dotted line indicates the mean
fold change of all genes contributing to the differential change over time between COPD and
Healthy. COPD displayed larger increases in expression of genes relating to oxidative
phosphorylation after 3% weeks of training, and more pronounced decreases in genes
associated with myogenesis to after the training intervention (Post-RT; see Table 3). FDR,

false discovery rate-adjusted p-value.

Figure 4. Effects of the resistance training intervention on lower-body muscle strength,
lower-body muscle mass, one-legged endurance performance and lower-body muscle
quality in COPD and Healthy. Each outcome domain is represented by a combined factor,
computed from various performance assessments, as defined in the upper panel of the
figure and previously described (21). (A) presents comparison of overall training effects
between COPD and Healthy, measured as relative changes from baseline to after the
resistance training intervention (per study cluster; left panel) and as relative and absolute
differences in change scores between study clusters (right panels). In these analyses, high-
and low-load resistance training (10RM and 30RM, respectively) were combined, warranted
by the lack of differences between training load conditions in (B, C). COPD showed greater

relative changes in muscle strength and muscle mass than Healthy. (B, C) presents
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comparison of effects of 10RM and 30RM resistance training in COPD (B) and Healthy (C) (i.e.
per study cluster), measured as relative changes from baseline to after the intervention (left
panels) and as relative and absolute differences in change scores between load conditions
(right panels). #, statistically different effects of resistance training between COPD and

Healthy. Data are presented as means with 95% confidence limits.

Figure 5. Comparison of the effects of the resistance training intervention on whole-body
endurance performance in COPD and Healthy, presented as relative changes from baseline
(per study cluster; A) and as relative and absolute differences in change scores between
study clusters (B and C, respectively). Endurance measures included maximal oxygen
consumption (VO;max, cl - min't) and maximal workload (watts) achieved during two-legged
cycling, cycling economy (cl - mint) and gross efficiency measured during submaximal one-
legged cycling, the number of steps achieved during 6-min step test, and the number of sit-
to-stands achieved during a 1-min sit-to-stand test. COPD showed greater relative
improvements in cycling economy and gross efficiency. For these outcome measures, COPD,
but not Healthy, displayed benefits of high-load training (LORM) compared to low-load
training (30RM) (D and E). Healthy showed greater absolute improvement in the number of
steps achieved during the 6-min step test. COPD and Healthy showed similar relative and
absolute training-associated changes in the whole-body endurance performance factor. #,
statistically different response to resistance training between study clusters. ¥, statistically
different response to 10RM and 30RM resistance training in study cluster. Data are

presented as means with 95% confidence limits.

Figure 6. Effects of the resistance training intervention on cross-sectional area of muscle

fiber types | and Il in m. vastus lateralis in COPD and Healthy. (A) presents comparison of
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overall training effects on fiber CSA between COPD and Healthy, measured as relative
changes from baseline to after the training intervention (per study cluster; left panel) and as
relative differences in change scores between study clusters (right panel). In these analyses,
high- and low-load resistance training (LORM and 30RM, respectively) were combined,
warranted by the lack of significant differences between training load conditions in (B, C),
though COPD tended to show higher efficacy of 30RM resistance training for changes in fiber
type | CSA. (B, C) presents comparisons of effects of 10RM and 30RM resistance training on
fiber CSA in COPD (B) and Healthy (C) (i.e. per study cluster), measured as relative changes
from baseline to after the training intervention (left panels) and as relative and absolute
differences in change scores between load conditions (right panels). Data are presented as

means with 95% confidence limits.

Figure 7. Comparisons of the effects of the resistance training intervention on changes in
myonuclei per fiber and myonuclei domain in muscle fiber types | and Il (A, B), and on
changes in muscle fiber type proportions in COPD and Healthy, measured using
immunohistochemistry (C-E) and qPCR (gene family profiling-normalized myosin heavy chain
MRNA expression, F-H), as previously described (24,52). Myonuclei domain was calculated as
mean fiber cross-sectional area divided by myonuclei per fiber. For myonuclei per fiber and
myonuclei domain in muscle fiber types | and Il, comparisons are presented as relative
changes from baseline to after the training intervention (per study cluster; A) and as relative
differences in change scores between study clusters (B). For muscle fiber type proportions,
data are presented as adjusted values at baseline and after the training intervention (Post
RT), and results are presented as the effect of the training intervention for the study clusters

combined and its interaction with study clusters (C-H). For myonuclei variables, no training-
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associated differences were observed between study clusters. Both COPD and Healthy
displayed training-associated reductions in proportions of type IIX muscle fibers, measured
using both immunohistochemistry and qPCR. Intriguingly, while this reduction was greater in
COPD when measured at the protein level (immunohistochemistry), it was greater in Healthy
when measured at the mRNA level (QPCR), indicating differentially regulated muscle fiber

shifting in COPD and Healthy. Data are presented as means with 95% confidence limits.

Figure 8. Effects of the resistance training intervention on total RNA content (A) and rRNA
expression (B-F) in m. vastus lateralis of COPD and Healthy. Data are presented as fold
changes from baseline to Week 3% (Post-intro RT; seven training sessions) and to after the
training intervention (Post RT; 26 training sessions). Total RNA (A), 18s rRNA (B), 28s rRNA
(C), 5.8s rRNA (D) 5s rRNA (E) and 45s pre-rRNA (F) abundances. Total RNA- and qPCR-
analyses were assessed as per-amounts of tissue weight, as previously described (21,24). #,
statistical difference in fold change between COPD and Healthy (alpha level, p<0.05). Data

are presented as means with 95% confidence limits.
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Tables

Table 1. Characteristics of the participants completing the study

Sex-adjusted estimated difference
COPD - Healthy

General copPD Healthy (95% CI) P-value
Participants, completing (no. &/9) / dropoutst (no.) 20(12/8) /2 58(21/37)/2 - -
Age (years) 69 £ 5 (range, 60-79) 67 + 4 (range, 57-78) 2(0,5) 0.049*
Height (cm) 171 (10) 170 (10) -3(-6,0) 0.056
Body mass (kg) 73 (18) 76 (16) -7(-14,0) 0.061
Body mass index (kg - m?) 25 (5) 26 (5) -2(-4,1) 0.237
Pack-years (no.) 30 (16) 6 (10) 23(17,29) <0.001*
GOLD grade (no. of grade II/111) 15/5 - - -
COPD Assessment Test™ score (0-40) 16.6 (6.8) - - -
Self-reported conception of health (0-10) 4.9(1.2) 6.7 (1.6) -1.7 (-2.5,-0.7) 0.001*

Pulmonary function
FVC (L) 3.2(0.9) 3.6(0.9) -0.7 (-1.0,-0.4) <0.001*
FVC (% predicted) 97 (19) 112 (16) -13 (-22, -4) 0.003*
FEV1 (L- sec?) 1.5 (0.4) 2.7(0.7) -1.4(-1.6,-1.2) <0.001*
FEV: (% predicted) 57 (11) 104 (16) -47 (-55, -39) <0.001*
FEV:1/FVC (%) 47 (8) 75 (6) -28 (-31,-24) <0.001*
PEF (L- sec?) 5.0 (1.6) 7.7 (2.1) 3.4 (-4.1,-2.7) <0.001*

Medication
B>-agonists (no.) 17/20 - - -
Muscarinic agonists (no.) 15/20 - - -
Combined b»-agonist and corticosteroid (no.) 10/20 - - -

Body composition
Total lean mass (kg) 4,53 (4); ,36(6) 4,60(5); @, 41 (4) -6 (-9, -4) <0.001*
Whole-body bone mineral density (g - cm?) d,1.2(0.1); ?,1.0(0.2) 4,1.3(0.1); 2,1.1(0.1) -0.1(-0.2,-0.0) 0.007*
Total fat mass (kg) J,26(10); 9, 27 (15) 4,26(9); 2,25 (10) 1(-5,7) 0.703
Visceral fat (kg) 3,1.9(1.3);;9,1.0(0.7) &, 1.7(1.0); ©,0.8(0.7) 0.2(-0.3,0.7) 0.412

Lower-body muscle strength
1RM leg press (kg) d,121(35); ¢, 82 (21) 4,152 (27); @, 124 (25) -36 (-47,-26) <0.001*
1RM knee extension (kg) d,21(4); 9,11(4) 34,31(5); 9,16 (3) -7 (-9, -5) <0.001*
Peak torque knee extension 60° - sec’* (Nm) d, 127 (34); 9, 80 (25) 4,160 32); ¢, 101 (16) -27(-36,-17) <0.001*
Peak torque knee extension 180° - sec* (Nm) J,83(25); 9,47 (17) 4,102 (23); @, 62 (11) -19 (-28,-9) <0.001*
Peak torque knee extension 240° - sec (Nm) d,68(20); ¢, 38 (14) 4,84 (20); ?,50(9) -15(-20, -9) <0.001*
Lower-body muscle strength factor (AU) d4,0.5(0.1); 9,0.3(0.1) 4,0.6(0.1); 2,0.4 (0.1) -0.1(-0.2,-0.1) <0.001*

Lower-body muscle mass es
Leg lean mass (kg) d,18(2); 2,12 (3) 34,20(2); @,14(2) -3(-4,-2) <0.001*
M. vastus lateralis thickness (mm) 4,20(3); 9,18 (5) 4,22(3); 2,20(3) -2(-3,-1) 0.002*
M. rectus femoris thickness (mm) 4,13 (4); 9,10 (3) 3,16 (4); 2,15 (4) -4(-5,-2) <0.001*
Lower-body muscle mass factor (AU) 4,0.6(0.1); ?,0.5(0.1) 4,0.7(0.1); 2,0.6 (0.1) -0.1(-0.2,-0.1) <0.001*

Endurance measures
Maximal power output one-legged cycling (W) 4,73 (13); @, 48 (17) J,148 (28); 9, 108 (21) -67 (-77,-58) <0.001*
Maximal power output two-legged cycling (W) J,118 (38); 9, 75 (32) J,252 (48); 2, 167 (32) -113 (-134,-92) <0.001*
Maximal oxygen consumption (mL O; - kg - min') d4,20(5); 2,16 (5) 3,35(7); @, 28(6) -14 (-18, -10) <0.001*
6-min step test (maximal number of steps) d,123(35); @, 115 (44) J,208 (41); 9, 196 (38) -83(-105, -61) <0.001*
1-min sit-to-stand test (maximal number) d4,21(5); 2,21(6) 4,30(5); 2,29 (5) -9(-12,-6) <0.001*
Nrepetitions at 50% of 1RM knee extensiongre study 4,19(5); 2,17 (5) 4,23(6); 9,20(7) -4 (-6, -1) 0.005*
One-legged endurance performance factor (AU) 4,0.2(0.0); ¢, 0.2 (0.0) 4,0.4(0.1); 2,0.3 (0.1) -0.2(-0.2,-0.1) <0.001*
Whole-body endurance performance factor (AU) 4,0.4(0.1); 9,0.3(0.1)  ,0.7(0.1); 2,0.6 (0.1) -0.3 (-0.3,-0.2) <0.001*

COPD, participants diagnosed with chronic obstructive pulmonary disease; Healthy, healthy control participants; &, males; @, females; t,
dropouts during the training period; *, study clusters are significantly different from each other (p<0.05); GOLD, Global Initiative for
Chronic Obstructive Lung Disease; pack-years, (number of cigarettes smoked per day/20) x number of years smoked; FVC, forced vital
capacity; FEVy, forced expiratory volume in one second; PEF, peak expiratory flow; 1RM, one repetition maximum; Nm, newton-meter; AU,
arbitrary units. Data mainly presented as mean (SD), and sex-adjusted estimated mean differences between study clusters (95% Cl).
Computed factors for core outcome domains, i.e. lower-body muscle strength, lower-body muscle mass, one-legged endurance
performance and whole-body endurance performance, are indicated in bold text. Briefly, each factor was calculated using multiple singular
outcome measures, where each of these variables were normalized to the participant with the highest value recorded during the study,
resulting in individual scores <1. Thereafter, outcome domain factors were calculated as the mean of the normalized values for each
variable for each subject (see Supplementary Table 1 for complete overview over calculations and composition of each factor).
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Table 2. Baseline characteristics of m. vastus lateralis for COPD and Healthy

Sex-adjusted estimated difference

COPD - Healthy

Cross-sectional area (um?) COPD Healthy (95% Cl) P-value
Type | 4614 (1088) 3720 (951) 449 (70, 827) 0.020*
Type Il 3639 (1235) 3059 (1121) 182 (-118, 482) 0.232

Myonuclei per fiber
Type | 2.2(0.9) 2.1(0.9) -0.1(-0.4,0.2) 0.357
Type ll 2.1(0.7) 1.9(0.7) -0.1(-0.3,0.2) 0.504

Myonuclear d in (cross sectional area/nuclei per fiber)

Type | 2292 (585) 1928 (1030) 360 (107, 613) 0.006*
Type Il 1775 (529) 1740 (1049) -62 (-316, 191) 0.628
Fiber type proportion (%)
Type | 52 (15) 65 (14) -16 (-24,-9) <0.001*
Type lIA 32(12) 23 (11) 10 (4, 16) 0.001*
Type IIX 13(7) 9 (6) 5(1,9) 0.007*
Type IIA/IIX 3(2) 2(2) 0.7 (-0.4,1.9) 0.159
Total RNA (ng/mi) 403 (86) 432(92) -24 (-57, 10) 0.168

COPD, participants diagnosed with chronic obstructive pulmonary disease; Healthy, healthy control participants. Data presented as mean

(SD), and sex-adjusted estimated mean differences between study clusters (95% Cl). Alpha level at p<0.05.
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Table 3. Comparison of Hallmark gene sets identified in whole-genome transcriptome data between COPD and
Healthy, assessed at baseline and as resistance training-associated changes.

Compsrison Gene set otegon ST ooy oo e M T e
Baseline: COPD vs. Healthy Oxidative phosphorylation Consensus 190 (200) 0.007 36.8% <0.001 -2.10 70(94.3%) -0.24(-0.45,-0.13)

Myogenesis Rank 163 (200) <0.001 33.7% 0.417 1.21 45(75.6%) 0.46 (0.19, 1.5)
3% weeks of training: ACOPD vs Allograft rejection GSEA 115 (200) 0.956 7.8% 0.014 171 20(35%) 0.39(0.13, 0.76)
AHealthy Oxidative phosphorylation GSEA 190 (200)  0.999 1.1% 0.009 1.69 83(2.4%) 0.11 (0.05, 0.39)

Pancreas beta cells GSEA 15 (40) 0.969 6.7% 0.028 1.71 3(33.3%) 0.35 (0.08, 0.54)
Post-RT (13 weeks of training): Myogenesis Consensus 163 (200) <0.001 42.3% <0.001 -1.52 68(85.3%) -0.5(-1.13,-0.26)
ACOPD vs AHealthy

*, Consensus significance indicates agreement between directional (GSEA) and non-directional (Rank) hypothesis test of
overrepresentation (see methods for details). T Indicates number of identified genes in the gene set and total number of genes in the gene
set in parentheses. ¥ Rank-based enrichment test, based on minimum significant difference (MSD), identifies gene sets that are
overrepresented among top-ranked genes without a directional hypothesis. $ Fraction of genes in gene set with unadjusted 95% CI not
spanning zero, i.e. MSD > 0. || Gene-set enrichment analysis (GSEA) tests for overrepresentation among top and bottom genes based on
Log, fold differences or changes x -logio(P-values) in comparing differences at baseline or changes from baseline between COPD and
Healthy. A positive normalized enrichment score (NES) indicate gene set with higher expression in COPD than Healthy; negative NES
indicate gene set with lower expression at respective time-points. ** Number of genes in leading edge (LE, genes that contributes to the
enrichment score) with the fraction of leading edge genes with unadjusted 95% CI not spanning zero. A, change score.
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Table 4. Effects of the training intervention on body composition and blood variables in COPD and Healthy,
assessed as changes from baseline to after completion of the study (per study cluster) and as differential changes

between study cluster.

COoPD Healthy A COPDvs
Time effect Time effect A Healthy
Baseline Post RT (P<0.05) Baseline Post RT (P<0.05) (P value)
Dual-energy x-ray absorptiometry
Whole-body bone mineral density (g - cm?) 1.13(0.21) 1.13(0.21) No 1.15(0.16) 1.14 (0.15) No 0.119
Total lean mass (kg) 46.7 (9.9) 47.6 (10.2) Yes 1 48.1(10.0) 48.6 (10.0) Yes T 0.395
Appendicular lean mass (kg) 20.3(5.3) 20.9 (5.5) Yes T 21.6 (5.0) 21.9(5.0) Yes T 0.166
Total fat mass (kg) 26.4 (11.7) 26.3 (11.5) No 25.3(9.3) 24.4(9.2) Yes | 0.068
Visceral fat (kg) 1.59 (1.18) 1.56 (1.21) No 1.12 (0.98) 1.01(0.81) Yes | 0.138
Inflammation
C-reactive protein (mg - L) 3.4(5.0) 3.6 (4.0) No 1.7 (2.5) 1.8(3.5) No 0.934
Hormones
Cortisol (nmol - L) * 307 (130) 310 (109) No 369 (88) 372(99) No 0.861
Growth hormone (pg - L) 1.4(2.8) 1.4(3.1) No 1.1(1.7) 1.3(1.6) No 0.837
IGF-1 (nmol - L'Y) 15.7 (4.2) 15.0 (4.5) No 14.4 (3.2) 13.6(3.1) Yes | 0.977
Testosterone (nmol - L)+ 11.2 (4.4) 11.4 (4.2) No 11.9(3.3) 12.4(4.2) No 0.938
Sex-hormone binding globulin (nmol - L) 60 (33) 60 (34) No 60 (22) 60 (21) No 0.488
Androstenedione (nmol - L) 3.3(2.4) 3.3(2.4) No 3.8(2.7) 3.8(2.4) No 0.984
Parathyroid hormone (pmol - L) 5.7 (2.6) 6.0 (3.3) No 5.0(2.2) 5.2(1.9) No 0.870
Lipid profile variables
Triglycerides (mmol - L) 1.2 (0.5) 1.1(0.5) No 1.2(0.5) 1.1(0.6) Yes | 0.661
HDL (mmol - L) 1.6 (0.6) 1.7 (0.5) No 1.7 (0.5) 1.7 (0.5) No 0.523
LDL (mmol - L) * 2.8(1.0) 2.8(1.0) No 3.4 (1.0) 3.3(0.8) No 0.775
Iron biology variables
Fe* (umol L) 18 (7) 18 (6) No 18 (6) 18 (5) No 0.410
Transferrin (g - L'%) * 2.66 (0.44) 2.67 (0.45) No 241(0.27)  2.38(0.29) No 0.563
Ferritin (ug - L?) 113 (92) 90 (81) Yes | 139 (79) 133 (68) No 0.089
Calcium status
Calcium (mmol - L) 2.4(0.1) 2.4(0.1) No 2.4(0.1) 2.4(0.1) No 0.865
Albumin-corrected calcium (mmol - L) 2.3(0.1) 2.3(0.1) No 2.3(0.1) 2.3(0.1) No 0.802
Tissue damage variables
Aspartate transaminase (units - L) 27 (9) 24 (6) No 26 (21) 26 (7) No 0.807
Creatine kinase (units - L'}) 112 (69) 123 (71) No 95 (47) 125 (72) Yes 1 0.523

*, significant difference between COPD and Healthy at baseline; T, only men were included in testosterone analysis; |, significant decrease
from baseline to post RT (after 13 weeks of resistance training); 1, significant increase from baseline to post RT. Alpha level at p<0.05.

