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Summary

Background Sport injuries burden professional and recreational athletes. In 2021, Norwegian
hospitals operated 1 462 anterior cruciate ligaments, and 62% of these happened during sports
activity. To prevent injuries, it may be possible to change the training load. Unfortunately, how
training load can be altered to achieve desired outcomes is unknown, because the relationship
between training load and injury risk has proven difficult to study. The ability of currently used
statistical methods to capture this complex relationship is either limited, or unknown.
Consequently, studies have employed a plethora of statistical approaches. Systematic reviews
have reported inconsistent and even conflicting findings both within and between studies, and
declared the studies too variable to compare in analyses. Experts have questioned the evidence
supporting training load as an injury prevention tool, and called for improved statistical
methodology. Despite this, few studies have recommended alternatives, and those who have,
have not tested the methods’ accuracy or precision. The validity of recommended methods is
therefore unknown. To improve research on injury prevention programs, knowledge is needed

on how to statistically determine the relationship of training load and injury risk.

Aims To identify statistical methods suitable for assessing the relationship between training load
and injury risk. Specifically, to find methods for dealing with 1) missing data, 2) non-linearity, 3)

time-dependent effects, and 4) the effects of relative training load.

Main Methods We analyzed three football datasets and one handball dataset: Norwegian
Premier League men’s football (42 players, 38 injuries), Norwegian U-19 football (81 players, 81
injuries), Norwegian elite youth handball (205 players, 471 injuries), and Qatar Stars League
(QSL) football (1 465 players, 1 977 injuries). In all Norwegian cohorts, training load was defined
as the number of minutes in training/match activity multiplied by the athlete’s rating of petrceived
exertion on a scale from 1 to 10 (sRPE). The Norwegian Premier League data additionally had
measures of distance and speed registered by Global Positioning Systems (GPS) devices in
football. In the QSL cohort, training load was defined as the number of minutes in football

training/activity.

The Norwegian Premier League football and Norwegian elite youth football were the basis for
three simulation studies (Paper I-III). We simulated a relationship between training load and

probability of injury under different scenarios of missing data, non-linearity, and time-dependent



effects. With the aid of accuracy and uncertainty measures, we compared the ability of various

statistical methods to model the simulated relationships in the respective scenarios.

Regression analyses were used to check whether there were any signs of non-linearity between
sRPE and injury risk in the three Norwegian cohorts (Paper II), and also signs of time-dependent
effects between training load and injury risk in the handball and QSL cohortts (Paper III-I1). In
addition, we applied a novel approach of estimating the effect of recent training load relative to

past training load on injury risk (relative training load) on the Norwegian elite U-19 and QSL data
(Paper I1).

Main Results In each of the simulations, the performance of a few methods stood out from the
rest. Firstly, for handling missing data, multiple imputation using predicted mean matching had,
generally, the lowest percentage bias of all compared methods, and had acceptable bias (< |5%])
up to 50% missing data in sSRPE and up to 90% missing data in the total distance GPS measure.
Secondly, when we modelled parabolic non-linear relationships, fractional polynomials, quadratic
regression and restricted cubic splines had the lowest root-mean-squared error, and highest
coverage of 95% prediction intervals. Lastly, in the simulation of time-dependent effects, the
distributed lag non-linear model was the only method that accurately modelled more than one
scenatio. It had the lowest root-mean-squared error and the narrowest 95% confidence intervals,

by far, compared with the other methods.

The handball model presented a parabolic J-shaped relationship between sRPE and injury risk (p
< 0.001). The QSL model displayed time-dependent effects, where effect estimates of past
training load decreased exponentially for each day in the past. The QSL model also showed
highest injury risk at low levels of past training load, lowest risk at medium levels, and
intermediate risk at high levels of past training load, for each level of recent training load. This

demonstrated that relative training load can be modelled with this novel approach.

Conclusion Missing data in training load should be imputed with multiple imputation using
predicted mean matching. Researchers in training load and injury risk should consider the
potential for non-linearity and time-dependent effects, and explore such effects by specifying
fractional polynomials or restricted cubic splines in distributed lag non-linear models. Modelling
recent and past training load separately can be used to study the effects of relative training load

on injury risk.
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Sammendrag pa norsk (Summary in Norwegian)

Bakgrunn Idrettsskader er en byrde pa idrettsutovere og mosjonister. Norske sykehus opererte
1462 korsbandskader i 2021, og 62% av disse var takket vare deltakelse i idrett. For 4 forebygge
skader, kan det vere mulig 4 endre treningsbelastningen. Dessverte er det ukjent hvordan man
kan endre treningsbelastning for 4 oppna effekt, fordi sammenhengen mellom treningsbelastning
og skade har vaert utfordrende 4 forske pa. Hvorvidt vanlige statistiske metoder kan fange opp
denne sammenhengen er enten begrenset, eller ukjent. Som konsekvens, har studier i feltet brukt
mange forskjellige statistiske tilnzerminger. Systematiske oversikter rapporterer inkonsistente og til
og med konflikterende resultater bade i og pa tvers av studier, og har erklert studiene for ulike til
4 sammenligne i analyser. Eksperter har stilt sporsmil til evidensen som stir bak nadagens
anbefalinger til treningsbelastning som verktoy for skadeforebygging, og etterspurt forbedret
statistisk metodologi. Til tross for dette, har fa studier foreslatt alternativ, og de som har, har ikke
testet metodenes noyaktighet eller presisjon. Validiteten til de anbefalte metodene er derfor
ukjent. For 4 forbedre forskning pé skadeforebygging, kreves mer kunnskap om hvordan man

skal statistisk fastsla sammenhengen mellom treningsbelastning og skaderisiko.

Formal Identifisere statistiske metoder som egner seg for 4 studere sammenhengen mellom
treningsbelastning og skaderisiko. Spesifikt, finne metoder for 4 hdndtere 1) manglende data, 2)

ikke-linearitet, 3) tidsavhengige effekter, og 4) effekten av relativ treningsbelastning.

Hovedmetoder Vi gjorde analyser pa tre fotballdatasett og et handballdatasett: Herrefotball i
eliteserien (42 spillere, 38 skader), norsk under-19 fotball (81 spillere, 81 skader), unge norske
handballspillere fra fem idrettsgymnas (205 spillere, 471 skader), og «Qatar Stars League» (QSL)
fotball (1 465 spillere, 1 977 skader). I alle norske kohorter var treningsbelastning definert ved
antall minutter i trening/kamp aktivitet, ganget med uteverens vurdering av intensiteten pd en
skala fra 1 til 10 (sRPE). Dataene fra elitesetien hadde i tillegg milinger pa distansen lopt i fotball,
registret med globalt posisjonssystem (GPS). I QSL kohorten var treningsbelastning definert som

antall minutter med fotball trening/kamp-aktivitet.

Dataene fra eliteserien og under-19 fotball var utgangspunktet for tre simuleringsstudier (Arsikke/
I-I1I). Vi simulerte en sammenheng mellom treningsbelastning og sannsynlighet for skade under
ulike omstendigheter med manglende data, ikke-linearitet, og tidsavhengige effekter. Ved hjelp av
malinger pa noyaktighet og usikkerhet, sammenlignet vi evnen til ulike statistiske metoder til 4

modellere den simulerte sammenhengen.
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Regresjonsanalyser ble brukt til 4 sjekke om det var noen tegn til ikke-linearitet mellom sRPE og
skaderisiko i de tre norske idrettskohortene (Artikkel II), 1 tillegg til tegn til tidsavhengige effekter
mellom treningsbelastning og skaderisiko i handball og QSL kohorten (Arfikke! I1I-I117). Til sist
utforsket vi en ny tilnarming til 4 modellere effekten av nitidstreningsbelastning relativt til
fortidstreningsbelastning (relativ treningsbelastning) pa skaderisiko i norsk under-19 og QSL
fotball kohortene (Artikkel I1/).

Hovedfunn Noen fa metoder skilte seg ut fra de andre i simuleringene. For 4 handtere
manglende data, hadde multippel imputering generelt den laveste prosent skjevhet og hadde
akseptabel skjevhet (< |5%]) t.o.m. 50% manglende data i SRPE-mailinger, og t.o.m. 90%
manglende data i distansen lopt (GPS-mailing). Da vi modellerte parabolske ikke-lineare
sammenhenger, hadde fraktale polynomer, annengradspolynomer og kubiske spliner lavest
kvadratisk gjennomsnittsfeil, og hayest dekning av 95% prediksjonsintervaller. Til sist, i
simuleringen av tidsavhengige effekter, var «distributed lag non-linear models» den eneste
metoden som modellerte mer enn et scenario med tilstrekkelig noyaktighet. Den hadde lavest
kvadratisk gjennomsnittsfeil og de smaleste 95% konfidensintervaller, med stor margin

sammenlignet med de andre statistiske metodene.

Handballmodellen formet en J-formet sammenheng mellom sRPE og skaderisiko (p < 0.001).
QSL-modellen viste tidsavhengige effekter, hvor effektestimatet til fortidsstreningsbelastning ble
eksponentielt mindre for hver dag tilbake i tid. QSL-modellen indikerte ogsa hoyest skaderisiko
ved lave mengder fortidstreningsbelastning, lavest skaderisiko ved moderate mengder
treningsbelastning, og intermediar risiko for heye mengder treningsbelastning, for hvert niva av
natidstreningsbelastning. Dette demonstrerte at relativ treningsbelastning kan modelleres med

denne nye tilnermingen.

Konklusjon Manglende data i treningsbelastningsmalinger bor imputeres med multippel
imputasjon. Forskere i feltet for treningsbelastning og idrettsskader burde vurdere potensiale for
ikke-linearitet og tidsavhengige effekter, og utforske disse ved 4 spesifisere fraktale polynomer
eller kubiske spliner i «distributed lag non-linear models». Natidsstreningsbelastning og
fortidstreningsbelastning kan modelleres separat for 4 studere effekten av relativ

treningsbelastning pa skaderisiko.
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Introduction

1 Introduction

Spotts injuries impact the sports industry substantially, as they can hamper athlete and team
performance in all sports (Hoffman et al., 2020; Higglund et al., 2013; Williams et al., 2016).
Injuries can lead to player absence (Hoffman et al., 2020), player retirement (Okholm Kryger et
al.,, 2015), prolonged, chronic pain (Myklebust et al., 2003), and chronic conditions such as
osteoarthritis (Myklebust & Bahr, 2005).

