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Abstract 

The structure of the stride-to-stride time intervals during paced walking can be altered by 

the temporal pattern of the pacing cues, however, it is unknown if an altered probability 

distribution of these cues could also affect stride-to-stride time intervals. We investigated the 

effect of the temporal pattern and probability distribution of visual pacing cues on the temporal 

structure of the variability of the stride-to-stride time intervals during walking. Participants 

completed self-paced walking (SPW) and walking paced by visual cueing that had a temporal 

pattern of either pink noise presented with a normal distribution (PNND), shuffled pink noise 

presented with a normal distribution (SPNND), white noise presented with a normal distribution 

(WNND), and white noise presented with a uniform distribution (WNUD). The temporal 

structure of the stride-to-stride time intervals was quantified using the scaling exponent 

calculated from Detrended Fluctuation Analysis. The scaling exponent was higher during the 

SPW and PNND trials than during the SPNND, WNND and WNUD trials and it was lower 

during the WNUD trial compared to the SPNND trial. The results revealed that both the temporal 

pattern and the probability distribution of the visual pacing cues can affect the scaling exponent 

of the variability of the stride-to-stride time intervals. This information is fundamental in 

understanding how visual input is involved in the control of gait.  

 

 

Keywords: paced walking, visual cues, variable metronomes, gait, fractal structure, color 

noise  
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Introduction 

Sensorimotor synchronization during human locomotion is responsible for the 

entrainment of footsteps to the external cues from auditory and visual signals [5, 23]. Using this 

coupling between the sensory and motor neural system, externally paced walking is considered a 

valuable tool for gait rehabilitation in a variety of gait related disorders [2, 3, 11, 20]. In addition 

to the footstep synchronization, exposure to either auditory or visual pacing cueing has been 

reported to alter the temporal structure of the natural variability observed in the stride-to-stride 

time intervals [12, 13, 19, 25, 26].  

Hunt et al. (2014) [12] used Detrended Fluctuation Analysis (DFA) to quantify these 

alterations in the stride-to-stride time intervals of young adults during paced overground walking 

with auditory cues and un-paced walking. DFA returns a scaling exponent which, if above 0.5, 

indicates statistical persistence meaning that a deviation in stride time in one direction is 

statistically likely to be followed by a deviation in the same direction. A scaling exponent below 

0.5 indicates statistical anti-persistence meaning that a deviation in stride time in one direction is 

statistically likely to be followed by a deviation in the opposite direction. Lastly, a scaling 

exponent close to 0.5 indicates an uncorrelated structure, such that the fluctuations in the stride-

to-stride time intervals have no temporal correlation. In Hunt et al. (2014) [12], the authors 

presented conditions where the subjects walked listening to cues possessing a temporal pattern 

that was either white noise (i.e. a random signal with a flat power spectrum) or a pink noise (i.e. 

a signal with a power spectral density inversely proportional to the frequency). In both cases, the 

temporal structure of the variability observed in the stride-to-stride time intervals possessed 

statistical persistence (i.e. scaling exponent above 0.5). However, when walking with the pink 

noise pacing cues, the scaling exponent of the stride-to-stride time interval variability was 
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significantly higher compared to walking with the white noise pacing cues. Furthermore, the 

observed temporal structure of the stride-to-stride time interval variability during walking with 

pink noise cues was similar to un-paced walking in the young adults [12]. This result also 

demonstrated a superiority of the pink noise pacing cues over the classic isochronous pacing 

cues, because the pink noise pacing cues resulted in walking that exhibit the temporal structure 

of the natural variability of the stride-to-stride time intervals as observed in healthy young adults. 

As Hunt et al. (2014) [12] identified, the isochronous pacing cues resulted in an uncorrelated 

temporal structure of the stride-to-stride time intervals. These observations have been further 

supported by other studies using both auditory [16, 28] and visual cues [19, 27, 28]. In sum, the 

existing literature has determined that external pacing cues affects the temporal structure of the 

natural variability observed in the stride-to-stride time intervals during walking. As noted, the 

temporal structure of this natural variability is similar to the variability observed when 

individuals are asked to walk with pink noise pacing cues [12, 13, 16, 19, 25-28].  

