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A B S T R A C T

Objectives: Accurate prediction of outcome following anterior cruciate ligament (ACL) reconstruction is chal-
lenging, and machine learning has the potential to improve our predictive capability. The purpose of this study
was to determine if machine learning analysis of the Norwegian Knee Ligament Register (NKLR) can (1) identify
the most important risk factors associated with subjective failure of ACL reconstruction and (2) develop a clin-
ically meaningful calculator for predicting the probability of subjective failure following ACL reconstruction.
Methods: Machine learning analysis was performed on the NKLR. All patients with 2-year follow-up data were
included. The primary outcome was the probability of subjective failure 2 years following primary surgery,
defined as a Knee Injury and Osteoarthritis Outcome Score (KOOS) Quality of Life (QoL) subscale score of <44.
Data were split randomly into training (75%) and test (25%) sets. Four models intended for this type of data were
tested: Lasso logistic regression, random forest, generalized additive model (GAM), and gradient boosted
regression (GBM). These four models represent a range of approaches to statistical details like variable selection
and model complexity. Model performance was assessed by calculating calibration and area under the curve
(AUC).
Results: Of the 20,818 patients who met the inclusion criteria, 11,630 (56%) completed the 2-year follow-up
KOOS QoL questionnaire. Of those with complete KOOS data, 22% reported subjective failure. The lasso logis-
tic regression, GBM, and GAM all demonstrated AUC in the moderate range (0.67–0.68), with the GAM per-
forming best (0.68; 95% CI 0.64–0.71). Lasso logistic regression, GBM, and the GAM were well-calibrated, while
the random forest showed evidence of mis-calibration. The GAM was selected to create an in-clinic calculator to
predict subjective failure risk at a patient-specific level (https://swastvedt.shinyapps.io/calculator_koosqol/).
Conclusion: Machine learning analysis of the NKLR can predict subjective failure risk following ACL reconstruction
with fair accuracy. This algorithm supports the creation of an easy-to-use in-clinic calculator for point-of-care risk
stratification. Clinicians can use this calculator to estimate subjective failure risk at a patient-specific level when
discussing outcome expectations preoperatively.
Level of evidence: Level-III Retrospective review of a prospective national register.
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What are the new findings?

� Machine learning analysis can be performed on a national knee
ligament register to predict the risk of subjective failure
following anterior cruciate ligament reconstruction

� An in-clinic calculator can guide clinical discussion and expec-
tations at a patient-specific level

� Variables for predicting subjective failure following anterior
cruciate ligament reconstruction are patient-related and non-
modifiable by the surgeon

Introduction

Anterior cruciate ligament (ACL) reconstruction is a common ortho-
paedic procedure aimed at restoring function and stability following
injury. Literature regarding the surgical outcome is often reported in
relation to patient-reported outcome measures (PROM), and several risk
factors for a poor outcome have been suggested [1–4]. Currently, how-
ever, the ability to use these predictors at the time of surgery to accu-
rately predict which patients are at risk of experiencing a poor outcome is
poor [1].

Recently, there has been an increased focus on the use of artificial
intelligence and machine learning to improve predictive capability
within several fields of medicine, including orthopaedic surgery [5–9].
These advanced statistical techniques utilise computer algorithms to
model complex interactions between variables and may lead to
improved capacity to predict the outcome. The “advanced” nature of
these techniques is derived from the fact that the interactions can be
more complex than with traditional statistics. Machine learning
analyses can consider all possible interactions between variables in a
database and determine the relationships to the desired outcome
measure. The factors important for predicting outcomes can then be
identified and used to develop the predictive algorithm. Often, minimal
explicit and direct human computer programming is required, and
the resulting algorithms can be used to prospectively predict the
patient-specific outcome.