With the ultimate goal of injury prevention, researchers in sports medicine science and sports
science strive to identify risk factors for injury—in particular, modifiable factors (Bahr &
Krosshaug, 2005; Cameron, 2010; van Mechelen et al., 1992). One potential, modifiable risk
factor is training load: The mechanical, physiological and psychological load the athlete has been
exposed to over a period of time (Windt & Gabbett, 2017). This can be expressed by the
intensity, duration, frequency and/or pattern of training and/or competition activities that
subject the athlete to exertion (Bourdon et al., 2017). The terms “training load”, “load”, and
“workload” are used interchangeably in the literature (Ide et al., 2021), and hereafter, I will use

the term “training load” to capture the same theoretical construct.

In 2014, a new method for analyzing training load and injury risk in sport was introduced in a
study of cricket (Hulin et al., 2014). The approach was developed further and presented more
formally in 2016 (Blanch & Gabbett, 2016), and since its introduction, the number of studies
assessing training load and sports injuries increased substantially (Figure 1; Gabbett, 2018). The
majority of these studies claimed an association between training load and injury (Eckard et al.,
2018; Griffin et al., 2020), and training load interventions were recommended (Gabbett et al.,
2016). Consequently, training load monitoring and management strategies gained traction as
preventative measures for injury (Akenhead & Nassis, 2016; Bourdon et al., 2017; Gabbett et al.,
2016). Experts raised concerns, however, about the evidence supporting training load
management strategies to mitigate injuries (Gamble, 2013; Franco M. Impellizzeri et al., 2020a;
Windt et al., 2018), and the methodological approaches were under particular scrutiny (Windt et
al., 2018).
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Figure 1. The yearly number of publications on training load and sports injury risk increased markedly after new
statistical approaches were introduced in Hulin et al. (2014) (vertical yellow line). Calculated on Bache-Mathiesen
(2022c), updated November 1t 2022 (n = 159). Since 2022 had yet to pass, dotted line represents the uncertainty
of 2022 data. A similar trend was found in Gabbett (2018).

The methodological discussion at the time was two-fold. One part concerned the frequent use of
suboptimal statistical methods (Windt et al., 2018). The other concerned an ongoing discussion
on how to model the potential effect of training load on the risk of sports injury, while handling
the multitude of assumptions established in its complex etiology (Bittencourt et al., 2016;
Meeuwisse et al., 2007; Windt & Gabbett, 2017). Currently employed statistical methods were
considered inadequate in meeting these assumptions (Franco M Impellizzeri et al., 2020
Menaspa, 2017). When assumptions of statistical approaches are violated, they are likely to lead to
biased results, which in turn, leads to incotrect conclusions. A randomized controlled trial
conducted in 2018 found no effect of a training load management intervention on health
problems in 394 elite youth football players (Dalen-Lorentsen, Bjorneboe, et al., 2021), although
the intervention had previously shown promising results from the aforementioned observational
studies (Gabbett, 2016). Gross statistical etrors wete later uncovered in these observational
studies (F. Impellizzeri et al., 2019). Injury prevention interventions based on faulty conclusions
might burden coaches and athletes with ineffective measures, or worse, increase injury risks, as

speculated by Gamble (2013) on training load management implemented in cricket.

Despite these concerns, few studies have ascertained how the training load and injury risk
relationship should be statistically modelled. Most studies have explained the limitations of
currently employed statistical methodology without concrete recommendations for alternatives
(Lolli et al., 2018; Menaspa, 2017; C. Wang et al., 2020). Although the field of sports medicine has
some general methodology guidelines for injury research, they are not tailored specifically for the
context of training load (Nielsen, Shrier, et al., 2020; Ruddy et al., 2019). A handful of studies

have provided recommendations to meet specific assumptions (Nielsen et al., 2019; Williams,
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West, et al., 2017). No study has considered the problem of modelling training load and injury
risk as a whole. Therefore, how to handle one assumption without violating another—handling
them all collectively—is unclear. This has led to statements such as in Toresdahl et al.

(2022): “Lastly, [method used] has limitations that have been previously described [...] another
approach may be more appropriate for runners training for a marathon for which additional
research is needed.” Many researchers are aware of the issues of currently employed statistical
methodology, but have nowhere else to turn for practical, evidence-based guidelines (more

examples are Johansson et al., 2021; Nakaoka et al., 2021; Wang et al., 2022).

How training load affects injury, and how it can be used to prevent injury, will remain unknown
unless suitable methods are employed. Further understanding on how to model this complex
relationship is therefore needed to provide researchers with the tools necessary to reach these
goals. The overall aim of this dissertation was to identify and recommend suitable methods for

research on the relationship between training load and injury risk.

1.1 Background: The training load-injury etiology

1.1.1 The causal pathway from training load to injury

In 1994, Meeuwisse introduced a theoretical model whete athletes are susceptible to injury
through a combination of multiple risk factors (Meeuwisse, 1994). Internal risk factors are
descriptions of the athlete (age, fitness, injury history), while external risk factors are extrinsic
exposures such as equipment, weather, and playing field conditions. He argued that during a
sports activity, the pre-disposed athlete, as determined by internal risk factors, experiences not
only external risk factors, but factors which are directly associated with the onset of the injury—
the inciting injury event (Figure 2). While the internal and external risk factors affect injury
probabilistically, the inciting event is described by Meeuwisse (1994) as the necessary cause of
injury (Figure 2). Bahr and Holme (2003) built on Meeuwisse’s model with the idea that the
inciting event can be distant in time from the outcome (the injury), especially for gradual onset
(overuse) injuries. Gradual onset injuries are characterized by stiffness, pain and other symptoms
which may periodically occur, subside, worsen, and re-occur (Finch & Cook, 2014). Past injuries,
gradual and sudden onset, may render the athlete susceptible to future injuries. Therefore, in
2007, Meeuwisse et al. integrated the concept of recursive injuries to the multifactorial injury

model.
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Figure 2. The multifactorial model of injury, adapted from Meeuwisse (1994) Figure 2.

Training load is a potential external risk factor. It is a multidimensional construct (Bourdon et al.,
2017), and has traditionally been delineated into two components: external and internal load (F.
M. Impellizzeri et al.,, 2019). External load describes the physical exertion which an athlete has
performed, such as the distance run, number of jumps performed, or the duration of the training
session (Bourdon et al., 2017). Internal load describes the athlete’s physiological and

psychological response to the activity (F. M. Impellizzeri et al., 2019).

In Kalkhoven et al. (2021), external load is defined as a surrogate measure of the mechanical load.
The mechanical load is the physical force and pressure, caused by the external load, that strains
and potentially damages the tissue (Vanrenterghem et al., 2017). Repeated mechanical load incites
a biomechanical response of remodeling and repair; the tissue builds adaptations for improved
resilience and performance in the future (Verheul et al., 2020). However, if the accumulation of
strain and damage exceeds the capacity for the tissue to repair and adapt, the tissue may develop
maladaptations or weaken instead, thus becoming more susceptible to injury (Verheul et al.,
2020). Such a biomechanical process may also be instigated or exacerbated by the physiological
load (Vanrenterghem et al., 2017). Exposure to an inciting event causes a mechanical load in
excess of that tolerated under normal circumstances, or reduces the tolerance levels to a level

which a normal mechanical load cannot tolerate, resulting in an injury (Bahr & Krosshaug, 2005).

Banister et al. (1975) hypothesized that training stimuli causes aftereffects that can both positively
and negatively affect performance, a theory known as the fitness—fatigue model. Gabbett (2016)
and Windt and Gabbett (2017) adapted the fitness—fatigue model to the context of injury risk.
They argued that athletes only sustain sports injuries when theys participate in activities that
expose them to training load. Every time they perform an activity, they risk experiencing the

fatiguing effects of training, as well as potential maladaptations from overtraining (Figure 3). On

4
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the other hand, though, adequate training loads are necessary to build beneficial physiological
adaptations such as high aerobic capacity and strength, which are associated with decreased injury

risk. How training load may both increase and decrease injury risk is known as the training—injury

paradox (Gabbett, 2010).

Fitness

Training load »{ Injury

Fatigue

Figure 3. A visualization of the training load and injury paradox outlined in Gabbett (2016) and Windt et al. (2017).
Training load has a direct effect on injury through sheer exposure. Training load affects injury indirectly through the
path of fitness, which decreases risk, and through fatigue, which increases risk.

Blanch and Gabbett (2016) formed a model of assessing training load and injury risk based on
the training—injury paradox. The past training load in the previous (commonly 3—4) weeks,
denoted the “chronic” load, is considered to reduce injury risk through building fitness, as
opposed to the “acute” current training load, often measured as the latest week of training, which
is thought to increase injury risk. A sudden “spike” in training load exposure, that is, a large
amount of training load in the current week (acute load) compared with previous weeks (chronic
load), is thought to increase risk, as the tissue is not prepared, i.e. has not built the necessary
fitness, to tolerate the oncoming training load (Gabbett, 2016). This is sometimes referred to as
the “too much, too soon”-theory (Franco M. Impellizzeri et al., 2020b; Soligard et al., 2016).
Given these assumptions, the relative training load—the amount of training load incurred
recently relative to that incurred in the past—may also be important determining injury risk

(Blanch & Gabbett, 2016).

1.1.2 Complexity in the training load-injury etiology

Traditionally, injury risk studies have approached risk factor identification from a reductionist
point of view (Ruddy et al., 2019). In such a paradigm, the whole risk factor—injury risk system is
considered an additive sum of its parts. Humans are, however, a non-linear system (Fonseca et
al.,, 2020). In contrast to additive systems, relationships between variables are not constant in
non-linear systems; they change with the state of the system (Stern et al., 2021). Lich et al. (2013)
called for a shift from a reductionist approach to a complex system’s approach. Risk factors for

sports injuries may interact multiplicatively, have non-linear relationships with the risk of injury,

5



Introduction

and form negative feedback loops (diminishing returns, Bittencourt et al., 20106). The
contribution of each risk factor towards the risk of injury may also be different in different
sports. Collectively, Bittencourt et al. (2016) called this framework the sport-specific “web of
determinants” (Figure 4). Addressing such complexity require changes in the study design as well

as the statistical methodology (Bekker, 2019).