Data are presented as means (SD).
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Table 5. Effects of the training intervention on lung function in COPD and Healthy, assessed as changes from
baseline to after completion of the study (per study cluster) and as differential changes between study clusters.

COoPD Healthy
Time effect Time effect A COPD vs A healthy
Baseline Post RT p<0.05) Baseline Post RT (p<0.05) (p-value)
FVC (L) 3.3+09 3.2+09 No 3.6+0.9 35+0.8 Yes | 0.189
FEV1 (L sec?) 1.5+04 1.5+0.4 No 2.7+0.7 2.7+0.6 Yes |, 0.243
FEV1 (% predicted) 56+11 58+13 No 103+ 16 103+ 16 No 0.138
FEV1/FVC (%) 47 +8 48 +10 No 756 76+6 No 0.714
PEF (L-sec?) 5.0+1.6 51+16 No 7.8+2.1 7.6+2.2 No 0.238

FVC, forced vital capacity; FEV;, forced expiratory volume in one second; PEF, peak expiratory flow; A, change score. Alpha level at p<0.05.
Values are means with standard deviation.
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Table 6. Effects of the training intervention on health-related quality of life in COPD and Healthy, measured using
COPD Assessment Test (CAT; COPD-only) and the 36-item Short Form Health Survey (SF-36; all participants), and
assessed as changes from baseline to after completion of the study (per study cluster; CAT and SF-36) and as
differential changes between study clusters (SF-36).

CcoPD Healthy ACOPD vs
Time effect Time effect A Healthy
Baseline Post RT P<0.05) Baseline PostRT  (P<0.05) (P value)
COPD 1t Test™ score (0-40) 16.6+6.8 16.4+6.8 No - - - -
Short Form (36) Health Survey (0-100)
Physical function * 63+19 67+18 No 90+14 92+12 No 0.321
Role physical * 43+34 59 +37 Yes T 87+25 94+18 No 0.226
Bodily pain 71+27 82+19 Yes T 79+21 80+19 No 0.070
General health * 48+20 56+ 19 No 75+18 80+12 No 0.208
Vitality * 52+16 57+13 No 72+18 78+11 Yes I 0.509
Social function * 74 +23 84 +16 Yes 90+18 94 +13 No 0.280
Role emotional * 65+ 39 84+26 Yes ™ 93+19 96 +15 No 0.059
Mental health * 77 +13 84+13 Yes P 86+11 89+8 Yes 1 0.196

*, difference between COPD and Healthy at baseline; 1, significant increase from baseline to after the training intervention (Post RT). Alpha level at p<0.05.

Values are means with standard deviation.
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Abstract

Background: Chronic obstructive pulmonary disease (COPD) is associated with skeletal muscle
mitochondrial dysfunction. Resistance exercise training (RT) is a training modality with minimal
pulmonary involvement which has been shown to increase skeletal muscle oxidative enzyme activity
in COPD. Whether RT also improves mitochondrial respiratory capacity in COPD is yet to be

established.

Methods: This study investigated the effects of 13 weeks of RT on m. vastus lateralis mitochondrial
capacity in 11 persons with moderate COPD (age: 69 + 4 years (mean % SD)) and 12 healthy controls
(age: 66 * 5 years). RT was performed supervised and 2x-week™. Leg exercises included leg press,
knee extension and knee flexion and were performed unilaterally with one leg conducting high-load
training (10RM) and the other leg conducting low-load training (30RM). Along one-legged muscle
mass, muscle strength and endurance performance, mitochondrial respiratory capacity, citrate
synthase (CS) activity, a marker for mitochondrial volume density, and mRNA expression of

mitochondrial genes were assessed prior to and after the RT period.

Results: RT led to similar improvements in one-legged muscle mass, muscle strength and endurance
performance in COPD and healthy individuals. Mitochondrial fatty acid oxidation capacity and
oxidative phosphorylation increased following RT in COPD (+13 £ 22%, p=0.033 and +9 + 23%,
p=0.035, respectively). Marked increases were also seen for mitochondrial volume density (CS
activity, +39 + 35%, p=0.001), which increased more than mitochondrial respiration, leading to
lowered intrinsic mitochondrial function (respiration/CS activity) for complex-1-supported respiration
(-12 £ 43%, p=0.033), oxidative phosphorylation (-10 + 42%, p=0.037), and electron transfer system
capacity (-6 £ 52%, p=0.027) in COPD. No differences were observed between 10RM and 30RM RT,

nor were there any adaptations in mitochondrial function following RT in controls. Transcriptome
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analysis revealed differential expression of numerous mitochondrial genes after RT while these

changes were similar in COPD and healthy controls.

Conclusions: 13 weeks of RT resulted in augmented mitochondrial respiratory capacity in COPD

driven by an increase in mitochondrial quantity and not an improved mitochondrial quality.

Abstract word count: 328 (400)

Key words: Resistance exercise training; Muscle plasticity; Chronic obstructive pulmonary disease;

Mitochondrial function
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Introduction

Chronic obstructive pulmonary disease (COPD) is characterized by persistent airflow limitations that
are manifested as dyspnoea and chronic cough [1]. As a consequence, a key pathology of COPD is a
reduced aerobic exercise capacity to which in fact also deteriorated skeletal muscle function
contributes [2]. Indeed, the reduced whole-body maximal oxygen uptake (VO2max) and the shorter
distance covered during a 6 min walking test are partially explained by an attenuated skeletal muscle

function [3].

Specifically, reduced quadriceps muscular strength and endurance, as well as increased fatiguability
are frequent in COPD [4]. Furthermore, phenotypic traits commonly observed with COPD include
lower thigh muscle cross-sectional area, reduced m. vastus lateralis fibre type | and increased fibre
type lIx proportion [3, 4]. Skeletal muscle oxidative capacity is diminished, exemplified by decreased
m. vastus lateralis oxidative enzyme activity and mitochondrial function [5, 6]. Whereas these traits
limit aerobic exercise capacity, they are also known to be improved following exercise training

interventions [7, 8], making exercise training highly relevant for COPD rehabilitation [9].

However, due to their pulmonary limitations, individuals with COPD have limited ability to perform
whole-body aerobic exercise training at intensities that are required to achieve skeletal muscle
adaptations [10]. In accordance with this, more accentuated physiological adaptations were
observed when individuals with COPD performed single-limb versus two-limb cycling training, which
arguably is related to the lower systemic physiological demands of one-legged exercise, activating
less muscle mass [11, 12]. This makes resistance exercise training (RT) a particularly relevant training
modality for improving limb muscle function [13]. Indeed, RT allows targeted and maximal exercise
of isolated muscle groups without posing large demands on pulmonary ventilation and as such, is
more tolerable for persons with COPD [14]. While RT may not be intuitively associated with

improvements in aerobic metabolism, some studies have demonstrated a positive effect of RT on
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skeletal muscle mitochondrial adaptations in healthy individuals [15]. Moreover, in individuals with
COPD, increased citrate synthase (CS) activity and hydroxyacyl coenzyme A dehydrogenase protein
levels were reported following eight weeks of low-load high-repetition RT [13]. Thus, RT may provide
a stimulus to augment oxidative capacity of skeletal muscles in COPD. Whether that is also reflected
in increased skeletal muscle mitochondrial respiration and whether the response is specific to low-

load high-repetition RT remains to be elucidated.

The purpose of this study was to determine the effects of 13 weeks of RT on mitochondrial
respiratory capacity in m. vastus lateralis (VL) in persons with COPD and to investigate the potential
influence of the RT load (low vs. high). Briefly, leg exercises were performed unilaterally, with one leg
conducting high-load training and the contralateral leg conducting low-load training. Healthy controls
of similar age were included to compare the RT responses between the two populations. We

hypothesized that RT would increase mitochondrial respiration in COPD and controls.

Materials and methods

The study was approved by the Regional Committee for Medical and Health Research Ethics - South-
East Norway (reference nr. 2013/1094), pre-registered on clinicaltrials.gov (NCT02598830) and
conducted according to the guidelines of the Declaration of Helsinki. The present article reports
mitochondrial function which was pre-registered as a secondary outcome of The Granheim COPD
double-blind randomized clinical trial (NCT02598830). For a thorough description of the study
intervention and the assessment of muscle mass, strength and endurance performance, as well as

the results for the primary objective of the study, the reader is referred to the main article [16].

Study participants and design

Participants comprised a subset of the individuals enrolled in The Granheim COPD study whose
primary objective was to investigate the effects of vitamin D3 supplementation in combination with

RT for RT-associated adaptations [16]. Due to the lack of response to vitamin D3 supplementation in


https://clinicaltrials.gov/ct2/show/NCT02598830
https://clinicaltrials.gov/ct2/show/NCT02598830
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general [16], and for mitochondrial parameters in particular (Supplemental figure 1), the vitamin Ds
and placebo group are presented pooled for the purpose of the herein presented analysis. Eleven
persons with a clinical diagnosis of stable, moderate COPD (Global Initiative for Obstructive Lung
Disease (GOLD) stages Il (n=10) and Il (n=1), predicted forced expiratory volume in 1 s (FEV,)
between 30%-80% and FEV1/forced vital capacity <70% after reversibility testing [1]) were included
(Table 1). Exclusion criteria were unstable cardiovascular diseases, physically disabling
musculoskeletal diseases and intake of steroids. Three patients were current smokers (<10
cigarettes/day). Twelve healthy non-smoking participants of similar age with normal pulmonary
function (predicted FEV; >80%) served as controls. All participants completed the study in
accordance with the study protocol, except for two patients. One withdrew for personal reasons and
one was excluded from the analyses due to non-adherence to the RT prescription. All individuals
completed a physical activity log during a regular week prior to the intervention and weekly-spent
kilocalories were calculated thereof to assess physical activity levels. All measurements were
undertaken prior to and following the RT intervention. Study participants received oral and verbal

information about the study and provided informed consent prior to participation.

Resistance exercise training

Participants underwent 13 weeks of RT with two supervised sessions-week™ as detailed in [16]. RT
consisted of two upper (lat pulldown and chest press) and three lower body resistance exercises (leg
press, knee extension and knee flexion) (Technogym, Italy). Lower body exercises were conducted
unilaterally, with one leg exercising with low loads (30 repetitions maximum, 30RM) and the
contralateral leg exercising with high loads (10 repetitions maximum, 10RM) to volatile exhaustion.
Loads were increased from session to session, i.e. when participants managed to perform more than
12 or 35 repetitions per set for 10RM and 30RM, respectively, and were randomly assigned to each

leg. The 10RM and 30RM loads were allocated to the same leg during the entire RT period.
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Leg lean mass and muscle thickness

Leg lean mass was determined using dual-energy X-ray absorptiometry (Lunar Prodigy; GE
Healthcare, USA) and was defined as the region distally of the collum femoris. M. rectus femoris and
VL thickness were assessed using B-mode ultrasonography (SmartUs EXT-1M; Telemed, Lithuania)

with a 39 mm 12MHz linear array probe as detailed in [16].

One-legged muscle strength and endurance performance, and bicycling aerobic capacity

Maximal muscle strength was determined as one repetition maximum (1RM) in unilateral knee
extension (KE) and leg press (Technogym Italy), and KE performance was assessed as the number of
repetitions that could be conducted at 50% of baseline 1RM. Unilateral maximal isokinetic KE torque
was tested with a dynamometer (Humac Norm; CSMi, USA) at three angular speeds (60°, 120° and
240°-s). A one-legged incremental cycling test to exhaustion (Excalibur Sport; Lode BV, The
Netherlands) was performed to assess maximal minute power output (Wmax) and VO2zmax (JAEGER
Oxycon PRO 280; Carefusion GmbH, Germany) for each leg, while one-legged exercise economy was
assessed as O; cost of submaximal cycling at a constant load. Two-legged Wmax and VOzmax Were

determined by an incremental bicycling test [16].

Skeletal muscle biopsy

VL biopsies were obtained under local anaesthesia (1% lidocaine) from the 30RM leg at baseline and
from both legs after RT using the micro-biopsy procedure [17]. Muscle tissue was dissected free of
fat and connective tissue and divided into two parts. One part was immediately placed in ice-cold
biopsy preservation medium (BIOPS) [18] for ex vivo measurements of mitochondrial respiration. The
second part was snap-frozen in isopentane and stored at -80°C for later analysis of CS activity and the

transcriptome profile.

High-resolution respirometry
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The fresh muscle tissue was mechanically dissected and chemically permeabilized as described in
[18]. One to four milligrams of permeabilized fibres were added to each respirometer chamber
(Oxygraph-2k; Oroboros Instruments Austria) that contained mitochondrial respiration medium 05
plus 20 mM creatine and 280 U-mL* catalase. Chamber oxygen concentration (nmol-ml?) and oxygen
flux [pmol-(s-mg wet weight)™] were recorded (DatLab; Oroboros Austria) at 37°C with the titration of
various substrates at saturating concentrations (Table 2). Respiratory states were normalized to CS
activity to assess mitochondrial intrinsic respiratory capacity. Samples were analysed in duplicate in
hyper-oxygenated chambers ([02] ~200-450 nmol-ml™). Prior to the experiment, respirometers were

calibrated for instrumental and chemical background oxygen flux [18].

Citrate synthase activity

Muscle samples (0.4 — 5 mg dry weight) were homogenized as detailed elsewhere [19]. Total protein
concentrations were determined by BCA assay (Thermo Scientific Pierce, USA). CS activity was
assayed in lysates using an assay kit (C3260; Sigma-Aldrich USA). All activities were normalized to mg

of protein.

Transcriptome analysis

mRNA transcriptome analysis was performed on a larger number of participants (COPD, n=19;
controls, n=34) from the Granheim COPD study [16], as previously described [20]. For these analyses,
biopsies taken after 3% weeks of RT were also included. The Mitocarta v3.0 data set was used to

highlight mitochondrial genes [21].

Data analyses and statistics

For a detailed description, see online data supplement. Prior to analyses, data were evaluated for
normality and homogeneity of variance and were log-transformed if required. Baseline differences

between controls and COPD were examined using linear regression analysis with sex as a covariate.
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For one-legged muscle mass, strength and endurance performance, combined factors were
computed from singular outcome measures [16]. To address the RT effects on exercise factors and
mitochondrial function, linear mixed-effects models were applied. Statistical analysis was performed
using the IBM SPSS version 22 (IBM SPSS, Chicaco, IL) and R software (see [20] for packages). Figures
were made using Prism Software (GraphPad 8, San Diego, CA, USA). Statistical significance was set to

a two-tailed p-value <0.05. Data are presented as mean + SD.

Results

General characteristics

Six of the controls and four of the individuals with COPD were supplemented with vitamin Ds. The 12-
week vitamin D3 supplementation-only period prior to RT did not affect baseline mitochondrial
function (Supplemental figure 1, legend). Likewise, combined vitamin D3 supplementation and RT did
not induce differential alterations in mitochondrial function compared to placebo and RT. There were
no differences in age, body mass, body mass index and physical activity level between COPD and
controls prior to the intervention (Table 1). Per definition, individuals with COPD showed marked
impairments in pulmonary function and displayed lower aerobic exercise capacity compared to the

healthy controls.

Muscle mass, strength, and endurance performance

At baseline, one-legged muscle strength and endurance performance were lower in COPD than in
controls, while muscle mass tended to be lower (Table 3). Briefly, RT led to similar improvements in
muscle mass, strength, and endurance performance in controls and COPD, and the RT mode (10RM
vs. 30RM) did not modify these improvements. One-legged cycling VO2max remained similar following
RT in controls but tended to be improved in COPD, while the O, cost during steady-state one-legged
cycling decreased in controls and COPD (Supplemental figure 2). The RT mode did not affect the

changes in one-legged VO;max and O3 cost.
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Citrate synthase activity

At baseline, CS activity was 28% lower (p=0.005) in COPD (142.7 * 36.8 mIU-mg protein™!) than in
controls (197.2 + 40.0 mlU-mg protein™) (Figure 1). CS activity was not altered following RT in
controls (10RM: 220.8 + 60.0 mIU-mg protein™?, 30RM: 211.4 + 37.9 mlU-mg protein?, p=0.365). In
COPD, RT led to increased CS activity by 35-43% (10RM: 185.3 + 30.0 mlU-mg protein?, 30RM: 197.4
+20.6 mlU-mg protein, p=0.001), restoring CS activity to healthy levels, though the increase in CS
activity in COPD was not significantly higher than the RT-induced changes in CS activity in the

controls. The RT mode did not modify the alterations in CS activity in controls or COPD.

Mitochondrial respiratory capacity

In COPD, baseline mass-specific fatty acid oxidation (Peao), complex-I respiration (Pc), and oxidative
phosphorylation (P) were lower (-18%, p=0.022, -20%, p=0.020, and -21%, p=0.018, respectively) and
electron transfer system capacity (ETS) tended to be lower (-18%, p=0.056) than in controls, whereas
leak respiration (Ly) was similar (-4%, p=0.794) (Figure 2, Supplemental table 1). When respiration
was normalized to CS activity (intrinsic mitochondrial function), baseline differences between
controls and COPD disappeared, except for a tendency towards higher Ly per CS activity (+20%,
p=0.098) in COPD. Also, mitochondrial efficiency to oxidize fatty acids (LCRea0) was similar (p=0.311)
and remained unaltered with RT in COPD and controls (Figure 3, Supplemental table 1). Following RT,
Ln, Prao, Pa, P and ETS, mass-specific or expressed per CS activity, remained unaltered in controls. In
COPD, RT led to increased Peao (+13%, p=0.033) and P (+9%, p=0.035), and tended to lead to
increased P¢ (+10%, p=0.079) with no differences being evident between RT modes. No alterations
were observed for Ly (+7%, p=0.340) and ETS (+11%, p=0.115). Furthermore, in COPD, RT led to
reduced mitochondrial respiration/CS activity for Pq (-12%, p=0.033), P (-10%, p=0.037) and ETS (-6%,
p=0.027) following RT. RT mode tended to impact this reduction, evident as lower intrinsic P (-11%,

p=0.065) and ETS (-13%, p=0.060) in the 10RM leg compared to the 30RM leg after RT.

10
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Mitochondrial genes

At baseline, 78 mitochondrial genes were differentially expressed between controls and COPD
(Supplemental table 2); mostly genes associated with cellular metabolism [22]. Specifically, COPD
showed lower expression of genes related to carbohydrate, fat and protein metabolism (Table 4).
When combining controls and COPD, RT led to marked changes in mRNA levels of mitochondrial
genes, with 225 (116 1, 109 /) and 228 (1171, 111J ) differentially expressed genes being
observed after 3% and 13 weeks of RT, respectively (Supplemental table 3). However, only one
mitochondrial gene, TXNRD2, was differentially affected by 13 weeks of RT between controls and
COPD (Supplemental table 2) and no MitoPathway categories were differentially changed, indicating

similar mRNA responses to RT in controls and COPD.

Discussion

The main and novel finding of the present study is that m.vastus lateralis mass-specific mitochondrial
respiration and oxidative enzyme activity were augmented after 13 weeks of supervised RT in COPD,

while remaining unaltered in healthy individuals.