During paced walking, the temporal pattern of the pacing signal dictates the order in 

which different cues are presented. This means that, during walking with pink noise pacing cues, 

the inter-cue time intervals possess statistical persistence with a scaling exponent of 1.0 and 

during walking with white noise pacing cues, the inter-cue time intervals possess an uncorrelated 

pattern with a scaling exponent of 0.5. Furthermore, the probability distribution of the pacing 

signals determines the probability of receiving a specific cue. In other words, if the provided 

cues have a normal probability distribution (i.e. the distribution of inter-cue time intervals 

follows a normal distribution curve), then there is a greater probability that inter-cue time 

intervals which are closer to the mean inter-cues time interval will be presented than the inter-

cue time intervals which are further away from the mean. Alternatively, if the provided cues 
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have a uniform probability distribution (i.e. the distribution of inter-cue time intervals follows a 

uniform distribution), then there is an equal probability for all inter-cue time intervals to be 

presented, regardless of their value relative to the mean inter-cue time interval. Therefore, using 

different combinations (pink or white noise with normal or uniform probability distribution) in 

the provided cues could present distinct differences in sensory input. Importantly, based on the 

existing literature, it cannot be determined whether the observed differences in the temporal 

structure of the stride-to-stride time interval variability when walking with pink or white noise 

pacing cues originate from the difference in the temporal pattern of the two pacing signals or 

from potential differences in the underlying probability distributions.  

The aim of the present study was to decipher the role of the temporal pattern (i.e. pink 

and white noise) and the probability distribution (i.e. normal and uniform) of the visual pacing 

cues on the temporal structure of the natural variability of the stride-to-stride time intervals 

during walking. To accomplish this aim, we tested the following temporal patterns of the pacing 

signals: a) pink noise with a normal distribution (PNND), b) randomly shuffled pink noise with a 

normal distribution (SPNND), c) white noise with a normal distribution (WNND) and d) white 

noise with a uniform distribution (WNUD) (Figure 1). We quantified the temporal structure of 

the stride-to-stride time interval variability using the scaling exponent calculated from the DFA. 

We hypothesized the following: 1) the scaling exponent of the stride-to-stride time interval 

variability during un-paced walking would not be different from that observed during walking 

with the PNND visual pacing signal, 2) the scaling exponent of the stride-to-stride time interval 

variability would be higher when exposed to the PNND pacing signal compared to the SPNND 

pacing signal, and 3) the scaling exponent of the stride-to-stride time interval variability during 
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walking with either SPNND or WNND visual pacing signals would be higher compared to 

walking with WNUD pacing signal. ø 

INSERT FIGURE 1 HERE 
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Method 

Participants 

Thirteen healthy young participants (males/females: 10/3, mean ± SD age: 25 ± 3.8 years, 

body height: 177.2 ± 12.3 cm and body mass: 80.2 ± 16.1 kg) with no neurological or 

musculoskeletal disorders were recruited. The participants provided informed written consent 

prior to participation. The study was approved by the Institutional Review Board of the 

University of Nebraska Medical Center, and the study was carried out in accordance with the 

approved guidelines. Participants were excluded if they had to be reminded more than once per 

trial to match their right heel strike to the moving bar reaching the bottom stationary bar, they 

were excluded as being unable to follow instructions. Following this criteria, three of 13 

participants were excluded from the analysis. This resulted in the data from a total of 10 

participants to be included in the analysis. Prior to the data collection, a sample size calculation 

was performed following the recommendation of Kuznetsov and Rhea (2017) [15] which 

revealed that the inclusion of a least 10 participants would provide an adequate statistical power.  

Experimental setup 

Upon arrival to the laboratory, the participants were fitted with footswitch sensors 

(Noraxon, Scottsdale, USA) placed under both heels for identification of heel strike events with a 

sampling frequency of 1500 Hz. This sampling frequency was chosen in order to detect the heel 

strikes events with more than 1 millisecond precision. The participants completed 5 overground 

walking trials including a minimum of 700 strides (approximately 13-minute duration) with 5 

minutes rest in-between. The walking trials were performed on an indoor 1/8th mile long track. 

During the first trial, participants completed self-paced walking (SPW). The subsequent four 

trials were completed in randomized order and consisted of paced walking with the following 
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pacing signals PNND, SPNND, WNND and WNUD. Previous studies from our laboratory have 

emphasized the importance of visual input for the control of treadmill walking [6, 7]. 

