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Abstract 

Objectives: There is paucity in prospective studies investigating the association between carotid 

sub-clinical atherosclerosis across childhood. Therefore the aim was investigate the association 

between physical activity (PA) intensity across childhood and sub-clinical atherosclerosis in 

adolescence. 

Study design: This was a prospective study of a sample of 254 children (baseline age 8-10 y) with 

a six year follow-up. The cumulative exposure and the change in minutes spend in moderate-and-

vigorous and vigorous PA intensity were measured using the Actigraph activity monitor. Sub-

clinical atherosclerosis progression was expressed as carotid intima thickness (cIMT), carotid 

arterial stiffness and secondarily as a metabolic risk z-score. The summed z-score included a 

homoeostasis model assessment score of insulin resistance (HOMA-IR), triglycerides, total 

cholesterol to high-density lipoprotein ratio, inverse of cardio-respiratory fitness, systolic blood 

pressure and the sum of four skinfolds. 

Results: No associations were observed between PA intensity variables and cIMT or carotid arterial 

stiffness (p>0.05). Neither change in PA intensity nor accumulated minutes of moderate-and-

vigorous PA intensity was associated to the metabolic risk z-score in adolescence (p>0.05). 

However, a significant inverse association was observed between accumulated minutes of vigorous 

PA and the metabolic risk z-score in adolescence independent of gender, and biological maturity 

(std. beta= -0. 19 p=0.01).  

Conclusion: Accumulation of or changes in minutes spend at higher PA intensities across 

childhood was not associated to measures of sub-clinical atherosclerosis in the carotid arteries in 

adolescence. Our observations suggest that a high volume of vigorous PA across childhood 

independently associated with lower metabolic CVD risk in adolescence.  
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Introduction 

Increased carotid intima thickness (cIMT) and arterial stiffness in adults are associated to future 

cardio vascular disease (CVD) events independent of conventional risk factors (1, 2). The physical 

activity (PA) level declines across childhood into adolescence (3). Little is known about how 

physical activity across childhood affects arterial health later in life as no studies, to the best of our 

knowledge, have investigated the longitudinal association between PA from childhood to 

adolescence and adolescent carotid arterial stiffening and cIMT. Several cross-sectional studies 

between arterial health and physical activity (PA) have been conducted in children, but the 

observations have been inconsistent (4-8). The vast majority of these studies have assessed PA 

using self-report. Self-reported PA is susceptible to non-differential misclassification and is 

particularly vulnerable to recall bias in childhood (9). This would thus introduce a regression 

dilution bias and PA should therefore be assessed objectively.  

The purpose of the study is to investigate the longitudinal associations between PA 

intensity across childhood sub-clinical atherosclerosis in adolescence. More specifically, the 

primary aim of the study is to investigate the association between cumulative exposure of and 

changes in objectively measured moderate-and-vigorous and vigorous PA across childhood into 

adolescence and carotid arterial stiffening and cIMT. Secondarily we investigated the association 

between the change in and cumulative exposure to objectively measured moderate-and-vigorous 

and vigorous PA from childhood to adolescence and a composite metabolic CVD risk score in 

adolescence in a sample of Danish children from the European Youth Heart Study (EYHS). 
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Methods 

Participants and design 

This is a prospective study using data from the Danish part of EYHS. EYHS is an international 

population-based mixed longitudinal study that addresses biological, environmental demographic 

and lifestyle correlates and determinants of cardiovascular disease risk factors in children and 

adolescents. Detailed description of the EYHS and the sampling procedures has been described in 

detail elsewhere (10). In 2003-2004 709 9-year old children were randomly sampled and invited to 

take part in the study. A total of 458 adolescents participated (65% participation). A six-year 

follow-up was conducted in 2009-2010, where all invitees were re-invited to participate. At follow-

up ultrasonography was added to the protocol. At follow-up, a total of 399 subjects agreed to 

participate. The present study reports on 254 participants (55% of baseline participation) with 

complete data on exposures, and carotid measures of sub-clinical atherosclerosis. For the secondary 

analyses fasting blood samples were only available in 205 participants. The study was approved by 

the Regional Scientific Ethical Committee for Southern Denmark and data was collected according 

the Helsinki declaration. All participants gave a written informed consent. 