/ ACL injury \
Recursive Recursive
loop loop
Regularities

(Basketball ACL risk profile)

Unanticipated
environmental
events

\ Dynamic

capability knee valgus
Foot ’
misalignment v
Previous ACL ) ;
D SRR T TR Level of anxiety
injury

Figure 4. The web of determinants for anterior cruciate ligament (ACL) injury in basketball, adapted from
Bittencourt et al. (2016) Figure 2A. The variables at the bottom contribute to injury risk with different weights.
Thicker frames indicate variables with strong effects on ACL injury risk. Dotted lines are weak interactions, strong
lines are strong interactions. The combination of risk factors, and how they interact, may be different for different
sports.

Training
load

Hip muscle

weakness 4

;
Inciting

event

Neuromuscular

The training load-injury etiology outlined previously indicates that such complexities are present
in how training load affects injury risk. A property of non-linear systems is that risk factors of
injury can have different and sometimes opposite effects during different states (Stern et al.,
2020; Stern et al., 2021). Training load appears to be an example of this: If the tissue state is
strained, training load can increase risk, but if the tissue state is propetly prepared, training load
can further build fitness and decrease risk—that is, training load has a direct effect in some states
and an inverse effect in other states. This corresponds to a non-linear relationship between
training load and injury. Gamble (2013) hypothesized that this non-linear relationship might be
U-shaped; both low and high levels of training load increase risk, and moderate training load

levels reduce risk. Furthermore, Blanch and Gabbett (2016) assumed that relative training load

6
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and injury risk forms a J-shaped relationship (hockey stick curve), though the claim was later
criticized for having neither foundation in clinical rationale nor in statistics (F. Impellizzeri et al.,

2019).

Interestingly, the (non-linear) direction of effects may be #ime-dependent. In the “too much, too
soon”-theory, acute training load increases risk, while chronic training load reduces risk (Gabbett,
2016). Renfree et al. (2021) described how a brief, high-volume activity on a single day may
substantially increase risk relative to the same volume of activity spread across several days.
Training load may also have a #me-lagged effect (Bhaskaran et al., 2013)—the training load on the
previous day contributes to the injury risk on the following day. This effect is only indirect
(Figure 3). Thus the training load on the previous day is likely less important in its contribution
towards injury risk than that performed on the cutrent day (Williams, West, et al., 2017).
However, not only the previous day affects injury risk, but also the day before the previous day,
which may be of even less importance (Williams, West, et al., 2017). We can assume that this
pattern of effect continues the further we go back in time. This is known as a protracted time-
lagged effect (Gasparrini, 2014; Richardson, 2009). The injury risk at any given time is the result
of multiple training load exposure events of different intensities sustained in the past.

Epidemiologists call this an exposure-lag-response relationship (Gasparrini, 2014).

In summary, the hypotheses discussed so far imply the following assumptions:

e The relationship between training load and probability of injury may be non-linear.

e The current effect of training load may be a cumulative sum of effects resultant of
training load exposures in the past.

e The size and direction of effect may depend on time since the training load exposure.

e The effect of training load may depend on the size of recent exposure relative to the size
of past exposure (relative training load).

In this dissertation, these four assumptions were central in the development of methods for

analyzing training load and injury risk.
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1.2 Project overview

1.2.1 Studying training load and injury risk: causal inference or prediction?

The most appropriate approach for analyzing training load and injury risk depends, ultimately, on
the research question (Shrier et al., 2022). Where one statistical model would be suitable to
answer which risk factors contribute alongside training load to injury risk, another would be more
applicable to answer how training load increases longevity of sports-participation until an injury
occurs. Therefore, a single approach will never cover the entirety of training load—injury risk
research. One major perspective to consider is whether the study aims for causal inference or
prediction (Nielsen, Simonsen, et al., 2020). Although some modeling methods can be used for
both, the model requirements, and how to interpret the results, varies between the two (Shmuel,

2010), and some methods are ideal for one, but not the other (Pepe et al., 2004).

Bittencourt et al. (2016) called for a paradigm shift from risk factor identification to injury
prediction. They argued that to prevent injuries, we must first be able to predict injuries.
Bittencourt et al. further expressed how methods for prediction (here, machine learning) can
handle the complex systems etiology of injury risk and lessen the amount of assumptions
(Bittencourt et al., 2016). Methodology in prediction studies differ markedly from those of causal
inference (Shmueli, 2010). Although there are exceptions, prediction studies are more interested
in developing a parsimonious prediction model than assessing effect sizes of a single predictor.
The contents of the prediction model are less important; the focus is on the combined predictive
ability of the model. Variable selection is done by regularization methods, and weak predictors
are discarded (Zumeta-Olaskoaga et al., 2021). In causal inference, the exposure(s) of interest is
always included in the analysis. Stratification and adjustment strategies are employed, among
other options, to approach an unbiased estimate of the effect of the exposure of interest on the
outcome (Shrier & Platt, 2008; Stovitz & Shrier, 2019). Other variables may be analyzed to assess
how much of the effect is explained through different causal pathways, but the effect sizes usually

do not determine their model inclusion (unlike in studies of prediction).

By virtue of assessing a single, modifiable exposure of interest, studies on training load and injury
risk are more geared towards causal inference than prediction. In addition, despite ambiguous
aims of assessing a “relationship” or “association” (Hulin & Gabbett, 2019; Nielsen, Bertelsen, et
al., 2020), the studies often recommend interventions (for example Shaw et al., 2021), and

sometimes consider confounding, both of which implies an aim of causal inference (Hernan,
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2018). The end goal is to determine how training load can be modified to change injury
outcomes. We therefore chose to approach this project from a causal approach, that is, when
considering methods, explaining how dimensions of training load affects injury risk was

prioritized over predictive modelling.

1.2.2 The van Mechelen sequence of sports injury prevention

The sequence of sports injury prevention (Figure 5), developed by van Mechelen et al. (1992), has
been used by sports scientists for systematic injury prevention. The first step in the sequence is to
map the current frequency and severity of an injury problem. The second step is to find causes of
injury and develop injury etiologies. The third step is to develop injury prevention measures
based on the knowledge gathered in step 2 and introduce them to the target population. The last
step is to repeat step 1 to determine whether the implementation improved the injury problem in
question. Observational training load and injury risk studies aiming for causal inference or
identifying populations at risk are in step 2 in the van Mechelen sequence. This thesis project is

hence about providing a statistical toolbox for conducting such studies (Figure 5).

Thesis
project

B

2. Establishing the

1. Establishing the

extent of the etlology and
mechanism of
problem S
injuries
4. Assessing the 3. Introducing a
effectiveness by preventative
repeating step 1 measure

Figure 5. Training load and injury risk studies currently belong in step 2 in the sequence of injury prevention (van
Mechelen et al., 1992). This dissertation aimed to provide statistical tools for researchers conducting training
load and injury studies in step 2.
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1.2.3 The traditional sequence of training load data preparation and analysis

To meet the aims of step 2 in the van Mechelen sequence, training load and injury risk studies
generally follow the same process of measuring, preparing and analyzing training load (Figure 6).
First, training load is measured longitudinally in the field by either external, internal, or both
dimensions of training load measures (Windt et al., 2018). The raw measures are processed and
prepared for the next step by cleaning errors, handling data quality concerns, and deriving
compound measures. In step 2, analysts aggregate the measures by time intervals to study effects
of long-term training load (A. Wang et al., 2021). If the study aims to assess relative change in
training load, the aggregated values are further processed in the optional step 3. In step 4, also
optional, the modified training load values are categorized (Figure 6, Dalen-Lorentsen, Andersen,
et al,, 2021). This was done in 82% of 138 papers published between 2001 and 2021 (calculated
on Bache-Mathiesen, 2022c). Finally, in step 5, the relationship between the processed measures
and injury measures are analyzed with methods such as hypothesis testing and/or regression
(Windt et al., 2018). In summary, there are currently 4 steps of data preparation of training load

measures before analysis, with multiple choices at each step (Figure 6).

Researchers often include multiple variations of training load measures and injury definitions —
analyzing different measures, time intervals, aggregation methods, and calculation choices in the
same study (Miguel et al., 2021; Udby et al., 2020). The results are often inconsistent or
conflicting (a few examples are: Sedeaud et al., 2020; Toresdahl et al., 2022; West et al., 2020),
making them difficult to interpret (Franco M. Impellizzeri et al., 2020b). Reviews of the training
load and injury risk field have reported difficulties in comparing studies due to between-study-
variation (Maupin et al., 2020; Sniffen et al., 2022), and the potential for p-hacking has also been a
central concern (Dalen-Lorentsen, Andersen, et al., 2021; Franco M. Impellizzeri et al., 2020b). A
consensus on statistical methodology is needed to solve these issues. In this dissertation, we have
focused on understanding which methods are suitable under which scenarios to develop concrete
recommendations, and, we have considered methods that require fewer subjective choices if

possible.
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The scientific articles that comprise this thesis project can be organized by the steps that they

address in the training load and injury risk data preparation process (Figure 7).

®  Paper I deals with missing data in training load measures and only addresses step 1

e  Paper II compares methods of modification, ratios, categorization and analysis in handling
non-linearity, and therefore touches on steps 25

®  Paper I1I compares methods of modification, ratios, and analysis in determining the
cumulative effect of training load on injury risk, and as such, addresses steps 2, 3, and 5

e Paper IV considers how to analyze relative training load without using a ratio, and

addresses only step 5.

1. Measure and 2. Modify 3. Calculate ratio| 4. Categorize 5. Analyze
prepare
I A A A A
Paper |
Paper Il
Paper lll
Paper IV

Figure 7. The four scientific articles in this thesis project, organized by which step in the training load data

preparation process they address.

