- 2 **Title:** Effects of a five-year programme of supervised exercise on cardiovascular risk factors in older adults. The
- 3 Generation 100 randomized controlled trial.

4

1

- 5 Authors: Jon Magne Letnes, Ida Berglund, Kristin E. Johnson, Håvard Dalen, Bjarne M. Nes, Stian Lydersen,
- 6 Hallgeir Viken, Erlend Hassel, Sigurd Steinshamn, Elisabeth Kleivhaug Vesterbekkmo, Asbjørn Støylen, Line S.
- Reitlo, Nina Zisko, Fredrik H. Bækkerud, Atefe R. Tari, Jan E. Ingebrigtsen, Silvana B. Sandbakk, Trude
- 8 Carlsen, Sigmund A. Anderssen, Maria A. Fiatarone Singh, Jeff S. Coombes, Jorunn L. Helbostad, Øivind
- 9 Rognmo, Ulrik Wisløff, Dorthe Stensvold.

10

11

List of supplemental content

- 1. Supplemental Methods.
- 13 Exclusion criteria before and during the study
- 14 Cardiopulmonary exercise testing
- Self-report questionnaires
- Statistical analyses
- 17 2. Supplemental results
- Per protocol analyses
- 3. Supplemental references
- 4. Supplemental Table 1. Number of observations in analyses per year and intervention arm.
- 5. Supplemental Table 2. Characteristics by sex and intervention group at year 1.
- 6. Supplemental Table 3. Characteristics by sex and intervention group at year 3.
- 7. Supplemental Table 4. Characteristics by sex and intervention group at year 5.
- 8. Supplemental Table 5. Descriptive means and standard deviations by intervention groups and study
- 25 year.
- 9. Supplemental Table 6. Results from linear mixed models showing treatment effect as Year \times Group
- 27 interaction with 99% CI for ExComb, MICT and HIIT compared to Control. Including analyses at year
- 28 3 and MICT vs. Control comparison.
- 29 10. Author information

Supplemental Methods

30

(ntnu.edu/mh/nextmove).

1 2 Exclusion criteria before and during the study 3 Uncontrolled hypertension (untreated systolic blood pressure >220 mmHg or diastolic blood pressure 4 >110mmHg), symptomatic valvular disease, hypertrophic cardiomyopathy, unstable angina pectoris, primary 5 pulmonary hypertension, heart failure, severe arrhythmia, diagnosed dementia, cancer that made participation 6 impossible, chronic communicable infectious diseases, illness or disabilities that precluded exercise such as 7 severe knee osteoarthritis, or participation in other exercise training interventions. 8 9 Reasons not to participate 10 In total, 1,422 actively declined to participate, and they were asked about the reason why they were not 11 interested. As previous reported¹ the following reason was given, in addition to the 236 meeting exclusion 12 criteria; (i) not interested in the study, n= 378, (ii) no reason given, n=808. Among those choosing not to 13 participate (n=1,422) the proportion performing little physical activity was larger; however, a larger proportion 14 was also highly active among the non-participants (26%) compared to the participants (22%).¹ 15 16 **Dropout from the study** 17 The overall number of dropouts (death, withdrawal, and exclusion) was 389 (24.8%), where death, withdrawal 18 an exclusion accounted for 4.6% points, 16.6% points and 3.6% points, respectively. Participants in the 19 Generation 100 study were free to withdraw from study participation without stating specific reasons for their 20 withdrawal. Therefore, dropout was registered independently of whether reasons for withdrawal were reported to 21 the study center or not. In a previously published paper where we looked at drop-out after three years, the most 22 frequently reported reason for dropping out was health-related problems (57.7%), followed by loss of interest in 23 the project (20.3%), lack of time (17.1%), and family reasons (4.9%).² By intervention group, the drop-out by 24 active withdrawal, death, or exclusion in HIIT, MICT and Con after five years were 33%, 26% and 20%, 25 respectively. 26 27 Cardiopulmonary exercise testing 28 The NextMove core facility for exercise training and testing at the Norwegian University of Science and 29 Technology, with established procedures for quality control of equipment, performed the CPET

1 2 **Self-report questionnaires** 3 Smoking was reported as never, former, cigarettes occasionally, cigars/cigarillos/pipe occasionally, cigarettes 4 daily, cigars/cigarillos/pipe daily, and alcohol consumption as weekly average of alcohol intake in units of 5 alcohol. Information on previous myocardial infarction, angina pectoris, heart failure, stroke, atrial fibrillation, 6 other heart disease, asthma, chronic obstructive pulmonary disease, and cancer was collected at baseline and 7 follow-ups. Information on exercise habits were gathered from a validated questionnaire.³ 8 9 Information on prescription medication use 10 Information on medication use for each study year was gathered from the Norwegian prescription database using 11 the following Anatomical Therapeutic Chemical (ATC) codes: 12 Antihypertensives: C02A C05, C02C A04, C02D B02, C03A A, C03D A01, C03E A, C07B B07, C08C A, 13 C09A, C09B, C09C, C09D A, C09D B, C09D X01. 14 Beta blockers and heart selective calcium channel blockers: C07A A05, C07A B, C07A G, C08D A, C08D B. 15 Lipid lowering drugs: C10. 16 Antidiabetic drugs: A10. 17 Nitrates: C01D A 18 19 Statistical analyses 20 Normality of residuals were checked by visual inspection of QQ-plots. For some of the outcome variables, the 21 QQ-plots indicated slightly heavier tails than would be expected from a normal distribution. Therefore, we also 22 carried out analyses with bootstrapping of 95% confidence intervals (CIs), taking the cluster structure of the data 23 into account. However, the results were not substantially different without bootstrapping, and thus the presented 24 results are obtained from analyses without bootstrapping. 25 Analyses on low-density lipoprotein (LDL) was also performed using the Friedewald formula for calculating 26 LDL at all time points with similar results to the ones presented. 27 28 Supplemental per-protocol analyses were performed for the VO_{2peak} (mL/kg/min) and CCR endpoints to 29 investigate the influence of adherence to the exercise intervention. In these analyses only participants reporting

- 1 adherence to the MICT or HIIT intervention at respective years were retained in analyses (VO_{2peak:} n=1,322,
- 2 3,573 observations, CCR: n=1,332, 3710 observations), in addition to participants in Control.

3

4

Supplemental Results

5 Per protocol analyses

- 6 The per protocol analyses showed that the five-year effect estimate for analyses on VO_{2peak} for HIIT was
- 7 enhanced both vs. Control (1.8 mL/kg/min 99% CI 0.7 to 2.9, p<0.0001) and MICT (1.5 mL/kg/min 99% CI 0.2
- 8 to 2.8, p=0.002). The result for ExComb vs Control was also enhanced and significant in these analyses (0.8
- 9 mL/kg/min 99% CI 0.1 to 1.5, p=0.004). Similarly, the effect estimates for CCR was enhanced against Control (-
- 10 0.38, 99% CI -0.87 to 0.11, p=0.044) and MICT (-0.29, 99%CI -0.86 to 0.28, p=0.18) for HIIT, although
- precision was lower due to the lower number of observations in the analyses.