Additionally, Vaz et al. (2020) [28] reported a superiority of visual compared to auditory cues 

during paced treadmill walking when evaluating the temporal structure of the natural variability 

observed in the stride-to-stride time intervals. Therefore, the present study used visual pacing 

cues. The individual mean stride time and corresponding standard deviation from each 

participant during the first walking trial were used to scale the stride-to-stride time intervals of 

the four pacing signals. Time series with the different pacing signals were generated using 

custom made scripts in MATLAB (MathWorks Inc. Natick, MA). 

The participants wore non-prescription glasses in which the visual pacing cues was 

displayed on a mini HDMI screen (Vufine, Sunnyvale, CA, USA; Figure 2). The visual cues 

consisted of a horizontal bar moving vertically between two stationary bars (Figure 2). The 

participants were instructed to match their right heel strikes to the moving bar reaching the top 

stationary bar and match their left heel strikes to the moving bar reaching the bottom stationary 

bar.  

INSERT FIGURE 2 HERE 

Data analysis 

Stride times were calculated as the time between two consecutive right heel strikes. The 

first 50 and last 50 strides were excluded and time series with a total of 600 strides were used for 

further analysis [8]. The temporal structure of the stride-to-stride time interval variability was 

quantified using DFA [10]. According to this technique, the time series in question x(i) is first 

integrated by calculating the cumulative sum of the deviations around the mean (Equation 1). 

Equation 1: 𝑦(𝑘) = ∑ [𝑥(𝑖) − 𝑥𝑎𝑣𝑒
𝑘
𝑖 ]   
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The time series is then divided into windows of equal length, n and a least square line is fitted to 

each window. The y coordinate of the straight-line segments is designated by yn(k) and used to 

detrend the time series y(k) before calculating the root mean square fluctuation (equation 2).  

Equation 2: 𝐹(𝑛) =  √
1

𝑁
∑ [𝑦(𝑘) − 𝑦𝑛(𝑘)]2𝑁𝑛

𝑘=1   

This procedure is repeated across the entire time series in order to establish a relationship 

between the average fluctuation, F(n), as a function of window size n. The fluctuations can be 

characterized by the scaling exponent determined by the slope of the linear relationship between 

log 𝐹(𝑛) to log 𝑛 [18]. As recommended by Almurad and Delignières (2016) [1], an average 

evenly-spaced DFA algorithm was used in the present study. In the current study, a box size 

range of [16, N/9] and a scaling region of 10 – 30 were used for the DFA.  

Statistics 

A one-sample Kolmogorov-Smirnov test was applied to investigate if stride-to-stride time 

intervals deviated from a normal distribution. A two-sample Kolmogorov-Smirnov test was 

applied to investigate if the stride-to-stride time intervals and the corresponding visual cues 

during each trial had similar probability distributions. This test returns a D-value which 

quantifies the difference in probability distribution between the two signals in question. If the D-

value was below the critical D-limit (with level of significance set at 0.05), the two signals were 

considered to have similar probability distribution. Furthermore, the D-value was used as a proxy 

measure of the cue-matching performance, i.e. the difference in timing of the visual cues and the 

footsteps. The lower the D-value, the greater cue-matching performance.  

The use of frequentist p-values in making binary statistical inference (i.e., significant, 

non-significant) has been widely criticized [17, 21, 22, 29]. We have adopted a Bayesian 

analytical approach that focuses on strength of evidence in making statistical inference in non-
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absolute terms (see above references) – details on this approach are provided below. A one-way 

Bayesian repeated measure ANOVA was performed to investigate the effect of the different 

pacing signals on the scaling exponent, the D-value from the one-sample and two-sample 

Kolmogorov-Smirnov tests. The present study used an objective Bayesian ANOVA with default 

Cauchy priors. This approach includes computing and interpreting the Bayes Factor (BF10) as an 

alternative to the traditional p-value in frequentist statistics, which has been the subject of a 

number of critiques. BF10 is a ratio representing the information in favor of the alternative 

hypothesis relative to the null hypothesis (e.g., BF10 = 3 means that the alternative hypothesis is 

three time more likely than the null hypothesis). For interpretation of the BF10, the following 

intervals related to the strength of the evidence in support of the alternative hypothesis are used: 