In line with previous studies, we found diminished rates of VL mitochondrial respiration in COPD [5,
71. Specifically, Peao, Pc, P, and ETS were 18-21% lower in COPD than in controls, accompanied by
decreased mRNA expression of genes involved in fatty acid oxidation and carbohydrate metabolism.
Moreover, CS activity was reduced by 28% in COPD, which is also in accordance with previous studies
[5, 6, 23, 24]. CS activity is frequently used as a proxy measure for mitochondrial volume density
(Mitovp), and is also valid for pre-post comparisons following interventions [19]. When expressed per
CS activity, the difference in baseline mitochondrial respiration between controls and COPD
disappeared. This confirms that intrinsic mitochondrial function is not compromised by COPD, and
that the lowered VL respiratory capacity largely results from reduced Mitoyp, i.e. reduced

mitochondrial quantity rather than quality [5, 7]. In support of an intact mitochondrial quality, the

11
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mitochondrial efficiency to oxidize fatty acids was similar in COPD and controls. Intriguingly, previous
research has shown that Mitoyo is similar between activity-level matched COPD and healthy
individuals suggesting that physical inactivity causes the mitochondrial phenotype in COPD [10]. This
has recently been challenged [25] and indeed, in the present dataset, the lower Mitoyp in COPD could
not readily be explained by activity levels, as COPD and controls reported similar physical activity
levels prior to RT. This rather indicates that the lowered CS activity was a result of disease-related
mechanisms that could involve the long-term exposure of the mitochondria to cellular hypoxia [26],
the augmented skeletal muscle oxidative stress, as well as the increased peripheral inflammatory
state in COPD [27]. Nonetheless, our results confirm that mass-specific mitochondrial respiratory

capacity and oxidative enzyme activity are reduced in COPD.

In COPD, RT successfully normalized CS activity to healthy levels (controls pre: 194.4 + 42.3 mlU-mg
protein vs. COPD post: 191.3 + 25.3 mlU-mg protein™; 10RM and 30RM pooled), corresponding to a
39% increase from pre to post RT. This increase is similarly scaled to observations made in healthy
individuals undergoing endurance exercise training [19, 28]. As such, Mitoyp shows responsiveness to
chronic exercise training stimuli in COPD [7, 13, 29], although this is not a consistent finding [30, 31].
A previous study failed to observe higher CS content following a low-load high-repetition RT regimen
in COPD [30]. With the study population being similar, the differences in the methodology to
determine CS (activity versus content) may explain the discrepancy. Lastly, in the present study, RT
mode did not affect changes in CS activity in COPD (10RM vs. 30RM POST: - 12.1 + 22.8 mlU-mg

protein’, p=0.341), which is comparable to previous findings in healthy individuals [32].

The most prominent finding was the increased mass-specific Peao and P following RT in COPD, as well
as the tendency towards increased Pc.. The observed 9-13% improvement in mitochondrial
respiration was, however, lower than the ~25% increase commonly observed after endurance
exercise training in healthy individuals [29], and the 40% increment in P¢ previously observed after

endurance-like high-intensity KE training in COPD [7]. It could thus be argued that the aerobic

12
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stimulus is more accentuated with endurance-like KE training than with RT. However, we did not
observe differences in RT-induced mitochondrial adaptations between 10RM and 30RM training; the
latter arguably approximating endurance-like exercise training. Furthermore, there was no effect of
RT on CS activity and mitochondrial respiration in the healthy controls, despite the substantial
mitochondrial reprogramming implied by changes in the mRNA transcriptome. Hence, although there
are indications on the mRNA level that RT may potentially elicit mitochondrial adaptations, this did
not translate into improved mitochondrial respiration in the controls. A common view is that RT-
induced muscular hypertrophy is more pronounced than the mitochondrial biogenesis with RT which
may thus “dilute” the mitochondrial adaptations [15]. In line with this, the observed increase in VL
thickness in COPD and control individuals in the present study corresponded to 10% and 9%,
respectively, arguably masking an even greater increase in total VL mitochondrial capacity.
Importantly, the augmented mitochondrial respiratory capacity in COPD was accompanied by
functional improvements induced by RT, e.g. enhanced one-legged muscle endurance performance
and reduced submaximal O cost. Whereas these improvements were also present in the controls,
the unaltered mitochondrial respiration suggests other mechanisms underlying the enhanced muscle

endurance performance in the healthy individuals.

Lastly, when expressed per CS activity, Pc, P and ETS were reduced after RT in COPD, indicating
lowered intrinsic mitochondrial function. This is not a unique phenomenon and lowered
mitochondrial quality has previously been shown after 2-6 weeks of exercise training in healthy
individuals [19, 33]. Altogether, the present findings suggest that in COPD, Mitoyp is a key
determinant of the increased mass-specific respiratory capacity observed after exercise training, with
the increase in CS activity being more pronounced than the increase in mitochondrial respiratory

capacity.

Methodological considerations

13
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We did not include a non-exercising COPD control group and disease progression may, theoretically,
have complicated the attempt to find more accentuated increases in oxidative capacity. However,
this is unlikely as pulmonary function and the score of the COPD assessment test were preserved
from before to after the intervention [22]. Furthermore, small sample size and lack of biopsy
sampling from the 10RM leg prior to RT reduced the statistical power to find the favourable RT
mode. Though, it is important to emphasize that 10RM and 30RM training was randomized to the

two legs, ensuring equal distribution of the dominant leg between the RT modes.

Conclusions

The presented evidence suggests that RT is a potent intervention to restore mitochondrial function in
COPD in whom the improvement in mitochondrial respiratory capacity was determined by an
increased CS activity and not by an augmented quality of the mitochondrion. RT is a well-tolerated,
time-efficient and efficacious exercise training mode that induces beneficial alterations in VL

oxidative capacity in COPD.
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Figure legends

Figure 1. Citrate synthase (CS) activity prior to (PRE) and following 10RM and 30RM (POST) resistance
exercise training. Dots illustrate individual values and lines represent mean + SD. ** p<0.01 between
CONTROLS and COPD at PRE, $$ p<0.01 effect of time (PRE vs. 10RM/30RM POST pooled) in COPD. n=8
for CONTROLS, n=6 for COPD.

Figure 2. Mitochondrial respiratory capacity prior to (PRE) and following 10RM and 30RM (POST)
resistance exercise training. Mitochondrial O, flux per mg of vastus lateralis muscle tissue with titration
of malate and octanoyl carnitine (Ln), ADP (Prao), glutamate and pyruvate (Pc), succinate (P), FCCP (ETS)
in CONTROLS and COPD patients (shaded). Dots illustrate individual values and lines represent mean +
SD. * p<0.05 between CONTROLS and COPD at PRE 30RM, $ p<0.05 effect of time in COPD. n=10 for
CONTROLS, n=8 for COPD.

Figure 3. Leak control ratio for fatty acid oxidation (LCR¢ao) prior to (PRE) and following 10RM and
30RM (POST) resistance exercise training. Dots illustrate individual values and lines represent mean +
SD. No differences were observed between CONTROLS and COPD, nor was there any effect of time.

n=10 for CONTROLS, n=8 for COPD.
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Tables

Table 1. Baseline characteristics

CONTROLS CcopPD p-value
Participants (n, females/males) 12 (9/3) 11 (5/6)
Age (y) 66+5 69+4 0.104
Body mass (kg) 70+12 71+20 0.740
BMI (kg-m2) 245+3.4 243+6.1 0.946
FEV: (L) 2.78 +0.66 1.48 +0.32 <0.001
Predicted FEV; (%) 110+ 16 56+7 <0.001
FVC (L) 3.65+0.75 3.08 £0.73 0.079
FEV1/ FVC (%) 766 49+7 <0.001
VOzmax (L'mint) 2.38+0.67 1.54+0.35 <0.001
Winax (W) 199 + 46 98 +35 <0.001
Physical activity level (kcal-week?) 4855 +3137 4666 + 4694 0.687

Body mass index (BMI), forced vital capacity (FVC), forced expiratory volume in 1 s (FEV1), bicycling
maximal oxygen uptake (VOamax), maximal minute power output (Wmax). Data are presented as mean +

SD.



Table 2. Substrate uncoupler titration protocol

Step Substrate (concentration) Inner mitochondrial membrane process
1 Malate (2 mM) and Octanoyl carnitine (250 uM) Ln: leak respiration
2 ADP (5 mM) Prao: fatty acid oxidation
3 Pyruvate (5 mM) and Glutamate (10 mM) Pci: complex-1 linked respiration
4 Succinate (10 mM) P: total oxidative phosphorylation
5 Cytochrome c (10 uM) Inner mitochondrial membrane integrity
6 FCCP (0.5 -1 uM steps) ETS: Electron transfer system

(1) Malate and octanoyl carnitine were titrated into the chambers to induce leak respiration through

electron entry in absence of ADP and ATP (Ln), (2) ADP to assess mitochondrial capacity to couple

electron transport through electron-transferring flavoprotein to the phosphorylation of ADP to ATP

(Peao), (3) pyruvate and glutamate as substrates of complex | to stimulate complex-I-linked respiration

(Pa), (4) succinate to determine total oxidative phosphorylation capacity (P) and (5) cytochrome c to test

for the integrity of the mitochondrial membrane. Respiratory data which exhibited >10% increase in

oxygen flux following cytochrome c titration were not included in data analysis (9.6% of all

measurements). (6) Maximal electron transfer system capacity (ETS) was determined with the addition

of the uncoupler carbonylcyanide p-trifluoromethoxyphenyl-hydrazone (FCCP). The leak control ratio for

fatty acid oxidation (LCRrao) was computed as Ln/Prao indicating mitochondrial efficiency to oxidize fat.
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Sammendrag

Bakgrunn: Regelmessig styrketrening gir gunstige helseeffekter for personer med kronisk
obstruktiv lungesykdom (KOLS), og er derfor en naturlig del av lungerehabiliteringen.
Pasienters opplevelse av slik trening er imidlertid lite studert. Hensikten med denne
kvalitative studien var a kartlegge erfaringer med styrketrening hos deltakere i The
Granheim COPD Study.

Materiale og metode: Atte av 24 prosjektdeltakere med KOLS (kvinner/menn, n=3/n=5; KOLS
grad Il/Ill, n=4/n=4; alder, 64-79 ar) gjennomfgrte semistrukturerte, kvalitative intervjuer i
den femte av totalt 13 uker med styrketrening.

Resultater: Samlet for alle prosjektdeltakerne med KOLS var treningsadherensen hgy (97%)
og frafallet lavt (n=2 av 22) under treningsperioden. Informantene som gjennomfgrte
kvalitative intervjuer opplevde noksa hgy og stigende grad av motivasjon for a trene under
intervensjonen. Dette var knyttet til tett personlig oppfglging fra treningskyndig personell og
opplevelse av trygghet under treningsgktene, samt gkt mestringsfglelse og gkt kompetanse.

Fortolkning: Personlig veiledning fra treningskyndig personell var en avgjgrende faktor for a
gke treningsmotivasjonen blant studiedeltakerne med KOLS. Individuell tilrettelegging og
oppfalging ser derfor ut til 3 vaere en forutsetning for @ oppna gode aktivitetsvaner hos
personer med KOLS.

Abstract

Background: Regular resistance exercise provides beneficial health effects for people with
chronic obstructive pulmonary disease (COPD), and constitutes a natural component of lung
rehabilitation programs. However, the patients' personal experience with such training
remains largely unstudied. The purpose of this qualitative study was to map experiences
with resistance training in participants enrolled in The Granheim COPD Study.

Material and method: Eight out of 24 study participants with COPD (women/men, n=3/n=5;
COPD grade II/Ill, n=4/n=4; age, 64-79 years) conducted semi-structured, qualitative
interviews during the 5th week of a total 13 weeks of resistance training.

Results: Overall, for all study participants with COPD, the training adherence was high (97%),
with a concomitant low dropout rate (n=2 of 22) during the training period. The informants
experienced a fairly high and increasing level of motivation for exercise training during the
intervention. This was related to close personal follow-up from experienced personnel and a
sense of security during training sessions, as well as an increased feeling of self-efficacy and
competence.

Interpretation: In subjects with COPD, the increasing motivation for conducting resistance
training was closely associated with personal guidance from experienced supervisors during
training sessions. Close follow-up from qualified personnel thus seems to be a prerequisite
for achieving beneficial physical activity habits among such patients.



Introduksjon

Kronisk obstruktiv lungesykdom (KOLS) er en gkende folkehelseutfordring, bdde i Norge og i
verden forgvrig. Sykdommen er av de vanligste arsakene til sykehusinnleggelser og dgd® og
er assosiert med store menneskelige og sosiogkonomiske konsekvenser, deriblant hgyt
arbeidsfraveer og tidlig pensjonering.? Diagnostiseringen av KOLS baserer seg pa
lungefunksjonsmal,® men KOLS er ogsa knyttet til en rekke tilleggslidelser som blant annet
stgrre risiko for a utvikle fysiske lidelser som overvekt, diabetes, hjertesvikt og koronare
hjertesykdommer,* og mentale lidelser som angst og depresjon.* | sum bidrar dette til at
KOLS-rammede har lavere livskvalitet enn friske, jevnaldrende personer.>®

Til tross for at det er sterk evidens for at fysisk aktivitet og trening er gunstig for
personer med KOLS, er fysisk inaktivitet vanligere hos KOLS-rammede enn hos friske
personer.” Fysisk aktivitet og trening er den eneste rehabiliteringsformen som kan bedre
prognosen. Det reduserer tungpustethet, bedrer arbeidsevnen og fglelse av at man har
kontroll pa sykdommen, samt forbedrer andre aspekter knyttet til sykdommen som for
eksempel emosjonelle funksjoner og helserelatert livskvalitet.®® Viktigheten av gode
aktivitetsvaner har blitt tydeligere de siste arene. Dette har medfgrt at
interesseorganisasjonene European Respiratory Society og American Thoracic Society har
definert fysisk trening som «grunnsteinen innen lungerehabilitering».1 Likevel viser det seg
a veere vanskelig @ endre aktivitetsvanene til KOLS-rammede i retning av en mer aktiv livsstil.
Arsakene til dette kan se ut til 3 veere relatert til begrenset erfaring med slik type aktivitet,
og at man av den grunn kan oppleve fysisk trening som ukjent og uviktig.'* Manglende
informasjon om fysisk aktivitet kan ogsa vaere en potensiell utfordring, noe som ble trukket
frem som hovedarsaken til at KOLS-rammede ikke var tilstrekkelig fysisk aktive i en dansk
studie.!?

| The Granheim COPD Study ble 24 personer med KOLS forespurt a deltaien
kombinert kostsupplementerings- og treningsintervensjon, hvor hovedformalet var a
undersgke de funksjonelle og biologiske effektene av styrketrening med og uten daglig
tilskudd av vitamin D. For et utvalg av disse studiedeltakerne ble det gjennomfgrt kvalitative
intervjuer for 3 undersgke hvilke motivasjonsfaktorer som var avgjgrende for at de meldte
sin interesse for studien og hva som pavirket treningsmotivasjonen underveis i
intervensjonen.

Materiale og metode

For detaljert beskrivelse av studieprotokollen og metoder benyttet i The Granheim COPD
Study, samt resultatene knyttet til vitamin D-perspektivet i studien, se Mglmen m.fl.3 For en
oversikt over de funksjonelle og biologiske treningseffektene til de KOLS-rammede
sammenlignet med de lungefriske kontrollene i studien, se Mglmen m.fl.}* Studien var
godkjent av Regional etisk komité — sgr@st (referansenr. 2013/1094), forhandsregistrert hos
clinicaltrials.gov (ClinicalTrials.gov ID: NCT02598830) og ble gjennomfgrt i henhold til
Helsinkideklarasjonen.

Deltakerne i studien ble rekruttert via oppslag pa Granheim Lungesykehus og lokale
legekontorer, nyhetsartikler i lokalavisen (Gudbrandsdglen Dagningen) og annonser pa
Hggskolen i Innlandets digitale plattformer. Totalt ble 95 personer inkludert i studien (KOLS-



rammede, n=24; lungefriske kontroller, n=71), hvorav 78 fullfgrte studien (KOLS-rammede,
n=20; lungefriske kontroller, n=58). Samtlige KOLS-rammede bodde innenfor en radius pa 55
km fra Hggskolen i Innlandet — studiested Lillehammer, hvor intervensjonen og
datainnsamlingen ble gjennomfgrt. For grov oversikt over studieprotokollen, se Figur 1.

Figur 1. Studieprotokoll for The Granheim COPD Study. Kvalitative intervjuer ble gjennomfgrt i uke 19,
sammenfallende med deltakernes 9. treningsgkt. STR, test av maksimal styrke; Musk.prest., test av muskulaer
prestasjon; 1-BS, ettbeins sykkeltest; Funk., test av funksjonell kapasitet (6-minutts step-test og 1-minutts sit-
to-stand-test); UL, ultralydmaling av muskeltykkelse; DXA, test av kroppssammensetning; VO2maks, test av
maksimalt oksygenopptak; IE, internasjonale enheter.

Kvalitative intervju. Semistrukturerte, kvalitative intervjuer ble gjiennomfgrt pa atte KOLS-
rammede studiedeltakere (Tabell 1). Dette representerte samtlige personer med KOLS som
pa tidspunktet for de kvalitative intervjuene (26. - 27. februar 2018) var i studiens
treningsperiode. Intervjuene varte i ca. 30 minutter og ble gjennomfgrt for eller etter den 9.
treningsgkten i studien. Alle intervjuene ble gjennomfgrt av den samme rutinerte
intervjueren. Vedkommende var ikke tilknyttet prosjektet pa annet vis og kjente ikke
informantene fra fgr. Alle intervjuene fulgte den samme intervjuguiden (se vedlegg), men
rekkefglgen pa spgrsmalene var ikke konsekvent. Spgrsmalene ble stilt pa en slik mate at det
oppmuntret informantene til a reflektere, samt gi fyldige kommentarer. Det ble ikke gjort
notater under intervjuene, men det ble gjort lydopptak som i ettertid ble transkribert.
Intervjuene ble analysert ved hjelp av systematisk tekstkondensering.'® Alle lydopptak,
transkribert materiale og kodede analyser ble slettet i etterkant av analyse.

Treningsintervensjonen. Treningsintervensjonen i The Granheim COPD Study ble gjennomfgrt
ved Hggskolen i Innlandet — studiested Lillehammer. Den varte i totalt 13 uker (Figur 1, uke
14 —27) og bestod av to ukentlige treningsgkter. All trening ble gijennomfgrt under
veiledning fra studenter under utdanning i bachelorprogrammet i helse og treningsfysiologi
ved Hggskolen i Innlandet. Treningsinstruktgrene hadde oppfglging av én eller to deltakere
samtidig. Instruktgrene ble rullert mellom deltakerne, slik at ingen deltakere skulle ha den
samme treningsinstruktgren pa alle sine treningsgkter. Treningen var identisk for KOLS-
rammede og de lungefriske kontrollene, og bestod av et helkropps styrketreningsprogram,
der samtlige gvelser ble giennomfgrt med hgy grad av anstrengelse. For & redusere
tungpustethet ble beingvelsene gjennomfgrt med ett bein av gangen. Treningsprogrammet
var definert i forkant, men enkelte individuelle hensyn ble tatt. Disse inkluderte justering av



treningsbelastning underveis i gkter og pa tvers av gkter, pauselengde mellom treningssett
og -gvelser, teknikktilbakemeldinger og grad av oppmuntring. Det var et uttalt fokusomrade i
studien a etablere en sosial og hyggelig ramme rundt treningssituasjonen. Dette inkluderte
blant annet a tilrettelegge for at ektepar og venner kunne trene sammen, at flere deltakere
trente samtidig i lokalet, at flere treningsinstruktgrer var tilstede under hver treningsgkt, og
etablering av en mgteplass fgr og etter treningsgkter, der deltakerne og
treningsinstruktgrene kunne ta seg en kaffekopp og en matbit fgr hjemreise.