12

13

Supplemental References

- 1. Stensvold D, Viken H, Rognmo Ø, Skogvoll E, Steinshamn S, Vatten LJ, Coombes JS, Anderssen SA,
- Magnussen J, Ingebrigtsen JE, Singh MAF, Langhammer A, Støylen A, Helbostad JL, Wisløff U. A
- randomised controlled study of the long-term effects of exercise training on mortality in elderly people:
- 17 Study protocol for the generation 100 study. *BMJ Open* 2015;**5**:1–10.
- 18 2. Viken H, Reitlo LS, Zisko N, Nauman J, Aspvik NP, Ingebrigtsen JE, WislØff U, Stensvold D. Predictors
- of Dropout in Exercise Trials in Older Adults: The Generation 100 Study. *Medicine and Science in Sports*
- 20 and Exercise 2019;**51**:49–55.
- 3. Kurtze N, Rangul V, Hustvedt B-E, Flanders WD. Reliability and validity of self-reported physical activity in the Nord-Trøndelag Health Study HUNT 1. *Scandinavian Journal of Public Health* 2008;**36**:52–61.

1 Supplemental Table 1. Number of observations in analyses per year and intervention

2 arm

	Year	Control	MICT	HIIT
CCR	0	773	378	395
CCR	1	622	290	282
CCR	3	524	248	249
CCR	5	502	248	235
HDL cholesterol	0	777	382	397
HDL cholesterol	1	641	304	300
HDL cholesterol	3	530	250	251
HDL cholesterol	5	510	252	237
LDL cholesterol	0	776	381	397
LDL cholesterol	1	633	300	298
LDL cholesterol	3	530	250	251
LDL cholesterol	5	510	252	237
TC	0	777	382	397
TC	1	641	304	300
TC	3	530	250	251
ТС	5	510	252	237
TG	0	777	382	397
TG	1	642	304	300
TG	3	530	250	251
ΓG	5	510	252	237
BP measures	0	777	383	399
BP measures	1	642	302	289
BP measures	3	556	254	261
BP measures	5	513	256	240
Resting heart rate	0	779	386	400
Resting heart rate	1	628	289	281
Resting heart rate	3	557	254	261
Resting heart rate	5	514	258	238
Waist circumference	0	777	385	398
Waist circumference	1	661	315	302
Waist circumference	3	557	256	262
Waist circumference	5	521	257	238
BMI	0	773	383	395
BMI	1	650	311	294
BMI	3	557	256	262
BMI	5	522	258	240
HbA1c	0	778	382	397
HbA1c	1	646	306	297
HbA1c	3	541	251	255
HbA1c	5	510	252	237
Glucose	0	778	382	397
Glucose	1	643	304	300
Glucose	3	527	250	251
Glucose	5	510	252	237

VO _{2peak} (mL/kg/min)	0	763	377	393
VO _{2peak} (mL/kg/min)	1	609	289	291
VO _{2peak} (mL/kg/min)	3	491	234	241
VO _{2peak} (mL/kg/min)	5	442	206	210
VO _{2peak} (mL/kg fat free mass/min)	0	751	374	388
VO _{2peak} (mL/kg fat free mass/min)	1	603	286	283
VO _{2peak} (mL/kg fat free mass/min)	3	484	233	238
VO _{2peak} (mL/kg fat free mass/min)	5	434	204	207

MICT = moderate-intensity continuous training. HIIT = high-intensity interval training. CCR = continuous cardiovascular risk score. HDL = high-density lipoprotein. LDL = low-density lipoprotein. TC = total cholesterol. TG = triglycerides. BP = blood pressure. BMI = body mass index. HbA1c = glycosylated hemoglobin. VO_{2peak} = Peak oxygen uptake

Supplemental Table 2. Characteristics by sex and intervention group at year 1.

		Men		Women				
Characteristic	Control , N = 318	MICT, N = 165	HIIT , N = 163	Control , N = 343	MICT, N = 149	HIIT , N = 139		
Age (years)	73 (1.9)	73 (2.1)	73 (2.1)	73 (2.1)	73 (2.0)	73 (2.0)		
Weight (kg)	82 (11)	81 (11)	82 (12)	67 (11)	67 (9.9)	66 (9.8)		
Height (cm)	177 (5.6)	177 (5.9)	177 (6.1)	163 (5.3)	163 (5.0)	163 (5.2)		
Fat free mass (kg)	61 (6.0)	61 (6.2)	61 (6.5)	43 (4.6)	44 (4.1)	43 (4.3)		
Body fat (%)	26 (6.3)	25 (6.4)	25 (6.4)	34 (6.8)	34 (6.9)	33 (6.4)		
VO _{2peak} (mL/kg/min)	33 (7.3)	33 (7.3)	35 (6.7)	28 (5.5)	28 (5.3)	29 (5.7)		
Respiratory exchange ratio	1.07 (0.08)	1.08 (0.07)	1.08 (0.06)	1.04 (0.07)	1.04 (0.08)	1.05 (0.08)		
Borg scale peak	17.4 (1.4)	17.2 (1.4)	17.6 (1.4)	17.2 (1.6)	17.1 (1.5)	17.6 (1.4)		
Current smoker	22 (7.4%)	14 (9.7%)	6 (3.9%)	23 (7.2%)	12 (8.5%)	8 (6.0%)		
Former smoker	136 (46%)	68 (47%)	79 (52%)	111 (35%)	50 (35%)	43 (32%)		
Alcohol (units/week)	4.6 (4.5)	4.4 (4.1)	4.6 (4.5)	3.3 (3.7)	2.4 (3.0)	2.2 (2.9)		
Lipid lowering therapy	31 (9.7%)	27 (16%)	19 (12%)	37 (11%)	13 (8.7%)	19 (14%)		
Beta blockers ^c	39 (12%)	22 (13%)	26 (16%)	26 (7.6%)	11 (7.4%)	15 (11%)		
Antihypertensives	122 (38%)	63 (38%)	48 (29%)	117 (34%)	39 (26%)	43 (31%)		
Antidiabetic medication	23 (7.2%)	11 (6.7%)	12 (7.4%)	5 (1.5%)	7 (4.7%)	2 (1.4%)		
Nitrates	6 (1.9%)	2 (1.2%)	5 (3.1%)	4 (1.2%)	5 (3.4%)	2 (1.4%)		

6

Values are mean (standard deviation) or n (%).