The Norwegian Knee Ligament Register (NKLR) has been prospec-
tively collecting demographic, injury, surgical, and outcome data since
2004. It now includes over 25,000 patients who have undergone ACL
reconstruction with high compliance across the country [10]. Several
studies that have improved our understanding of ACL injuries have been
based on the NKLR [11–14], andmachine learning analysis allows deeper
evaluation of factors associated with outcome [9]. There are currently no
machine learning models to predict subjective outcomes following pri-
mary ACL reconstruction, and the development of such a tool could
impact clinical practice by informing shared decision-making and
outcome expectations.

The purpose of this study was to use machine learning analysis of
the NKLR to (1) identify the most important risk factors associated
with subjective failure of primary ACL reconstruction and (2) develop
a clinically meaningful model for predicting subjective failure of pri-
mary ACL reconstruction. Subjective failure was defined as a Knee
Injury and Osteoarthritis Outcome Score (KOOS) Quality of Life (QoL)
subscale score of <44. This endpoint has been clinically validated as a
marker of failure following ACL reconstruction [11]. The hypothesis
was that machine learning analysis would facilitate accurate predic-
tion of subjective failure for a patient undergoing primary ACL
reconstruction.

Materials and methods

This manuscript was written in accordance with the Transparent
Reporting of a multivariable prediction model for Individual Prognosis
Or Diagnosis statement [15].
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Data source

The NKLR is a nationwide register aiming to collect all reconstructive
surgery on cruciate ligament injuries in Norway. Reporting has been
mandatory since 2017, and the compliance of reporting to the register
was 86% in 2017 to 2018 [10]. The patients are registered with their
personal social security number, which allows them to be followed in
case of later surgery independent of service provider. Patient-specific and
intraoperative data are submitted to the NKLR by the surgeons (through
an article or web-based form directly after surgery). The patients are to
report KOOS preoperatively and at 2, 5, and 10 years of follow-up.

Ethics

Informed consent is obtained from all patients at time of enrolment in
the NKLR. Based on this consent, the Norwegian Data Inspectorate pro-
vides permission for the NKLR to collect, analyse, and publish on health
data. The registration of data was performed confidentially and accord-
ing to Norwegian and European Union data protection rules, with all data
de-identified prior to retrieval from the NKLR. The Regional Ethics
Committee has previously determined that it is not necessary to obtain
further ethical approval for Norwegian register-based studies [16].

Data preparation

This level-III retrospective review of a prospective national register
included all patients contained within the NKLR with primary ACL
reconstruction surgery dates from January 2004 through December
2018. Those with values for graft choice recorded as “direct suture,”
“other,” or missing were excluded. Patients with other ligamentous in-
juries at the time of primary surgery or <2 years of follow-up were also
excluded. Variables considered in the analysis are presented in Table 1.
Variables were re-coded or newly defined for the following: years be-
tween injury and primary surgery; cartilage injury identified at surgery
(none, ICRS 1–2, ICRS 3–4); meniscus injury identified at surgery (yes/
no); graft choice (patellar tendon autograft, hamstring tendon autograft,
other); fixation choice (interference screw, suspension/cortical device,
other); and height and weight variables that combined data from the
patient- and surgeon-reported variables. A predictor indicating if a pa-
tient was below the median score in all five KOOS categories at the time
of primary surgery was also created, and predictors for KOOS QoL and
Sports measures were scaled to a score out of 10.

Model creation

The primary outcome was the probability of subjective failure at 2
years following primary ACL reconstruction, as defined as a KOOS QoL
score of <44. Cleaned data were randomly split into training (75%) and
test (25%) sets that were used to fit and evaluate the models, respec-
tively. The program R (version: 3.6.1, R Core Team 2019) was used to fit
four machine learning models to the training data: lasso logistic regres-
sion, random forest, gradient boosted regression model (GBM), and
generalized additive model (GAM) [17]. These four models are among
the most commonly used for machine learning classification tasks and
offer a range of approaches in terms of variable selection, optimisation
technique, and complexity. Lasso logistic regression is a parametric,
penalised regression model that selects a subset of variables for inclusion
[18]. The random forest is a tree-based, nonparametric method [19].
GBMs are also nonparametric, meaning that they do not require
pre-specification of a model structure and iteratively improve the model
fit using all available variables [20,21]. GAM allow for machine-selected
nonlinear relationships among a pre-specified group of variables [22].
Further description of each of the four machine learning models can be
found in Appendix A.