 

Carotid arterial properties 

The carotid arterial properties were measured using ultrasonography (Model Logic e, 12L-RS probe 

(5-13 MHz, 12 MHz used) GE Medical) according to guidelines for user procedures (11). Before 

the measurements, participants rested for 10 minutes in a quiet temperature controlled room. The 

arterial properties were conducted at the lateral and posterior position of the common carotid artery, 

10 mm (cIMT) and 20 mm (for arterial stiffness measures) proximal to the beginning of the carotid 

bulb on both the right and the left common carotid artery. Carotid IMT was obtained at the far wall 

of the artery. All examinations were performed by a single trained operator. Intra-reader 
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coefficients of variation were 5.7 %, 4.5% and 4.5% for IMT, systolic and diastolic diameter, 

respectively.           

Images from seven to eight cardiac cycles were stored offline for quantification of 

carotid artery diameters and the cIMT. The analyses were performed by a blinded trained reader, 

using commercially available analysis software (Vascular Research Tools 5, Medical Imaging 

Applications, LLC). cIMT and carotid artery diameters were obtained from the best quality image. 

Peak-systolic (DS), end-diastolic (DD) arterial diameter and cIMT were obtained from both 

positions. The mean of both positions and both sides was used for the subsequent analysis. If the 

quality of the image in one side was insufficient to obtain data (N=27; 7%), the opposite side was 

used for analysis. These participants did not differ significantly from the total sample in any of the 

outcome measures (data not shown). 

Brachial systolic and diastolic blood pressures were obtained from the right arm at the 

end of the examination in a supine position (Welch Allyn Vital Signs monitor 300 series, Kivex, 

Hoersholm Denmark) by a trained operator using an appropriate cuff size. Brachial pulse pressure 

(PP) was calculated as systolic minus diastolic blood pressure. The compliance coefficient (CC), 

and Young’s elastic modules (YEM) was calculated as follows (2, 12); 

  

1) CC = π ∗ (DS2 − DD2)/(4 ∗ PP) 

2) YEM = DD/(IMT ∗ CD) 

 

CVD risk factors and metabolic CVD risk score  

Weight and height were measured while the participants were wearing light clothing, without shoes, 

using standard anthropometric procedures. Skinfold thickness was measured with a Harpenden 

caliper at the biceps, triceps, subscapular, and suprailiac sites. Blood pressure was measured with a 
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Dinamap paediatric and adult neonatal vital signs monitor (model XL, Critikron, Inc, Tampa, FL, 

USA). Five measurements were taken at two-min intervals after resting for five minutes while 

seated. The mean of the final three measurements was used in the analyses. Cardio-respiratory 

fitness was determined by the watt-max test - an indirect maximal cycle ergometer test and 

expressed relative to body weight (watts/kg). The protocol has been described in detail elsewhere 

(10). Criteria defined for a maximal effort were heart rate of at least 185 beats per minute and a 

subjective judgment by the test personal that the participant could no longer continue.  

After overnight fasting, blood samples were drawn in the morning from the 

antecubital vein. Samples were aliquoted and separated within 30 min and stored at −22 °C for a 

maximum of 4 hours. Then it was stored at −80 °C until they were transported to a World Health 

Organization–certified laboratory in Cambridge, United Kingdom, for analysis. Samples were 

analyzed for serum glucose, insulin, HDL and triglyceride. Triglyceride was analyzed using the 

lipase/glycerol kinase/glycerol phosphate oxidase enzymatic method. HDL was analyzed using the 

homogeneous polyanion/cholesterol esterase/oxidase enzymatic method. Glucose was analyzed 

using the hexokinase method. Blood lipids and glucose were measured on an Olympus AU600 

autoanalyzer (Olympus Diagnostica, Hamburg, Germany). Insulin was analyzed using enzyme 

immunoassay (micro-titer plate format, Dako Diagnostics, http://www.dako.co.uk). Insulin 

resistance was estimated according to the homoeostasis model assessment (HOMA) and calculated 

as the product of fasting glucose (mmol/L) and insulin (μU/mL) divided by 22.5 (13).  