Abbreviations: MICT = moderate-intensity continuous training. HIIT = high-intensity interval training. VO_{2peak} = peak oxygen uptake.

aBeta blockers or heart selective calcium channel blockers

Supplemental Table 3. Characteristics by sex and intervention group at year 3.

		Men		Women					
Characteristic	Control , N = 274	MICT, N = 132	HIIT , N = 140	Control , N = 343	MICT , N = 149	HIIT , N = 139			
Age (years)	73 (1.9)	73 (2.2)	73 (2.1)	73 (2.1)	73 (2.0)	73 (2.0)			
Weight (kg)	81 (10)	82 (11)	82 (11)	67 (11)	67 (9.9)	66 (9.8)			
Height (cm)	177 (5.8)	177 (5.9)	177 (5.8)	163 (5.3)	163 (5.0)	163 (5.2)			
Fat free mass (kg)	60 (6.2)	61 (6.1)	60 (5.8)	43 (4.6)	44 (4.1)	43 (4.3)			
Body fat (%)	26 (6.3)	26 (6.3)	26 (6.8)	34 (6.8)	34 (6.9)	33 (6.4)			
VO _{2peak} (mL/kg/min)	32 (7.6)	32 (6.6)	33 (7.3)	28 (5.5)	28 (5.3)	29 (5.7)			
Respiratory exchange ratio	1.07 (0.08)	1.06 (0.08)	1.08 (0.08)	1.03 (0.08)	1.04 (0.09)	1.05 (0.08)			
Borg scale peak	17.3 (1.5)	17.1 (1.5)	17.4 (1.2)	17.1 (1.7)	17.1 (1.5)	17.5 (1.3)			
Current smoker	12 (4.5%)	10 (8.2%)	7 (5.1%)	23 (7.2%)	12 (8.5%)	8 (6.0%)			
Former smoker	124 (47%)	65 (53%)	61 (45%)	111 (35%)	50 (35%)	43 (32%)			
Alcohol (units/week)	4.6 (4.3)	4.5 (4.3)	4.4 (4.0)	3.3 (3.7)	2.4 (3.0)	2.2 (2.9)			
Lipid lowering therapy	32 (12%)	23 (17%)	21 (15%)	37 (11%)	13 (8.7%)	19 (14%)			
Beta blockers ^c	38 (14%)	20 (15%)	24 (17%)	26 (7.6%)	11 (7.4%)	15 (11%)			
Antihypertensives	116 (42%)	52 (39%)	45 (32%)	117 (34%)	39 (26%)	43 (31%)			
Antidiabetic medication	24 (8.8%)	9 (6.8%)	13 (9.3%)	5 (1.5%)	7 (4.7%)	2 (1.4%)			
Nitrates	10 (3.6%)	0 (0%)	4 (2.9%)	4 (1.2%)	5 (3.4%)	2 (1.4%)			

Values are mean (standard deviation) or n (%).

Abbreviations: MICT = moderate-intensity continuous training. HIIT = high-intensity interval training. VO_{2peak} = peak oxygen uptake.

aBeta blockers or heart selective calcium channel blockers

Supplemental Table 4. Characteristics by sex and intervention group at year 5.

		Men		Women				
Characteristic	Control, N = 263	MICT, N = 134	HIIT , N = 129	Control, N = 259	MICT, N = 124	HIIT, N = 111		
Age (years)	73 (1.9)	73 (2.2)	73 (2.1)	73 (2.1)	73 (2.0)	73 (2.0)		
Weight (kg)	81 (11)	82 (11)	82 (12)	67 (11)	68 (11)	65 (9.2)		
Height (cm)	176 (5.8)	177 (6.2)	176 (6.1)	163 (5.3)	163 (5.0)	162 (5.3)		
Fat free mass (kg)	59 (6.2)	60 (6.1)	59 (6.3)	43 (4.4)	44 (4.1)	43 (4.5)		
Body fat (%)	27 (6.4)	26 (6.7)	27 (6.5)	35 (7.3)	35 (7.2)	34 (6.1)		
VO _{2peak} (mL/kg/min)	30 (7.3)	31 (6.8)	31 (6.9)	26 (5.2)	26 (5.1)	27 (5.3)		
Respiratory exchange ratio	1.06 (0.08)	1.06 (0.07)	1.08 (0.08)	1.03 (0.08)	1.03 (0.08)	1.04 (0.09)		
Borg scale peak	17.2 (1.4)	17.1 (1.6)	17.3 (1.2)	17.0 (1.5)	16.9 (1.4)	17.2 (1.4)		
Current smoker	7 (2.9%)	7 (5.7%)	7 (5.9%)	12 (5.1%)	6 (5.4%)	5 (4.7%)		
Former smoker	117 (48%)	61 (50%)	53 (45%)	78 (33%)	35 (31%)	32 (30%)		
Alcohol (units/week)	4.5 (4.1)	4.7 (4.4)	4.5 (4.1)	3.0 (3.0)	2.5 (3.0)	1.9 (2.2)		
Lipid lowering therapy	35 (13%)	28 (21%)	21 (16%)	34 (13%)	25 (20%)	18 (16%)		
Beta blockers ^c	24 (9.1%)	9 (6.7%)	16 (12%)	15 (5.8%)	13 (10%)	6 (5.4%)		
Antihypertensives	110 (42%)	58 (43%)	43 (33%)	95 (37%)	37 (30%)	42 (38%)		
Antidiabetic medication	23 (8.7%)	10 (7.5%)	10 (7.8%)	5 (1.9%)	9 (7.3%)	1 (0.9%)		
Nitrates	12 (4.6%)	2 (1.5%)	6 (4.7%)	5 (1.9%)	5 (4.0%)	2 (1.8%)		

Values are mean (standard deviation) or n (%).
Abbreviations: MICT = moderate-intensity continuous training. HIIT = high-intensity interval training. VO2peak = peak oxygen uptake.

^aBeta blockers or heart selective calcium channel blockers

Supplemental Table 5. Descriptive means and standard deviations by intervention groups and study year.