1.3 Analyzing training load and injury risk: from measure to model

1.3.1 Measuring training load (step 1)

External training load measures include, but are not limited to, time in activity, the distance run,

the number of training sessions completed, participation in matches or competition events; sport-

specific measures such as the height of jumps in volleyball, or the number of balls thrown in

baseball (Mehta, 2019; Miguel et al., 2021; Skazalski et al., 2018; Udby et al., 2020). To measure

internal load, researchers can choose between physiological load metrics like heart rate and

oxygen consumption (F. M. Impellizzeri et al., 2019; Mallo & Dellal, 2012; Owen et al., 2015),

and psychological load such as athlete-reported intensity (Borg et al., 1987). A consensus
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statement recommended assessing both external and internal load in studies on training load and
injury risk (Bourdon et al., 2017), which is most commonly done in football according to a recent
review (Miguel et al., 2021). This recommendation has recently been challenged: Different
dimensions of training load—external, mechanical, physiological, and psychological—may have
different causal pathways to injury (Kalkhoven et al., 2021; Vanrenterghem et al., 2017), and
separate external load constructs—intensity, frequency, duration—may contribute differently to
tissue adaptation and subsequent injury risk (Staunton et al., 2021). The choice among measures
of external and internal training load depends on the aims and scope, and available resources, of
each training load and injury risk study. The clinical rationale for why and how the training load
measure is related to the injury type in question, should be the main justification for choosing one
measure over another (Kalkhoven et al., 2021). Studies in causal inference may also consider
prioritizing readily modifiable training load dimensions that are prime targets for intervention
(Suzuki et al., 2020). To be valid, external training load measures should reflect the mediation of
internal training load on injury risk (Impellizzeri et al., 2022), otherwise, modifying the measure

will not lead to change in injury risk.

External load

To measure external training load, metrics from microdevices with Global Positioning Systems
(GPS) technology are the most popular (Benson et al., 2020; Griffin et al., 2020). The device is
securely strapped onto an athlete before activity, and estimates the running direction, speed and
distance through GPS signaling. The accuracy of GPS devices depends on the signal sampling
frequency, measured in herz (Hz). The devices are available commercially and scientists may
choose between different manufacturers (Varley et al., 2012). While relatively expensive, they can
automatically capture whole training sessions and events, and are valid and reliable for distance
measures (Benson et al., 2020). The device reports the total distance run, the distance run at
moderate speed, high speed and/or sprint speed (Udby et al., 2020). There is no consensus,
however, on the definition of moderate, high and sprint speeds (Rago et al., 2020). In addition,
GPS devices are not suitable for all sports. Cricket, volleyball and golf are a few examples of
sports where training load is not predominantly from running distance. Sport-specific measures
such as the number of balls bowled for cricket (Saw et al., 2011), or jump-detecting devices for
volleyball and basketball (Benson, Owoeye, et al., 2021; Skazalski et al., 2018), may be more

relevant measures of training load that are connected to injury risk.
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Internal load

The most popular measuring tool for internal training load is the session Rating of Perceived
Exertion (sRPE), introduced by Foster et al. (2001). sSRPE was used in all studies on internal
training load reviewed by Griffin et al. (2020), encompassing 72% of studies in the review, and
recommended in a consensus statement (Bourdon et al., 2017). First, the athlete’s perceived
intensity, known as the Rating of Perceived Exertion (RPE, Borg et al., 1987) is self-reported on
the modified scale from 1 to 10 (Foster et al., 2001). A value of 1 is minimum intensity “Very,
very easy” and 10 is maximum intensity “Maximal”, while 0 denotes rest / no training load. To
derive the sRPE, the RPE is multiplied by the duration of the training load activity in minutes.
Studies often analyze daily sSRPE, calculating sSRPE for each activity independently before
summing the daily scores. This results in a scale from 0 to an upper limit in the thousands,

depending on the sport and population.

sRPE is considered a measure of internal load (Bourdon et al., 2017). Recently, it has been
recommended to take into account that the RPE-portion of this compound measure is a measure
of psychological load, only (Kalkhoven et al., 2021). The causal pathway from psychological load
to injury risk may differ from that of physiological load to injury risk, and this nuance may affect

methodological considerations in studies of causal inference.

Missing data in training load

To evaluate time-varying effects of training load, training load is measured repeatedly at multiple
timepoints in a longitudinal design (Nielsen et al., 2019). Such data commonly includes missing
values (Powney et al., 2014; Siddique et al., 2008). Athletes may not be available to be measured at
all timepoints or be lost to follow-up, standardized forms may be partially complete, and GPS-data

may contain errors.

Enright et al. (2020) excluded 140 (53%) injuries from analyses due to inconsistent and/or missing
data. Similarly, in a 3-season football cohort, 124 out of 154 (81%) eligible injuries were excluded
due to insufficient training load data (Lolli et al., 2020). As demonstrated, missing observations in
training load, unless dealt with, reduce the sample size of injuries. Injuries may be rare (Bahr &
Krosshaug, 2005), and to assess the relationship between training load and injury with sufficient
accuracy, the analysis requires a sufficient number of events (Riley et al., 2019; van Smeden et al.,

2016). Prediction studies using machine learning are at particular risk of producing overly
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optimistic, overfitted models if events are scarce (Sidey-Gibbons & Sidey-Gibbons, 2019; van der

Ploeg et al., 2014).

Missing training load data may also lead to the removal of athletes from the analyses. In a study of
34 tennis players, 16 (47%) were removed during the study period and were not included in the
analysis (Moreno-Pérez et al., 2021), even if these players had consented and participated partially.
Other studies report including participants who completed > 80% of the surveys, only (Albrecht
et al., 2020; Theisen et al., 2013), or completing a full season (Fanchini et al., 2018). Such practice

reduces the generalizability of the study, and may, in a worst-case scenario, introduce selection bias.

Alarmingly, Borg et al. (2022) found that only 11% of studies on football topics, or involving
football players, reported whether or not they had any missing data. In the training load and injury
risk field, this number was unknown, although, few studies (33%) reported how they handled
missing data (Windt et al., 2018). Those who had, used varying methodology (A. Wang et al., 2021);
from mean (Brink et al., 2010) to median imputation (Johnston et al., 2019), to complete case
analysis (Malone et al., 2018) and linear regression imputation (Esmaeili et al., 2018). McCall et al.
(2018) stated “There is currently no best practice for dealing with missing data, and averages were
chosen [...]”. Therefore, in Paper I, we performed a systematic review of the literature to map
current practices for reporting and handling missing data. The results from the review were used

to inform our methodological choices in the subsequent study.

Missing data can be Missing Completely at Random (MCAR), meaning the probability of missing
does not depend on any other factor or variable, observed or otherwise (Janssen et al., 2010). For
example, blood samples that were accidentally dropped to the floor. In that case, no selection
bias is introduced. However, clinical data and participant-reported data are more often Missing at
Random (MAR, Barnett et al., 2017; Janssen et al., 2010), a case where the missingness is
dependent on other variables collected in the study. An example would be if men were more
wary of reporting their injury status than women. MAR data can be imputed by using the other
variables as predictors (Janssen et al., 2010). At the very least, the analyst may discover and report
the dependency alongside the analyses, which is not possible when data are Missing Not at

Random (MNAR).

Under MNAR, missingness is dependent on unobserved factors (Janssen et al., 2010). As an
example, suppose that—unbeknownst to the researchers—athletes who are in a certain
socioeconomic status are less likely to report their injury status. Thanks to missingness, the study

has unidentified selection bias. Mote serious are cases where missingness is dependent on the
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variable in which the missingness resides. One can imagine players who are uninjured ate less likely
to report that they are in fact, uninjured, and will cause injury frequencies to be overestimated. Or
similarly, athletes who have higher training loads are too busy to respond to the survey about
training load, and the analysts will receive a false picture of the average load of the cohort. Such

bias is difficult, if not impossible, to detect, but are likely in training load and injury research.

Multiple imputation, by machine learning or more commonly used options like predicted mean
matching, use the other variables in the dataset to predict observations in place of the missing data.
Such methods have shown solid results in the field of statistics (Chhabra et al., 2017; White &
Carlin, 2010), and medicine (Jakobsen et al., 2017), under both MCAR and MAR, and is considered
best practice in some milieus (van Ginkel et al., 2020). To achieve valid results, multiple imputation
requires a correctly specified imputation model: the model that predicts the training load
observations replacing the missing data (Sterne et al., 2009). Having too few or too weak predictors
in the imputation model may introduce bias. Important predictors of common training load
measures are currently unknown. It is also unclear whether multiple imputation can perform under
the common condition of limited information in a training load and injury risk study. For instance,
in a study which has only collected external or internal training load measures and not the other,
or, has not collected variables for confounder adjustment. Therefore, we addressed these

knowledge gaps in Paper 1.

Although multiple imputation methods are considered best practice, simpler methods may be
suitable in certain situations. Complete case analysis, also known as listwise deletion, is the
practice of deleting the rows with missing data and running the analysis on the complete cases.
Given a large enough sample size, this has several advantages (Marshall et al., 2010). It cannot
introduce unrealistic or impossible values, usually retains the distribution of data, and is easy to
use. Unless otherwise specified, the statistical software packages SPSS, R and Stata run complete
case analysis by default (IBM, 2020; Kabacoff, 2011; UCLA, 2021). Under MAR, however, it can
cause selection bias (White & Carlin, 2010), and it reduces the sample size of the data, thus

reducing statistical power.

A potential alternative to deletion methods is mean or median imputation. This method replaces
the missing observation with the average of the observed values. While it is easy to perform, it
may reduce the vatiability of the dataset and skew distributions (Batzi & Woodward, 2004),
which may bias analyses performed on the imputed data. On the positive side, it retains all the

data, preserving sample size and power. In training load and injury risk studies of small sample
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sizes, it may be more prudent to choose mean imputation over complete case analysis. Although
mean imputation can give more biased estimates, it will protect the power by saving potentially

rare injury events from deletion. Choosing between these two methods may be a matter of cost-
benefit at a study by study basis. In Paper I, we investigated whether these simpler methods were

adequate in some cases.

A. Wang et al. (2021) raised concerns with the vatiation in how means were calculated before
mean imputation in training load and injury risk studies, and there seemed to be no consensus in
how the mean should be calculated to achieve the lowest amount of bias. Benson, Stilling, et al.
(2021) compared different variants of mean imputation, and multiple imputation with gradient
boosted regression, for imputing training load measured by the Rating of Perceived Exertion
(RPE, Borg et al., 1987) on the CR10 scale (Foster et al., 2001). Their results suggested that the
performance of mean imputation was dependent on how the mean was calculated. If a basketball
player was missing an observation, the mean of all other players training on the same day was
more informative than the mean of all previous observations for that player. Multiple imputation
had superior performance over mean imputation, though they recommended mean imputation if

more advanced methods were not available.