For the secondary analysis a continuous metabolic CVD risk z-score was calculated. 

The z-score was calculated based on a previously published definition, thus included HOMA, 

triglyceride, total cholesterol to HDL ratio, the sum of four skinfolds, cardio-respiratory fitness 

(inverted) and systolic blood pressure (14). Standardization in adulthood was done according to the 

baseline distribution (mean and SD) of each risk factor. As HOMA-IR, triglyceride and the sum of 

http://www.dako.co.uk/
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four skinfolds were positively skewed, they were transformed before standardization using the 

natural logarithm.  

 

Physical activity 

PA intensity was assessed using the Actigraph physical activity monitor (Pensacola, USA, FL). The 

model AM7164 was used in 2003-2004, whereas the models GT3X or model GT1M were used in 

2009-2010. Data were extracted using one-minute-epochs for the subsequent intensity analyses. The 

participants were instructed to wear the monitor for at least five consecutive days and only remove 

it during showering, bathing and swimming or during night time sleep. The PA variables were 

adjusted for within-week variation as described previously (15). All activity files were screened 

using open-source software (Propero v.1.0.18). Consecutive strings of zero >60 min were defined as 

“activity monitor not worn” and were removed. Subsequently, activity files not meeting the 

inclusion criteria of three valid days were excluded. A valid day should include at least 9 h 30 min 

(60% of daily awake time). 

PA intensity was expressed as minutes per day spent in different intensity intervals. 

The minutes were adjusted proportionally to a full day of 13.5 hours (the mean wear time for this 

population), as described elsewhere (16). The cut points for time spent in moderate-and-vigorous 

PA (4 > Mets) and vigorous PA (>6 Mets) intensities were determined using published cut points 

(17). This yielded the following cut points for moderate-and-vigorous PA (>3000 cpm) and 

vigorous PA (> 5200 cpm).  

 

Other covariates 

Soft drink, fruit and vegetable intake (servings/week) and smoking status (yes/no) were obtained 

using a computerized questionnaire (10). Family history of CVD (parental and maternal) (yes/no) 
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and parental and maternal educational level were obtained using self-report by the parents. Parental 

educational level was defined according to the International Standard Classification of Education 

(ISCED-A) (UNESCO 2011). As the details obtained of the description of education was 

insufficient, the ISCED level 0, 1 and 2 were grouped, level 3, 4 and 5 were grouped, and level  6, 7 

and 8 were grouped into three levels in the analysis. The highest parental educational level of the 

mother or father was used in the analysis. Biological maturity was subjectively assessed according 

to Tanner’s classification. More specifically the boys rated their biological maturity on the basis of 

genital and pubic hair development and girls on the basis of breast and pubic hair development 

using schematic illustrations (18). At baseline TV viewing-time during leisure was obtained by self-

report. Two questions were asked about the amount of time viewing TV (before and after school). A 

summary variable of daily TV viewing time (hours/day) was constructed based on these two 

questions.  

 

Statistics 

Baseline descriptive statistics were calculated for participants with valid data on exposure and 

outcome and for excluded participants.  Exclusion criteria were; 1) drop-out, 2) drop-in and 3) 

incomplete or invalid data on relevant exposures or outcomes. Group differences were analyzed 

using independent t-tests, Wilcoxon’s rank sum test or chi-squared test when appropriate.  