BF10 = 1 – 3 represents anecdotal evidence (i.e. weak or limited evidence), BF10 = 3 – 10 

represents substantial evidence, BF10 = 10 – 30 represents strong evidence, BF10 = 30 – 100 

represents very strong evidence and BF10 > 100 represents decisive evidence. The following 

intervals of the BF10 related to the strength of the evidence in support of the null hypothesis are 

used: BF10 = 1/3 – 1 represents anecdotal evidence (i.e. weak or limited evidence), BF10 = 1/10 – 

1/3 represents substantial evidence, BF10 = 1/30 – 1/10 represents strong evidence, BF10 = 1/100 

– 1/30 represents very strong evidence and BF10 < 1/100 represents decisive evidence [31]. BF10 

= 1 provides no evidence in favor of either the null or alternative hypothesis. Note that these 

interpretive ranges are meant to be rules of thumb, not absolute rules. Post hoc tests were 

performed to investigate between-trials differences in the D-value and scaling exponent. 

Posterior odds were corrected for multiple comparisons [30]. All statistical analyses were 

performed in JASP (JASP Team, 2019). 
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Results 

Scaling exponent of the visual cues 

As a manipulation check, scaling exponents were calculated for each visual cue signal 

(Table 1). As expected, for the trial with the PNND pacing signal, the average scaling exponent 

was 1.00 and for the three other signals it was approximately 0.5.  

INSERT TABLE 1 HERE 

Scaling exponent of stride-to-stride time intervals 

There was decisive evidence (BF10 = 1.65 × 1010) to indicate that the type of pacing 

signal had an effect on the scaling exponent (Figure 3).  

INSERT FIGURE 3 HERE 

After correcting for multiple comparisons, the post hoc tests (Table 2, Posterior Odds) 

revealed anecdotal evidence of no difference in the scaling exponent between the SPW trial and 

the trial with the PNND pacing signal, anecdotal evidence of a difference in the scaling exponent 

between the SPW trial and the trial with the SPNND pacing signal and substantial and strong 

evidence of a difference in scaling exponent between the SPW trial and the trial with the WNND 

pacing signal and between the SPW trial and the trial with the WNUD pacing signal, 

respectively. When comparing the scaling exponent of the trial with the PNND pacing signal 

with the scaling exponents from the trials with SPNND, WNND and WNUD pacing signal, there 

was decisive evidence of a difference in all cases. There was substantial evidence of no 

difference between the scaling exponents of the trial with the SPNND pacing signal and the trial 

with the WNND pacing signal and substantial evidence of a difference between the scaling 

exponents of the trials with the SPNND pacing signal and WNUD pacing signal. Finally, 
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evidence of a difference in scaling exponents was too weak to discern between the trials with the 

WNND and WNUD pacing signal.  

INSERT TABLE 2 HERE 

Normality distribution and cue-matching performance 

There was decisive evidence (BF10 = 2.12 × 105) to indicate that the type of pacing signal 

had an effect on the normality of the stride-to-stride time interval distribution (Figure 4). 

INSERT FIGURE 4 HERE 

After correcting for multiple comparisons, the post hoc test (Table 3, Posterior Odds) 

revealed very strong evidence that the normality of stride-to-stride time interval distributions 

differed between the trial with the PNND pacing signal and the trial with the WNUD pacing 

signal. There was strong evidence that the normality of stride-to-stride time interval distributions 

during the trial with the WNUD pacing signal was different from the trials with the SPNND 

pacing signal and with the WNND pacing signal. There was anecdotal evidence of differences in 

the normality of stride-to-stride time interval distributions between trial with the PNND pacing 

signal and trials with the SPNND pacing signal. Lastly, there was anecdotal evidence that 

normality of stride-to-stride time interval distributions did not differ between the trial with the 

PNND pacing signal and the trial with the WNND pacing signal and substantial evidence that 

normality of stride-to-stride time interval distributions did not differ between the trial with the 

trial with the SPNND pacing signal and the trial with the WNND pacing signal.  

INSERT TABLE 3 HERE 

There was decisive evidence (BF10 = 2.11 × 106) to indicate that the type of pacing signal 

had an effect on the cue-matching performance (Figure 5). 