An L1-regularised logistic regression model (“lasso logistic regres-
sion,” package glmnet; lambda value selected via cross-validation) was



Table 1
Characteristics of patients.

Variablea All N ¼ 20,818 Complete 2-year
Outcome Data
N ¼ 11,630

Follow-up time or time to revision 7.3 (3.9) 7.9 (3.6)
KOOS QOL <44 at 2 years 2,556 (22%) 2,556 (22%)
Missing 9,188 0

Age at surgery 28 (10) 29 (11)
Age at injury 26 (10) 27 (11)
Missing 1072 544

Sex
Male 11,669 (56%) 5,836 (50%)
Female 9,149 (44%) 5,794 (50%)

Pre-surgery BMI 25.0 (3.7) 24.8 (3.7)
Missing 7,244 4,365

Pre-surgery KOOS QOL
score (out of 10)

3.50 (1.83) 3.52 (1.83)

Missing 4,022 2,008
Pre-surgery KOOS Sports
score (out of 10)

4.33 (2.71) 4.37 (2.69)

Missing 4,162 2,087
Below median on all
pre-surgery KOOS

3,285 (19%) 1,806 (19%)

Missing 3,893 1,942
Activity that led to injury
Non-pivoting 4,109 (25%) 2,392 (26%)
Pivoting 12,007 (75%) 6,716 (74%)
Other/Unknown 0 (0%) 0 (0%)
Missing 4,702 2,522

Meniscus injury 10,942 (53%) 5,927 (51%)
Cartilage injury
ICRS 1-2 3,625 (17%) 2,016 (17%)
ICRS 3-4 993 (4.8%) 577 (5.0%)
None 16,200 (78%) 9,037 (78%)

Graft choice
BPTB autograft 7,334 (35%) 3,782 (33%)
Hamstring autograft 13,197 (63%) 7,740 (67%)
Other 287 (1.4%) 108 (0.9%)

Tibia fixation device
Interference screw 17,893 (89%) 9,905 (88%)
Suspension/cortical device 2,073 (10%) 1,245 (11%)
Other 152 (0.8%) 88 (0.8%)
Missing 700 392

Femur fixation device
Interference screw 6,325 (31%) 3,314 (29%)
Suspension/cortical device 11,629 (57%) 6,613 (58%)
Other 2,484 (12%) 1,491 (13%)
Missing 380 212

Fixation device combination
Interference screw x2 6,028 (30%) 3,163 (28%)
Interference/suspension 51 (0.3%) 17 (0.2%)
Suspension/cortical device x2 1,646 (8.2%) 1,011 (9.0%)
Suspension/interference 9,635 (48%) 5,410 (48%)
Other 2,634 (13%) 1,577 (14%)
Missing 824 452

Injured side
Right 10,613 (51%) 5,871 (50%)
Left 10,205 (49%) 5,759 (50%)

Previous surgery on opposite knee 1,526 (7.3%) 786 (6.8%)
Previous surgery on same knee 3,784 (18%) 2,220 (19%)
Time injury to surgery (years) 1.71 (3.36) 1.81 (3.63)
Missing 1,076 546

Systemic Antibiotic Prophylaxis 20,669 (100%) 11,534 (99%)
Missing 51 34

a Statistics presented: Mean (SD); n (%).
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applied to select variables for each outcome, and those with non-zero
coefficients were retained (Fig. 1). Random forests (function random-
Forest from package randomForest) were trained for each outcome with
minimum node size 5, 10 variables tried per split, 500 trees, and the full
set of predictors (hyperparameters selected via cross-validation). GAMs
(function gam from package mgcv) were trained with those variables
selected in the lasso for the respective outcomes, using smooth terms for
all continuous variables selected. Finally, GBMs (function gbm from
package gbm) were trained using a shrinkage parameter of 0.01,
3

minimum node size of 10, maximum tree depth of 3, 1000 trees, and the
full set of predictors (hyperparameters selected via cross-validation). All
four models were restricted to patients with complete data for the pre-
dictors used (Table 2a and Table 2b).