Associations between the outcomes and cumulative exposure to or changes in 

exposures across childhood were analyzed using multiple linear regression analyses. Analyzing the 

mean exposure across childhood, we performed an analysis adjusted for gender and biological 

maturation at follow-up (model 1). Using changes in exposure level we further adjusted for baseline 

exposure level. We did not observed any gender interaction (p>0.1), thus the associations are 

presented for both gender combined. As none of the potential confounders; parental educational 
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status, frequency of vegetable, fruit, familiar history of CVD were related to either exposure or 

outcome (data not shown), they were not included in the models in order to preserve power. 

Therefore, we additionally adjusted the models for parental soda consumption and TV-viewing time 

(model 2). 

Manual inspections of plots of exposure against outcomes and inspection of 

components-plus-residual plots did not reveal any non-linear relationships. Variance inflation 

factors did not reveal any signs of collinearity between covariates. All statistical analyses were 

performed in STATA 11.2 (STATA Corp. Fort Valton TX) with alpha=0.05 (two-sided). 

 

Results 

Baseline characteristics for included and excluded subjects are shown in Table 1. Excluded 

participants (N=222) did not differ from the included participants, except for the excluded boys who 

displayed a slightly lower systolic blood pressure (p<0.05) and the excluded girls who displayed 

slightly less accepted PA wear time (p<0.05) compared to the included participants. Adolescence 

outcome measures, mean PA intensity and change herein are described in Table 2. Boys had larger 

cIMT, carotid compliance, mean PA intensity (moderate-and-vigorous and vigorous) and a steeper 

decrease PA intensity (moderate-and-vigorous and vigorous) at follow-up compared to girls 

(p<0.05). Drop-in (N=75) did not differ from the included participants in any of the outcomes or PA 

intensity at follow-up (p>0.1), (data not shown).  

We first analyzed the association between baseline PA exposure and cIMT or the 

measures of carotid stiffness adjusted for gender, and biological maturity at follow-up. No 

associations were observed between either baseline moderate-and-vigorous PA nor vigorous PA 

and adolescence cIMT or any of the measures of carotid stiffness (p<0.05).  
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Table 3 shows the association between cumulative exposure to and change in PA 

intensity from childhood to adolescence and measures of sub-clinical atherosclerosis in 

adolescence. No associations were observed between moderate-and-vigorous or vigorous PA and 

cIMT or any measures of carotid stiffness (p>0.05).   

The secondary analysis revealed that mean vigorous PA across childhood was 

significantly associated to adolescence clustered risk z-score in adolescence (p<0.05) (Table 3). A 

one-SD (6.3 min) increment in the cumulative exposure to vigorous PA was associated with a 0.19 

SD lower clustered risk z-score in adolescence. Further adjustment for baseline soda consumption 

and TV-viewing time attenuated the association slightly (std. beta= -0.16, p=0.03). Analyzing this 

association across quintiles of the cumulative exposure to vigorous PA revealed that only the most 

active participants had a significantly lower metabolic risk z-score in adolescence compared to the 

least active adjusted for gender, pubertal development, childhood soda consumption and TV-

viewing time (p<0.05) (Figure 1). No significant associations were observed between the 

cumulative exposure to or change in moderate-and-vigorous PA and adolescence metabolic CVD 

risk z-score (p>0.1). Baseline vigorous PA was significantly associated to adolescent metabolic 

CVD risk z-score (beta= -0.06 (95%CI; -0.17 to -0.01) p<0.05). A one-SD (10.1 min) increment in 

vigorous PA (in childhood) was associated with a 0.14 SD lower clustered risk z-score at follow-up 

(p<0.05). Additional adjustment for baseline soda consumption and TV-viewing did not attenuate 

the association. Baseline moderate-and-vigorous PA was marginally associated with metabolic risk 

z-score at follow-up (beta=-0.02 (95%CI -0.04 to 0.002) p=0.07). 