INSERT FIGURE 5 HERE 
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After correcting for multiple comparisons, the post hoc test (Table 4, Posterior Odds) 

revealed very strong evidence of a difference in the cue-matching performance between the trial 

with the PNND pacing signal and the three other pacing trials. There was substantial evidence 

that cue-matching performance was equivalent among the trials with the SPNND, WNND and 

WNUD pacing signals.  

INSERT TABLE 4 HERE 
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Discussion 

The aim of the present study was to decipher the role of the temporal pattern (i.e. pink 

and white noise) and the probability distribution (i.e. normal and uniform) of the visual pacing 

cues on the temporal structure of natural variability of the stride-to-stride time intervals during 

walking. This was achieved by using four different temporal patterns of the pacing signals; pink 

noise with a normal distribution, randomly shuffled pink noise with a normal distribution, white 

noise with a normal distribution and white noise with a uniform distribution (Figure 1), and 

quantifying the temporal structure of the stride-to-stride time interval variability by the scaling 

exponent calculated from the DFA.  

While previous studies have compared the effect of pacing cues with white and pink 

noise patterns during walking [12, 13], the present study used a shuffled pink noise pattern in 

addition to the white noise pattern. This approach ensures that the spatial information in the 

PNND and SPNND pacing signals is the same and only the temporal information is altered. We 

hypothesized that 1) the scaling exponent of the stride-to-stride time interval variability during 

un-paced walking would not be different from that observed during walking with the PNND 

visual pacing signal, 2) the scaling exponent of the stride-to-stride time interval variability would 

be higher when exposed to the PNND pacing signal compared to the SPNND pacing signal and 

3) the scaling exponent of the stride-to-stride time interval variability during walking with either 

SPNND or WNND visual pacing signals would be higher compared to walking with WNUD 

pacing signal. 

Self-paced walking vs. pink noise pacing  

The first hypothesis was supported as the results showed that the scaling exponent of the 

stride-to-stride time interval variability during the SPW trial did not differ from the trial 
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involving the PNND pacing. This observation is in agreement with previous studies using 

auditory [12, 13, 28] and visual cueing [27, 28] who also observed that the scaling exponent of 

the stride-to-stride time interval variability during walking with pink noise pacing did not seem 

to differ from that of un-paced natural walking in young adults. The scaling exponents during the 

SPW trial and the trial with the PNND pacing were on average 0.85 and 0.96, respectively, 

which also corresponds well to previous observations [12, 28]. Thus, the results of the present 

study confirms that the natural variability observed in the stride-to-stride time intervals during 

walking is similar to the one observed when individuals are asked to walk with pink noise pacing 

[12, 13, 16, 19, 25-28]. 

The importance of pink noise pacing 

The second hypothesis was also supported as the results showed a higher scaling 

exponent of the stride-to-stride time interval variability during the trial with the PNND pacing 

compared to the trial with the SPNND pacing. This suggests that the temporal information 

embedded in the pink noise is responsible for the structure in the stride-to-stride time intervals 

during the trial with the PNND pacing and that this structure can be altered by removing the 

temporal correlations in the pacing signal alone. Using a passive walker model, it has previously 

been shown that the temporal structure of natural variability of stride-to-stride time intervals 

during SPW does not require the presence of higher order neural control structures but can 

emerge from the dynamical interactions of passive structures alone [9, 14]. These studies were 

performed with a passive walker and thus it is possible that the passive dynamics of such models 

could be sufficient to generate chaos during walking. Here we do not counter the importance of 

the passive dynamics in generating a fractal structure in gait variability but we also suggest that 

sensory information could eventually play an important role in controlling this pattern.   
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The affinity to normal distribution 

The third hypothesis had limited support as the results showed a higher scaling exponent 

of the stride-to-stride time interval variability during the trial with the SPNND pacing compared 

to the trial with the WNUD pacing, but there was insufficient evidence to determine whether the 

trial with the WNND pacing produced larger scaling exponents than the WNUD trial. A more 

compelling case would have been made were both comparisons to have produced at least 

substantial evidence. Of note, however, is that strongest evidence we observed of a difference 

between trials was between the PNND and WNUD trials, suggesting that the WNUD trial is 

especially degrading to natural structures of variability. Pending replication, these results favor 

the interpretation that the probability distribution of the visual cues does influence the temporal 

structure in the stride-to-stride time intervals. Furthermore, the results indicate that a specific 

likelihood of obtaining visual input is crucial for the motor control of gait. In other words, it 

seems critical for the control of walking that specific visual information is more likely to be 

obtained than other information; suggesting a clear priority of the available visual input. This 

supports previous observations of the stride-to-stride time intervals being normally distributed in 

healthy individuals during SPW, which also indicates an affinity to normal distributions in motor 

control of un-paced walking [32, 33].  