		Control	ExComb	MICT	HIIT
Risk factor	Year	Mean (SD)	Mean (SD)	Mean (SD)	Mean (SD)
CCR (sum of Z)	0	0 (2.98)	0.01 (3.07)	0.01 (3.11)	0.01 (3.04)
	1	-0.76 (3.06)	-0.92 (2.97)	-0.9 (3.13)	-0.95 (2.8)
	3	-0.66 (3.04)	-0.68 (2.94)	-0.48 (3.06)	-0.87 (2.82)
	5	0.1 (2.99)	-0.16 (2.81)	0.02 (2.79)	-0.36 (2.84)
HDL cholesterol (mmol/L)	0	1.75 (0.51)	1.73 (0.51)	1.73 (0.49)	1.73 (0.53)
	1	1.78 (0.51)	1.75 (0.49)	1.76 (0.48)	1.75 (0.49)
	3	1.8 (0.52)	1.77 (0.51)	1.76 (0.5)	1.77 (0.52)
	5	1.63 (0.46)	1.63 (0.43)	1.62 (0.42)	1.65 (0.43)
LDL cholesterol (mmol/L)	0	3.42 (0.97)	3.36 (1.02)	3.36 (1.02)	3.36 (1.01)
	1	3.36 (0.95)	3.27 (1)	3.27 (1)	3.27 (1)
	3	3.44 (0.96)	3.32 (0.95)	3.3 (0.92)	3.33 (0.98)
	5	3.16 (0.95)	3.07 (0.94)	3.06 (0.89)	3.09 (0.99)
TC (mmol/L)	0	5.68 (1.1)	5.6 (1.12)	5.61 (1.14)	5.59 (1.1)
	1	5.54 (1.08)	5.42 (1.12)	5.41 (1.14)	5.42 (1.09)
	3	5.55 (1.14)	5.39 (1.1)	5.37 (1.08)	5.4 (1.12)
	5	5.35 (1.13)	5.24 (1.08)	5.2 (1.05)	5.28 (1.11)
TG (mmol/L)	0	1.13 (0.53)	1.14 (0.55)	1.16 (0.58)	1.13 (0.53)
	1	1.01 (0.47)	0.99 (0.44)	1 (0.46)	0.99 (0.42)
	3	1.01 (0.44)	1 (0.42)	1.02 (0.46)	0.99 (0.39)
	5	1.1 (0.48)	1.05 (0.44)	1.06 (0.47)	1.04 (0.4)
Diastolic BP (mmHg)	0	75.4 (9.77)	75 (9.33)	74.6 (9.07)	75.5 (9.57)
	1	73.5 (9.48)	73.4 (9.19)	73.4 (8.69)	73.3 (9.71)
	3	74.7 (9.59)	74 (9.58)	74.6 (9.46)	73.6 (9.69)
	5	76.7 (9.94)	76.4 (10)	76.6 (10.2)	76.2 (9.85)
Systolic BP (mmHg)	0	135 (17.5)	134 (17.6)	133 (17.7)	134 (17.6)
	1	132 (17)	131 (17.2)	131 (17.3)	132 (17.1)
	3	133 (17.5)	131 (16.9)	132 (17.9)	130 (15.8)
	5	135 (17)	134 (17.4)	134 (18)	134 (16.8)
MAP (mmHg)	0	94.9 (10.5)	94.4 (10.4)	93.9 (10.4)	94.8 (10.5)
	1	92.7 (10.2)	92.5 (10.2)	92.5 (9.93)	92.5 (10.5)
	3	93.8 (10.4)	92.9 (10.3)	93.6 (10.5)	92.2 (10)
	5	95.8 (10.4)	95.4 (10.5)	95.5 (10.8)	95.3 (10.2)
Resting heart rate (beats/min)	0	65.4 (10.9)	64.5 (10.7)	64.6 (10.8)	64.4 (10.7)
	1	64.2 (10.3)	63.1 (10.4)	63 (9.76)	63.2 (10.9)
	3	63.9 (10.7)	62.2 (10.7)	62 (11)	62.4 (10.4)
	5	63.8 (10.7)	61.5 (10.2)	61.8 (9.9)	61.1 (10.5)
Waist circumference (cm)	0	94.2 (10.7)	94.2 (11.4)	93.8 (11.2)	94.6 (11.5)
	1	92.1 (11.9)	92 (11.5)	92.1 (11.7)	91.9 (11.4)
	3	93.7 (10.7)	93.6 (11)	94.2 (11)	93 (10.9)
	5	94.8 (10.9)	94.6 (11.4)	95.2 (12)	94 (10.7)
BMI (kg/m^2)	0	25.9 (3.42)	26 (3.69)	25.9 (3.69)	26.2 (3.69)
	1	25.6 (3.44)	25.5 (3.44)	25.5 (3.53)	25.5 (3.34)
	3	25.6 (3.27)	25.7 (3.46)	25.9 (3.71)	25.6 (3.2)
	5	25.7 (3.49)	25.7 (3.55)	25.9 (3.8)	25.5 (3.26)
HbA1c (%)	0	5.65 (0.39)	5.7 (0.5)	5.71 (0.55)	5.7 (0.44)

	1	5.62 (0.47)	5.63 (0.47)	5.63 (0.47)	5.63 (0.47)
	3	5.51 (0.45)	5.52 (0.48)	5.53 (0.49)	5.52 (0.47)
	5	5.54 (0.58)	5.55 (0.49)	5.56 (0.54)	5.53 (0.43)
Glucose (mmol/L)	0	5.65 (0.75)	5.7 (0.94)	5.72 (1.03)	5.68 (0.85)
	1	5.62 (0.91)	5.64 (0.89)	5.68 (0.96)	5.6 (0.82)
	3	5.63 (1.07)	5.63 (0.86)	5.65 (0.85)	5.61 (0.87)
	5	5.53 (1)	5.49 (0.85)	5.53 (0.88)	5.44 (0.82)
VO _{2peak} (mL/kg/min)	0	28.6 (6.41)	28.8 (6.48)	28.6 (6.58)	29 (6.38)
	1	30.6 (6.87)	31.5 (6.86)	30.8 (6.9)	32.2 (6.76)
	3	29.3 (7.13)	30.1 (6.78)	29.1 (6.54)	31 (6.89)
	5	28.4 (6.65)	29 (6.51)	28.5 (6.5)	29.4 (6.5)
VO _{2peak} (mL/kg fat free	0	41.1 (6.82)	41 (6.96)	40.7 (7.1)	41.3 (6.82)
mass/min)	1	43.5 (7.53)	44.3 (7.58)	43.3 (7.5)	45.3 (7.55)
	3	41.8 (8.02)	42.7 (7.78)	41.5 (7.49)	43.8 (7.91)
	5	40.8 (7.38)	41.4 (7.18)	40.8 (6.85)	42 (7.45)

ExComb = combined exercise groups. MICT = moderate-intensity continuous training. HIIT = high-intensity interval training. SD = standard deviation. CCR = continuous cardiovascular risk score. HDL = high-density lipoprotein. LDL = low-density lipoprotein. TC = total cholesterol. TG = triglycerides. BP = blood pressure. MAP = mean arterial pressure. BMI = body mass index. HbA1c = glycosylated hemoglobin. VO_{2peak} = peak oxygen uptake.

$1 \quad \text{Supplemental Table 6. Results from linear mixed models showing treatment effect as Year} \times \text{Group interaction with 99\% CI for}$

ExComb, MICT and HIIT compared to Control. Including analyses at year 3 and MICT vs. Control comparison.