Resultater

Bakgrunnsinformasjon om informantene og drsaker til at de meldte sin interesse for studien. Seks
av informantene var pensjonister, mens to var i fast arbeid under studieintervensjonen.
Samtlige av informantene hadde tidligere rgyket sigaretter pa daglig basis (Tabell 1), men
alle utenom én hadde sluttet fullstendig. Vedkommende som fremdeles r@yket sigaretter,
hadde likevel redusert tobakksforbruket kraftig de siste arene. Ingen av informantene hadde
seerlig erfaring med styrketrening fgr inklusjon i studien, og benyttet seg ei heller av andre
treningstilbud pa jevnlig basis.

Tabell 1. Deskriptiv informasjon om informantene

Kvinner/menn (antall) 3/5

Alder (gj.snitt ar = SD) 71+5(64-79)
KMI (gj.snitt kg - m™ £ SD) 26+4(19-32)
Forventet FEV: (gj.snitt % * SD) 51+9(36-61)
FEV1/FVC (gj.snitt % * SD) 45 +10 (35 - 58)
Pakkear (gj.snitt + SD) 33+16(8-59)

| parentes, variasjonsbredden. SD, standardavvik; KMI, kroppsmasseindeks; FEV1, forsert ekspiratorisk volum pa
ett sekund; FVC, forsert vitalkapasitet; pakkedr, ett pakkear tilsvarer 20 sigaretter - dag™ i ett ar.

Samtlige informanter rapporterte at KOLS-sykdommen hadde utviklet seg gradvis, og
at de hadde tilpasset seg sykdommen etter hvert som symptomene meldte seg. Disse
inkluderte livsstilsendringer som ble ansett som hensiktsmessige for a holde sykdommen
under kontroll, herunder rgykeslutt/redusert tobakksforbruk og regelmessig fysisk aktivitet.
Samtlige informanter hadde dermed en positiv innfallsvinkel til fysisk aktivitet, og flertallet
var i fysisk aktivitet daglig (f.eks. hus- og hagearbeid og gaturer). De fleste meldte sin
interesse for The Granheim COPD Study fordi de ansa studieintervensjonen som et fornuftig
tiltak for a na malet om fortsatt selvstendighet i eget hjem og daglige aktiviteter. Disse
observasjonene star i kontrast til tidligere kvalitative studier, som fremhever at KOLS-
rammede anser fysisk aktivitet og trening som uviktig og et lite effektivt middel for a
forbedre helsen.'>1¢ Det er derfor rimelig & anta at informantene i studien ikke var
representative for alle KOLS-rammede, men at de var godt informert om de positive
effektene av trening, og i tillegg opplevde det som meningsfullt @ benyttes seg av dette
tilbudet.



Frafall, adherens og treningseffekter. Av de 24 KOLS-rammede som var innrullert i The
Granheim COPD Study, fullfgrte 20 deltakere hele studieintervensjonen (83%). To deltakere
trakk seg for treningsintervensjonen startet (Figur 1, fgr uke 18), mens ytterligere to trakk
seg underveis i treningsintervensjonen. Arsakene til frafallene var henholdsvis ikke-relatert
til studien (n=2), smerter etter muskelbiopsi (n=1) og for lang reisevei (n=1). Samtlige
deltakere som deltok i kvalitative intervjuer fullfgrte studien.

De 20 deltakerne med KOLS som fullfgrte studien utfgrte treningsprogrammet som
forespeilet. De gjennomfg@rte 97% av alle treningsgktene (for informantene, 99,5%) og viste
solide effekter av treningen. Dette var synlig som stgrre eller sasmmenlignbar gkning i
muskelstyrke, muskelmasse, funksjonsmal og andre helsemal sammenlignet med lungefriske
kontroller.'*

Faktorer som pdvirket treningsmotivasjonen

Viktigheten av fagkompetanse hos treningsinstruktgrer og organiseringen av studien. Informantene
var opptatt av hvordan studien var organisert, og la vekt pa at trening med personlig
instruktgr var en avgjgrende arsak til at de meldte sin interesse for studien. Det ble
fremhevet som viktig at det var rom for individuelle tilpasninger, til tross for at alle
deltakerne fulgte det samme treningsopplegget, samt at det var viktig med individuelle,
konstruktive tilbakemeldinger under hver treningsgkt. Det ble trukket frem at instruktgrene
var gode til & tilpasse opplegget hvis informantene hadde darlige dager. En av informantene
fortalte om at engstelsen for a presse seg og oppleve tungpustethet ble redusert giennom
individuelle tilbakemeldinger og stgtte fra treningsinstruktgr. Informantene fglte at
treningsinstruktgrene hadde gode kunnskaper om styrketreningsfaget og at de derfor fikk
svar pa det de lurte pa av faglig interesse. | tillegg ble det trukket frem at
treningsinstruktgrene hadde gode relasjonelle ferdigheter og fremsto som hyggelige
mennesker, noe som var medvirkende til at informantene opprettholdt motivasjonen til
gjennomfgre treningen.

«Studentene er motiverende og sp@r om jeg klarer én repetisjon til. De tar hensyn hele tiden,
men de ser pd deg om du greier mer eller ikke. De er flinke sann.»

Studien innebar mye testing og mange muligheter til 3 betrakte endringer i egne
prestasjoner over tid. Dette ble trukket fram som positivt for motivasjonen. Muskelbiopsiene
som ble tatt underveis i prosjektet opplevdes som ubehagelige og vonde for enkelte av
informantene, og ble trukket frem som det de likte minst i prosjektet. Det var likevel
forstaelse for at dette var en viktig del av studien.

«Det er veldig artig @ se hvor man ligger. Jeg synes testing er interessant for G se om det
faktisk er fremgang, og ikke bare hva jeg synes selv.»

Flere av informantene fortalte at de fglte en viss forpliktelse til 8 mgte til trening og
testing. De opplevde at de som deltakere var en viktig del av studien, og at det alltid var
instruktgrer som ventet pa dem eller forventet at de skulle komme. Dersom man ikke mgtte
opp, visste deltakerne at man ville bli oppringt og etterspurt. Det ble papekt at man med et



mindre forpliktende opplegg mest sannsynlig ville hatt stgrre frafall og lavere adherens til
treningen.

«Det gar greit ndr jeg har fatt et bestemt klokkeslett for trening, men hvis jeg ikke har det
utsetter jeg det til i morgen, og nér morgendagen kommer utsetter jeg til dagen derpad.»

Studien innebar ikke szerskilt tilrettelegging for KOLS-rammede deltakere. Deltakerne
ble ikke pa noe vis informert om hvem som hadde KOLS eller hvem som var lungefriske.
Informantene opplevde dette som positivt, og de fglte seg behandlet som «vanlige
mennesker» istedenfor pasienter. De fortalte at de ikke gnsket a bli identifisert som «han
eller hun med KOLS». Informantene fremhevet ogsa at det var lite snakk om sykdom i
prosjektet, og at dette var behagelig, uten at det gikk pa bekostning av tilrettelegging.
Prosjektets omgivelser ved Hggskolen i Innlandet — studiested Lillehammer ble ogsa trukket
frem som positivt, med gode kollektivtransportalternativer og parkeringsmuligheter for bil.
At prosjektet ble gijennomfgrt pa en hggskole istedenfor et sykehus ble omtalt som gunstig,
siden sykehus generelt minnet informantene om «diagnoser, behandling, sykdom og darlige
nyheter».

Informantene beskrev det sosiale miljget i studien som godt. Det var rom for a
snakke, le og spgke sammen, og studiens daglige leder og instruktgrer hadde alltid tid til &
sld av en prat. Informantene var trygge i styrketreningssettingen og var ikke redde for
hverken a gjgre feil, trene hardt eller tyne sine fysiske grenser. Det opplevdes som
meningsfullt 3 vaere med i prosjektet.

«Det er viktig G ha veileder; hvis du trener bare for deg selv er det ikke sikkert at du gidder G
ta de to siste repetisjonene.»

Mestringsopplevelser ved styrketrening. Det a holde sykdommen under kontroll var
informantenes hovedmotivasjon for @ melde seg til The Granheim COPD Study. Likevel ble
det fremhevet at de var usikre pa om de kunne forvente seg szrlige forbedringer i egen
helse. De fortalte at motivasjonen for a trene ikke var sa fremtredende ved oppstart av
studien, men at den ble stgrre etterhvert som de opplevde fremgang. Informantene oppgav
bade kvantifiserbare og opplevde kroppslige forbedringene som viktige motivasjonsfaktorer
for a fortsette a trene i treningsperioden.

«Jeg kan gjgre ting nd som jeg ikke kunne far, for eksempel G gé opp ei trapp med ti
trappetrinn. Det er motivasjon.»

Informantene oppgav at det & oppleve god utfgrelse av treningsgvelsene ga god
mestringsopplevelse og fglelse av gkt kompetanse. Disse opplevelsene ble forsterket
gjennom positive tilbakemeldinger fra treningsinstruktgrer. Til tross for dette varierte
motivasjonen for a trene fra dag til dag, og informantene fortalte at de noen ganger hadde
lyst til & holde seg hjemme. De mgtte likevel opp pa grunn av forpliktelsen de fglte til
studien, samt vissheten om at treningsgkten kunne justeres etter dagsform. Informantene
opplevde at det var god balansegang mellom det a bli stgttet i sine plager og utfordringer og
det a bli utfordret til 3 ta et steg videre.

«Det er hardere d trene her enn pd andre treningssteder fordi de (instruktgrene) presser oss
til vi ikke klarer mer, men jeg synes det er meget positivt.»



Alle informantene fortalte at de ikke hadde klart a trene like hardt og med like hgy
intensitet pa egen hand. Dette var fgrst og fremst pa grunn av tilstedeveaerelse av instruktgr
som kunne motivere til 3 ta i litt ekstra og som ga fglelse av trygghet under treningen, og i
mindre grad pa grunn av mangel pa egnet utstyr. Flere av informantene var skeptiske til om
de ville klare & fortsette a trene strukturert etter studien, mest fordi treningen ikke ville bli
sett pa som like forpliktende.

«For meg er det lettere G trene sammen med flere og til bestemte klokkeslett. Nar du driver
pd aleine tar du det ndr det passer deg, og da er det ikke sikkert du gjgr det hver dag. Her er det godt
organisert.»

Diskusjon

Studien viser at fagkompetansen til treningspersonellet var viktig for at studiedeltakerne
med KOLS skulle fgle seg trygge nok til a utfordre sine egne fysiske grenser under
styrketreningsgktene. Dette var en forutsetning for de positive mestringsopplevelse og den
gkte kompetansen som informantene opplevde underveis i treningsperioden. | sum bidro
dette til at de gkte sin treningsmotivasjon.

Informantene meldte seg til studien fordi de ansa fysisk aktivitet og trening som et
gunstig middel for a holde sykdommen under kontroll og fortsatt vaere selvstendig i eget
hjem og daglige aktiviteter. Motivasjonen for a vaere med var dermed primaert knyttet til
malet om & lgse personlige utfordringer. Forankret i selvbestemmelsesteorien,*” noe som kan
antyde at motivasjonen var ytre, identifisert regulert,'® siden de betraktet deltakelse i The
Granheim COPD Study som et fordelaktig tiltak for a na sitt eget, personlige mal. De hadde
sagar en historikk med andre personlige livsstilstiltak for a begrense negativ utvikling av
sykdommen, herunder gjennomfgring av livsstilsendringer som for eksempel
reykeslutt/redusert tobakksforbruk og regelmessig fysisk aktivitet. Dette stgtter oppunder at
informantene hadde en identifisert-regulert motivasjon, men ogsa at informantene hadde
hgy grad av opplevelse av sammenheng (engelsk, sense of coherence), definert som opplevelse
av deres situasjon som forstaelig og forklarlig (comprehensible), med tro pa at de hadde
ressurser til a finne Igsninger pa problemer som oppstod (manageable), og opplevelse av at
det var meningsfullt & forsgke & finne disse Igsningene (meaningful).’® Informantenes niva av
forstaelse for situasjonen og endringsvilje skiller dem fra KOLS-rammede i tidligere studier,
som sharere ansa fysisk aktivitet og trening som et lite effektivt behandlingstiltak.'>1¢ Det er
dermed betimelig 3 spgrre seg om utvalget av KOLS-rammede og betydningen av dataene er
valide for hele sykdomspopulasjonen, eller om betydningen er begrenset til ‘KOLS-rammede
med selvbestemt treningsmotivasjon’. Dette ma imidlertid sies a veere et generelt
kjennetegn for treningsintervensjoner, siden umotiverte eller typisk eksternt-regulert
motiverte personer vil ha stgrre risiko for frafall fra slike programmer og oppleve stgrre
vanskeligheter med & opprettholde atferd.2>%

Informantene ga uttrykk for at de utviklet en mer mangfoldig motivasjon i Igpet av
den relativt korte treningsperioden frem til intervju (~5 uker). Denne bar preg av gkt
selvfglelse, mestringsfglelse, kompetanseheving og personlig tilfredstillelse, drevet frem av
positive erfaringer og opplevelse av kvantifiserbare, kroppslige forbedringer, i tillegg til



opplevelse av forpliktelser ovenfor forskningsprosjektet. Dette understgttes av den
betydelige forbedringen i kvantitativ helserelatert livskvalitet observert hos de KOLS-
rammede deltakerne i Igpet av studieperioden for kategoriene generell og mental helse, samt
emosjonell, sosial og fysisk funksjon.* Motivasjonen utviklet seg dermed fra & handle om 3
unnga ugnskede konsekvenser av sykdommen, til 3 i stgrre grad handle om tilfredsstillelse i
form av positive opplevelser fra studieintervensjonen. Styrketrening under tett oppfglging
feérte simpelthen med seg opplevelser og endringer som i seg selv var motiverende. | et
teoretisk perspektiv innebaerer den observerte endringen i motivasjon en dreining mot mer
internalisert ytre motivasjon og sagar stgrre grad av indre motivasjon. Det er imidlertid lite
som tyder pa at informantene nadde den mest autonome formen for motivasjon. Denne
kjennetegnes av at aktiviteten har blitt en vane, er engasjerende, og en viktig del av
personens identitet, og er sannsynligvis gunstig for a klare a opprettholde atferd i et lengre
tidsperspektiv.?!

Informantene rapporterte at fem uker med styrketrening hadde selvforsterkende
effekter pa motivasjon for a drive denne typen aktiviteter. Dette kunne primaert knyttes til to
hovedmomenter: i) tett individuell oppfglging fra treningskyndig personell under alle
treningspkter, og ii) opplevelse av mestring, bade knyttet til utfgrelse av treningsarbeidet og
hverdagslivet forgvrig. Dette er effekter som ogsa er rapportert tidligere. Sosial stgtte og
personlig oppfglging har vist seg a ikke bare ha stor betydning for & oppna hgy
treningsadherens og unnga frafall,?2 men ogsa fgre til stgrre funksjonelle forbedringer enn
ikke-veiledet trening.? Arsakene til den forbedrede motivasjonen er flere, men
informantene trakk blant annet frem det sosiale miljget i prosjektet som positivt. De fglte
seg trygge og ivaretatt, samtidig som det fgltes som meningsfullt 3 vaere med i prosjektet.
Instrukt@rene, i kraft av & vaere treningsfysiologer under utdanning, med god kompetanse
innen bade styrketreningsteori og a utvikle og motivere deltakere gjennom relasjonelle
ferdigheter, viste seg a ha en avgjgrende rolle. De klarte 3 ivareta de grunnleggende
psykologiske behovene, som ifglge selvbestemmelsesteorien er gunstig for 3 forbedre
motivasjonen,® noe som medfgrte at informantene fglte seg trygge i treningssettingen.
Dette la grunnlaget for at de kunne utfordre seg selv, og dermed oppleve gkt mestringstro
og kompetanse i form av at de i gkende grad mestret gvelser, nye situasjoner og nye ting i
hverdagen (f.eks. g& opp en trapp uten pauser).182*

Informantene opplevde imidlertid studieintervensjonen som forpliktende ovenfor
instruktgrene og studien som helhet, og pekte pa at dette var medvirkende for den gode
treningsadherensen. Flere av informantene reflekterte rundt at det ville bli vanskelig a
opprettholde treningsrutinene etter studien, siden treningen da ikke ville bli sett pa som like
forpliktende. Dette tyder pa at informantene til en viss grad ogsa var ytre, introjekt-regulerte
i sin motivasjon, noe som ikke blir sett pa som gunstig for langvarig opprettholdelse av
motivasjon.'® Oppfglgingssamtaler av informantene i etterkant av studien kan ogsa tyde pa
at motivasjonen og atferden ikke var tilstrekkelig internalisert og integrert ved studiens slutt.
| oppfelgingssamtaler gjennomfgrt 2-3 ar etter intervensjon rapporterte ingen av
informantene at de hadde fortsatt med regelmessig styrketrening. Arsakene til dette kan
veere at treningsintervensjonen var for kort til 3 oppna varige atferdsendringer. Fire ukers
lungerehabiliteringsprogram har tidligere konkludert i samme retning.?> En annen &rsak kan
vaere at de kontrollerte betingelsene ved et slikt forskningsprosjekt knyttet til den fastsatte



protokollen som ma gjennomfgres, kan tenkes a ga pa bekostning av den optimale
individuelle tilnzermingen for 3 tilrettelegge for selvstendig, internalisert og integrert
opprettholdelse av endret adferd.?® Dette antyder, iallfall for denne gruppen personer, at
regelmessig, personlig oppfalging ogsa etter en slik type livsstilsintervensjon er gunstig og
ngdvendig for 3 opprettholde gnsket atferd og motivasjon.

Konklusjon. Tett, individuell oppfglging fra treningskyndig personell la til rette for at
studiedeltakere med KOLS fglte seg trygge og kunne utfordre seg selv under
styrketreningsgktene. Dette la grunnlaget for positive mestringsopplevelser, gkt
kompetanse, forbedret mestringstro og mer internalisert motivasjon.

Hovedfunn. Fysisk inaktivitet og lav treningsmotivasjon er vanlig blant KOLS-rammede. Dette
ferer til gkt forekomst av tilleggslidelser og redusert livskvalitet. Tett, individuell oppfglging
fra treningskyndig personell viste seg a ha en gunstig innvirkning pa faktorer bestemmende
for treningsmotivasjon.

Denne artikkelen har ett vedlegg:
- Intervjuguide
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Appendix Il

CONSORT flow chart of the RCT study






Enrollment

Assessed for eligibility (n=130)

Excluded (n=35)
Not meeting inclusion criteria (n=19)
Declined to participate (n=16)

| Randomized (n=95) |

[

Allocation
1\ J

Withdrew prior to commencing intervention (n=1)

Vitamin Ds arm (n=47)

Received vitamin D; intervention (n=46)
COPD (n=12)
Healthy (n=34)

Placebo arm (n=48)
Received placebo intervention (n=48)
COPD (n=12)

Healthy (n=36)

Follow-Up
),

¢

Lost to follow-up (n=12)
COPD (n=3)
Healthy (n=9)

Reasons not related to the study (n=6)
Pain after biopsy sampling (n=1)
Discomfort during testing (n=1)

Extensive travelling (n=1)
Back pain (n=2)

Lost to follow-up (n=4)
COPD (n=1)
Healthy (n=3)

Reasons not related to the study (n=3)
Pain after biopsy sampling (n=1)

Analy:

Vitamin D; vs placebo analyses:
Analyzed (n=78)
Vitamin D3 (n=34)
Placebo (n=44)

COPD vs Healthy analyses:
Analyzed (n=78)
COPD (n=20)
Healthy (n=58)
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Figure S1 General efficacy of the RCT measured as changes in one repetition maximum one-legged knee extension (a), one repetition maximum chest press
(b), grip strength (c), one repetition maximum one-legged leg press (d), muscular performance chest press (number of repetitions at 50 % of pre-RCT one repe-
tition maximum; e), muscular performance one-legged knee extension (number of repetitions at 50 % of pre-RCT one repetition maximum; f), muscle fibre
cross-sectional area (CSA; type | and type Il fibres), nuclei per fibre and total RNA in m. vastus lateralis (from pre-RCT to baseline/pre-introduction resistance
training, dominant leg only, g; from baseline/pre-introduction resistance training to post-introduction resistance training and post-RCT, h), and muscle fibre
type proportions (immunohistochemistry; pre-RCT and pre-introduction resistance training/baseline, dominant leg only, i; pre-introduction resistance training/
baseline and post-RCT, both legs, j). Test 4, test performed in Week 8 (see Figure 2); *, significant change from pre-RCT; #, significant change from baseline/pre-
introduction resistance training; £, significant different from baseline/pre-introduction resistance training. Significant differences between supplementation
arms are marked with p-values.