Combined with the cue-matching performance data, the above results suggest an affinity 

in the sensorimotor system towards a normal probability distribution of both the sensory input 

and executed movement pattern. Unconstrained by task, the sensorimotor system produces 

stride-to-stride time intervals with a pink noise structure that conforms to a normal distribution. 

Moreover, cue-matching performance was best when visual cues exhibited both a pink noise 

structure and a normal distribution. A notable limitation of that interpretation is that our study 
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did not include a trial with a pacing signal that had a pink noise pattern and uniform distribution. 

However, another study conducted in our laboratory addresses this issue and suggests that both 

the noise type patterns and the probability distributions, present in visual cues, exert seemingly 

independent effects on stride-to-stride time interval variability. Thus, when changing from a pink 

to a white noise pattern in the pacing signals, the scaling exponent of the on stride-to-stride time 

interval variability decreased, regardless of the probability distribution (i.e. normal or uniform). 

Also when changing from normal to uniform distribution in the pacing signals, the scaling 

exponent decreased, regardless of the noise type pattern (i.e. pink or with) [4].   

The present study included young healthy adults with no neuromuscular impairments. It 

is to the best of our knowledge, unknown if altering the probability distribution of the paced 

signals would affect the complexity of stride-to-stride time intervals in older adults or patients 

with neurological disorders differently than the young healthy adults in the present study. Thus, 

future studies should determine the importance of adjusting the probability distribution of the 

pacing signals when used for gait training or rehabilitation purposes. Experimenters should be 

sure that the desired dynamics of the stride-to-stride time intervals are reflected in the temporal 

pattern and probability distribution of the pacing signals. Insights into distributional changes 

with age or neurological disorders may allow for the development of pacing signals specifically 

designed for improved rehabilitation strategies. 

Temporal pattern and distribution of pacing cues in the context of Optimal 

Movement Variability 

The Optimal Movement Hypothesis (OMVH) suggests that variability is an essential 

feature of human movement and that healthy variability takes optimal forms [24]. Elaborated, 

this hypothesis suggests that human movements strike a balance between predictability and 
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complexity. Movement patterns that are completely unpredictable lack structure necessary to 

produce coherent movements; movement patterns that are completely predictable lack the 

flexibility needed to adapt movement to an ever-changing environment. Complexity refers to the 

behavioral richness in a sequence of movements. Sensorimotor systems only capable of 

producing one or a few states have too small a repertoire to meet changing environmental 

constraints. High complexity, however, combined with a moderate level of predictability allows 

the sensorimotor system a large, coherent repertoire from which to select behavioral solutions to 

internal (i.e., intended actions) and external constraints (i.e., environmental fluctuations). This is 

often captured as an inverted “U” shaped function (see figure 2 in Stergiou, Harbourne, & 

Cavanaugh (2006) [24]). 

 The current results support the essential elements of the OMVH because stride intervals 

observed during SPW trials strike the specific balance implied by that hypothesis. Idealized pink 

noise, being statistically similar to natural healthy stride-to-stride variability, entails a large range 

of possible values while maintaining a high degree of local predictability. However, our 

inclusion of uniform white noise raises questions about whether too much complexity is 

detrimental in sensorimotor systems. Indeed, our results showed that WNUD trials produced the 

lowest scaling exponents and the greatest deviations from normality. From a probability 

standpoint, the complexity of a signal may be characterized by its distributional entropy.  