Model evaluation

Model performance was evaluated by calculating predicted proba-
bilities of subjective failure at 2 years of follow-up for the hold-out test
data using the trained models. Model calibration was assessed using the
Hosmer–Lemeshow statistic (function hoslem.test in package ResourceSe-
lection) [23]. Calibration refers to the accuracy of the predicted proba-
bilities, comparing expected to actual observed outcomes. This statistic
sums average misclassification in each predicted risk quintile and con-
verts the sum into a chi-squared statistic. Larger calibration statistics
correspond to smaller p values, and statistical significance means that the
null hypothesis of perfect calibration is rejected. The area under the
curve (AUC) was also calculated for each model along with confidence
intervals for the AUC using bootstrap resampling (functions auc and
ci.auc from package pROC).

Missing data

An inverse probability-weighted analysis was conducted to assess
whether patients with complete follow-up KOOS QoL score data were
fundamentally different from those with missing outcome data based on
observed characteristics. Inverse probability weighting assigns each
observation a weight based on the inverse of the probability of a patient
with similar observed characteristics being present in the dataset. In this
case, patients with combinations of predictor variables that are rare in the
complete outcome dataset receive high weights. Conversely, patients with
common predictor variables are down-weighted to adjust for their over-
representation. The result of the weighting is a population that mimics
what would have occurred if all patients were to have complete outcome
data. The same models are then built on this weighted population and
compared to the unweighted analysis. If the weighted models show sub-
stantively different results, this indicates that there may be fundamental
differences between patients with complete and incomplete outcome data.
If there is no substantive difference, this indicates that removing patients
with incomplete outcome data does not jeopardise the results.

To assess the effect of excluding patients with missing predictor
values from the models, the same four models were trained using mul-
tiple imputations to fill in missing values in the training data (function
mice from package mice). As with the weighted models, if there is no
substantive difference when using imputation, this indicates that
removing patients with incomplete predictor data does not adversely
affect the results.

Sources of funding

This study was funded by a Norwegian Centennial Chair seed grant.
Funding supported the machine learning analysis and interpretation. The
funding agencies had no direct role in the investigation.

Results

Data characteristics

Table 1 describes the characteristics of the registered population at
the time of primary surgery and the variables included for analysis. After
data cleaning, 20,818 patients met the inclusion criteria (Fig. 2). Of these
patients, 11,630 (56%) had complete 2-year follow-up KOOS QoL data.
Subjective failure (KOOS QoL score <44) occurred in 2,556 (22%) of the
patients with complete outcome data. The population was approximately
evenly split between male and female, with an average age (and standard
deviation) of 29 � 11 years at the time of primary surgery.



Fig. 1. Variable Importance. The four plots show relative feature importance in each of the machine learning models. The vertical axis is a variable importance score,
which differs depending on the model. For the lasso logistic regression and GAM, the vertical axis is the absolute value of the variable coefficient (effect size). For the
random forest and GBM, the scale is the decrease in model error rate if the variable were to be removed from the model. The highlighted bars indicate variables that
were selected using the lasso and included in the final model used for the in-clinic calculator. GAM, generalized additive model; GBM, gradient boosted regres-
sion model.
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Table 2a
Lasso logistic regression/generalised additive model complete/incomplete case comparison.