   

Discussion 

In this population based prospective study we did not observe any associations between carotid IMT 

or arterial stiffness and physical activity, but we observed that a high cumulative exposure to 
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vigorous PA across childhood was independently associated with a decreased metabolic CVD risk 

z-score in adolescence. As structural arterial remodeling and stiffening are thought to be products of 

the cumulative load of CVD risk factors (19) and as CVD factors track from adolescence to 

adulthood (20, 21) our observations suggest that a large volume of high intensity PA across 

childhood could be associated to improved health later in life through decreasing metabolic CVD 

risk in adolescence.  

Our observations confirm observations from earlier cross-sectional studies with 

arterial stiffness (7, 22). Sakuragi et al. observed an association between number of daily steps and 

carotid-femoral pulse-wave velocity in a population-based sample of 573 children (10.1 years) but 

the association was attenuated after adjustment for gender, age and systolic blood pressure. Nor did 

Reed and co-workers observe an association between self-reported PA and pulse-wave velocity 

(22). Associations between PA and peripheral endothelial function in children have generally been 

more consistent (4-6). The earliest indication of atherosclerotic progression includes endothelial 

dysfunction (23) and there are some indications that the association between PA and arterial health 

differentiates across the arterial tree (22). It is possible that the inconsistencies between studies 

could be ascribed differences in the measures of arterial health, artery segment (central or 

peripheral). This needs further attention in future studies. 

Our observations are in contrast to longitudinal observations from the Amsterdam 

Growth and Health Longitudinal study where vigorous PA across adolescence was associated to 

decreased carotid arterial stiffness in adulthood (12) and an observation from the Cardiovascular 

Risk in Young Finns Study, were childhood and youth PA were associated with cIMT progression 

in adulthood (24). Because advanced age is associated with arterial stiffening (25), thus 

atherosclerotic progression, the discrepancies across studies could be ascribed differences in age at 

follow-up. Little or no effects of exercise on reduction in cIMT have been observed in healthy 
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populations (Thijsen). However, Meier and coworkers observed a significant reduction of cIMT 

following a six month exercise intervention in a sample of overweight and obese children (26). 

Taken together this suggests that exercise or PA might only have an effect on the carotid properties 

in high risk populations. 

As we did not observe an association between the change in PA across childhood and 

adolescence metabolic CVD risk, our observations generally confirm previous longitudinal studies 

(27-29). However, the present study is the first longitudinal study to observe a significant 

association between the cumulative exposure to vigorous PA in childhood and later metabolic CVD 

risk. This contradicts previous longitudinal observations in children (27, 30, 31) but is supported by 

randomized controlled trials reporting on the beneficial effect of exercise metabolic risk factors in 

high risk children (32, 33). As the cumulative exposure to moderate-and-vigorous PA was not 

associated with later metabolic CVD risk, this suggests that in order to obtained beneficial effects 

from habitual PA it has to include a high proportion of vigorous PA. Further, as changes in vigorous 

PA were not associated with later CVD risk, the observations suggest that a chronic high volume of 

vigorous PA should be reinforced from an early age to obtain beneficial effects in regard to 

metabolic CVD risk. This is supported in a recent review by Andersen and coworkers (34).  

Strengths of this study include the objective measure of PA, the inclusion of multiple 

markers of the atherosclerotic progression and the longitudinal design. There are some limitations to 

the study. First, we used brachial blood pressure for calculation of blood pressure which may 

overestimate PP in the central arteries, especially in young people (35). This may therefore 

overestimate our measure of arterial stiffness. This bias would be random as the cohort was 

homogeneous according to age. Second, the drop-out and participants with incomplete data could 

have introduced a selection bias. However, they did not differ from the participants in their baseline 

levels of exposure variables, nor did the drop-in differ from the included participants at follow-up. 
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Therefore, we do not suspect that selection bias explain our observations. Third, the activity 

monitor does not capture activities such as bicycling, weight bearing activities and swimming very 

well. Furthermore a measurement period of ~ 4 days might not represent the participant’s true PA 

activity level. This would introduce a random error and thus attenuate the association between 

intensity and outcome.  