		ExComb vs. Contr	ol	MICT vs. Contr	rol	HIIT vs. Cor	ntrol	HIIT vs. Ml	ICT
		Year x Group		Year x Group		Year x Gro	oup	Year x Group	
Risk factor	Year	Estimate (99% CI)	P value	Estimate (99% CI)	P value	Estimate (99% CI)	P value	Estimate (99% CI)	P value
CCR (sum of Z)	0								
	1	-0.08 (-0.32 to 0.17)	0.42	-0.05 (-0.34 to 0.25)	0.69	-0.1 (-0.4 to 0.2)	0.38	-0.06 (-0.41 to 0.29)	0.68
	3	-0.16 (-0.42 to 0.09)	0.1	0.01 (-0.3 to 0.33)	0.91	-0.34 (-0.66 to -0.02)	0.006	-0.35 (-0.72 to 0.02)	0.014
	5	-0.19 (-0.46 to 0.07)	0.055	-0.08 (-0.39 to 0.24)	0.54	-0.32 (-0.64 to 0.01)	0.011	-0.24 (-0.62 to 0.13)	0.095
HDL cholesterol	0								
(mmol/L)	1	0.01 (-0.02 to 0.04)	0.51	0.01 (-0.03 to 0.05)	0.65	0.01 (-0.03 to 0.05)	0.53	0 (-0.05 to 0.05)	0.89
	3	0 (-0.03 to 0.04)	0.77	-0.01 (-0.05 to 0.03)	0.53	0.02 (-0.03 to 0.06)	0.27	0.03 (-0.02 to 0.08)	0.14
	5	0.01 (-0.03 to 0.05)	0.43	-0.01 (-0.05 to 0.04)	0.71	0.03 (-0.02 to 0.07)	0.089	0.04 (-0.02 to 0.09)	0.073
LDL cholesterol	0								
(mmol/L)	1	-0.03 (-0.12 to 0.07)	0.48	0 (-0.12 to 0.12)	0.98	-0.05 (-0.17 to 0.06)	0.24	-0.05 (-0.19 to 0.08)	0.3
	3	-0.05 (-0.15 to 0.05)	0.23	-0.04 (-0.17 to 0.08)	0.4	-0.05 (-0.18 to 0.07)	0.27	-0.01 (-0.16 to 0.13)	0.83
	5	-0.03 (-0.13 to 0.07)	0.46	-0.02 (-0.15 to 0.1)	0.64	-0.04 (-0.16 to 0.09)	0.47	-0.01 (-0.16 to 0.13)	0.81
TC (mmol/L)	0								
,	1	-0.02 (-0.12 to 0.08)	0.59	-0.01 (-0.14 to 0.12)	0.85	-0.03 (-0.16 to 0.09)	0.49	-0.02 (-0.17 to 0.12)	0.67
	3	-0.05 (-0.17 to 0.06)	0.2	-0.05 (-0.19 to 0.08)	0.31	-0.06 (-0.19 to 0.08)	0.3	0 (-0.16 to 0.16)	0.99
	5	-0.05 (-0.16 to 0.07)	0.3	-0.06 (-0.2 to 0.07)	0.23	-0.03 (-0.16 to 0.11)	0.64	0.04 (-0.12 to 0.2)	0.54
TG (mmol/L)	0								
	1	-0.01 (-0.06 to 0.04)	0.64	-0.01 (-0.08 to 0.05)	0.59	-0.01 (-0.07 to 0.06)	0.83	0.01 (-0.07 to 0.08)	0.77
	3	-0.02 (-0.08 to 0.03)	0.31	-0.01 (-0.08 to 0.06)	0.68	-0.03 (-0.1 to 0.04)	0.21	-0.02 (-0.1 to 0.06)	0.48
	5	-0.05 (-0.11 to 0.01)	0.024	-0.04 (-0.11 to 0.03)	0.16	-0.06 (-0.13 to 0.01)	0.023	-0.02 (-0.1 to 0.06)	0.45
Diastolic BP (mmHg)	0								
	1	-0.09 (-1.13 to 0.95)	0.82	0.14 (-1.14 to 1.41)	0.78	-0.32 (-1.61 to 0.97)	0.52	-0.46 (-1.96 to 1.04)	0.43
	3	-0.54 (-1.64 to 0.56)	0.21	0.18 (-1.19 to 1.54)	0.74	-1.25 (-2.6 to 0.11)	0.018	-1.42 (-3.01 to 0.17)	0.021
	5	-0.09 (-1.22 to 1.04)	0.84	0.28 (-1.1 to 1.65)	0.6	-0.47 (-1.87 to 0.93)	0.39	-0.75 (-2.36 to 0.87)	0.23