Variable* Incomplete
N ¼ 14,810

Complete
N ¼ 6,008

Total
N ¼ 20,818

P-value**

Years: surgery to data current date (2020-01-12) 9.1 (4.2) 7.6 (2.5) 8.6 (3.9) <0.001
KOOS QoL <44 at 2 years 1,270 (23%) 1,286 (21%) 2,556 (22%) 0.13
Missing 9,188 0 9,188

Age at injury 26 (10) 27 (11) 26 (10) 0.006
Missing 1,072 0 1,072

Pre-surgery BMI 25.1 (3.7) 24.8 (3.7) 25.0 (3.7) <0.001
Missing 7,244 0 7,244

Pre-surgery KOOS QoL score (out of 10) 3.48 (1.83) 3.55 (1.85) 3.50 (1.83) 0.016
Missing 4,022 0 4,022

Pre-surgery KOOS Sports score (out of 10) 4.29 (2.71) 4.42 (2.70) 4.33 (2.71) 0.002
Missing 4,162 0 4,162

Below median on all pre-surgery KOOS scores 2,199 (20%) 1,086 (18%) 3,285 (19%) 0.001
Missing 3,893 0 3,893

Activity that led to injury <0.001
Non-pivoting 2,784 (19%) 1,325 (22%) 4,109 (20%)
Pivoting 8,433 (59%) 3,574 (59%) 12,007 (59%)
Other 3,122 (22%) 1,109 (18%) 4,231 (21%)
Missing 471 0 471

Cartilage injury 0.015
ICRS 1-2 2,648 (18%) 977 (16%) 3,625 (17%)
ICRS 3-4 692 (4.7%) 301 (5.0%) 993 (4.8%)
None 11,470 (77%) 4,730 (79%) 16,200 (78%)

Previous surgery on same knee 2,824 (19%) 960 (16%) 3,784 (18%) <0.001

*Statistics presented: Mean (SD); n (%).
**Statistical tests performed: t-test, chi-square test.
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To assess the impact of restricting the analysis to patients with
complete KOOS QoL score data, covariate distributions between patients
with complete outcomes and the full dataset were compared (Table 1).
Covariate distributions between the complete cases for each model and
the full dataset were also compared (Table 2a and Table 2b). Due to the
large sample sizes, some comparisons produce p values below the sig-
nificance threshold: those with complete data were newer to the register,
had their surgeries at higher-volume hospitals, and were more likely to
be female. However, these differences were in general small and of
limited clinical significance. An inverse-probability-weighted analysis
and an analysis imputing missing covariate data was also performed.
Neither alternative analysis showed meaningfully different results from
the complete case models (Table 3 and Table 4).

Model performance

The lasso logistic regression, GBM, and GAM all demonstrated AUC in
the moderate range (0.67–0.68), with the GAM performing best at 0.68
(95% CI 0.64–0.71). Lasso logistic regression, gradient boosted regres-
sion, and the GAM were well-calibrated, and the random forest showed
evidence of miscalibration (Table 5).

Factors predicting outcome

The most important predictors of subjective failure at 2 years
following primary surgery in the lasso logistic regression model in order
were below the median on all KOOS subscale scores at the time of sur-
gery, cartilage injury at the time of surgery, activity leading to injury,
previous surgery on the same knee, KOOS Sports and QoL scores at
surgery, body mass index (BMI) at surgery, and age at injury. In the
random forest, predictors in the top third by variable importance score
also included age at surgery, graft choice, years between injury and
surgery, fixation device combination, and femur fixation. The GAM and
GBM produced similar rankings of feature importance (Fig. 1). The lasso
logistic regression and GAM measure feature importance by effect size
associated with the variable. The other models use the difference in
model error rate where the feature is to be removed.
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Risk-prediction calculator

The GAM was selected to create an easy-to-use in-clinic calculator to
predict the risk of a patient experiencing a subjective failure at 2 years of
follow-up after primary ACL reconstruction (https://swastvedt.shinya
pps.io/calculator_koosqol/and Fig. 3). The GAM was chosen out of the
four models because it combines performance with simplicity, using
fewer predictor variables than the similarly performing GBM. Whereas
the overall risk of failure in the register was 22%, this calculator can
quantify the risk at a patient-specific level (Video 1).