For the initial 12 weeks of supplementation-only was all muscle strength and performance measures associated with improvements (1RM knee exten-
sion, 5 %; 1RM chest press 8 %; muscular performance knee extension, 13 %; muscular performance chest press, 71 %; p < 0.05), with the only exception being
handgrip strength (p = 0.805). This occurred without any apparent changes in muscle cell characteristics in thigh muscle, including muscle fibre CSA, muscle
fibre type proportions, and total RNA/rRNA expression. The repeated testing of performance indices conducted prior to baseline testing (post-intro RT) was
associated with marked and progressive improvements. E.g. for 1RM knee extension, this was evident as 4 % (test #4, after 8 weeks of supplementation), 8 %
(pre-introduction to resistance training) and 14 % (post-introduction to resistance training/baseline) increases, while 1RM chest press improved 3 %, 5 % and
13 %, respectively (notably the third test was conducted at ~95 % of maximal effort and was omitted from these analyses). For leg press, three tests were per-
formed prior to the baseline test, resulting in similar improvements as observed for knee extension and chest press (14 %) The subsequent 13 weeks training
period was accompanied by marked functional and biological adaptations for the participants, including increased muscle strength and performance (e.g. 22 %
and 72 % increases in 1RM and muscular performance in knee extension, respectively, p < 0.05), increased muscle mass (e.g. 16 - 24 % increases in muscle fibre
CSA for m. vastus lateralis, p < 0.05), increases in myonuclei number per fibre (30 — 37 %, p < 0.05), and alterations in muscle fibre proportions (e.g. type 11X
fibre proportions changed from 10 % to 7 %, p < 0.05).



Figure S2 Sample-resample reliability measures of immunohistochemical assessments of muscle fibre cross-sectional area (a-d) and muscle fibre propor-
tions (e-g) in m. vastus lateralis sampled at pre-RCT and pre-introduction to resistance training (pre-intro RT). In a-b, data are presented as means with 95
% confidence limits. In c-g, data are presented as individual values in p-plots, emphasizing the relationship between differences in muscle fibre character-
istics measured at the two time points and the lowest number of fibres counted at any time point. In general, these data display increasing differences in
sample-resample muscle characteristics with decreasing number of analysed fibres. RT, resistance training. Rough analyses suggested that we would have
needed > 250 fibres of each fibre type to achieve reliable assessment of CSA and > 600 fibres to achieve reliable assessment of fibre type proportions, of
which our material contained an average of 118 + 64/137 + 69 fibres (type I/type II, range 0 — 428/11 - 424) and 462 * 265 fibres (range 26 - 1982), re-
spectively.



Figure S3 The impact of baseline vitamin D-status ([25(OH)D]) on the effects of combined vitamin D3 supplementation and resistance training on muscle
mass (a), muscle strength (b), one-legged endurance performance (c) and whole-body endurance performance (d). Data are presented as changes in
weighted combined factors (means with 95 % confidence limits; upper within-figure panels) and as individual values (lower within-figure panels). For each
supplementation arm (vitamin D; and placebo), baseline [25(0OH)D] quartiles were calculated. Within-quartile comparisons between supplementation arms
are shown in the upper panel of each figure. Overall, there was no beneficial effects of vitamin D3 supplementation in any quartile. Dotted and solid lines in
the figure marks the quartile limits for vitamin D3 and placebo arm, respectively. 25(0OH)D, 25-hydroxyvitamin D.



Figure S4 The impact of baseline body fat proportions and body mass index on the effects of combined vitamin D3 supplementation and resistance training
on changes in [25(0OH)D] (a-b; lower within-figure panels), muscle mass (a-b; upper within-figure panels), muscle strength (a-b; upper within-figure panels),
one-legged endurance performance (a-b; upper within-figure panels) and whole-body endurance performance (d; upper within-figure panels). Data are pre-
sented as changes in weighted combined factors (means with 95 % confidence limits; upper within-figure panels) and as individual values (lower within-figure
panels). For each supplementation arm (vitamin D; and placebo), baseline fat proportion/body mass index quartiles were calculated. Within-quartile compari-
sons of changes in muscle/performance characteristics between supplementation arms are shown in the upper panel of each figure. Overall, there was no
association between quartiles and benefits of vitamin D3 supplementation for changes in [25(OH)D], muscle mass, one-legged performance and whole-body
performance. In the highest quartiles, vitamin D3 supplementation was associated with more pronounced increases in muscle strength. Dotted and solid lines
in the figure marks the quartile limits for vitamin D5 and placebo arm, respectively. 25(0H)D, 25-hydroxyvitamin D; RT, resistance training.



Table S1 Primer sequences and performance

Primer sequence

Gene (symbol) (forward and reverse) Ct mean (SD) E

Myosin heavy chain 1 (MYH7) g?g?:gg_fgfg:gf:ggfg:’ 20.4 (2.0) 1.88
Myosin heavy chain 2A (MYH2) iéﬁgﬂgéiﬁgﬁiﬁ%ﬁg@i?’ 19.6 (1.8) 1.82
Myosin heavy chain 2X (MYH1) :Eg:ffég’ég’égg%i%c; 21.7(2.9) 1.89
5.8S ribosomal RNA (rRNA5.8s) ?:gig%ii%i?zii?gg?&%_y 14.4 (2.3) 1.87
28S ribosomal RNA (rRNA28s) gﬁiéiiéiééigzirﬁgcé 9.5 (1.9) 1.84
185 ribosomal RNA (rRNA18s) zliggziigiigglﬁggfsa 10.0 (2.3) 1.93
55 ribosomal RNA (rRNASs) :::&CT(E?EEQECCCC:ES@?::;_3, 16.4 (1.4) 1.82
455 pre-ribosomal RNA (rRNA45s) g::gg;gig?fggggzgﬁgﬁgﬂal 21.2(1.7) 1.87
External Standard Kit (A polyA) Proprietary sequences 23.2(1.7) 1.86

Average threshold cycles (Ct) and priming efficiencies (E) were calculated from all gPCR reactions
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Table S5 Functional annotation analysis of placebo compared to Vitamin D; supplementation

Comparison | Gene Gene ontology Significance | Set Rank % GSEA | NES | LEf Log2 Fold-
ontology category? size® P- MSD P- change in
category valug® | >09 value® LE [min,

max]

Pre-intro RT | Cellular Cell cortex Consensus 246 0.041 24.8% | 0.034 - | 67 -0.61 [-

- Pre-RCT: component (318) 1.38 | (64.2%) | 1.94,-0.2]

AVitamin D3 Cell substrate Consensus 386 0.041 23.1% | 0.010 - | 107 -0.59 [-1.5,

vs. Aplacebo junction (414) 1.37 | (57%) -0.24]

Inner mitochondrial Consensus 119 0.018 29.4% | 3.33e- - | 48 -0.61 [-
membrane protein (135) 05 1.72 | (66.7%) | 1.28,-0.25]
complex
Mitochondrial Consensus 244 0.041 24.6% | 5.99- - | 83 -0.57 [-
protein complex (260) 07 1.69 | (66.3%) | 1.28,-0.2]
Organelle inner Consensus 471 0.005 24.6% | 4.59- - | 142 -0.58 [-
membrane (534) 07 155 | (69.7%) | 1.34,-0.24]
Respirasome Consensus 82 0.018 35.4% | 1.47e- -] 38 -0.63 [-
(100) 04 1.73 | (68.4%) | 1.28,-0.25]
Respiratory chain Consensus 69 0.005 40.6% | 5.09e- -1 35 -0.64 [-
complex (85) 04 1.70 | (71.4%) | 1.28,-0.25]
Biological | Extracellular GSEA 267 0.516 17.6% | 0.002 - 92 -0.64 [-
process structure (373) 1.56 | (41.3%) | 1.54,-0.22]
organization
Mitochondrial gene GSEA 166 0.524 235% | 0.008 - | 56 -0.46 [-
expression (165) 1.59 | (64.3%) | 1.07,-0.15]
Mitochondrial GSEA 88 0.339 30.7% | 0.008 - | 34 -0.55 [-
respiratory chain (96) 1.69 | (76.5%) | 1.23,-0.2]
complex assembly
Mitochondrial GSEA 137 0.504 24.8% | 0.008 - | 51 -0.45 [-
translation (137) 1.63 | (62.7%) | 1.07,-0.15]
Mitochondrion GSEA 479 0.129 24% 0.002 - | 120 -0.59 [-
organization (528) 1.46 | (70%) 1.49, -0.25]
Oxidative GSEA 126 0.129 27.8% | 0.008 - | 49 -0.6 [-1.24,
phosphorylation (144) 1.66 | (65.3%) | -0.2]
Cellular Collagen containing | GSEA 287 0.292 19.5% | 2.26e- - | 103 -0.67 [-
component | extracellular matrix (408) 06 1.64 | (49.5%) | 1.54,-0.21]
Extracellular matrix GSEA 346 0.474 17.9% | 4.3%- - | 116 -0.66 [-
(531) 06 159 | (46.6%) | 1.54,-0.21]
Mitochondrial GSEA 444 0.406 22.3% | 6.63e- - | 141 -0.5 [-1.49,
matrix (471) 06 153 | (62.4%) | -0.15]
Molecular | Extracellular matrix GSEA 126 0.215 26.2% | 0.004 - | 46 -0.72 [-
function structural constituent (165) 1.63 | (67.4%) | 1.54,-0.25]
Oxidoreductase GSEA 85 0.678 27.1% | 0.007 -1 31 -0.6 [-1.23,
activity acting on (107) 165 | (67.7%) | -0.2]
nadph
Structural molecule GSEA 482 0.399 19.5% | 1.16e- - | 145 -0.59 [-
activity (670) 06 155 | (50.3%) | 1.54,-0.24]
Cellular Golgi lumen Rank 48 0.018 22.9% | 0.243 -1 9 -1.32 [-
component (100) 1.45 | (66.7%) | 4.22,-0.7]
Oxidoreductase Rank 95 0.028 33.7% | 0.100 - |37 -0.61 [-
complex (115) 1.45 | (73%) 2.21, -0.22]

a Consensus significance indicates agreement between directional (GSEA) and non-directional (Rank) hypothesis test of
overrepresentation (see methods for details). P Indicates number identified genes in gene set and total number of gene in
gene set in parentheses. ¢ Rank-based enrichment test based on minimum significant difference identifies gene-sets that
are over-represented among top-ranked genes without a directional hypothesis. ¢ Fraction of genes in gene set with
unadjusted 95% Cl not spanning zero i.e. minimum significant difference (MSD) > 0. € Gene-set enrichment analysis (GSEA)
tests for over-representation among top and bottom genes based on Log; fold-changes x -logio(P-values) in comparing
changes from pre-RCT to pre-intro RT (A) in A vitamin D3 (n = 11) to A placebo arm (n = 13). Positive normalized enrichment
scores (NES) indicates gene sets with higher expression in post-intro resistance training (RT) or Post-RCT compared to pre-
intro RT, negative NES indicates gene sets with lower expression at respective time-points. f Number of genes in leading
edge (LE, genes that contributes to the enrichment score) with the fraction of leading edge genes with unadjusted 95% ClI
not spanning zero (MSD > 0). P-values are adjusted for FDR.



Table S6 Functional annotation analysis of placebo compared to Vitamin D; supplementation using
KEGG and Hallmark gene set collections

Database | Gene set Significance GSEA P-value® NES Rank P-value®

category?

Hallmark | Glycolysis Consensus 0.0222660 -1.416601 0.0035221
Oxidative Consensus 0.0000008 -1.705525 0.0164380
phosphorylation
Apical junction Consensus 0.0002589 -1.581541 0.0243787
Myogenesis GSEA 0.0000597 -1.621807 0.0801965
Spermatogenesis GSEA 0.0222660 1.608497 0.8502940
Adipogenesis Rank 0.2330750 -1.225707 0.0035221
Hypoxia Rank 0.5569932 -1.052236 0.0243832

KEGG Focal adhesion Consensus 0.0408189 -1.455807 0.0108574
Oxidative Consensus 0.0005303 -1.718086 0.0306703
phosphorylation
Parkinsons disease Consensus 0.0129755 -1.610688 0.0306703
Alzheimers disease Consensus 0.0274953 -1.533430 0.0328614
Ecm receptor interaction | GSEA 0.0129755 -1.679383 0.1129705
Pathogenic escherichia GSEA 0.0361533 -1.623002 0.2248120
coli infection

2 Consensus significance indicates agreement between directional (GSEA) and non-directional (Rank)
hypothesis test of overrepresentation (see methods for details). ® Gene-set enrichment analysis (GSEA) tests for
over-representation among top and bottom genes based on Log: fold-changes x -logio(P-values) in comparing
changes from pre-RCT to pre-intro RT (A) in A vitamin D3 (n = 11) to A placebo arm (n = 13). € Rank-based
enrichment test based on minimum significant difference identifies gene-sets that are over-represented among
top-ranked genes without a directional hypothesis. P-values are adjusted for FDR.



Table S7 Genes identified as differentially expressed between Vitamin D; after the
supplementation period (Time x Treatment)

Ensembl gene ID Gene Log fold- SE Z- | P-value | Adjusted P- Uniformity (P-
Symbol change value value? value)?
ENSG00000145819 | ARHGAP26 0.45 0.08 | 5.405 | 6.49e-08 | 9.49e-04 0.993
ENSG00000184898 | RBM43 0.50 0.10 | 5.285 | 1.26e-07 | 9.49e-04 0.826
ENSG00000170619 | COMMDS5 -0.74 0.15 | -5.021 | 5.14e-07 | 0.002 0.939
ENSG00000012211 | PRICKLE3 -0.70 0.14 | -4.874 | 1.10e-06 | 0.003 0.517
ENSG00000276023 | DUSP14 -0.63 0.13 | -4.806 | 1.54e-06 | 0.003 0.381
ENSG00000113916 | BCL6 0.57 0.12 | 4.694 | 2.68e-06 | 0.004 0.916
ENSG00000241399 | CD302 0.54 0.12 | 4.625 | 3.74e-06 | 0.005 0.947
ENSG00000122884 | PAHAL 0.40 0.09 | 4.464 | 8.04e-06 | 0.010 0.807
ENSG00000117410 | ATP6VOB -0.40 0.09 | -4.308 | 1.65e-05 | 0.016 0.967
ENSG00000167772 | ANGPTL4 -1.57 0.37 | -4.285 | 1.83e-05 | 0.016 0.878
ENSG00000072657 | TRHDE 0.87 0.21 | 4.254 | 2.10e-05 | 0.018 0.781
ENSG00000112394 | SLC16A10 0.42 0.10 | 4.177 | 2.96e-05 | 0.020 0.509
ENSG00000184307 | ZDHHC23 -0.85 0.20 | -4.195 | 2.73e-05 | 0.020 0.924
ENSG00000248713 | C4orf54 0.47 0.11 | 4.186 | 2.84e-05 | 0.020 0.976
ENSG00000211899 | Not mapped? -1.52 0.37 | -4.141 | 3.47e-05 | 0.023 0.387
ENSG00000130402 | ACTN4 -0.57 0.14 | -4.116 | 3.85e-05 | 0.023 0.992
ENSG00000146278 | PNRC1 0.44 0.11 | 4.125 | 3.70e-05 | 0.023 0.904
ENSG00000279668 | Not mapped? 0.73 0.18 | 4.108 | 4.00e-05 | 0.023 0.797
ENSG00000145358 | DDIT4L 0.63 0.16 | 4.081 | 4.49e-05 | 0.024 0.583
ENSG00000156804 | FBXO032 0.56 0.14 | 4.070 | 4.71e-05 | 0.024 0.993
ENSG00000138379 | MSTN 0.60 0.15 | 4.036 | 5.44e-05 | 0.026 0.965
ENSG00000091136 | LAMB1 -0.39 0.10 | -4.004 | 6.23e-05 | 0.027 0.441
ENSG00000232079 | LINC01697 0.53 0.13 | 4.016 | 5.91e-05 | 0.027 0.157
ENSG00000250978 | Not mapped? 0.68 0.17 | 3.988 | 6.67e-05 | 0.027 0.283
ENSG00000013306 | SLC25A39 -0.79 0.20 | -3.958 | 7.56e-05 | 0.028 0.854
ENSG00000138376 | BARD1 0.38 0.10 | 3.940 | 8.16e-05 | 0.029 0.821
ENSG00000167553 | TUBALC -0.54 0.14 | -3.942 | 8.08e-05 | 0.029 0.683
ENSG00000164823 | OSGIN2 0.35 0.09 | 3.922 | 8.77e-05 | 0.029 0.489
ENSG00000149923 | PPP4C -0.65 0.17 | -3.896 | 9.80e-05 | 0.030 0.629
ENSG00000172890 | NADSYN1 -0.46 0.12 | -3.885 | 1.03e-04 | 0.031 0.642
ENSG00000143554 | SLC27A3 -0.72 0.19 | -3.866 | 1.10e-04 | 0.033 0.463
ENSG00000172493 | AFF1 0.36 0.09 | 3.853 | 1.17e-04 | 0.033 0.995
ENSG00000182492 | BGN -0.85 0.22 | -3.821 | 1.33e-04 | 0.036 0.901
ENSG00000138600 | SPPL2A 0.38 0.10 | 3.793 | 1.49e-04 | 0.038 0.843
ENSG00000266524 | GDF10 -0.90 0.24 | -3.796 | 1.47e-04 | 0.038 0.454
ENSG00000274180 | NATD1 -0.59 0.16 | -3.800 | 1.45e-04 | 0.038 0.823
ENSG00000099991 | CABIN1 -0.39 0.10 | -3.760 | 1.70e-04 | 0.041 0.569
ENSG00000156219 | ART3 0.36 0.10 | 3.736 | 1.87e-04 | 0.042 0.919
ENSG00000160783 | PMF1 -0.65 0.17 | -3.736 | 1.87e-04 | 0.042 0.870
ENSG00000113272 | THGIL 0.38 0.10 | 3.730 | 1.92e-04 | 0.042 0.885
ENSG00000007312 | CD79B -1.20 0.32 | -3.713 | 2.05e-04 | 0.042 0.689
ENSG00000115461 | IGFBP5 0.43 0.12 | 3.714 | 2.04e-04 | 0.042 0.552
ENSG00000125845 | BMP2 0.64 0.17 | 3.709 | 2.08e-04 | 0.042 0.691
ENSG00000197070 | ARRDC1 -0.90 0.24 | -3.720 | 1.99e-04 | 0.042 0.941
ENSG00000137727 | ARHGAP20 0.85 0.23 | 3.695 | 2.20e-04 | 0.043 0.509
ENSG00000159228 | CBR1 -0.54 0.15 | -3.701 | 2.15e-04 | 0.043 0.723
ENSG00000165915 | SLC39A13 -0.93 0.25 | -3.685 | 2.29e-04 | 0.044 0.738
ENSG00000176108 | CHMP6 -0.70 0.19 | -3.676 | 2.37e-04 | 0.045 0.926
ENSG00000224051 | CPTP -0.78 0.21 | -3.677 | 2.36e-04 | 0.045 0.748
ENSG00000069667 | RORA 0.47 0.13 | 3.671 | 2.42e-04 | 0.045 0.988
ENSG00000214970 | Not mapped? 0.59 0.16 | 3.664 | 2.49e-04 | 0.046 0.766
ENSG00000182809 | CRIP2 -1.35 0.37 | -3.647 | 2.66e-04 | 0.048 0.706
ENSG00000162989 | KCNJ3 0.66 0.18 | 3.635 | 2.77e-04 | 0.049 0.271
ENSG00000121068 | TBX2 -0.70 0.19 | -3.622 | 2.92e-04 | 0.050 0.967

2 p-values are adjusted for FDR. ® Raw P-values from simulation based tests of uniformity of residuals where
low values indicates problematic models (see methods). ¢ No official gene symbol available, not included in
enrichment analyses.