Entropy is at a maximum in a uniform distribution as all values are equally likely to occur. The 

entropy of a normal distribution is, by definition, less than uniform noise, reflecting a lower but 

non-zero complexity. One potential interpretation of our results, then, is that the uniformly 

distributed white noise is too distributionally complex which creates an extra challenge for 

sensorimotor synchronization, perhaps creating a mismatch between the tendencies of the 
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sensorimotor system and the to-be-coordinated stimulus. In any case, differential movement 

patterns corresponding to different visual cue patterns underscore the need to form a rigorous 

definition of complexity in the context of human movements. That is, we contend that we have 

reached a critical point in the trajectory of the OMVH where it is time to formulate the following 

question: What are the appropriate measures, continuums, or qualities that we, as human 

movement scientists, should use to distinguish complex from non-complex movements? This is a 

deceptively difficult question.  We are currently engaged in both theoretical and empirical work 

to address this question, and we hope this brief treatment will stimulate others consider this issue 

as well. 
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Legends 

Table 1 Scaling exponent for the visual cues for each subject for each trial  

Table 2 Post hoc comparisons of scaling exponent from different pacing signals 

Table 3 Post hoc comparisons of the normality distribution of footsteps 

Table 4 Post hoc comparisons of asynchrony between footsteps and visual cues 

Fig. 1 Examples of the four different pacing stimulus signals (left graphs) and their distribution 

(right graphs). Top graphs: pink noise signal with a normal distribution (PNND). Second from 

the top graphs: shuffled pink noise signal with a normal distribution (SPNND). Second from the 

bottom graphs: white noise signal with normal distribution (WNND). Bottom graphs: white 

noise with uniform distribution (WNUD) 

Fig. 2 Pacing signal viewed by participants through the glasses. The grey bar moves up and 

down between the two white bars. Right heel strike should occur when the moving bar reaches 

the top stationary bar and left heel strike should occur when it reaches the bottom stationary bar 

Fig. 3 Scaling exponent for the stride-to-stride time intervals during the five trials. SPW: self-

paced walking trial, PNND: trial with pink noise signal with a normal distribution, SPNND: trial 

with shuffled pink noise signal with a normal distribution, WNND: trial with white noise signal 

with a normal distribution, WNUD: trial with white noise signal with a uniform distribution. The 

dotted horizontal lines indicate 0.5 and 1.0. Mean and median values are indicated by the dashed 

and solid lines within the box, respectively 

Fig. 4 Normality distribution of footstep during four stimulation trials. PNND: trial with pink 

noise signal with a normal distribution, SPNND: trial with shuffled pink noise signal with a 

normal distribution, WNND: trial with white noise signal with a normal distribution, WNUD: 
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trial with white noise signal with a uniform distribution. Mean and median values are indicated 

by the dashed and solid lines within the box, respectively 

Fig. 5 Cue-matching of the footstep and the visual cues for the four stimulation trials. PNND: 

trial with pink noise signal with a normal distribution, SPNND: trial with shuffled pink noise 

signal with a normal distribution, WNND: trial with white noise signal with a normal 

distribution, WNUD: trial with white noise signal with a uniform distribution. The lower the D-

value, the greater the cue-matching performance. Mean and median values are indicated by the 

dashed and solid lines within the box, respectively 
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Table 1: Scaling exponent for the visual cues for each subject during each trial.  

Subject PNND SPNND WNND WNUD 

1 1.00 0.61 0.49 0.51 

2 1.01 0.47 0.51 0.45 

3 1.03 0.5 0.51 0.51 

4 0.98 0.52 0.47 0.52 

5 0.97 0.52 0.51 0.49 

6 1.02 0.52 0.52 0.5 

7 0.97 0.51 0.5 0.51 

8 0.99 0.53 0.57 0.51 

9 0.97 0.54 0.53 0.5 

10 1.02 0.59 0.53 0.51 

Group mean ± SD 1.00 ± 0.02 0.53 ± 0.04 0.51 ± 0.03 0.50 ± 0.02 
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Table 2: Post hoc comparisons of scaling exponent from different pacing signals. 

  Prior Odds Posterior Odds BF10,U Error % 

SPW PNND 0.3 0.7 2.1 4.34e -4 

 SPNND 0.3 2.8 8.8 8.98e -5 

 WNND 0.3 5.0 15.7 5.65e -7 

 WNUD 0.3 24.5 76.8 1.56e -4 

PNND SPNND 0.3 177.4 555.1 1.03e -5 

 WNND 0.3 310.1 970.6 6.08e -7 

 WNUD 0.3 9513.6 29775.7 4.42e -8 

SPNND WNND 0.3 0.3 0.9 0.01 

 WNUD 0.3 3.1 9.8 7.53e -5 

WNND WNUD 0.3 0.9 2.8 1.72e -4 

Note.  The posterior odds have been corrected for multiple testing by fixing to 0.5 the prior 

probability that the null hypothesis holds across all comparisons (Westfall, Johnson, & Utts, 

1997). Individual comparisons are based on the default t-test with a Cauchy (0, r =1/sqrt(2)) 

prior. The "U" in the Bayes factor denotes that it is uncorrected. 
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Table 3: Post hoc comparisons of the normality distribution of footsteps. 