Discussion

The most important finding of this study was that machine learning
analysis of a knee ligament register allows the creation of a validated
algorithm to predict a patient's risk of experiencing subjective failure
of ACL reconstruction with fair accuracy. Additionally, despite having
20 possible prognostic variables contained within the NKLR, the al-
gorithm required only eight factors for the prediction of 2-year risk.
Variables required for risk prediction include age at injury, pre-
operative KOOS subscale scores, activity leading to an ACL injury,
concomitant cartilage injury, history of previous surgery on the same
knee, and pre-operative BMI. Using this algorithm, we developed an
in-clinic calculator was developed that can estimate the risk of sub-
jective failure.

This represents the first machine learning model for predicting the
subjective outcome of ACL reconstruction at a patient-specific level.
Estimation of revision risk has been developed previously [9], and
together, these two prediction tools can be used to guide the discussion
surrounding the surgical options and realistic outcome goals at a
patient-specific level. For the clinician, this represents a valuable adjunct
to the assessment of patients with ACL deficiency desiring surgical
management.

Similar to the previous study of revision risk [9], four models were
used to analyse the NKLR and create algorithms predicting the risk of
subjective failure after ACL reconstruction. Discrimination (AUC) was
similar for the prediction of subjective outcome evaluated with this study

https://swastvedt.shinyapps.io/calculator_koosqol/
https://swastvedt.shinyapps.io/calculator_koosqol/


Table 2b
Random forest/gradient boosted regression complete/incomplete case comparison.

Variable* Incomplete
N ¼ 15,040

Complete
N ¼ 5,778

Total
N ¼ 20,818

P-value**

Years: surgery to data current date (2020-01-12) 9.0 (4.2) 7.5 (2.5) 8.6 (3.9) <0.001
KOOS QoL <44 at 2 years 1,329 (23%) 1,227 (21%) 2,556 (22%) 0.058
Missing 9,188 0 9,188

Age at surgery 28 (10) 28 (11) 28 (10) 0.19
Age at injury 26 (10) 27 (11) 26 (10) 0.006
Missing 1,072 0 1,072

Sex <0.001
Male 8,890 (59%) 2,779 (48%) 11,669 (56%)
Female 6,150 (41%) 2,999 (52%) 9,149 (44%)

Pre-surgery BMI 25.1 (3.7) 24.8 (3.7) 25.0 (3.7) <0.001
Missing 7,244 0 7,244

Pre-surgery KOOS QoL score (out of 10) 3.48 (1.82) 3.56 (1.85) 3.50 (1.83) 0.006
Missing 4,022 0 4,022

Pre-surgery KOOS Sports score (out of 10) 4.28 (2.71) 4.43 (2.71) 4.33 (2.71) 0.001
Missing 4,162 0 4,162

Below median on all pre-surgery KOOS scores 2,244 (20%) 1,041 (18%) 3,285 (19%) 0.001
Missing 3,893 0 3,893

Activity that led to injury <0.001
Non-pivoting 2,846 (20%) 1,263 (22%) 4,109 (20%)
Pivoting 8,564 (59%) 3,443 (60%) 12,007 (59%)
Other 3,159 (22%) 1,072 (19%) 4,231 (21%)
Missing 471 0 471

Meniscus injury 7,908 (53%) 3,034 (53%) 10,942 (53%) 0.940
Cartilage injury 0.031
ICRS 1-2 2,683 (18%) 942 (16%) 3,625 (17%)
ICRS 3-4 710 (4.7%) 283 (4.9%) 993 (4.8%)
None 11,647 (77%) 4,553 (79%) 16,200 (78%)

Graft choice <0.001
BPTB autograft 5,454 (36%) 1,880 (33%) 7,334 (35%)
Hamstring autograft 9,358 (62%) 3,839 (66%) 13,197 (63%)
Other 228 (1.5%) 59 (1.0%) 287 (1.4%)