Benson, Stilling, et al. (2021) implored future researchers to determine how the session Rating of
Perceived Exertion (sSRPE) should be imputed, the most common measure of training load (Griffin
et al., 2020). Since sRPE is the product of two factors, the RPE on a scale from 0 to 10, and the
activity duration in minutes, it is unclear whether sSRPE should be calculated before, during, or after
imputation. Given the additional complexity of the relationship between these variables, we
addressed how to impute sRPE in Paper I, and also tested two variants of mean imputation to see

if results in Benson, Stilling, et al. (2021) were reproducible in a different context.

Benson, Stilling, et al. (2021) only looked at 1% missing. They also gauged performance by
comparing the imputed data with the observed data using root-mean-squared error, which Van
Buuren (2018) cautioned against doing in isolation. The purpose of imputation is to retain the
observed data on other variables, so that all the observed data is used in the analysis of interest, i.e.
a regression model. Ideally, performance is assessed by the amount of bias and uncertainty
introduced to the analysis through the method used to impute data (Van Buuren, 2018, chapter
2.5). Van Buuren (2018), chapter 2.6, demonstrated that a method with reasonable root-mean-

squared error when comparing imputed versus observed data may still be biased in regression
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modelling. In Paper I, we assessed performance of imputation by comparing the accuracy of a

logistic regression model run on data imputed with different approaches.

1.3.2 Modification of training load measures (step 2)

Injury cannot occur unless athletes participate in a training or sporting activity which exposes
them to external training load (Windt & Gabbett, 2017). Most likely, sports injury frequency will
increase with time spent in activity. Studies which explore the difference between players with
high levels of training load and those with low levels of training load (Dennis et al., 2003), or
explore the relationship between training load during a week and injuries in the same week (Hulin
et al., 2014, Murray et al., 2017, Bowen et al., 2017), have discovered a positive association
through the effects of direct exposure (Figure 3, C. Wang et al., 2020). They may also discover an
inverse association—that decreased training load increases injury risk (e.g. Moreno-Perez et al.,
2021). This pattern arises when athletes cease training due to injury, and have petiodically lower
training loads (Carey et al., 2017). Training load management for injury prevention is aimed at
improving fitness and reducing fatigue—these are the indirect causal paths between training load
and injury risk (Figure 3). To understand the training load and injury picture in a way useful for
developing injury prevention tools, the effects of past, both short and long-term training load

need to be assessed.

The protracted, time-dependent properties of training load is, however, challenging to take into
account (Nielsen et al., 2019; Windt & Gabbett, 2017). To meet the assumption that past training
load cumulatively effects injury risk, studies have parted the training load data into time intervals
of equal length that typically span one or more calendar weeks (Step 2 in Figure 6), known as
weekly blocks or windows (Mandorino, Figueiredo, Condello, et al., 2022; Ryan et al., 2021).
Observations spanning one or more time windows are then aggregated to capture past training

load (Mandorino, Figueiredo, Condello, et al., 2022; Udby et al., 2020).

Traditionally, the aggregations, such as the weekly mean training load, move iteratively in a sliding
window from one week to the next (A. Wang et al., 2021). This is an inefficient use of the data;
six days of injury observations atre skipped for each interval. Furthermore, it fails to capture
nuances in training load changes, such as a week including a recovery day, and a week without
(Menaspa, 2017). More grievously, in studies which aggregate weekly training loads, athletes who

are injured early in the week and taken out of practice can cause the illusion that low training load
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amounts increase injury risk (C. Wang et al., 2020). Carey et al. (2017) proposed moving the

aggregations iteratively in a sliding window from one day to the next to combat these issues.

Partitioning training load by calendar weeks has also been considered an arbitrary time-delineator
for many sports (Franco M Impellizzeri et al., 2020). In team sportts, coaches often periodize
recovery and training according to matches, in so-called micro-cycles (Malone et al., 2015). For
example, in football, a micro-cycle consists of recovery days after the previous match, the training
days before the next match, and the next match (Figure 8). A match is denoted M. Given k, the
number of days, negative values of k indicate a day of training: M-1 is the training day before a
match, M-2 two days before a match; each micro-cycle includes M-1, M-2, ..., M-k training days
before the next match. Recovery days are denoted with a positive k: M+1 is the recovery day
after a match, M+2 is the recovery day two days after a match. Some calendat weeks may have
multiple matches, and thus stretch over multiple micro-cycles (Figure 8). In other cases, more
than a week may pass between matches. Under this assumption, training schedules depend not
on calendar days, but on match schedules. Coyne et al. (2022) suggested adjusting training load
time windows to micro- or meso-cycles of training. A sliding window of aggregation from one

micro-cycle to the next, and from one day to the next, were both used in Paper I1.

To aggregate the time intervals of training load data, studies have employed different statistical
approaches (Udby et al., 2020; A. Wang et al., 2021; Windt et al., 2018). The most frequently used
method is the rolling average (A. Wang et al., 2021). Researchers have, however, identified
considerable disadvantages of using rolling averages to deal with time-lagged effects (Gasparrini,
2016; Menaspa, 2017). The method assumes that all training load exposures in the past, plus the

exposure on the current day, contribute equally to injury risk.

Micro-cycle Micro-cycle Micro-cycle Micro-cycle Micro-cycle

T R R R B o

Figure 8. Illustration of a football micro-cycle. Each micro-cycle period consists of all activity before a new match
(M). That is, recovery days after the previous match as well as the training days before the next match. Days
denoted with negative numbers are training days before the next match (M-1; being the day before the match, M-2;
two days before a match, and so on). Days with positive numbers are recovery and training days after a match
(M+1; being the day after a match, M+2; two days after a match). The number of days between matches varies by
the match schedule. How a team plan their training and recovery activities varies, and is dependent on the teams’
philosophy.
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The exponentially weighted moving average (EWMA) assumes that training load exposure
further back in time affects injury risk less than observations closer in time (Williams, West, et al.,
2017). EWMA has been used to aggregate chronic load in the calculation of relative training load
(Dalen-Lorentsen, Andersen, et al., 2021; Hamlin et al., 2019; Nakaoka et al., 2021). Many studies
calculating EWMA do so in addition to rolling averages—analyzing both (Arazi et al., 2020;
Enright et al., 2020; Nakaoka et al., 2021; West et al., 2020; Xiao et al., 2021). Based on more
instances of statistically significant results (p < 0.05) the EWMA has been considered a more
sensitive measure of detecting injury risk (Murray et al., 2017; S. West et al., 2021; West et al.,
2020). Since the advent of EWMA in 2017, studies have nevertheless continued to use rolling
averages (Albrecht et al., 2020; Hildebrandt et al., 2020; Malone et al., 2020; Moreno-Pérez et al,,
2021).

In a recent commentary, EWMA was considered insufficient to meet the assumptions of training
load outlined previously (C. Wang et al., 2020). It cannot be calculated for time-intervals with
missing training load observations, which are common in longitudinal data (Jelici¢ et al., 2009). In
addition, unlike the rolling average, it cannot be calculated on incomplete time windows. To
calculate a 4-week EWMA, the researcher must discard the first 27 days of training load and
injury data before calculation of the first EWMA value. Finally, the difference between the
weights at Day 28 and Day 27 increases as the decay constant gets closer to zero (C. Wang et al.,
2020). C. Wang et al. (2020) specify: “The contribution of the load on Day 100 is 1.9 times the
contribution of the most recent load [Day 0] to the weighted average, even though the most

recent load should contribute the most weight.”

The Robust Exponential Decreasing Index (REDI, Moussa et al., 2019) was proposed as an
alternative to the EWMA. REDI is a weighted rolling average which specifies a replacement value
for missing observations. Thus, REDI can be calculated from training load data with missing
observations and incomplete time windows, and it had improved performance over EWMA in a
training load and injury risk study (Sedeaud et al., 2020). The methodological study did not,
however, compare REDI with EWMA in the instance of no missing data (Moussa et al., 2019),
which is a likely scenario if researchers impute missing data before analysis (Hecksteden et al.,

2022).

Most studies that have so far considered the performance of RA, EWMA and REDI have
discussed theoretical rationale, practicality and mathematics in editorials and commentaries

(Menaspa, 2017; C. Wang et al., 2020). Only a handful of studies have compared training load
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values after calculation (Moussa et al., 2019), and assessed model fit on observed data (Sedeaud et
al., 2020; West et al., 2020). So far, the ability of these methods to model the cumulative effect of
long-term training load on injury risk has not been assessed in a study where the true relationship

is known. We therefore compared these methods in a simulation in Paper I11.

Although training load as an exposure has special properties, the protracted time-lagged effects
are akin to those analyzed in environmental epidemiology. In this field of research, scientists
assess the effects of long-term exposures such as background radiation, pollution, temperature
and humidity, on outcomes such as number of hospitalizations and cancer occurrence (Bhaskaran
et al,, 2013). Here, the exposures, like training load, have a long-term, likely small-to-moderate
and a cumulative effect on the outcome. To ascertain such effects, scientists use distributed lag
models (Bhaskaran et al., 2013), a method first developed in econometrics (Almon, 1965). In the
last few decades these models have been extended to handle non-linearity (Armstrong, 20006), and
generalized for application on all types of longitudinal data (Gasparrini, 2014). These are called
Distributed Lag Non-Linear models (DLNM, Gasparrini, 2011). We determined whether the
DINM can be applied in a sports science setting in Paper I11.