  Prior Odds Posterior Odds BF10,U Error % 

PNND SPNND 0.414 1.359 3.280 3.788e -4 

 WNND 0.414 0.909 2.195 3.388e -4 

 WNUD 0.414 30.327 73.216 1.520e -4 

SPNND WNND 0.414 0.272 0.656 0.002 

 WNUD 0.414 17.742 42.833 3.112e -5 

WNND WNUD 0.414 12.778 30.848 1.595e -4 

Note.  The posterior odds have been corrected for multiple testing by fixing to 0.5 the prior 

probability that the null hypothesis holds across all comparisons [30]. Individual comparisons are 

based on the default t-test with a Cauchy (0, r =1/sqrt(2)) prior. The "U" in the Bayes factor 

denotes that it is uncorrected. 
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Table 4: Post hoc comparisons of asynchrony between footsteps and visual cues. 

  Prior Odds Posterior Odds BF10,U Error % 

PNND SPNND 0.414 170.7 412.1 6.867e -6 

 WNND 0.414 1153.1 2783.8 1.027e -6 

 WNUD 0.414 2355.6 5687.0 6.334e -8 

SPNND WNND 0.414 0.16 0.40 0.005 

 WNUD 0.414 0.15 0.36 0.005 

WNND WNUD 0.414 0.13 0.31 0.007 

Note.  The posterior odds have been corrected for multiple testing by fixing to 0.5 the prior 

probability that the null hypothesis holds across all comparisons (Westfall, Johnson, & Utts, 

1997). Individual comparisons are based on the default t-test with a Cauchy (0, r =1/sqrt(2)) 

prior. The "U" in the Bayes factor denotes that it is uncorrected. 
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Fig. 1 Examples of the four different pacing stimulus signals (left graphs) and their distribution 

(right graphs). Top graphs: pink noise signal with a normal distribution (PNND). Second from 

the top graphs: shuffled pink noise signal with a normal distribution (SPNND). Second from the 

bottom graphs: white noise signal with normal distribution (WNND). Bottom graphs: white 

noise with uniform distribution (WNUD) 

 

 

 

 

  



30 
 

Fig. 2 Pacing signal viewed by participants through the glasses. The grey bar moves up and 

down between the two white bars. Right heel strike should occur when the moving bar reaches 

the top stationary bar and left heel strike should occur when it reaches the bottom stationary bar 
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Fig. 3 Scaling exponent for the stride-to-stride time intervals during the five trials. SPW: self-

paced walking trial, PNND: trial with pink noise signal with a normal distribution, SPNND: trial 

with shuffled pink noise signal with a normal distribution, WNND: trial with white noise signal 

with a normal distribution, WNUD: trial with white noise signal with a uniform distribution. The 

dotted horizontal lines indicate 0.5 and 1.0. Mean and median values are indicated by the dashed 

and solid lines within the box, respectively 
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Fig. 4 Normality distribution of footstep during four stimulation trials. PNND: trial with pink 

noise signal with a normal distribution, SPNND: trial with shuffled pink noise signal with a 

normal distribution, WNND: trial with white noise signal with a normal distribution, WNUD: 

trial with white noise signal with a uniform distribution. Mean and median values are indicated 

by the dashed and solid lines within the box, respectively 
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Fig. 5 Cue-matching of the footstep and the visual cues for the four stimulation trials. PNND: 

trial with pink noise signal with a normal distribution, SPNND: trial with shuffled pink noise 

signal with a normal distribution, WNND: trial with white noise signal with a normal 

distribution, WNUD: trial with white noise signal with a uniform distribution. The lower the D-

value, the greater the cue-matching performance. Mean and median values are indicated by the 

dashed and solid lines within the box, respectively 
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