Tibia fixation device <0.001
Interference screw 12,494 (87%) 5,399 (93%) 17,893 (89%)
Suspension/cortical device 1,700 (12%) 373 (6.5%) 2,073 (10%)
Other 146 (1.0%) 6 (0.1%) 152 (0.8%)
Missing 700 0 700

Femur fixation device <0.001
Interference screw 4,671 (32%) 1,654 (29%) 6,325 (31%)
Suspension/cortical device 7,817 (53%) 3,812 (66%) 11,629 (57%)
Other 2,172 (15%) 312 (5.4%) 2,484 (12%)
Missing 380 0 380

Fixation device combination <0.001
Interference screw x2 4,391 (31%) 1,637 (28%) 6,028 (30%)
Interference/suspension 40 (0.3%) 11 (0.2%) 51 (0.3%)
Suspension/interference 6,177 (43%) 3,458 (60%) 9,635 (48%)
Suspension/cortical device x2 1,292 (9.1%) 354 (6.1%) 1,646 (8.2%)
Other 2,316 (16%) 318 (5.5%) 2,634 (13%)
Missing 824 0 824

Injured side 0.18
Right 7,711 (51%) 2,902 (50%) 10,613 (51%)
Left 7,329 (49%) 2,876 (50%) 10,205 (49%)

Previous surgery on opposite knee 1,157 (7.7%) 369 (6.4%) 1,526 (7.3%) 0.001
Previous surgery on same knee 2,856 (19%) 928 (16%) 3,784 (18%) <0.001
Time injury to surgery (years) 1.72 (3.31) 1.68 (3.50) 1.71 (3.36) 0.42
Missing 1,076 0 1,076

Systemic antibiotic prophylaxis 14,897 (99%) 5,772 (100%) 20,669 (100%) <0.001
Missing 51 0 51

*Statistics presented: Mean (SD); n (%).
**Statistical tests performed: t-test, chi-square test.
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(0.65–0.68) compared with the revision risk prediction (0.67–0.69), and
all models except the random forest demonstrated appropriate calibra-
tion. It is interesting to note that while the factors used for predicting
revision risk included modifiable surgical details (graft choice, femoral
fixation device, and length of time between injury and surgery) [9], the
prediction of subjective failure appears to be static. That is, most of the
variables used to predict subjective outcome are based on patient-driven
factors that are present prior to surgery (age, concomitant chondral
injury, history of previous surgery, and activity leading to injury) and
may not be amenable to optimisation.
6

Of the variables identified by the algorithm as important for pre-
dicting the risk of subjective failure, the only truly modifiable factor was
patient BMI at the time of surgery. The extent to which efforts to decrease
BMI prior to surgery may influence the risk of poor functional outcomes
is unclear and raises an interesting area for future study. Similarly, given
the impact of the pre-surgical KOOS scores on the eventual post-operative
subjective outcome, efforts to optimise functional outcomes prior to
surgery through physiotherapy or cognitive behavioural coaching may
also be beneficial. Regarding variable relative importance (Fig. 1), BMI
was the least important variable in the GAM, while KOOS QoL had the



Table 4
Multiple imputation model performance.

Model AUC Calibration statistic Calibration p-value

Logistic regression (lasso) 0.68 2.54 0.468
Random forest 0.67 21.30 0.006
Gradient boosted regression 0.69 1.62 0.656
Generalised additive model 0.68 2.46 0.482

Table 5
Model performance.

Model AUC AUC confidence
interval

Calibration
statistic

Calibration p-
value

Logistic regression
(lasso)

0.67 (0.64, 0.71) 4.57 0.206

Random forest 0.65 (0.62, 0.69) 26.83 <0.001
Gradient boosted
regression

0.68 (0.64, 0.71) 4.03 0.258

Generalised
additive model

0.68 (0.64, 0.71) 4.74 0.192

Fig. 2. Patient inclusion flowchart.
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highest relative importance. It should be noted, however, that the present
study was designed to predict subjective failure risk and does not
represent a comparative study to determine the effect of risk factor
modification.
Table 3
Inverse probability weighted model performance.