1.3.3 Ratio calculation for relative training load (step 3)

Both the absolute training load (i.e. distance run) and the relative training load (i.e. distance run
this week relative to distance run previous week) are thought to have an effect on injury risk
(Gabbett, 2016; Tysoe et al., 2020). The training load and injury paradox outlined previously in
section 1.1.1, has emphasized the need to capture both the protective effects of training load, and
the detrimental effects, through appropriate measures. This was the aim of the Acute:Chronic
Workload Ratio (ACWR, Blanch & Gabbett, 2016). It is, traditionally, the sum of the training
load sustained the last seven days (acute period) divided by the rolling average of the last twenty-
eight days (chronic period, Lolli et al., 2019), though the method of calculation and the length of
the acute and chronic periods can vary at the analyst’s discretion (Dalen-Lorentsen, Andersen, et
al,, 2021). When the acute load (current week) is lower than the chronic load (previous weeks),
the ACWR is lower than one, and the athlete is considered to be prepared for the training load in
the current week, and injury risk is, in theory, reduced (Gabbett, 2016). When ACWR is greater
than one, the athlete is considered unprepated for the current demands and injury risk is

increased (Gabbett, 2010).
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Since its introduction in cricket in 2014 (Hulin et al., 2014), and following refinement (Blanch &
Gabbett, 2016), the ACWR became the most popular method for assessing training load (Eckard
et al., 2018; Udby et al., 2020). It has, since then, been critiqued extensively (Carbone et al., 2022;
F. Impellizzeri et al., 2020; Franco M Impellizzeri et al., 2020; Lolli et al., 2018; C. Wang et al.,
2020; Zouhal et al., 2021). The concerns were:

e The method was invented for cricket, and may not necessarily be applicable to other
sports (Franco M Impellizzeri et al., 2020).

e The method is applied to external and internal load measures with the same
approach, although these dimensions are markedly different (Franco M Impellizzeri
et al., 2020).

e The 1-week and 4-week time windows for the acute and chronic loads, respectively,
are not sport-specific and may be arbitrary (Carey et al., 2017; S. West et al., 2021).

e A complete time window must pass before first calculation, reducing sample size
(Moussa et al., 2019).

e The number of subjective choices in time windows and calculations may tempt
researchers to tinker towards desired results (Dalen-Lorentsen, Andersen, et al.,
2021).

e Including the numerator in the denominator is not an accurate depiction of change in
training load (C. Wang et al., 2020).

e Effect sizes appear larger due to rescaling of the metric (Lolli et al., 2018).

e The ACWR cannot be calculated on time windows with missing training load
observations (Moussa et al., 2019).

e The ACWR cannot account for tapering (Franco M Impellizzeri et al., 2020): the
practice of undergoing a period without training before a competition event (Mujika
et al., 2004).

e The ACWR frequently fails to adjust the numerator to the denominator (Franco M
Impellizzeri et al., 2020), a fundamental assumption of ratios (Curran-Everett, 2013).

e Because the ACWR is a measure of acute load, adjusted for the chronic load, it is less
ideal for studies that are more interested in assessing the effect of chronic load
(Franco M Impellizzeri et al., 2020).

e Due to normalization failure, studies often delete high ACWR values in periods
following reduced training (Franco M Impellizzeri et al., 2020), such as injury
recovery weeks or vacation weeks—introducing more missing data.

e Once a high-risk ACWR is observed, assuming that it has a causal effect on injury, it
may be too late to manipulate the training load for injury prevention purposes
(Franco M Impellizzeri et al., 2020).

e The original results were not reproduced in an observational study (Sedeaud et al.,
2020), and the recommended load management intervention through the use of
ACWR was debunked in an RCT (Dalen-Lorentsen, Bjorneboe, et al., 2021).
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In the wake of critiques against ACWR, some studies opted for other options, and either assessed
only the absolute training load (Keylock et al., 2022; Lolli et al., 2020), or calculated relative
training load with the week-to-week percentage difference (Enright et al., 2020; Ramskov et al.,
2021; Ryan et al., 2021). Whether the week-to-week percentage difference is an improvement
over the ACWR is unknown. Also, no study has so far simulated a relationship between relative
training load and injury risk and investigated whether the ACWR can detect such a relationship.
In Paper 11, we compared ACWR, week-to-week percentage difference, and DLNM, with the aim

of determining how to assess the long-term, cumulative effects of relative training load.

1.3.4 Categorization to handle non-linear risk-relationships (step 4)

In the training load and injury etiology, both too little and too much training load may increase
injury risk. This alludes to a parabolic relationship between training load and injury. Gamble
(2013) hypothesized the presence of a U-shaped relationship; where both low and high levels of
training load increase risk, and the lowest point of risk is at moderate training load levels.
Lathlean et al. (2019) used fractional polynomials and discovered a U shape, and data in Sampson
et al. (2018) and Weiss et al. (2017) indicated non-linear, non-parabolic relationships between
training load and injury risk. Collectively, theories and evidence suggest the relationship between

training load and injury risk may be non-linear, but the exact shape is unknown.

In reviews of the training load and injury risk field, the direction of the effect of training load on
injury risk varied between studies (Eckard et al., 2018; Franco M. Impellizzeri et al., 2020b). Some
studies reported that high amounts of training load increased risk, while others reported that low
amounts increased risk. Incidentally, methods that assume linearity of the relationship between
training load and injury risk, like Pearson correlations and logistic regression, were the most
frequently used in the field (Windt et al., 2018). Regardless of the true relationship shape, such
methods can only describe three relationship shapes: 1) a direct relationship (increase of training
load = increase in injury risk), 2) an inverse relationship (decrease of training load = increase in
injury risk), and 3) no relationship. Figure 9 shows the direction of the relationship between
training load and injury reported by 57 studies reviewed in (Eckard et al., 2018). The disparity in
relationship directions shown in Figure 9 may be explained by the existence of an underlying,
non-linear relationship modelled with methods that assume linearity. When a relationship is
monotonic—Y either increases or decreases when X increases—a linear model is likely to still

uncover a relationship, although inaccurately (Figure 10A). If the true relationship is non-
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monotonic, and Y sometimes increases and sometimes decreases when X increases, a linear
model is unlikely to uncover the relationship (Figure 10B). Studies that assumed linearity may
have obtained different results depending on whether the true relationship between training load
and injury risk is monotonic or non-monotonic in different sports and populations. Other
between-study idiosyncrasies may have caused inconsistencies. For instance, the distribution of
training load data, areas of data point congestion, and sample size, may have determined whether

the linear model suggested a direct or an inverse relationship shape, or no relationship at all.

Since few studies have checked the linearity assumption and used methods that account for non-
linear shapes, we explored whether there was any evidence of non-linearity in different sport

populations in Paper II.
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Figure 9. The direction of the relationship between load and injury risk varied considerably between the 57
studies reviewed in Eckard et al. 2017. Most reported a direct effect (51%), where injury risk increases for each
increase in training load. A large portion (30%) reported inverse relationships, where injury risk decreases for
each increase in training load, or U-shaped relationships, where injury risk sometimes increases and sometimes
decreases with increased training load.
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Figure 10. The discovered relationship between an independent variable (X-axis) and an outcome (Y-axis) when
linearity is assumed depends on the true, underlying relationship. When the true relationship is (A) monotonic,
a linear model may still discover a relationship. On the other hand, (B) a non-monotonic relationship modelled
with a linear model may find no relationship at all.

Some studies reported U-shaped or non-linear results (Figure 9), which could not have been
discovered with methods that assume linearity. A shared trait between many of these studies was
the discretization of continuous training load variables into categories (Colby et al., 2017; Cross et
al., 2016; Dennis et al., 2003; Malone et al., 2018; S. Malone et al., 2017), a method known as
categorization. Categorization is often the final step before performing regression analyses or
hypothesis testing (Figure 6; Dalen-Lorentsen, Andersen, et al., 2021). The practice of
categorization is frowned upon in general (Froslie et al., 2010). This method strongly assumes
that the relationship between training load and injury risk remains flat within categories (Collins
et al., 2016), which may be a less reasonable assumption than linearity. It also assumes that any
change in risk happens at the threshold from one category to another. The user must subjectively
decide cut-off values for the respective thresholds. Critics suggested such methods may
encourage p-hacking: the practice of performing multiple analyses to search for significant p-
values, increasing Type I error rates (Dalen-Lorentsen, Andersen, et al., 2021; Franco M.
Impellizzeri et al., 2020b). A narrative review of methodology in sport injury research
recommended fine-tuning categories based on predictive performance (Ruddy et al., 2019), a
process which tempt p-hacking, and may lead to overfitting of prediction models and inflated

optimism (Bullock et al., 2021). Such data-driven approaches also necessitate methodological
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choices to differ from one study to another. Consequently, reviews have struggled to perform
meta-analyses due to inconsistencies in categories and reference values (Andrade et al., 2020,
Griffin et al., 2020; Maupin et al., 2020; Sniffen et al., 2022). For clinicians and practitioners
looking to implement best practice, the results are confusing and difficult to interpret (Franco M.

Impellizzeri et al., 2020a).

In Carey et al. (2018), categorization had a poorer model fit than modeling continuous training
load data, and a substantially higher rate of Type I errors (rejecting the null hypothesis when it
should have been accepted) in Australian football. The authors recommended future research to
check whether results are similar in other sport populations. In addition, despite raised concerns,
categorization has later been recommended in methodological studies on training load and injury
risk (Nielsen et al., 2019; Ruddy et al., 2019), and the number of studies using this method has
not declined (Dalen-Lorentsen, 2021). Ideally, the step of categorization (Step 4 in Figure 6) is
removed from the modelling process. In Paper I, we therefore attempted to reproduce Carey et

al. (2018)’s findings in football, and assessed other ways of handling non-linearity.

A few reports of a U-shaped relationship between training load and injury risk were found in
studies that employed quadratic regression (Sampson et al., 2019; Weiss et al., 2017). In some of
these studies, a quadratic term was added to the regression model to test for linearity: if non-
significant, it was discarded for a linear model; if significant, they categorized the load-variable to
relax the linearity assumption (Ahmun et al., 2019; Sampson et al., 2018; Warren et al., 2018;
West et al., 2020). This is an improvement over assuming linearity without testing, but cut-offs
based on significance can be influenced by randomness. In addition, non-quadratic does not

equate linear, and non-linear does not equate quadratic.