1	Systolic BP (mmHg)	0								
MAP (mmHg)	(0.07 (-1.89 to 2.02)	0.93	-0.1 (-2.5 to 2.3)	0.91	0.25 (-2.18 to 2.68)	0.79	0.35 (-2.48 to 3.18)	0.75
MAP (mmHg)		3	-1.16 (-3.24 to 0.92)	0.15	-0.01 (-2.58 to 2.56)	0.99	-2.27 (-4.82 to 0.29)	0.022	-2.26 (-5.25 to 0.74)	0.052
1			-0.4 (-2.53 to 1.73)	0.63	-0.66 (-3.25 to 1.94)	0.51	-0.12 (-2.76 to 2.52)	0.91	0.54 (-2.5 to 3.59)	0.65
3	MAP (mmHg)	0								
S		1	-0.04 (-1.21 to 1.13)	0.93	0.05 (-1.38 to 1.48)	0.93	-0.13 (-1.58 to 1.32)	0.82	-0.18 (-1.87 to 1.51)	0.78
Resting heart rate (beats/min)		3	-0.75 (-1.99 to 0.5)	0.12	0.11 (-1.43 to 1.64)	0.86	-1.58 (-3.1 to -0.06)	0.008	-1.69 (-3.48 to 0.1)	0.015
Resting heart rate (beats/min)		5	-0.2 (-1.47 to 1.07)	0.69	-0.04 (-1.59 to 1.5)	0.94	-0.35 (-1.93 to 1.23)	0.57	-0.31 (-2.13 to 1.51)	0.66
Resting heart rate (beats/min)		0								
(beats/min)	D	1	-0.44 (-1.59 to 0.7)	0.32	-0.53 (-1.94 to 0.88)	0.33	-0.35 (-1.78 to 1.07)	0.52	0.17 (-1.49 to 1.83)	0.79
Maist circumference (cm) 0		3	-1.25 (-2.46 to -0.05)	0.007	-1.13 (-2.61 to 0.36)	0.05	-1.38 (-2.86 to 0.1)	0.016	-0.25 (-1.98 to 1.48)	0.71
$ \begin{array}{c} \text{Waist} \\ \text{circumference (cm)} \\ \begin{array}{c} 1 \\ 3 \\ 0.43 & -0.06 & (-0.8 \text{ to } 0.68) \\ 0.43 & -0.43 & (-1.22 \text{ to } 0.36) \\ 0.16 \\ 0.05 & -0.09 & (-0.93 \text{ to } 1.02) \\ 0.9 \\ 0.27 & -0.07 & (-0.187 \text{ to } 0.07) \\ 0.07 \\ 0.07 & -0.47 & (-1.47 \text{ to } 0.53) \\ 0.23 \\ 0.011 & -0.09 & (-0.29 \text{ to } 0.18) \\ 0.00 \\ 0.001 & -0.09 & (-0.27 \text{ to } 0.09) \\ 0.19 \\ 0.18 & -0.018 & (-0.37 \text{ to } 0) \\ 0.011 \\ 0.021 & -0.011 & -0.09 & (-0.31 \text{ to } 0.13) \\ 0.021 & -0.011 & (-0.09 & (-0.31 \text{ to } 0.13) \\ 0.021 & -0.011 & (-0.29 \text{ to } 0.01) \\ 0.013 & -0.015 & (-0.21 \text{ to } 0.02) \\ 0.014 & -0.011 & (-0.29 \text{ to } 0.01) \\ 0.013 & -0.015 & (-0.21 \text{ to } 0.02) \\ 0.014 & -0.011 & 0.011 \\ 0.015 & -0.011 & (-0.27 \text{ to } 0.05) \\ 0.012 & -0.011 & (-0.27 \text{ to } 0.05) \\ 0.012 & -0.011 & (-0.27 \text{ to } 0.05) \\ 0.012 & -0.011 & (-0.27 \text{ to } 0.05) \\ 0.012 & -0.011 & (-0.02 \text{ to } 0.02) \\ 0.012 & -0.011 & (-0.02 \text{ to } 0.02) \\ 0.012 & -0.011 & (-0.02 \text{ to } 0.03) \\ 0.014 & -0.011 & (-0.05 \text{ to } 0.07) \\ 0.014 & -0.011 & (-0.05 \text{ to } 0.07) \\ 0.014 & -0.011 & (-0.05 \text{ to } 0.07) \\ 0.014 & -0.011 & (-0.05 \text{ to } 0.07) \\ 0.014 & -0.011 & (-0.05 \text{ to } 0.02) \\ 0.014 & -0.011 & (-0.05 \text{ to } 0.02) \\ 0.014 & -0.011 & (-0.05 \text{ to } 0.02) \\ 0.014 & -0.011 & (-0.05 \text{ to } 0.02) \\ 0.014 & -0.011 & (-0.05 \text{ to } 0.02) \\ 0.014 & -0.011 & (-0.05 \text{ to } 0.03) \\ 0.014 & -0.011 & (-0.05 \text{ to } 0.02) \\ 0.014 & -0.011 & (-0.05 \text{ to } 0.03) \\ 0.014 & -0.011 & (-0.05 \text{ to } 0.02) \\ 0.014 & -0.011 & (-0.05 \text{ to } 0.03) \\ 0.014 & -0.011 & (-0.05 \text{ to } 0.03) \\ 0.014 & -0.011 & (-0.05 \text{ to } 0.02) \\ 0.014 & -0.011 & (-0.05 \text{ to } 0.03) \\ 0.014 & -0.011 & (-0.05 \text{ to } 0.03) \\ 0.014 & -0.011 & (-0.05 \text{ to } 0.04) \\ 0.015 & -0.011 & (-0.05 \text{ to } 0.04) \\ 0.015 & -0.011 & (-0.05 \text{ to } 0.05) \\ 0.014 & -0.011 & (-0.05 \text{ to } 0.05) \\ 0.014 & -0.011 & (-0.05 \text{ to } 0.05) \\ 0.014 & -0.011 & (-0.05 \text{ to } 0.05) \\ 0.014 & -0.011 & (-0.05 \text{ to } 0.05) \\ 0.014 & -0.011 & (-0.05 \text{ to } 0.05) \\ 0.014 & -0.011 & (-0.05 \text{ to } 0.0$	(beats/film)	5	-1.44 (-2.67 to -0.21)	0.003	-1.03 (-2.52 to 0.47)	0.076	-1.89 (-3.42 to -0.36)	0.002	-0.86 (-2.62 to 0.9)	0.21
Circumference (cm) 3		0								
BMI (kg/m²) 0 BMI (kg/m²) 0 1		1	-0.06 (-0.8 to 0.68)	0.82	0.16 (-0.74 to 1.07)	0.64	-0.3 (-1.21 to 0.62)	0.4	-0.46 (-1.52 to 0.6)	0.26
BMI (kg/m²)	circumterence (cm)	3	-0.43 (-1.22 to 0.36)	0.16	0.05 (-0.93 to 1.02)	0.9	-0.9 (-1.87 to 0.07)	0.017	-0.95 (-2.09 to 0.18)	0.031
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		5	-0.09 (-0.9 to 0.72)	0.77	0.27 (-0.71 to 1.25)	0.47	-0.47 (-1.47 to 0.53)	0.23	-0.74 (-1.9 to 0.42)	0.099
1	D. G. (. 2)	0								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	BMI (kg/m²)	1	-0.14 (-0.29 to 0.01)	0.018	-0.09 (-0.27 to 0.09)	0.19	-0.18 (-0.37 to 0)	0.011	-0.09 (-0.3 to 0.13)	0.29
HbA1c (%) 1		3	-0.15 (-0.31 to 0.01)	0.013	-0.05 (-0.24 to 0.15)	0.55	-0.26 (-0.45 to -0.06)	< 0.001	-0.21 (-0.44 to 0.01)	0.016
$\begin{array}{c} 1 \\ \text{HbA1c (\%)} \\ \begin{array}{c} 1 \\ 3 \\ \end{array} \\ \begin{array}{c} -0.03 \ (-0.07 \ \text{to} \ 0.02) \\ 3 \\ \end{array} \\ \begin{array}{c} -0.01 \ (-0.06 \ \text{to} \ 0.03) \\ \end{array} \\ \begin{array}{c} 0.5 \\ \end{array} \\ \begin{array}{c} -0.02 \ (-0.08 \ \text{to} \ 0.04) \\ \end{array} \\ \begin{array}{c} 0.43 \\ \end{array} \\ \begin{array}{c} -0.01 \ (-0.06 \ \text{to} \ 0.05) \\ \end{array} \\ \begin{array}{c} 0.01 \ (-0.06 \ \text{to} \ 0.08) \\ \end{array} \\ \begin{array}{c} 0.61 \ (-0.08 \ \text{to} \ 0.15) \\ \end{array} \\ \begin{array}{c} 0.02 \ (-0.08 \ \text{to} \ 0.04) \\ \end{array} \\ \begin{array}{c} 0.02 \ (-0.08 \ \text{to} \ 0.04) \\ \end{array} \\ \begin{array}{c} 0.01 \ (-0.06 \ \text{to} \ 0.05) \\ \end{array} \\ \begin{array}{c} 0.01 \ (-0.06 \ \text{to} \ 0.08) \\ \end{array} \\ \begin{array}{c} 0.01 \ (-0.06 \ \text{to} \ 