Table S8 Functional annotation analysis of resistance training effects averaged over treatment arms.

Comparison | Gene Gene ontology Significance | Set Rank | % GSEA | Norma | LEf Logz Fold-
ontology category? size® | P- MSD P- lized change in
category value® | >09 value® | enrich LE [min,

ment max]
score

Post-intro Biological Blood vessel Consensus 455 6.93e- | 51.2% | 4.94e- 1.38 | 126 0.52 [0.16,

RT vs. pre- process morphogenesis (686) | 18 04 (100%) | 2.1]

intro RT Extracellular Consensus 251 7.24e- | 59.8% | 7.78e- 154 | 94 0.66 [0.2,

structure (373) | 36 08 (100%) | 2.1]
organization
Inflammatory Consensus 436 4.23e- | 53.9% | 0.017 132 | 152 0.51[0.17,
response (765) | 23 (100%) | 1.89]
Leukocyte Consensus 272 1.26e- | 62.1% | 0.046 1.35 | 101 0.5[0.15,
migration (502) | 21 (100%) | 1.8]
Cellular Collagen Consensus 262 1.45e- | 62.2% | 6.59- 150 | 94 0.67 [0.2,
component | containing (408) | 37 07 (100%) | 2.08]
extracellular
matrix
Collagen trimer Consensus 54 1.31e- | 72.2% | 0.019 153 | 21 0.89 [0.39,
87) | 15 (100%) | 2.08]
External side of Consensus 184 1.31e- | 65.2% | 0.008 144 | 79 0.53[0.17,
plasma membrane (388) | 19 (100%) | 3.09]
Extracellular Consensus 321 8.26e- | 59.8% | 6.59e- 148 | 107 0.7[0.2,
matrix (531) | 42 07 (100%) | 2.08]
Side of membrane Consensus 324 2.20e- | 56.2% | 0.007 1.36 | 103 0.49 [0.15,
(582) | 16 (100%) | 3.09]
Molecular Extracellular Consensus 111 2.29e- | 67.6% | 8.67e- 158 | 45 0.8 [0.2,
function matrix structural (165) | 27 04 (100%) | 2.08]
constituent
Biological Nuclear GSEA 174 0.678 | 48.3% | 1.13e- -2.04 | 85 -0.17 [-0.49,
process transcribed mMRNA (208) 06 (84.7%) | -0.09]
catabolic process
Ribosome GSEA 268 1.000 | 38.4% | 2.19- -2.24 | 137 -0.14 [-0.54,
biogenesis (290) 10 (73%) -0.07]
RNA splicing via GSEA 311 0.941 | 49.2% | 1.33e- -2.08 | 138 -0.13[-0.3, -
transesterification (345) 08 (93.5%) | 0.05]
reactions
rRNA metabolic GSEA 204 1.000 38.2% | 5.82- -2.01 | 108 -0.13 [-0.31,
process (221) 06 (70.4%) | -0.07]
Translational GSEA 158 0.360 51.3% | 1.13e- -2.12 | 83 -0.17 [-0.4, -
initiation (192) 06 (86.7%) | 0.08]
Viral gene GSEA 167 0.807 | 47.9% | 4.97e- -191 | 85 -0.17 [-0.31,
expression (194) 05 (83.5%) | -0.08]
Cellular Ribosomal subunit | GSEA 158 1.000 | 44.3% | 1.26e- -1.98 | 77 -0.18 [-0.87,
component (186) 06 (81.8%) | -0.08]
Ribosome GSEA 196 1.000 42.3% | 6.59- -2.03 | 84 -0.18 [-0.87,
(228) 07 (83.3%) | -0.08]
Spliceosomal GSEA 169 0.950 | 52.1% | 1.13e- -1.78 | 83 -0.13 [-0.25,
complex (186) 04 (90.4%) | -0.05]
Molecular | Structural GSEA 132 0.992 | 47% 4.03e- -2.05 | 70 -0.17 [-0.31,
function constituent of (162) 05 (81.4%) | -0.08]
ribosome
Biological | Cell chemotaxis Rank 178 1.13e- | 59.6% | 0.066 139 | 66 0.56 [0.15,
process (306) | 14 (100%) | 1.8]
Collagen fibril Rank 36 2.14e- | 72.2% | 0.089 153 | 18 0.93[0.32,
organization (55) 14 (100%) | 2.08]
Leukocyte cell cell | Rank 210 2.84e- | 53.3% | 0.112 134 | 77 0.49 [0.17,
adhesion (343) | 13 (100%) | 1.78]
Lymphocyte Rank 430 5.72e- | 49.5% | 0.080 1.28 | 117 0.5[0.19,
activation (736) | 14 (100%) | 1.78]
Positive regulation | Rank 269 4.09- | 52% 0.139 129 | 72 0.53[0.17,
of cell adhesion (401) | 13 (100%) | 1.78]
Regulation of cell Rank 466 1.20e- | 48.1% | 0.057 1.27 | 120 0.5[0.17,
adhesion (695) | 14 (100%) | 1.78]
Response to Rank 434 4.09- | 50.7% | 0.051 1.29 | 108 0.47 [0.15,
wounding (687) | 13 (100%) | 2.08]
T cell activation Rank 291 5.86e- | 50.5% | 0.068 131 | 87 0.52[0.2,
(468) | 13 (100%) | 1.78]
Taxis Rank 407 1.54e- | 51.8% | 0.135 1.23 | 136 0.46 [0.15,
(652) | 14 (99.3%) | 1.8]
Molecular | Integrin binding Rank 108 8.32e- | 59.3% | 0.052 148 | 35 0.67 [0.2,
function (135) | 13 (100%) | 2.08]
Biological Blood vessel Consensus 455 1.56e- | 52.1% | 5.70e- 165 | 127 0.45 [0.16,
process morphogenesis (686) | 25 08 (100%) | 1.64]




Post-RCT Extracellular Consensus 251 5.53e- | 59.8% | 3.48e- 1.77 | 90 0.54 [0.16,
Vs. pre-intro structure (373) | 32 08 (100%) | 1.64]
RT organization
Leukocyte Consensus 272 1.36e- | 47.8% | 0.014 153 | 69 0.45 [0.16,
migration (502) | 10 (100%) | 1.35]
Regulation of Consensus 246 5.30e- | 52.8% | 5.51e- 164 | 70 0.440.17,
vasculature (425) | 13 04 (100%) | 1.64]
development
Cellular Basement Consensus 72 9.21e- | 61.1% | 0.006 172 | 23 0.62 [0.18,
component | membrane (95) 13 (100%) | 1.15]
Collagen Consensus 262 3.9le- | 52.7% | 3.48e- 177 | 77 0.59 [0.17,
containing (408) | 23 09 (100%) | 1.64]
extracellular
matrix
Collagen trimer Consensus 54 1.86e- | 57.4% | 0.003 169 | 21 0.69 [0.28,
(87) 10 (100%) | 1.53]
Extracellular Consensus 321 1.09e- | 52.6% | 4.67e- 1.74 | 90 0.6 [0.17,
matrix (531) | 26 09 (100%) | 1.64]
Molecular Extracellular Consensus 111 1.65e- | 64% 5.84e- 1.78 | 40 0.67 [0.18,
function matrix structural (165) | 22 05 (100%) | 1.64]
constituent
Extracellular Consensus 28 2.79%- | 67.9% | 0.042 162 | 14 0.79 [0.42,
matrix structural (41) 10 (100%) | 1.53]
constituent
conferring tensile
strength
Biological mRNA processing | GSEA 452 1.000 | 43.4% | 1.13e- -1.80 | 167 -0.13 [-0.33,
process (503) 07 (95.8%) | -0.06]
NcRNA metabolic | GSEA 424 1.000 34.4% | 6.67e- -1.72 | 118 -0.15 [-0.37,
process (471) 06 (93.2%) | -0.08]
NcRNA GSEA 346 1.000 35.8% | 6.41e- -1.81 | 108 -0.15 [-0.37,
processing (378) 07 (93.5%) | -0.08]
Ribonucleoprotein | GSEA 383 0.983 | 41.3% | 2.16e- -211 | 141 -0.16 [-0.38,
complex (419) 15 (96.5%) | -0.07]
biogenesis
Ribosome GSEA 268 1.000 38.8% | 2.34e- -2.07 | 90 -0.17 [-0.38,
biogenesis (290) 09 (97.8%) | -0.08]
RNA catabolic GSEA 339 0.064 472% | 1.24e- -1.86 | 107 -0.21 [-0.44,
process (404) 07 (100%) | -0.09]
RNA splicing GSEA 390 0.971 45.6% | 5.29- -1.91 | 156 -0.13 [-0.33,
(433) 10 (95.5%) | -0.06]
RNA splicing via GSEA 311 0.865 47.6% | 3.15e- -1.94 | 132 -0.13 [-0.33,
transesterification (345) 09 (97%) -0.06]
reactions
rRNA metabolic GSEA 204 1.000 38.2% | 6.67e- -1.93 | 79 -0.15 [-0.37,
process (221) 06 (91.1%) | -0.07]
Cellular Spliceosomal GSEA 169 0.675 | 51.5% | 1.68e- -1.98 | 68 -0.14 [-0.33,
component | complex (186) 05 (100%) | -0.08]
Biological | Cell substrate Rank 262 1.19- | 48.9% | 0.144 140 | 54 0.45[0.17,
process adhesion (348) | 09 (100%) | 1.53]
Collagen fibril Rank 36 7.77e- | 72.2% | 0.076 1.60 | 17 0.75[0.25,
organization (55) 12 (100%) | 1.53]
Epithelial cell Rank 289 1.37e- | 46.4% | 0.079 146 | 62 0.45 [0.16,
proliferation (441) | 10 (100%) | 1.33]
Positive regulation | Rank 269 1.38e- | 46.8% | 0.256 129 | 72 0.39 [0.17,
of cell adhesion (401) | 08 (100%) | 1.35]
Positive regulation | Rank 411 5.47e- | 46.7% | 0.074 138 | 91 0.411[0.17,
of locomotion (604) | 11 (100%) | 1.35]
Regulation of cell Rank 466 5.55e- | 45.5% | 0.122 132 | 114 0.39 [0.16,
adhesion (695) | 11 (100%) | 1.35]
Taxis Rank 407 4.06e- | 46.4% | 0.075 1.37 | 108 0.41[0.13,
(652) | 10 (99.1%) | 1.25]
Molecular | Cell adhesion Rank 403 4.33e- | 45.4% | 0.078 1.38 | 68 0.47 [0.17,
function molecule binding (501) | 08 (100%) | 1.53]
Integrin binding Rank 108 6.13e- | 52.8% | 0.096 150 | 31 0.56 [0.17,
(135) | 11 (100%) | 1.53]
Structural Rank 433 2.48e- | 51.7% | 0.078 1.37 | 56 0.62 [0.18,
molecule activity (670) | 19 (100%) | 1.64]

a Consensus significance indicates agreement between directional (GSEA) and non-directional (Rank) hypothesis test of
overrepresentation (see methods for details). P Indicates number identified genes in gene set and total number of gene in
gene set in parentheses. ¢, rank-based enrichment test based on minimum significant difference identifies gene-sets that
are over-represented among top-ranked genes without a directional hypothesis. ¢ Fraction of genes in gene set with
unadjusted 95% Cl not spanning zero i.e. minimum significant difference (MSD) > 0. ¢, Gene-set enrichment analysis (GSEA)
tests for over-representation among top and bottom genes based on Log; fold-changes x -logio(P-values) in time-point with
effects averaged over treatment arms (n = 53). Positive normalized enrichment scores (NES) indicates gene sets with higher
expression in post-intro resistance training (RT) or post-RCT compared to pre-intro RT, negative NES indicates gene sets



with lower expression at respective time-points. f Number of genes in leading edge (LE, genes that contributes to the
enrichment score) with the fraction of leading edge genes with unadjusted 95% Cl not spanning zero (MSD > 0). P-values
are adjusted for FDR.



Table S9 Functional annotation analysis time-effect between vitamin D3 and placebo treatment

Comparison | Gene Gene ontology | Significance | Set Rank | % GSEA | Normalized | LEf Logz Fold-
ontology category?® size® | P- MSD P- enrichment change in
category value® | >0¢ value® score LE [min,

max]

Post-intro Biological | Acetyl coa GSEA 33 0.859 | 6.1% 0.038 -194 | 3 -1.05 [-2.62,

RT: Vitamin | process metabolic (38) (66.7%) | -0.2]

Ds process

vs. placebo Blood vessel GSEA 452 0612 | 51% 0.013 163 | 75 0.34[0.12,

morphogenesis (686) (24%) 0.94]

Cell cell GSEA 136 0.750 6.6% 0.030 1.76 | 30 0.33[0.1,
junction (188) (30%) 1.35]
organization

Cell junction GSEA 231 0.907 | 5.2% 0.030 169 | 43 0.32[0.1,
organization (293) (25.6%) | 1.35]
Muscle cell GSEA 280 0.753 5.7% 0.037 163 | 35 0.43[0.12,
differentiation (383) (34.3%) | 1.35]
Muscle system | GSEA 342 0.909 4.7% 0.030 160 | 34 0.46 [0.18,
process (470) (32.4%) | 1.39]
Striated GSEA 213 0.760 6.1% 0.030 1.70 | 32 0.42[0.11,
muscle cell (291) (31.2%) | 1.35]
differentiation

Thioester GSEA 85 1.000 | 2.4% 0.030 -1.92 | 3 -1.05 [-2.62,
metabolic (105) (66.7%) | -0.2]
process

Tissue GSEA 233 0.938 | 3.4% 0.037 164 | 33 0.34[0.12,
migration (363) (21.2%) | 1.39]
Heterophilic Rank 27 0.018 18.5% | 0.432 148 | 6 0.69 [0.26,
cell cell (46) (66.7%) | 1.35]
adhesion via

plasma

membrane cell

adhesion

molecules

Negative Rank 465 0.018 5.4% 0.075 148 | 68 0.37 [0.13,
regulation of (750) (26.5%) | 1.2]

cell

differentiation

Negative Rank 36 0.014 16.7% | 0.825 1.08 | 16 0.3[0.1,
regulation of (44) (25%) 0.62]
notch signaling

pathway

Regulation of Rank 76 0.018 | 13.2% | 0.840 1.05 | 14 0.38 [0.22,
notch signaling (107) (35.7%) | 0.62]
pathway

Post-RCT: Blood vessel Consensus 452 0.002 | 9.5% 9.78e- 1.79 | 135 0.31[0.12,

Vitamin D3 morphogenesis (686) 08 (28.1%) | 1.27]

vs. placebo Endothelial Consensus 115 0.046 10.4% | 0.032 160 | 33 0.31[0.14,

cell (191) (30.3%) | 0.68]
proliferation

Establishment Consensus 31 0.022 22.6% | 0.031 166 | 12 0.28 [0.15,
of endothelial (43) (58.3%) | 0.44]
barrier

Actin filament GSEA 299 0.481 7.7% 1.73e- 173 | 72 0.3[0.11,
organization (393) 04 (25%) 0.95]

Cell junction GSEA 231 0.614 7.4% 5.48e- 1.80 | 62 0.3[0.12,
organization (293) 05 (24.2%) | 0.78]
Endothelial GSEA 170 0.691 7.1% 2.64e- 179 | 56 0.26 [0.13,
cell migration (275) 04 (21.4%) | 0.7]
Extracellular GSEA 251 0.730 6.4% 2.64e- 173 | 79 0.3[0.11,
structure (373) 04 17.7%) | 1.27]
organization

Leukocyte GSEA 275 0.155 | 8.7% 2.06e- 172 | 63 0.35[0.13,
migration (502) 04 (33.3%) | 0.95]
Lymphocyte GSEA 429 0.813 5.6% 5.48e- 168 | 89 0.35 [0.15,
activation (736) 05 (20.2%) | 0.77]
Regulation of GSEA 354 0.735 6.2% 1.91e- 168 | 79 0.34 [0.15,
cell activation (619) 04 (21.5%) | 0.76]
Regulation of GSEA 273 0.640 6.2% 2.64e- 1.71 | 63 0.3[0.11,
supramolecular (351) 04 (23.8%) | 0.95]

fiber

organization

Regulation of GSEA 244 0.083 10.2% | 3.63e- 171 | 77 0.29 [0.14,
vasculature (425) 04 (29.9%) | 0.88]
development

Tcell GSEA 292 0.876 | 6.5% 2.64e- 171 | 60 0.36 [0.15,
activation (468) 04 (25%) 0.77]




Negative Rank 36 0.041 | 16.7% | 0.268 144 | 16 0.36 [0.17,
regulation of (44) (31.2%) | 0.75]
notch signaling

pathway

Regulation of Rank 76 0.037 | 10.5% | 0.236 141 | 16 0.41[0.19,
notch signaling (107) (43.8%) | 0.75]
pathway

2 Consensus significance indicates agreement between directional (GSEA) and non-directional (Rank) hypothesis test of
overrepresentation (see methods for details). P Indicates number identified genes in gene set and total number of gene in
gene set in parentheses. ¢, rank-based enrichment test based on minimum significant difference identifies gene-sets that
are over-represented among top-ranked genes without a directional hypothesis. ¢ Fraction of genes in gene set with
unadjusted 95% Cl not spanning zero i.e. minimum significant difference (MSD) > 0. ¢, Gene-set enrichment analysis (GSEA)
tests for over-representation among top and bottom genes based on Log; fold-changes x -logio(P-values) in comparing
changes over time (A) in A vitamin D3 (n = 24) to A placebo arm (n = 29). Positive normalized enrichment scores (NES)
indicates gene sets with higher expression in post-intro resistance training (RT) or Post-RCT compared to pre-intro RT,
negative NES indicates gene sets with lower expression at respective time-points. f Number of genes in leading edge (LE,
genes that contributes to the enrichment score) with the fraction of leading edge genes with unadjusted 95% ClI not
spanning zero (MSD > 0). P-values are adjusted for FDR.