Using data from three different sports, Blanch and Gabbett (2016) modelled the relationship
between relative training load (measured by ACWR) and injury risk with quadratic regression, and
discovered a J-shaped relationship (hockey stick curve). In quadratic regression, training load is
modelled as a continuous variable, and all the disadvantages of categorization do not apply. It is
intuitive and interpretable, and may be appropriate when clinical rationale meets the model
specification. Gabbett (2016) published the J-shaped figure again with highlight on the “sweet
spot”: the point of lowest risk. The presented figure conflicted, however, with the rationale put
forward in the text. The author explained that athletes with high relative training loads (ACWR >
1) are unprepared for the demands of competition and are at increased risk of injury, whereas

athletes with relative training load (ACWR < 1) have built adequate fitness and are at decreased
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risk. This suggests a linear relationship between relative training load and injury risk: the higher
the relative load, the higher the risk. The J-shaped figure implies that, if acute load is much lower
than chronic load, athletes are at increased risk of injury, which is not supported by any proposed
hypotheses in the field so far. Incidentally, the J-shaped figure was based on quadratic regression.
Statistical errors in developing the figure were later uncovered (F. Impellizzeri et al., 2019), and
the most grievous mistake was transposing categorized relative training load data to a continuous
scale for the quadratic modeling, where categories were different for the three studies included.
Such a mismatch between results and theory may, however, also have been caused by the
constraints of quadratic regression: it can only model a parabola, and by necessity, constrains the

relationship to follow a parabola.

While the relationship between the amount of training load and injury risk has been theorized to

be U-shaped (non-linear), the theories on relative training load suggest that the relationship shape
may depend on the training load dimension in question (as seen in C. Wang, T. Stokes, R. Steele,

et al., 2021). This may also explain some of the variation shown in Figure 9, as some studies only
considered absolute, and some only relative, training load. An ideal method should be capable of
uncovering both various non-linear and linear relationships. We therefore considered both

relationship shapes in Paper I1.

Quadratic regression is a subgroup of Fractional Polynomials (FP), which has been used in a
single training load-injury study (Lathlean et al., 2019). Fractional Polynomials, simply put, uses
polynomial transformations to estimate the association between the covariate and outcome
(Royston & Altman, 1994). For researchers familiar with quadratic regression, this is intuitive and
the results interpretable. Statistical simulation studies have reported that FP accurately models
common non-linear relationships (Binder et al., 2013; Collins et al., 2016). On the other hand,

due to the multiplicative nature of polynomials, they cannot model negative numbers nor zero.

Some studies can potentially justify adding a small constant, like 0.01, to all training load values to
use FP. This is feasible if performing no training load is reasonably equivalent to performing a
diminutive amount. For instance, in studies assessing the effects of past training load. In other
studies, this assumption is unreasonable, or does not align with study aims (Shrier et al., 2021).
Sports scientists may wish to capture biomechanical or physiological effects occurring when
athletes initiate exercise. Studies on health behavior may wish to account for individuals who
took the effort to go to the gym, even though they spent less than a minute at the gym. Lastly,

the amount of bias introduced to the regression model would depend on the scale of the training
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load measure. Although adding a constant may be inconsequential for a scale from 0-3000, it

would incur substantial changes on a scale of 0-10 (Foster et al., 2001).

Splines are a family of piecewise polynomials that can model local shifts in the relationship shape
(Harrell Jr, 2017), such as from 0 training load to 1 in the hypothetical studies outlined above.
The functions are piecewise polynomials from one interval of x, here the training load values, to
the next interval. These intervals are demarcated by so-called “knots” (Gauthier et al., 2020). The
order of each polynomial is the same for each interval, but the coefficients may differ. In cubic
splines, the chosen polynomials are cubic. Such splines were more accurate if they were restricted
to a linear shape in the tail-ends of the relationship (Stone & Koo, 1985), known as Restricted
Cubic Splines (RCS). RCS has proven capable of accurately modeling non-linearity, and can
model local shifts in the relationship shape (Binder et al., 2013).

The main challenge with splines is determining the number and location of the knots.
Misspecified knots can bias the model. Stone (1986) commented that the number of knots was
more important than the placement. When placing knots at fixed quantiles, typically, there are
enough data points at each interval to inform the model sufficiently, and the risk of overly
influential outliers is low (Harrell Jr, 2017). However, this may depend on the distribution of the
data, and researchers may have apriori assumptions to guide knot placement. For instance, in
Spanos et al. (1989), researchers aimed to predict whether a meningitis was bacterial or viral.
Experiences from health professionals suggested bacterial meningitis was much more prevalent
in neonatal infants than viral, but after the first year of age, their expectation was vice versa. With
this information, the analysts modelled a linear spline for age of onset, and placed a knot at the
age of 1. The resulting model had an area under the receiver operating curve of 0.97 (Spanos et

al., 1989).

Both RCS and FP performed better than categorization in Carey et al. (2018). However, the study
did not explore which method to use under which circumstances, nor whether RCS knot
placement could alter results. In Paper I1, we addressed this, and explored how to handle non-

linearity in training load and injury risk research.
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1.3.5 Analyzing the relationship between training load and injury risk (step 5)

A proper analysis of the relationship between training load and injury risk should be able to
handle complexities in the relationship between training load and injury risk without partitioning
data into time intervals, aggregating or calculating ratios before-hand, or making strong
assumptions about the shape of the relationship; thus essentially skipping steps 2—4 in the data
preparation process. We have previously discussed the potential for quadratic regression, splines,
and fractional polynomials to handle non-linearity, and for DLNM to handle protracted time-

lagged effects. These are all methods of model specification at the analysis stage.

Model specification is the process of selecting the right terms for a statistical model. This
involves choosing independent variables and their functional forms, such as polynomial or
logarithmic transformations. This allows the user to adapt the model to meet assumptions that

are not necessarily met in the basic linear model.

One potential method of model specification is to model acute and chronic training loads
separately, instead of calculating a ratio. C. Wang et al. (2020) argued that such a model would
produce coefficient estimates for both acute and chronic loads, thereby allowing researchers to

determine which is more important for injury risk.

The “too much, too soon”-theory postulates that the effect of acute training load on injury risk
depends on the level of chronic load (Gabbett, 2016), which led to the development of the
acute:chronic workload ratio. The purpose of a ratio is to adjust the numerator to the
denominator, but ratios do not always succeed in doing so (Curran-Everett, 2013). Modelling the
acute and chronic loads separately could potentially guarantee that the acute load is adjusted for
the chronic load, and untangle the effects of acute and chronic load from each other. We
therefore explored the suitability of modelling acute and chronic training loads separately to

estimate both absolute and relative training load in Paper I1/.

The “too much, too soon”-theory can also be interpreted to imply that thete is an interaction
between acute and chronic loads—that not just the magnitude, but also the direction and slope of
the effect of acute load on injury risk depends on the level of chronic load. The presence of an
interaction may cause a ratio to fail in normalizing the numerator to the denominator, and the
ACWR has been criticized especially for frequently failing to normalize the acute load to the

chronic load (Franco M Impellizzeri et al., 2020). In Paper I1” we investigated whether there were

29



Introduction

any signs supporting this theory, and also modelled an interaction between acute and chronic

training load in football.

As described in section 1.3.2, choosing time periods for acute and chronic loads can be
challenging. The traditional ACWR aggregated training load data in weekly intervals, but it also
considered the risk of injury at the weekly level. The ACWR calculation that moves iteratively
from one day to the next, proposed by Carey et al. (2017), considers injury risk at the daily level.
Instead of aggregating the acute loads weekly, it may be beneficial to assess the acute load at the

daily level.

According to the training load-injury paradox, if players do not participate in activity on past
days, they do not accrue the fitness and fatigue, which affects the risk of injury on the current day
of activity (Windt & Gabbett, 2017). These are internal risk factors of the athlete (Figure 2). On
the current day, training load is applied as an external risk factor, and athletes can become injured
from sheer exposure to potential inciting events (Windt & Gabbett, 2017). If players do not
participate in activity on the current day, they are not at risk of injury. This means that a training
load observation of 0 has dramatically different effects depending on whether it was observed in
the past, or on the current day. In addition, the training load planned for the current day may be
more modifiable, from an injury prevention perspective, than aggregates that describe both the
current day and past days, and therefore a better target for intervention (Suzuki et al., 2020). With
these theories as our foundation, we determined whether there was an interaction between acute
load, defined as only the current day, and chronic load, defined as all past observations in the

previous four weeks, in their association with injury risk in Paper IT/.
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1.4 Aims

The overall aim of this dissertation was to determine how to assess the relationship between
training load and injury risk. We endeavored to identify the most appropriate statistical methods
to address specific concerns and recommend these methods for future research. Ideally, methods
have high accuracy and power, and are not based on unrealistic assumptions. Each paper targeted

specific sets of assumptions, and aimed to:

1. Describe the practice of reporting and handling missing data in the training load and
injury risk field, and ascertain which methods introduce the least bias when handling

missing data in training load measures (Paper ).

II.  Investigate whether there is any evidence of a non-linear relationship between training
load and injury risk in different sports, and determine which statistical methods are best

suited to account for the assumption of non-linearity (Paper II).

III.  Determine which statistical methods can most accurately and precisely estimate the

cumulative effect of long-term training load on the risk of injury (Paper I1I).

IV.  Explore the potential of modelling acute and chronic training load separately to study
relative training load, and ascertain whether there is any evidence of an interaction

between acute and chronic load in football (Paper I1/).
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2 Methods

2.1 Study design

In Paper I-III, we chose a simulation study design. To study appropriate statistical methods, it is
often beneficial to use data simulation; the process of generating data that imitate real-world
situations. The purpose is to infer how different methods perform under certain scenarios—such
as under different probability distributions or on data of different sample sizes—by estimating and
compating power, robustness, degree of error rates and other parameters for the method(s) in
question. In this dissertation, these different modeling and simulation choices were based on real-
world data, to reflect the processes underlying athlete activity, so that inferences can be extrapolated

for use in the respective field.

A simulation study has endless possibilities in terms of which methods to investigate, and the
potential scenarios under which they may be compared. We could vary sample size, the amount of
noise, the amount of missing data; the strength of the simulated relationship between training load
and injury probability; add or remove dependencies between measures on the same individual—
among other considerations. We therefore narrowed down the scope of each paper by limiting the
number and combinations of scenarios. We aimed to mimic scenarios typical in the training load

and injury risk field.

n addition to simulations, we also conducted a systematic review to map current methodologica
In addition t lations, 1 ducted a systemat t t methodological
practices and guide our methodological choices in Paper I. We also searched for associations in an

observational study design in Paper II-11/.

Co-authors provided statistical, clinical, and sport-specific insight to the study design. we developed
a protocol before petforming simulations (O'Kelly et al., 2017), available online (Bache-Mathiesen,
2021a, 2021b, 2022b). Deviations from the protocol were documented.
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2.2 Participants and data

We performed one systematic review, and gained access to three European football cohorts and

one handball cohort with training load and injury measures (Figure 11).