In conclusion, we did not observe any associations between PA across childhood and 

cIMT or carotid stiffness in adolescence. However, we observed that a high cumulative exposure to 

vigorous PA was associated with lower metabolic CVD risk in adolescence. This suggests that a 

chronic high volume of vigorous PA should be reinforced from an early age to prevent later CVD 

progression.  
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Table 1 Population characteristics 
      
 Boys  Girls 
 Included Excluded  Included Excluded 
      
Number of subjects 107 95  147 109 
Age (years)† 9.8 (0.5) 9.8 (0.5)  9.7 (0.4) 9.8 (0.4) 
Puberty (%No/Yes) † 100/0 100/0  79/21 75/25 
Parental education (%low/middle/high) † 23/59/18 34/50/17  35/43/22 29/64/7* 
Fruit (Servings/week) 5.3 (1.8) 5.4 (2.0)  5.4 (1.9) 5.4 (1.9) 
Vegetables (Servings/week) 5.0 (2.2) 4.6 (2.4)  5.2 (2.0) 4.9 (2.0) 
Soda (Servings/week) 3.2 (2.1) 3.4 (2.3)  3.0 (2.0) 3.4 (2.0) 
BMI (kg/m2) 17.5 (2.5) 17.2 (2.4)  17.3 (2.5) 17.5 (3.0) 
Sum of four skinfolds (mm) † 30.8 (14.7) 29.6 (13.5)  38.0 (16.0) 40.8 (21.2) 
Systolic BP (mmHg) † 100.6 (6.3) 98.5 (7.0)*  97.7 (7.2) 96.2 (7.3) 
Diastolic BP (mmHg) 57.9 (5.2) 57.6 (5.7)  58.1 (5.5) 56.9 (4.5) 
      
Physical activity      
HPA (counts per minute) † 766 (276) 757 (252)  613 (205) 635 (200) 
Sedentary time (minutes/day) † 359.3 (66.2) 248.2 (70.6)  373.7 (68.7) 342.1 (76.4) 
Moderate-and-vigorous PA (minutes/day) † 40.3 (29.1 to 60.5) 43.7 (29.3 to 61.5)  27.5 (16.4 to 39.3) 29.9 (17.3 to 39.8) 
Vigorous PA (minutes/day) † 7.6 (3.8 to 13.6) 7.5 (4.0 to 14.2)  4.7 (2.5 to 7.9) 5.5 (2.8 to 10.0) 
Accepted days (days) 4.7 (0.6) 4.5 (0.7)  4.7 (0.6) 4.5 (0.7)* 
Daily wear time (hours/day) 13.0 (0.8) 12.9 (1.0)  13.0 (0.8) 13.0 (1.0) 
Cardio-respiratory fitness (watt/kg) † 3.31 (0.50) 3.28 (0.49)  2.86 (0.43) 2.75 (0.46) 
      
Blood variables #      
Insulin  (µU/dl) † 5.36 (3.90 to 7.12) 5.49 (3.73 to 7.24)  6.43 (4.64 to 8.61) 7.18 (5.03 to 9.06) 
Glucose  (mmol/L) 5.06 (0.32) 5.09 (0.30)  4.99 (0.33) 4.99 (0.32) 
Triglyceride (mmol/L) † 0.57 (0.43 to 0.75) 0.54 (0.42 to 0.71)  0.68 (0.51 to 0.96) 0.65 (0.52 to 0.88) 
Cholesterol (mmol/L) 4.49 (0.74) 4.47 (0.65)  4.42 (0.80) 5.00 (0.74) 
HDL (mmol/L) † 1.78 (0.38) 1.70 (0.40)  1.56 (0.36) 1.60 (0.34) 
LDL (mmol/L) 2.41 (0.66) 2.43 (0.54)  2.50 (0.64) 2.65 (0.59) 
Insulin resistance (HOMA score) † 1.20 (0.85 to 1.68) 1.26 (0.84 to 1.68)  1.44 (1.00 to 1.98) 1.63 (1.09 to 2.01) 
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HPA; Habitual physical activity, BMI; Body mass index,  BP; blood pressure, HDL; High density lipoprotein, LDL; Low density 

lipoprotein, HOMA; homoeostasis model assessment  

*p<0.05 for differences between included and excluded,  

†p<0.05 for gender differences among the included participants.  