0.08) \\ \end{array} \\ \begin{array}{c} 0.01 \ (-0.06 \ \text{to} \ 0.08) \\ \end{array} \\ \begin{array}{c} 0.01 \ (-0.06 \ \text{to} \ 0.08) \\ \end{array} \\ \begin{array}{c} 0.01 \ (-0.06 \ \text{to} \ 0.08) \\ \end{array} \\ \begin{array}{c} 0.01 \ (-0.06 \ \text{to} \ 0.08) \\ \end{array} \\ \begin{array}{c} 0.01 \ (-0.06 \ \text{to} \ 0.08) \\ \end{array} \\ \begin{array}{c} 0.01 \ (-0.08 \ \text{to} \ 0.08) \\ \end{array} \\ \begin{array}{c} 0.01 \ (-0.08 \ \text{to} \ 0.08) \\ \end{array} \\ \begin{array}{c} 0.01 \ (-0.08 \ \text{to} \ 0.08) \\ \end{array} \\ \begin{array}{c} 0.01 \ (-0.08 \ \text{to} \ 0.08) \\ \end{array} \\ \begin{array}{c} 0.01 \ (-0.08 \ \text{to} \ 0.08) \\ \end{array} \\ \begin{array}{c} 0.01 \ (-0.08 \ \text{to} \ 0.08) \\ \end{array} \\ \begin{array}{c} 0.01 \ (-0.08 \ \text{to} \ 0.08) \\ \end{array} \\ \begin{array}{c} 0.01 \ (-0.08 \ \text{to} \ 0.08) \\ \end{array} \\ \begin{array}{c} 0.01 \ (-0.08 \ \text{to} \ 0.08) \\ \end{array} \\ \begin{array}{c} 0.01 \ (-0.08 \ \text{to} \ 0.08) \\ \end{array} \\ \begin{array}{c} 0.01 \ (-0.08 \ \text{to} \ 0.08) \\ \end{array} \\ \begin{array}{c} 0.01 \ (-0.08 \ \text{to} \ 0.08) \\ \end{array} \\ \begin{array}{c} 0.01 \ (-0.08 \ \text{to} \ 0.08) \\ \end{array} \\ \begin{array}{c} 0.01 \ (-0.08 \ \text{to} \ 0.08) \\ \end{array} \\ \begin{array}{c} 0.01 \ (-0.08 \ \text{to} \ 0.08) \\ \end{array} \\ \begin{array}{c} 0.01 \ (-0.08 \ \text{to} \ 0.08) \\ \end{array} \\ \begin{array}{c} 0.01 \ (-0.08 \ \text{to} \ 0.08) \\ \end{array} \\ \begin{array}{c} 0.01 \ (-0.08 \ \text{to} \ 0.08) \\ \end{array} \\ \begin{array}{c} 0.01 \ (-0.08 \ \text{to} \ 0.08) \\ \end{array} \\ \begin{array}{c} 0.01 \ (-0.08 \ \text{to} \ 0.08) \\ \end{array} \\ \begin{array}{c} 0.01 \ (-0.08 \ \text{to} \ 0.08) \\ \end{array} \\ \begin{array}{c} 0.01 \ (-0.08 \ \text{to} \ 0.08) \\ \end{array} \\ \begin{array}{c} 0.01 \ (-0.08 \ \text{to} \ 0.08) \\ \end{array} \\ \begin{array}{c} 0.01 \ (-0.08 \ \text{to} \ 0.08) \\ \end{array} \\ \begin{array}{c} 0.01 \ (-0.08 \ \text{to} \ 0.08) \\ \end{array} \\ \begin{array}{c} 0.01 \ (-0.08 \ \text{to} \ 0.08) \\ \end{array} \\ \begin{array}{c} 0.01 \ (-0.08 \ \text{to} \ 0.08) \\ \end{array} \\ \begin{array}{c} 0.01 \ (-0.08 \ \text{to} \ 0.08) \\ \end{array} \\ \begin{array}{c} 0.01 \ (-0.08 \ \text{to} \ 0.08) \\ \end{array} \\ \begin{array}{c} 0.01 \ (-0.08 \ \text{to} \ 0.08) \\ \end{array} \\ \begin{array}{c} 0.01 \ (-0.08 \ \text{to} \ 0.08) \\ \end{array} \\ \begin{array}{c} 0.01 \ (-0.08 \ \text{to} \ 0.08) \\ $		5	-0.11 (-0.27 to 0.05)	0.072	0.01 (-0.19 to 0.21)	0.91	-0.24 (-0.44 to -0.04)	0.002	-0.25 (-0.48 to -0.02)	0.005
HbA1c (%) 3		0								
3 -0.01 (-0.06 to 0.03) 0.5 -0.02 (-0.08 to 0.04) 0.43 -0.01 (-0.06 to 0.05) 0.77 0.01 (-0.06 to 0.08) 0.6 5 -0.01 (-0.05 to 0.04) 0.76 0 (-0.06 to 0.06) 0.98 -0.01 (-0.07 to 0.05) 0.59 -0.01 (-0.08 to 0.05) 0.6 Glucose (mmol/L) 0 1 -0.02 (-0.12 to 0.08) 0.54 -0.01 (-0.13 to 0.11) 0.81 -0.04 (-0.16 to 0.09) 0.46 -0.02 (-0.17 to 0.12) 0.6 3 -0.06 (-0.16 to 0.05) 0.18 -0.06 (-0.19 to 0.08) 0.27 -0.06 (-0.19 to 0.08) 0.28 0 (-0.15 to 0.16) 0.9 5 -0.06 (-0.17 to 0.04) 0.13 -0.05 (-0.18 to 0.09) 0.36 -0.08 (-0.22 to 0.05) 0.11 -0.04 (-0.19 to 0.12) 0.5 VO _{2peak} 0 (mL/kg/min) 0.61 (0.08 to 1.15) 0.003 0.21 (-0.45 to 0.86) 0.41 1.01 (0.36 to 1.67) <0.001 0.8 (0.04 to 1.57) 0.00	III 4.1 (0/)	1	-0.03 (-0.07 to 0.02)	0.12	-0.03 (-0.09 to 0.02)	0.12	-0.02 (-0.07 to 0.03)	0.34	0.01 (-0.05 to 0.07)	0.62
Glucose (mmol/L) 0 1	HbA1c (%)	3	-0.01 (-0.06 to 0.03)	0.5	-0.02 (-0.08 to 0.04)	0.43	-0.01 (-0.06 to 0.05)	0.77	0.01 (-0.06 to 0.08)	0.67
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		5	-0.01 (-0.05 to 0.04)	0.76	0 (-0.06 to 0.06)	0.98	-0.01 (-0.07 to 0.05)	0.59	-0.01 (-0.08 to 0.05)	0.62
3 -0.06 (-0.16 to 0.05) 0.18 -0.06 (-0.19 to 0.08) 0.27 -0.06 (-0.19 to 0.08) 0.28 0 (-0.15 to 0.16) 0.9 5 -0.06 (-0.17 to 0.04) 0.13 -0.05 (-0.18 to 0.09) 0.36 -0.08 (-0.22 to 0.05) 0.11 -0.04 (-0.19 to 0.12) 0.5 VO _{2peak} 0 (mL/kg/min) 1 0.61 (0.08 to 1.15) 0.003 0.21 (-0.45 to 0.86) 0.41 1.01 (0.36 to 1.67) <0.001 0.8 (0.04 to 1.57) 0.00	Glucose (mmol/L)	0								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		1	-0.02 (-0.12 to 0.08)	0.54	-0.01 (-0.13 to 0.11)	0.81	-0.04 (-0.16 to 0.09)	0.46	-0.02 (-0.17 to 0.12)	0.67
VO _{2peak} 0 (mL/kg/min) 0.61 (0.08 to 1.15) 0.003 0.21 (-0.45 to 0.86) 0.41 1.01 (0.36 to 1.67) <0.001 0.8 (0.04 to 1.57) 0.00		3	-0.06 (-0.16 to 0.05)	0.18	-0.06 (-0.19 to 0.08)	0.27	-0.06 (-0.19 to 0.08)	0.28	0 (-0.15 to 0.16)	0.99
(mL/kg/min) 1 0.61 (0.08 to 1.15) 0.003 0.21 (-0.45 to 0.86) 0.41 1.01 (0.36 to 1.67) <0.001 0.8 (0.04 to 1.57) 0.00		5	-0.06 (-0.17 to 0.04)	0.13	-0.05 (-0.18 to 0.09)	0.36	-0.08 (-0.22 to 0.05)	0.11	-0.04 (-0.19 to 0.12)	0.55
1 0.01 (0.08 to 1.15) 0.003 0.21 (-0.45 to 0.86) 0.41 1.01 (0.36 to 1.67) < 0.001 0.8 (0.04 to 1.57) 0.0		0								
3 0.63 (0.05 to 1.21) 0.006 0.13 (-0.59 to 0.84) 0.65 1.13 (0.42 to 1.84) <0.001 1 (0.18 to 1.83) 0.00	(mL/kg/min)	1	0.61 (0.08 to 1.15)	0.003	0.21 (-0.45 to 0.86)	0.41	1.01 (0.36 to 1.67)	< 0.001	0.8 (0.04 to 1.57)	0.007
		3	0.63 (0.05 to 1.21)	0.006	0.13 (-0.59 to 0.84)	0.65	1.13 (0.42 to 1.84)	< 0.001	1 (0.18 to 1.83)	0.002