Table $10 Functional annotation analysis of placebo compared to Vitamin D3 supplementation
combined with training using KEGG and Hallmark gene set collections

Comparison Database | Gene set Significance GSEAP- | NES | Rank P-
category? valueP? value®
Post-intro RT: Vitamin | Hallmark | Apical junction GSEA 0.008 1.65 | 0.274
D3 vs. placebo
Post-RCT: Vitamin D3 Coagulation GSEA 0.007 1.70 | 1.000
vs. placebo Epithelial mesenchymal GSEA 0.007 1.60 | 1.000
transition
KEGG Cytokine cytokine GSEA 0.010 1.65 | 0.201
receptor interaction
Leukocyte GSEA 0.008 1.73 | 0.201
transendothelial migration
Chemokine signaling GSEA 0.010 1.66 | 1.000
pathway
Ecm receptor interaction GSEA 0.019 1.67 | 1.000
Fc gamma r mediated GSEA 0.019 1.69 | 1.000
phagocytosis
Focal adhesion GSEA 0.008 1.65 | 1.000
Natural killer cell GSEA 0.026 1.60 | 1.000
mediated cytotoxicity
Regulation of actin GSEA 0.019 1.57 | 1.000
cytoskeleton

2 Consensus significance indicates agreement between directional (GSEA) and non-directional (Rank)
hypothesis test of overrepresentation (see methods for details). ® Gene-set enrichment analysis (GSEA) tests for
over-representation among top and bottom genes based on Log: fold-changes x -logio(P-values) in comparing
changes from pre-intro RT to Post-RCT (A) in A vitamin D3 (n = 24) to A placebo arm (n = 29). © Rank-based
enrichment test based on minimum significant difference identifies gene-sets that are over-represented among
top-ranked genes without a directional hypothesis. P-values are adjusted for FDR.



Table S11 Blood and health variables

Vitamin D3 arm Placebo arm
Baseline Post-RCT Baseline Post-RCT Time effect (p < Vitamin D; vs placebo
0.05) arm (p-value)

Dual-energy x-ray absorptiometry

Whole-body bone mineral 1.15(0.16) 1.15(0.16) 1.14 (0.18) 1.13 (0.18) No 0.476

density (g - cm?)

Total lean mass (kg) 47.7 (11.1) 48.2 (11.1) 47.7 (9.0) 48.4(9.2) Yes (1) 0.498

Total fat mass 25.6 (8.5) 25.0(7.9) 25.6 (11.2) 24.9 (11.3) Yes () 0.654

Visceral fat (gram) 1411 (1004) 1296 (906) 1124 (988) 1060 (1011) Yes (V) 0.865
Hormones

Cortisol (nmol - L) 367 (89) 378 (79) 356 (95) 339 (119) No 0.038

Growth hormone (ug - L?) 1.04 (1.51) 1.40 (1.59) 1.38 (1.73) 1.22 (2.36) No 0.985

IGF-1 (nmol - LY) 14.1 (3.6) 13.5(3.3) 14.8 (2.9) 143 (3.7) No 0.971

Testosterone (nmol - L) * 10.8 (2.4) 12.1(3.1) 12.1(4.7) 12.0 (4.0) No 0.832

Sex-hormone binding globulin 57 (22) 59 (23) 61(27) 61 (27) No 0.453

(nmol - L)

Androstenedione (nmol - L?) 4.0 (2.5) 4.3(2.9) 3.4 (1.5) 3.3(1.8) No 0.507

Parathyroid hormone

(pmol - L) 5.5(2.2) 4.8 (1.5) 5.9(2.3) 5.8(2.8) Yes () 0.145
Lipid profile variables

Triglycerides (mmol - L) 1.26 (0.42) 1.20 (0.59) 1.15(0.57) 1.02 (0.54) Yes (1) 0.659

HDL (mmol - L) 1.69 (0.54) 1.65 (0.50 1.76 (0.47) 1.75 (0.49) No 0.570

LDL (mmol - L) 3.3(1.0) 3.0(0.8) 3.4(1.0) 3.3(1.0) Yes (V) 0.752
Iron biology variables

Fe?* (umol L?) 21.3 (4.7) 17.5 (5.9) 20.1(5.2) 17.7 (4.9) Yes (V) 0.718

Transferrin (g L) 2.50(0.25) 2.48 (0.30) 2.42 (0.36) 2.43 (0.40) No 0.782

Ferritin (pug L?) 135 (78) 116 (71) 155 (91) 126 (75) Yes (1) 0.912
Calcium status

Calcium (mmol - L) 2.38(0.11) 2.39(0.11) 2.36 (0.08) 2.37(0.08) No 0.410

Albumin-corrected calcium 2.28 (0.12) 2.28 (0.11) 2.27 (0.07) 2.30(0.09) No 0.149

(mmol - L)
Renal function

Creatinine (umol - L) 77.8 (17.8) 82.0 (19.6) 80.3 (22.2) 85.0 (24.7) Yes (1) 0.542
Tissue damage variables

(‘Lsrﬁ’ifsrt_af_‘f)"a”“m'"ase 28.1(11.5) 24.9(6.7) 28.4(9.8) 25.2 (6.4) Yes () 0.794

Creatine kinase (units - L) 168 (148) 126 (85) 172 (192) 124 (60) Yes (V) 0.455
Self-reported health

Avg. score per week (0-10) 6.3 (1.2) 6.6 (1.5) Yes (1) 0.433

For assessing the efficacy of vitamin D3 supplementation, mixed models with change scores as the dependent variable and baseline
values as a covariate was performed. For self-reported health, an independent t-test was performed for the same purpose. *, men-

only were included in the testosterone analysis. Alpha level at p < 0.05. Values are means with standard deviation.

For the general health benefits of the intervention, the -6 % reductions in triglyceride levels and the -4 %
reductions of LDL in serum are of particular interest (with no changes being observed for HDL). This lowered the number of
participants with diagnostically elevated LDL levels (2 4.1 mmol - L})! from 17 to 13, emphasizing the potential benefits of
resistance training for lipid profiles, as has previously been shown to be equivocal.?® This was accompanied by -2.7 % reductions in
whole-body fat mass and -5.9 % reductions in visceral fat mass. The observed reduction in visceral fat mass is noteworthy, as its
relative change was 2.1-fold greater than the change in overall fat mass, though they were largely correlated (Pearson’s r = 0.70; p
< 0.001). This is not an uncommon observation4® and suggests that resistance training leads to targeted metabolism of visceral fat.
Overall, these data support the notion that resistance training is an effective strategy for improving long-term cardiovascular

health.>?

The intervention was associated with alterations in serum levels of markers of iron biology. Specifically, serum
levels of Fe?* and ferritin decreased (-12 % and -16 %, respectively), while levels of transferrin remained unchanged (-0.4 %).
Speculatively, this may have affected biological processes such as hemoglobin production and the oxygen-carrying capacity of
blood, which was not measured. However, no traces of such adverse effects were found in maximal oxygen uptake (Table S2),
which did not change over the course of the training intervention and is known to be closely correlated with total hemoglobin
mass.8 The observed alteration in iron biology may have been due to the daily intake of 500 mg calcium in both supplementation

arms, which is known to exert negative effects on iron absorption in humans.® The rationale behind including calcium

supplementation as part of the study protocol was to ensure sufficient levels of calcium in both supplementation arms, facilitating

potential accretion of bone in response to resistance training, particularly so in the vitamin D3 arm.

Serum levels of markers of muscle tissue damage (creatine kinase and aspartate aminotransferase) decreased
during the intervention. This may have been affected by pre-RCT testing, as these were performed during the week preceding
blood sampling, and may have contributed to increased levels of creatine kinase and aspartate aminotransferase.'® Such responses
are typically upon frequent conduction of exercise.1t
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Supplementary Table 2. Genes identified as differentially expressed at baseline between
COPD and Healthy in genome-wide transcriptome analyses (RNA-seq). RNA-seq analyses
were performed as previously described.t4

Ensembl gene ID  Gene Symbol Log fold-change SE Z-value P-value Adjusted P-value?
ENSG00000146416 AIG1 -0.48 0.08 -6.025  1.69e-09 2.56e-05
ENSG00000112796 ENPP5 -0.57 0.10 -5.556  2.75e-08 5.81e-05
ENSG00000137942 FNBP1L -0.37 0.07 -5.537  3.08e-08 5.81e-05
ENSG00000143507 DUSP10 0.44 0.08 5.612 2.00e-08 5.81e-05
ENSG00000146477 SLC22A3 0.88 0.16 5.555 2.78e-08 5.81e-05
ENSG00000152782 PANK1 -0.44 0.08 -5.601  2.14e-08 5.81e-05
ENSG00000189067 LITAF 0.56 0.10 5.585 2.34e-08 5.81e-05
ENSG00000205678 TECRL -0.67 0.12 -5.620  1.91e-08 5.81e-05
ENSG00000102007 PLP2 0.50 0.09 5.495 3.91e-08 5.90e-05
ENSG00000133816 MICAL2 0.44 0.08 5.478 4.31e-08 5.91e-05
MICALCL 0.44 0.08 5.478 4.31e-08 5.91e-05
ENSG00000120658 ENOX1 0.80 0.15 5.397 6.78e-08 8.16e-05
ENSG00000150722 PPP1R1C -0.71 0.13 -5.391  7.02e-08 8.16e-05
ENSG00000113448 PDE4D 0.42 0.08 5.355 8.55e-08 9.22e-05
ENSG00000048052 HDAC9 -0.59 0.11 -5.242  1.59e-07 1.26e-04
ENSG00000105835 NAMPT -0.38 0.07 -5.253  1.50e-07 1.26e-04
ENSG00000136040 PLXNC1 -0.52 0.10 -5.251  1.51e-07 1.26e-04
ENSG00000073910 FRY -0.43 0.08 -5.225  1.74e-07 1.31e-04
ENSG00000151746 BICD1 -0.61 0.12 -5.172  2.31e-07 1.65e-04
ENSG00000267296 CEBPA-DT 0.56 0.11 5.165 2.40e-07 1.65e-04
ENSG00000225549 Not mapped®  -0.92 0.18 -5.146  2.66e-07 1.73e-04
ENSG00000198729 PPP1R14C 0.44 0.09 5.126 2.96e-07 1.79-04
ENSG00000237301 Not mapped®  0.92 0.18 5.095 3.48e-07 1.95e-04
ENSG00000091879 ANGPT2 0.65 0.13 4.990 6.04e-07 2.95e-04
ENSG00000151276 MAGI1 -0.36 0.07 -4.994  5.90e-07 2.95e-04
ENSG00000196152 ZNF79 0.43 0.09 4.989 6.06e-07 2.95e-04
ENSG00000183625 CCR3 -0.96 0.20 -4.927  8.37e-07 3.83e-04
ENSG00000140416 TPM1 0.46 0.09 4871 1.11e-06 4.78e-04
ENSG00000130595 TNNT3 0.41 0.08 4.856 1.20e-06 5.02e-04
ENSG00000186352 ANKRD37 0.59 0.12 4.849 1.24e-06 5.07e-04
ENSG00000099194 SCD 1.04 0.22 4.797 1.61e-06 6.40e-04
ENSG00000107282 APBA1 -0.43 0.09 -4.768  1.86e-06 7.20e-04
ENSG00000154814 OXNAD1 -0.40 0.08 -4.762  1.92e-06 7.25e-04
ENSG00000132953 XPO4 -0.54 0.11 -4.727  2.28e-06 7.82e-04
ENSG00000123700 KCNJ2 0.42 0.09 4.668 3.04e-06 9.50e-04
ENSG00000133794 ARNTL 0.54 0.12 4.665 3.09e-06 9.50e-04
ENSG00000164197 RNF180 -0.35 0.08 -4.616  3.91e-06 0.001
ENSG00000144668 ITGA9 0.38 0.08 4.611 4.01e-06 0.001
ENSG00000137804 NUSAP1 0.37 0.08 4.601 4.20e-06 0.001
ENSG00000143549 TPM3 -0.44 0.10 -4.552  5.32e-06 0.001
ENSG00000226306 NPY6R -0.52 0.11 -4.548  5.41e-06 0.001
ENSG00000116741 RGS2 0.70 0.15 4.544 5.51e-06 0.001
ENSG00000159884 CCDC107 0.43 0.10 4538 5.68e-06 0.001
ENSG00000184588 PDE4B 0.45 0.10 4521 6.16e-06 0.002
ENSG00000134986 NREP -0.48 0.11 -4.513  6.39e-06 0.002
ENSG00000105612 DNASE2 0.51 0.11 4.499 6.84e-06 0.002
ENSG00000066382 MPPED2 -0.48 0.11 -4.489  7.15e-06 0.002
ENSG00000147010 SH3KBP1 -0.36 0.08 -4.469  7.85e-06 0.002
ENSG00000108342 CSF3 -1.16 0.26 -4.407  1.05e-05 0.002
ENSG00000138061 CYP1B1 0.47 0.11 4.404 1.06e-05 0.002

ENSG00000162493 PDPN 0.35 0.08 4.408 1.04e-05 0.002



Ensembl gene ID  Gene Symbol
ENSG00000196526 AFAP1
ENSG00000225613 Not mapped®
ENSG00000249464 LINC01091
ENSG00000139998 RAB15
ENSG00000138688 KIAA1109
ENSGO00000174437 ATP2A2
ENSG00000119771 KLHL29
ENSG00000134569 LRP4
ENSG00000182985 CADM1
ENSG00000139209 SLC38A4
ENSG00000079156 OSBPL6
ENSGO00000077150 NFKB2
ENSG00000163071 SPATA18
ENSG00000180209 MYLPF
ENSG00000108960 MMD
ENSGO00000176909 MAMSTR
ENSG00000138759 FRAS1
ENSG00000186047 DLEU7
DLEU1-AS1
ENSG00000164649 CDCA7L
ENSG00000156265 MAP3K7CL
ENSG00000060656 PTPRU
ENSG00000162552 WNT4
ENSG00000197442 MAP3K5
ENSG00000223749 Not mapped®
ENSG00000175567 UCP2
ENSG00000087903 RFX2
ENSG00000138411 HECW2
ENSG00000233621 LINC01137
ENSG00000260337 Not mapped®
ENSG00000163823 CCR1
ENSG00000106070 GRB10
ENSG00000174791 RIN1
ENSG00000196440 ARMCX4
ENSG00000111602 TIMELESS
ENSG00000144908 ALDH1L1
ENSG00000166833 NAV2
ENSG00000101306 MYLK2
ENSG00000285820 Not mapped”
ENSG00000129910 CDH15
ENSG00000254901 BORCS8
ENSG00000158486 DNAH3
ENSG00000260391 Not mapped®
ENSG00000105327 BBC3
ENSG00000183010 PYCR1
ENSG00000226833 LOC100505774
LOC112267877
ENSG00000109061 MYH1
ENSG00000089101 CFAP61
ENSG00000168334 XIRP1
ENSG00000178752 ERFE
ENSG00000272734 Not mapped”
ENSG00000105339 DENND3
ENSGO00000115129 TP53I3
ENSG00000169710 FASN
ENSG00000169515 CCDC8

Log fold-change SE

0.51
1.14
0.67
0.53
-0.36
-0.44
0.53
0.41
-0.35
0.49
0.37
0.42
0.52
0.44
0.35
0.52
-0.37
0.93
0.93
-0.44
0.48
0.52
0.72
-0.40
1.35
0.44
0.56
-0.50
0.67
0.76
-0.65
-0.39
0.96
0.40
0.39
0.42
-0.40
0.35
143
0.35
0.37
-0.84
1.47
0.72
0.66
-0.51
-0.51
0.68
0.52
0.42
0.83
0.43
-0.35
0.65
0.78
0.72

0.12
0.26
0.15
0.12
0.08
0.10
0.12
0.09
0.08
0.11
0.08
0.10
0.12
0.10
0.08
0.12
0.09
0.22
0.22
0.10
0.11
0.12
0.17
0.09
0.32
0.11
0.13
0.12
0.16
0.18
0.16
0.09
0.23
0.10
0.10
0.10
0.10
0.09
0.35
0.09
0.09
0.22
0.37
0.19
0.17
0.13
0.13
0.18
0.13
0.11
0.21
0.11
0.09
0.17
0.20
0.19

Z-value
4.416
4.407
4.398
4.385
-4.362
-4.361
4.351
4.350
-4.352
4.344
4.340
4.333
4.323
4.315
4.302
4.297
-4.251
4.249
4.249
-4.239
4.221
4.214
4.193
-4.190
4.187
4.154
4.135
-4.134
4.137
4.133
-4.127
-4.121
4.108
4.105
4.100
4.095
-4.093
4.079
4.076
3.984
3.975
-3.922
3.921
3.903
3.898
-3.892
-3.892
3.889
3.878
3.857
3.851
3.853
-3.847
3.837
3.838
3.827

P-value

1.01e-05
1.05e-05
1.09e-05
1.16e-05
1.29e-05
1.30e-05
1.35e-05
1.36e-05
1.35e-05
1.40e-05
1.42e-05
1.47e-05
1.54e-05
1.59¢e-05
1.69e-05
1.73e-05
2.13e-05
2.15e-05
2.15e-05
2.25e-05
2.43e-05
2.51e-05
2.76e-05
2.78e-05
2.82e-05
3.27e-05
3.55e-05
3.57e-05
3.52e-05
3.57e-05
3.67e-05
3.77e-05
3.99-05
4.05e-05
4.14e-05
4.22e-05
4.25e-05
4.51e-05
4.58e-05
6.76e-05
7.05e-05
8.79-05
8.82e-05
9.50e-05
9.69e-05
9.93e-05
9.93e-05
1.01e-04
1.05e-04
1.15e-04
1.17e-04
1.17e-04
1.20e-04
1.24e-04
1.24e-04
1.30e-04

Adjusted P-value?
0.002
0.002
0.002
0.002
0.002
0.002
0.002
0.002
0.002
0.002
0.002
0.002
0.003
0.003
0.003
0.003
0.003
0.003
0.003
0.003
0.003
0.003
0.004
0.004
0.004
0.004
0.004
0.004
0.004
0.004
0.004
0.004
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.007
0.007
0.008
0.008
0.009
0.009
0.009
0.009
0.009
0.009
0.010
0.010
0.010
0.010
0.010
0.010
0.010



Ensembl gene ID  Gene Symbol
ENSG00000176749 CDK5R1
ENSG00000109771 LRP2BP
ENSG00000068724 TTC7A
ENSG00000138615 CILP
ENSG00000109321 AREG
ENSG00000157330 C1orf158
ENSG00000196296 ATP2A1
ENSG00000228526 MIR34AHG
ENSGO00000161513 FDXR
ENSG00000174032 SLC25A30
ENSG00000104147 OIP5
ENSG00000205106 LINC02716
ENSG00000099999 RNF215
ENSG00000196482 ESRRG
ENSG00000267080 ASB16-AS1
ENSG00000205959 Not mapped®
ENSG00000138835 RGS3
ENSG00000184545 DUSP8
ENSGO00000137193 PIM1
ENSG00000262468 Not mapped®
ENSG00000023171 GRAMD1B
ENSG00000146166 LGSN
ENSG00000147256 ARHGAP36
ENSG00000159259 CHAF1B
ENSG00000124587 PEX6
ENSG00000215018 COL28A1
ENSG00000139292 LGRS
ENSG00000099308 MAST3
ENSG00000102468 HTR2A
ENSG00000110660 SLC35F2
ENSG00000089847 ANKRD24
ENSG00000118515 SGK1
ENSG00000124935 SCGB1D2
ENSG00000163492 CCDC141
ENSG00000184349 EFNA5
ENSG00000064655 EYA2
ENSG00000091513 TF
ENSG00000138379 MSTN
ENSG00000184347 SLIT3
ENSG00000235070 Not mapped®
ENSG00000163879 DNALI1
ENSG00000119969 HELLS
ENSG00000175489 LRRC25
ENSG00000185105 MYADML2
ENSG00000104313 EYAL
ENSG00000258647 Not mapped®
ENSG00000260604 Not mapped®
ENSG00000278464 Not mapped”
ENSG00000075240 GRAMD4
ENSG00000086967 MYBPC2
ENSG00000145626 UGT3AL
ENSG00000161036 LRWD1
ENSG00000212907 ND4L
ENSG00000198915 RASGEF1A
ENSG00000106992 AK1