# N= 205.  

Excluded cover lost to follow-up or missing data on follow-up exposure or outcome. 
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Table 2 Subclinical arthrosclerosis at follow-up, mean PA and change in PA from childhood to adolescence. 
    

 Boys  Girls 
    
Intima media thickness (mm) * 0.570 (0.023)  0.548 (0.024) 
Carotid compliance (mm3*kPa-1) * 1.64 (0.39)  1.41 (0.27) 
Young’s elastic modules (kPa*mm-1) 228.5 (57.7)  237.5 (49.4) 
Sum of z-scores # *  2.6 (3.6)  4.7 (3.8) 
    
Cumulative moderate-and vigorous PA (min/day) * 33.4 (24.5 to 43.4)  20.4 (13.7 to 29.9) 
Change in moderate-and vigorous PA (min/day) * -22.8 (32.6)  -14.8 (18.3) 
Mean vigorous PA (min/day) * 5.6 (3.5 to 9.9)  3.2 (1.8 to 6.3) 
Change in vigorous PA (min/day) * -6.6 (13.2)  -3.8 (7.6) 
    
 
Data are mean (SD) or median (interquartile range) 

PA (physical activity) 

*p<0.05 for gender differences 

# N=205 

 

 

 

 

 



17 
 

 

Table 3 Associations between mean and change in physical activity intensity from childhood to adolescence and sub-clinical 
atherosclerosis in adolescence  
        

 β (95% CI) Std. β P β (95% CI) Std. β P 

 Mean  Change  
       
 Vigorous physical activity 

Intima media thickness (mm)   0.0003 (-0.0001 to 0.0008) 0.08 0.17 0.0003 (-0.0003 to 0.0004) 0.12 0.28 
Carotid compliance (mm3*kPa-1) -0.0001 (-0.0007 to 0.0066) -0.002 0.97 0.0020 (-0.0055 to 0.0098) 0.06 0.59 
Young’s elastic modules 
(kPa*mm-1) 

-0.22(-1.33 to 0.88) -0.03 0.69 -0.16 (-1.41 to 1.08) -0.03 0.80 

Clustered risk z-score*  -0.11 (-0.19 to -0.03) -0.19 0.006 -0.06 (-0.15 to 0.03) -0.16 0.19 
       
 Moderate-and-vigorous physical activity 

Intima media thickness (mm)   0.0001 (-0.0006 to 0.0003) 0.09 0.19 0.0001 (-0.0001 to 0.0003) 0.10 0.34 
Carotid compliance (mm3*kPa-1) -0.0004 (-0.0033 to 0.0023) -0.02 0.73 -0.0008 (-0.0036 to 0.0019) -0.06 0.57 
Young’s elastic modules 
(kPa*mm-1) 

-0.01 (-0.53 to 0.38) -0.02 0.74 -0.08 (-0.45 to 0.29) -0.04 0.68 

Clustered risk z-score*  -0.03 (-0.06 to 0.007) -0.11 0.13 0.002 (-0.03 to 0.03) 0.01 0.93 
        
 

The models are adjusted for gender and pubertal development at follow-up.  

The analysis of change is further adjusted for baseline physical activity intensity.  

* N=205 
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Figure 1: Differences in the sum of metabolic CVD risk z-scores across quintiles of the cumulative 

exposure to vigorous intensity (minutes) physical activity in childhood and adolescence. *p<0.05 

for differences to the least active quintile (1) 
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