	5	0.39 (-0.22 to 1)	0.097	0.02 (-0.73 to 0.76)	0.96	0.76 (0.02 to 1.51)	0.008	0.75 (-0.12 to 1.62)	0.027
VO _{2peak} (mL/kg fat	0								·
free mass/min)	1	0.76 (0.03 to 1.49)	0.007	0.21 (-0.69 to 1.1)	0.55	1.32 (0.42 to 2.22)	< 0.001	1.11 (0.07 to 2.16)	0.006
	3	0.86 (0.07 to 1.65)	0.005	0.18 (-0.79 to 1.16)	0.62	1.53 (0.56 to 2.5)	< 0.001	1.35 (0.22 to 2.48)	0.002
	5	0.52 (-0.31 to 1.35)	0.11	0.04 (-0.99 to 1.06)	0.92	1 (-0.02 to 2.02)	0.012	0.96 (-0.23 to 2.15)	0.038

 \overline{CI} = confidence interval. ExComb= combined exercise groups. MICT = moderate-intensity continuous training. HIIT = high-intensity interval training. SD = standard deviation. VO_{2peak} = peak oxygen uptake. CCR = continuous cardiovascular risk score. HDL = high-density lipoprotein. LDL = low-density lipoprotein. TC = total cholesterol. TG = triglycerides. BP = blood pressure. MAP = mean arterial pressure. BMI = body mass index. HbA1c = glycosylated hemoglobin. VO_{2peak} = peak oxygen uptake.

AUTHOR INFORMATION

- 2 Jon Magne Letnes (Orcid: 0000-0002-2877-9904), MD, PhD, postdoctoral researcher
- 3 Ida Berglund, MSc., Doctoral student
- 4 Kristin Espolin Johnson, MSc.
- 5 Håvard Dalen (Orcid: 0000-0003-1192-3663), MD, PhD, Professor
- 6 Bjarne Martens Nes (Orcid: 0000-0002-9958-8179), MSc., PhD, Researcher
- 7 Stian Lydersen, MSc, PhD, Professor
- 8 Hallgeir Viken, PhD

1

- 9 Erlend Hassel (Orcid: 0000-0003-3282-8921), MD, PhD,
- 10 Sigurd Steinshamn, MD, PhD, Professor
- 11 Elisabeth Kleivhaug Vesterbekkmo, MD, Doctoral student
- Asbjørn Støylen, MD, PhD, Professor (Orcid: 0000-0002-2245-7066)
- 13 Line Skarsem Reitlo, MSc, PhD
- Nina Zisko, MSc, PhD, Researcher
- 15 Fredrik H. Bækkerud, MSc, PhD
- 16 Atefe R. Tari, MSc, Doctoral student
- 17 Jan E. Ingebrigtsen, Assistant Professor
- 18 Silvana Bucher Sandbakk, MSc, PhD, Researcher
- Trude Carlsen, (Orcid: 0000-0003-1259-6916), MSc, Doctoral student
- Sigmund A. Anderssen, PhD, Professor
- Maria A. Fiatarone Singh, MD, PhD, Professor
- Jeff S. Coombes, PhD, Professor
- Jorunn L. Helbostad, PhD, Professor
- 24 Øivind Rognmo, MSc, PhD, Researcher
- 25 Ulrik Wisløff (Orcid: 0000-0002-7211-3587), PhD, Professor
- 26 Dorthe Stensvold (Orcid: 0000-0002-8942-1316), PhD, Professor

27

28