Log fold-change SE

0.40
0.44
0.43
0.40
112
1.58
0.43
0.48
0.62
-0.39
0.50
0.59
0.42
-0.38
0.36
0.39
-0.53
0.46
0.46
0.51
0.44
-1.09
0.78
0.36
0.44
0.35
-0.49
0.66
-0.81
0.54
0.70
0.44
-0.74
-0.44
0.60
0.60
0.43
0.47
0.36
-0.59
0.39
0.53
-0.57
0.36
-0.42
0.74
-0.63
0.43
0.37
0.41
0.41
0.51
-0.35
-0.62
0.40

ENSG00000277758 LOC102724488 0.89

0.11
0.12
0.11
0.11
0.30
0.42
0.11
0.13
0.16
0.10
0.13
0.16
0.11
0.10
0.10
0.11
0.14
0.12
0.13
0.14
0.12
0.30
0.21
0.10
0.12
0.10
0.14
0.18
0.23
0.15
0.19
0.12
0.21
0.12
0.17
0.17
0.12
0.13
0.10
0.17
0.11
0.15
0.16
0.10
0.12
0.21
0.18
0.12
0.11
0.12
0.12
0.15
0.10
0.18
0.12
0.26

Z-value
3.818
3.812
3.809
3.806
3.799
3.793
3.796
3.792
3.784
-3.775
3.773
3.772
3.760
-3.731
3.713
3.684
-3.674
3.674
3.669
3.665
3.661
-3.658
3.652
3.653
3.634
3.607
-3.595
3.589
-3.589
3.586
3.583
3.583
-3.556
-3.553
3.551
3.541
3.540
3.544
3.533
-3.528
3.518
3.505
-3.495
3.492
-3.489
3.483
-3.484
3.483
3.472
3.473
3.477
3471
-3.464
-3.459
3.454
3.432

P-value

1.35e-04
1.38e-04
1.40e-04
1.41e-04
1.46e-04
1.49e-04
1.47e-04
1.49-04
1.54e-04
1.60e-04
1.61e-04
1.62e-04
1.70e-04
1.91e-04
2.05e-04
2.30e-04
2.3%-04
2.3%-04
2.43e-04
2.47e-04
2.51e-04
2.54e-04
2.60e-04
2.59e-04
2.79-04
3.10e-04
3.25e-04
3.32e-04
3.32e-04
3.36e-04
3.40e-04
3.40e-04
3.76e-04
3.81e-04
3.84e-04
3.99-04
4.00e-04
3.94e-04
4.11e-04
4.19e-04
4.36e-04
4.57e-04
4.74e-04
4.79%-04
4.85e-04
4.96e-04
4.94e-04
4.95e-04
5.16e-04
5.15e-04
5.07e-04
5.19e-04
5.31e-04
5.41e-04
5.53e-04
6.00e-04

Adjusted P-value?
0.010
0.011
0.011
0.011
0.011
0.011
0.011
0.011
0.011
0.011
0.011
0.011
0.012
0.013
0.014
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.016
0.016
0.016
0.017
0.018
0.018
0.018
0.018
0.018
0.018
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.021
0.021
0.022
0.022
0.023
0.023
0.023
0.023
0.023
0.023
0.023
0.023
0.023
0.023
0.023
0.024
0.025



Ensembl gene ID  Gene Symbol
ENSG00000197361 FBXL22
ENSG00000231607 DLEU2
ENSG00000158008 EXTL1
ENSG00000140798 ABCC12
ENSG00000165887 ANKRD2
ENSG00000105877 DNAH11
ENSG00000156463 SH3RF2
ENSG00000285155 Not mapped®
ENSG00000168528 SERINC2
ENSG00000188488 SERPINAS
ENSG00000125844 RRBP1
ENSG00000108932 SLC16A6
ENSG00000130600 H19
ENSG00000154080 CHST9
ENSG00000174996 KLC2
ENSG00000188582 PAQR9
ENSG00000284820 Not mapped®
ENSG00000171617 ENC1
ENSG00000047662 FAM184B
ENSG00000172932 ANKRD13D
ENSG00000158458 NRG2
ENSG00000279529 Not mapped®
ENSG00000284693 LINC02606
ENSG00000140795 MYLK3
ENSG00000146005 PSD2
ENSG00000148671 ADIRF
ENSG00000111245 MYL2
ENSG00000176134 Not mapped®
ENSG00000071564 TCF3
ENSG00000214942 Not mapped?
ENSG00000005206 SPPL2B
ENSG00000181418 DDN
ENSG00000215187 FAM166B
ENSG00000052749 RRP12
ENSG00000264343 NOTCH2NLA
ENSG00000173546 CSPG4
ENSG00000177551 NHLH2
ENSG00000117707 PROX1
ENSG00000225472 Not mapped®
ENSG00000159713 TPPP3
ENSG00000205279 CTXN3
ENSG00000255495 Not mapped”
ENSG00000149090 PAMR1
ENSG00000124374 PAIP2B
ENSG00000072310 SREBF1
ENSG00000104889 RNASEH2A
ENSG00000238083 LRRC37A2
ENSG00000270021 Not mapped?
ENSG00000185847 LINC01405
ENSG00000248587 Not mapped®
ENSG00000105738 SIPA1L3
ENSG00000273301 Not mapped?
ENSGO00000077943 ITGA8
ENSG00000241288 LINC02614
ENSG00000127191 TRAF2
ENSG00000283563 ZCWPW2

Log fold-change SE

0.49
0.35
-0.58
-0.70
0.69
0.98
0.40
-0.39
0.51
-0.69
0.36
0.58
0.56
-0.56
0.39
-0.47
0.61
0.41
0.72
0.41
0.63
0.43
-0.48
-0.35
0.79
0.60
-0.35
-0.42
0.38
-0.72
0.37
0.74
0.44
0.42
0.47
0.46
1.15
-0.36
-0.51
0.55
-0.72
0.40
0.46
-0.35
0.48
0.47
0.36
0.52
-0.41
0.36
0.37
-0.86
-0.41
0.43
0.52
-0.36

0.14
0.10
0.17
0.21
0.21
0.29
0.12
0.11
0.15
0.21
0.11
0.18
0.17
0.17
0.12
0.14
0.18
0.12
0.22
0.13
0.19
0.13
0.14
0.11
0.24
0.18
0.11
0.13
0.12
0.22
0.11
0.23
0.14
0.13
0.14
0.14
0.36
0.11
0.16
0.17
0.22
0.12
0.14
0.11
0.15
0.15
0.11
0.16
0.13
0.11
0.12
0.27
0.13
0.14
0.17
0.11

Z-value
3.404
3.393
-3.392
-3.389
3.383
3.383
3.373
-3.372
3.366
-3.356
3.348
3.336
3.330
-3.336
3.331
-3.337
3.331
3.328
3.316
3.314
3.313
3.309
-3.311
-3.303
3.301
3.301
-3.281
-3.274
3.272
-3.270
3.262
3.253
3.254
3.252
3.244
3.231
3.230
-3.227
-3.227
3.226
-3.221
3.220
3.211
-3.193
3.188
3.184
3.185
3.184
-3.177
3.173
3.161
-3.145
-3.136
3.138
3.134
-3.129

P-value
6.63e-04
6.90e-04
6.94e-04
7.01e-04
7.16e-04
7.18e-04
7.45e-04
7.45e-04
7.62e-04
7.90e-04
8.13e-04
8.51e-04
8.67e-04
8.49e-04
8.66e-04
8.48e-04
8.65e-04
8.74e-04
9.12e-04
9.21e-04
9.24e-04
9.37e-04
9.2%-04
9.57e-04
9.63e-04
9.63e-04
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.002
0.002
0.002
0.002
0.002
0.002
0.002

Adjusted P-value?
0.027
0.028
0.028
0.028
0.028
0.028
0.028
0.028
0.029
0.030
0.030
0.031
0.031
0.031
0.031
0.031
0.031
0.031
0.032
0.032
0.032
0.032
0.032
0.033
0.033
0.033
0.034
0.035
0.035
0.035
0.036
0.037
0.037
0.037
0.037
0.038
0.038
0.039
0.039
0.039
0.039
0.039
0.040
0.041
0.042
0.042
0.042
0.042
0.043
0.043
0.044
0.046
0.047
0.047
0.047
0.047



Ensembl gene ID  Gene Symbol
ENSG00000140280 LYSMD2
ENSG00000070601 FRMPD1
ENSG00000108231 LGI1
ENSG00000220563 Not mapped”
ENSG00000250303 LINC02762
ENSG00000166123 GPT2
ENSG00000167037 SGSM1
ENSG00000153822 KCNJ16

2 P-values are adjusted for FDR. ® Raw P-values from simulation based tests of uniformity of
residuals where low values indicate problematic models. ¢ No official gene symbol available, not

included in enrichment analyses.

Log fold-change SE

0.37
-0.36
-0.37
0.37
-0.37
-0.37
-0.60
0.59

0.12
0.12
0.12
0.12
0.12
0.12
0.19
0.19

Z-value
3.127
-3.117
-3.112
3.110
-3.109
-3.107
-3.102
3.098

P-value
0.002
0.002
0.002
0.002
0.002
0.002
0.002
0.002

Adjusted P-value?
0.047
0.048
0.049
0.049
0.049
0.049
0.049
0.049



Supplementary Table 3. Gene ontology (GO) analysis of genome-wide transcriptome data
(RNA-seq; COPD vs. Healthy), performed as previously described.t%#

Comparison Gene set

category
Baseline: Biological
COPD process
vs. Healthy
Cellular
component
Molecular
function
Post-RT (13 Biological
weeks process
training):
ACOPD vs
AHealthy
Cellular
component
Molecular
function

Gene set

Actin filament based
movement

Actin mediated cell
contraction

Fatty acid metabolic
process

Monocarboxylic acid
metabolic process

Muscle contraction
Muscle filament sliding
Muscle system process

Inner mitochondrial
membrane protein
complex

Mitochondrial matrix

Mitochondrial protein
complex

Organelle inner membrane
Actin cytoskeleton
Contractile fiber

G protein coupled receptor
activity

Proteasomal protein
catabolic process

Regulation of cholesterol
efflux

Regulation of protein
catabolic process

Actin cytoskeleton
Actin filament bundle
Actomyosin
Contractile fiber

| band

Adherens junction
Cell cell junction

Cell substrate junction

Collagen containing
extracellular matrix

Extrinsic component of
cytoplasmic side of plasma
membrane

Extrinsic component of
plasma membrane

Polymeric cytoskeletal
fiber

Heterochromatin

Actin binding

Actin filament binding
Chromatin binding
Molecular adaptor activity
Cell adhesion molecule
binding

Protein kinase activity

Protein serine threonine
kinase activity
Glutamate receptor
binding

Nuclear receptor binding

Significance Set size®

category?®
Rank
Rank
Rank
Rank

Rank
Rank
Rank
GSEA

GSEA
GSEA

GSEA
Rank
Rank
GSEA

Rank
Rank
Rank

Consensus
Consensus
Consensus
Consensus
Consensus
GSEA
GSEA
GSEA
GSEA

GSEA

GSEA
GSEA

Rank
Consensus
Consensus
Consensus
Consensus
GSEA

GSEA
GSEA

Rank

Rank

118 (153)
92 (123)

279 (396)
469 (672)

252 (362)
31(39)

321 (467)
114 (138)

436 (473)
234 (265)

461 (549)
392 (503)
191 (238)
146 (867)

421 (481)
25 (46)
327 (395)

392 (503)
67 (75)

69 (78)

191 (238)
114 (140)
127 (166)
344 (493)
359 (423)
214 (427)

65 (99)

109 (172)
437 (756)

63 (78)

336 (437)
162 (206)
448 (596)
252 (314)
407 (544)

449 (563)
361 (434)

31 (46)

83 (101)

Rank P-
value®

4.47e-05

4.29e-05

8.48e-06

8.48e-06

4.27e-05
1.39-04
8.48e-06
0.771

0.122
0.933

0.826
1.87e-04
2.24e-05
0.411

0.019

0.019

0.019

0.002
5.45¢-04
4.62e-04
1.04e-05
4.71e-04
0.244
0.161
0.305
0.999

0.305

0.458

0.110

0.004
0.001
0.002
0.001
0.001
0.384

0.353
0.167

0.016

0.016

% GSEA P- NES
MSD value®

>0d

30.5% 0.760 1.08
34.8% 0.728 112
29.7% 0.602 -1.12
29.4% 0.468 -1.17
29.4% 0.767 1.05
54.8% 0.728 1.15
29.9% 0.740 1.08
27.2% 0.003 -1.83
29.4% 2.19e-04 -1.61
26.1% 3.66e-05 -1.90
25.4% 0.005 -1.43
28.1% 0.304 1.29
33% 0.505 121
22.6% 0.018 -1.75
29.2% 0.591 -1.08
48% 0.102 -1.50
31.2% 0.293 -1.17
29.1% 5.68e-06 -1.38
38.8% 0.016 -1.47
37.7% 0.011 -1.48
33.5% 1.56e-04 -1.44
33.3% 2.28e-04 -1.52
27.6% 0.005 -1.42
26.5% 1.91e-04 -1.34
27.9% 0.003 -1.31
20.1% 0.005 -1.34
24.6% 0.003 -1.56
22% 0.005 -1.45
25.9% 0.005 -1.25
39.7% 0.063 -1.40
30.7% 3.17e-07 -1.42
32.7% 0.001 -1.43
29.2% 0.025 -1.23
30.6% 0.048 -1.25
25.3% 5.69e-04 -1.31
25.6% 9.88e-04 -1.29
27.1% 0.004 -1.28
54.8% 0.071 -1.49
37.3% 0.812 -1.03

LE'

20 (85%)

14 (92.9%)
61 (83.6%)
72 (97.2%)

34 (82.4%)
10 (90%)

45 (82.2%)
39 (76.9%)

120 (88.3%)
70 (80%)

92 (95.7%)
93 (74.2%)
49 (83.7%)
29 (69%)

97 (82.5%)
13 (84.6%)
71 (97.2%)

133 (75.2%)
31 (74.2%)
31 (74.2%)
63 (87.3%)
40 (87.5%)
44 (65.9%)
116 (63.8%)
112 (68.8%)
74 (51.4%)

15 (100%)

25 (84%)
135 (71.1%)

19 (94.7%)
125 (75.2%)
65 (70.8%)
94 (92.6%)
80 (70%)
120 (75.8%)

102 (81.4%)
83 (84.3%)

16 (100%)

21 (90.5%)

Log: Fold-change
in LE [min, max]

0.6 [0.29,0.97]
0.63[0.41,0.97]
-0.32 [-0.96, -0.15]
-0.36 [-1.17, -0.16]

0.59 [0.25, 1.01]
0.61[0.29, 0.97]
0.56 [0.25, 1.03]
-0.22 [0.37, -0.12]

-0.23 [-0.53, -0.12]
-0.21 [0.37,-0.1]

-0.24 [0.56, -0.14]
0.41[0.14, 0.98]
0.41[0.16, 1]
-0.52 [1.39, -0.17]

-0.43 [-1.26, -0.19]
-0.54 [-1.32, -0.29]
-0.46 [-1.26, -0.23]

-0.44 [-1.17, -0.16]
-0.48 [1.17,-0.2)
-0.49 [1.17,-0.2)
-0.47 [-1.17, -0.19]
-0.48 [1.17, -0.2]
-0.47 [1.17, -0.16]
-0.43 [1.17, -0.16]
-0.43 [-0.96, -0.16]
-0.47 [-1.56, -0.19]

-0.53 [-0.89, -0.3]

-0.51 [-0.89, -0.27]
-0.43 [-1.17,-0.17]

-0.48 [-1.05, -0.17]
-0.44 [-1.17, -0.16]
-0.46 [1.13, -0.21]
-0.44 [-1.05, -0.17]
-0.44 [-1.14, -0.16]
-0.45 [-1.56, -0.16]

-0.49 [1.29, -0.22]
-0.48 [-1.26, -0.22]

-0.41 [-0.69, -0.16]

-0.43 [-1.05, -0.16]




Comparison Geneset  Gene set
category category®

Protein macromolecule Rank
adaptor activity

Signaling adaptor activity Rank

Signaling receptor Rank
complex adaptor activity

Structural constituent of ~ Rank
muscle

Ubiquitin binding Rank

Significance Set size®

200 (244)

54 (68)
32 (41)

33(43)

71 (76)

Rank P-
value®

6.58e-04

0.016
0.016

0.016

0.018

% GSEA P-
MSD value®
> ¢

33% 0.070

40.7% 0.343
43.8% 0.267

42.4% 0.073

38% 0.145

NES

-1.28

-1.25
-1.32

-1.44

-1.37

LEf

71 (69%)

22 (77.3%)
10 (100%)

13 (92.3%)

24 (91.7%)

Logz Fold-change
in LE [min, max]

-0.44 [1.14,

-0.42 [-0.77,
-0.49 [-0.77,

-0.49 [0.97,

-0.42 [-0.88,

-0.16]

-0.18]
-0.27]

-0.26]

-0.25]

@ Consensus significance indicates agreement between directional (GSEA) and non-directional (Rank) hypothesis test of overrepresentation (see
methods for details). ® Indicates number of identified genes in the gene set and total number of genes in the gene set in parentheses. ¢ Rank-based
enrichment test, based on minimum significant difference (MSD), identifies gene sets that are overrepresented among top-ranked genes without a

directional hypothesis. 9 Fraction of genes in gene set with unadjusted 95% CI not spanning zero, i.e. MSD > 0. ¢ Gene-set enrichment analysis

(GSEA) tests for overrepresentation among top and bottom genes based on Log, fold differences or changes x -logso(P-values) in comparing
differences at baseline or changes from baseline between COPD and Healthy. Positive normalized enrichment score (NES) indicate gene sets with
higher expression in COPD than Healthy; negative NES indicate gene sets with lower expression at respective time-points. f Number of genes in
leading edge (LE, genes that contributes to the enrichment score) with the fraction of leading edge genes with unadjusted 95% CI not spanning zero.
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Data analyses and statistics

To 1) examine the effects of resistance exercise training (RT) on muscle mass, strength, and
endurance performance factors, one-legged maximal oxygen uptake and O, cost, and
mitochondrial function in controls and COPD separately and to 2) assess the difference in
responsiveness to RT between controls and COPD, linear mixed-effects models were used. In
these models, both legs’ pre- and post-RT measures for each participant were defined as
repeated observations. Post-hoc tests, using the Sidak method for correction of multiple
comparisons, were conducted to identify within-group differences between 10RM vs. 30RM.
As pre biopsies were only sampled from the 30RM leg, the effect of RT modality on
mitochondrial function was evaluated by pairwise comparisons between post 10RM and 30RM
measurements. For transcriptome analyses, gene counts were modelled using negative
binomial generalized linear mixed-effects models with the total library size modelled as the
fixed effect [1] together with sex and study conditions (time points and study groups). Genes
were regarded as differentially expressed when the absolute log, fold-change/difference was
greater than 0.5 and the adjusted p-value (false discovery rate adjusted per model coefficient)
was <0.05. Enrichment analyses of the Mitocarta pathways v.3.0 [2] were performed using two
approaches, the non-parametric rank test (Rank) [3] and the directional gene set enrichment
analysis (GSEA) [4] where consensus results of those two analyses were interpreted as having

larger biological meaning.
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