Model AUC Weighted
calibration
statistic

Unweighted
calibration

Calibration
p-value
(unweighted)

Logistic regression (lasso) 0.67 0.020 4.33 0.228
Random forest 0.65 0.054 24.65 <0.001
Gradient boosted regression 0.67 0.017 6.65 0.084
Generalised additive model 0.67 0.019 7.45 0.059
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The primary outcome of the subjective failure of ACL reconstruction
was defined as a KOOS QoL score of <44. Other possible measures of
subjective outcome include, but are not limited to, the minimal clinically
important difference (MCID) or Patient Acceptable Symptom State and
may use other assessment tools such as a visual analogue scale or the
International Knee Documentation Committee questionnaire. While
there are advantages and disadvantages to each measure of functional
outcome, KOOS QoL was selected for this study since it has previously
been validated as a measure of inadequate knee function associated with
prospective ACL reconstructed graft failure and represents a poor
outcome after surgery [11]. Further, the prevalence of a KOOS QoL score
of <44 was 22%, which suggests that the outcome is clinically relevant
across the population.
Fig. 3. QR Code for 2-year subjective failure point-of-care risk stratification at
the time of primary ACL reconstruction. ACL, anterior cruciate ligament.
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Limitations

The most significant limitation of this study is the missing follow-up
KOOS data. Whereas overall compliance with the NKLR is 86% for
tracking revision surgery following ACL reconstruction [10], follow-up
KOOS scores were only available for 56% of patients at 2 years. While
we cannot determine that data were missing completely at random, the
inverse probability weighted analysis does provide evidence that the
group of patients with complete KOOS follow-up data was not mean-
ingfully different from the group with missing data based on recorded
characteristics. Complete PROM follow-up represents a challenge for all
national knee ligament registers since patients are typically young and
reside throughout the country. Patient compliance is typically higher
when research teams and surgeons are actively engaged in the data
collection [2], which is not feasible for a large national register like the
NKLR. Second, although several machine learning models were evalu-
ated, a model that not considered may have performed better. A third
limitation is the fact that the analysis was limited to the variables con-
tained within the register. Although these variables included several
known risk factors for ACL reconstruction failure, there are also many
other factors that may be associated with the poor outcome that are not
recorded in the NKLR. Examples include radiographic variables such as
tibial slope and coronal alignment [24–28], physical examination and
rehabilitation details [29,30], and surgical technique factors such as
tunnel position [31] and graft size [32,33]. Further, while meniscus and
chondral injuries were recorded, the surgical treatments employed at the
time of surgery were not included as variables and may represent a
source of exclusion bias.

There are also limitations regarding the clinical utility of this
analysis. The machine learning models use several variables for
outcome prediction. To account for this, the GAM was selected for the
in-clinic calculator due to its simplicity, requiring fewer input vari-
ables without a significant decrease in performance versus the more
complex models. Further, this study included patients from a single
national register, and the results may not be applicable to other pop-
ulations. External validity could be established through the evaluation
of model performance when applied to patients from other registers or
databases. While an advantage of registers like the NKLR is the gen-
eralisability and real-world applicability [34], the inclusion of all
Norwegian surgeons in the data collection may result in wide vari-
ability. Finally, while the machine learning algorithm was well cali-
brated, the AUC was fair. The accuracy of the model may be improved
if radiographic, rehabilitation, and/or other variables not included in
the model were assessed.

Conclusion

Machine learning analysis of a national knee ligament register can
predict subjective failure risk following ACL reconstruction with few
factors required for outcome prediction and moderate accuracy overall.
This algorithm supports the creation of an easy-to-use in-clinic calculator
for point-of-care risk stratification. Clinicians can use this calculator to
estimate subjective failure risk at a patient-specific level when discussing
outcome expectations pre-operatively.

Institutional review board

Approval not required as consent was obtained by all patients at time
of enrolment in the national knee ligament register.
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