Review (Paper I) We performed a systematic review of the training load and injury risk
literature (n = 108). Studies were extracted from the most recent, relevant reviews at the time
(Andrade et al., 2020; Dalen-Lorentsen, Andersen, et al., 2021; Eckard et al., 2018; Griffin et al.,
2020; Lathlean, 2017; Maupin et al., 2020; Udby et al., 2020; Windt et al., 2018), available online
(Bache-Mathiesen, 2021c).

Norwegian Premier League football (Paper I-III) A Norwegian Premier LLeague men’s team
(42 players, mean age 26 years, 38 injuries) followed through the 2019 season (Theron, 2020).

Norwegian elite U-19 football (Paper II, IV) A cohort of 81 players (55% male, mean age 17
years, 81 injuries) followed 16 weeks in the 2017 season (Dalen-Lorentsen, Andersen, et al.,

2021).

Norwegian elite youth handball (Paper II-III) A cohort of 205 handball players from five
Norwegian sport high schools (36% male, mean age 17 years, 471 injuries) followed through the
2018/2019 season (Bjorndal et al., 2021).

Qatar Stars League football (Paper IV) Eight years (2015-2022) of longitudinal data from a

men’s Qatar Stars League injury surveillance registry (1 465 players, 1 977 injuries).
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Figure 11. An illustration of which datasets were used in which papers in this dissertation.
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2.3 Ethics

The Norwegian Center for Research Data approved study protocols for all Norwegian studies:
Norwegian Premier League football (722773); Norwegian elite U-19 football (5487); Norwegian
elite youth handball (407930). They were also approved by the Ethical Review Board of the
Norwegian School of Sport Sciences (NIH). The Norwegian elite U-19 football study was
additionally approved by the South-Eastern Norway Regional Committee for Medical and Health
Research Ethics (2017/1015). Approvals for the Norwegian football studies ate available in
Dalen-Lorentsen (2021), and for Norwegian elite youth handball in Appendices, Appendix I1I.
The Anti-Doping Lab Qatar Institutional Review Board approved the Qatar Stars League study
(E2017000252), and the Aspire Zone Foundation Institutional Review Board approved a data
sharing agreement signed between Aspetar Orthopaedic and Sports Medicine Hospital and the

Oslo Sports Trauma Research Centre (both available in Appendices, Appendix IIT).

Ethical principles were followed in accordance with the Declaration of Helsinki (General
Assembly of the World Medical Association, 2013; World Medical Association, 2013), except
principle number 35: “Every research study involving human subjects must be registered in a
publicly accessible database before recruitment of the first subject”. None of these studies were

registered in a publicly accessible database.

All participants, or their guardians, provided informed consent. They were assured their
responses would only be available to the research team, participation was voluntary, and consent
could be withdrawn at any time. Handball players were above age 15 and guardian consent was
not required (Bjorndal et al., 2021). In the Norwegian Premier League football study, the on-site
data collectors signed a non-disclosure agreement to prevent sharing of tactical approaches to any

opponent football teams (Renneberg, 2020).

Participant data used in this thesis was managed under the General Data Protection Regulation
(GDPR, 2016/679) law of the European Parliament. Data preparation and analysis was
performed on pseudoanonymized personal data stored in a secure, access-regulated server at
NIH. The GDPR (Information Commissionet's Office (ICO), 2018; Privacy EU, 2018) states:
“You can only use the personal data for a new purpose if either this is compatible with your
original purpose, you get consent, or you have a clear obligation or function set out in law.” For

this reason, the Norwegian Center for Research Data determined that the Norwegian elite youth

34



Methods

handball data had to be anonymized. In addition, for our simulation in Paper I, we anonymized

the Norwegian Premier League data so that everything could be reproduced.

As data processor for the original aim of the Norwegian elite youth handball data (Bjerndal et al,,
2021), I was also the data controller responsible for anonymizing the datasets. I followed
guidelines developed by the Norwegian Data Protection Agency (Datatilsynet, 2017). First,
indirectly identifiable variables were removed. This included variables such as school, playing
position, BMI, etc., which, when combined, or when joined to external data, could potentially
identify an individual. The player identification (ID) column was replaced with a randomly
generated number with no connection to the previous identification, the original database, nor
any other identifiers. The original ID column was deleted. The arrangement of individuals in the
dataset were scrambled. The anonymization was performed in the command-line based statistical

program R, and a new file, without a version history, was generated with the anonymized data.

After anonymization of the Norwegian elite youth handball data, I lost access to the original
database. Before uploading the final, anonymous Norwegian Premier League dataset, I attempted
to identify an individual through juxtaposing it with a Norwegian Premier League statistics

website (Sandnes, 2021). The data passed this “motivated intruder”-test (Datatilsynet, 2017).

2.4 Training load and injury measures

The same online questionnaire was used to collect daily health status and training information
from all three Norwegian sports cohorts, with Athlete Monitoring, Moncton, Canada (Norwegian
Premier League) and Briteback AB online survey platform, Norrképing, Sweden (elite U-19
football, elite youth handball). Team doctors recorded corresponding information from the Qatar

Stars League players in Microsoft Office Excel®, Microsoft Corporation, Readmon, WA, USA.

2.4.1 Training load definition

2.4.1.1 Session Rating of Perceived Exertion

In all Norwegian sports cohorts, the players reported the duration of each training session and
match in minutes, and their perception of the intensity of the activity (psychological load)
expressed as Rating of Perceived Exertion (RPE, Borg et al., 1987) on the modified Borg CR10
scale (Foster et al., 2001). On this scale, 1 is “Very, very easy” and 10 is “Maximal” intensity. The

value 0 is “Rest”, i.e. no activity participation. The Norwegian U-19 elite football players and elite
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youth handball players were prompted to respond every day, whilst the Norwegian Premier
League football players were only prompted after activity completion. For these players, RPE and
duration were assumed to be 0 on recovery days, that is, on the day after a match, or two days

after a match (Figure 8).

For each activity, the RPE was multiplied by the duration of the activity in minutes to derive the
session RPE. Daily sRPE was the sum of sRPE values per day. sSRPE measures were used in all

papers comprising this dissertation.

Data quality of sRPE was reported in Paper IT Supplementary Table S1. All Norwegian datasets
had missing sSRPE observations: Premier League football (13%)', elite U-19 football (24%), elite
youth handball (64%). They were imputed using multiple imputation (Madley-Dowd et al., 2019,
Paper II Supplemental Figure S1) and was deemed valid (Paper II Supplemental Figure S2).
Timeliness was considered valid in all three populations, with the mean number of days from
RPE prompt to an answer at 0.01, 0.3 and 0.7 for Premier League football, elite U-19 football,
and elite youth handball respectively. However, only 53% of prompts from Norwegian youth
elite handball players were responded to on the same day, as opposed to 99% and 72% of the

Premier League football and elite U-19 football populations.

2.4.1.2 Global Positioning Systems

In the Norwegian Premier League football study, Global Positioning Systems (GPS) were used to
collect external training load measures (Ronneberg, 2020), with 10Hz sampling rate (Catapult
OptimEye X4, Catapult Sports, Australia). In Paper I, the following GPS-variables were used: (1)
total distance covered, (2) distance covered above 20 km/h (high-speed running distance), (3)
distance covered above 25 km/h (sprint distance), and (4) the squared instantaneous rate of
change in acceleration for three vectors of direction (x, y, and z axes) divided by 100 (player load,

Boyd et al., 2011).

Daily sums were calculated for each GPS variable. Total distance was the main focus, as there

was no consensus in the literature on definitions of high-speed or sprint-speed measured by GPS

Y In Paper Il, this was reported to be 41%. Observations that were implicitly days of no activity were
erroneously considered to be missing data in this calculation. This was corrected in Paper |.
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devices (Rago et al., 2020), and player load calculations are defined differently between GPS

device manufacturers (J. J. Malone et al., 2017).

2.41.3 Activity duration

The Qatar Stars League registry recorded the number of minutes each football player spent in
each training and/or match per day. The daily minutes in activity were a sum of all sessions on
that day, imputed with multiple imputation (11% missing data, Paper IV Supplementary Figure
S1-2).

2.4.2 Injury definition

The players in Norwegian football and handball populations reported daily whether they had
experienced a new health problem. If players in the elite youth handball study reported any new
health problems, they were prompted in the questionnaire to specify whether it was an injury or
illness. If players in the football studies reported a new health problem, a clinician contacted them
by telephone to classify it as an injury or illness in accordance with the Union of European
Football Associations guidelines (Higglund et al., 2005). Players were asked to report all physical
complaints, irrespective of their consequences on sports participation or the need to seek medical

attention (Bahr et al., 2020; Fuller et al., 2000).

The Qatar Stars League team doctors recorded injuries prospectively with the Sport Medicine
Diagnostic Coding System classification (Orchard et al., 2020). Injuries were recorded if, due to
injury, a player was unable to fully participate in training or match play (time-loss definition), and
classified as either sudden or gradual onset. Validation of injuries were described in Paper I/

Supplementary.

Only health problems classified as injuries were used in this dissertation.

2.5 Statistical analysis 1: Review

To map the current practices of handling missing data in the training load and injury field, we
performed statistical analyses on the review data collected in Paper I. The proportion of studies
reporting whether they had missing observations in the training load measure was calculated, by
year and overall. The yearly percentages were plotted in a line graph to assess the trend of

reporting practices.
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For the studies with missing data, we determined the mean amount of missing observations in
the training load variable. The percentage of studies which used each method of handling missing

data was calculated.

For an estimate of study sample size, we calculated the mean, standard deviation and median
number of injuries in the reviewed studies. The distribution of the number of injuries was

visualized in a histogram.

2.6 Statistical analysis 2: Simulations

Stochastic simulations were performed to compare different methods of handling missing data in
Paper I (Figure 12), non-linearity in Paper II (Figure 13), and cumulative protracted time-lagged
effects in Paper III (Figure 14). More extensive detail on the methods are available in the

supplementary methods files attached to the three papers respectively.

Training load data
0 % missing TL

Simulate injuries w/
logistic regression

Training load data Compare
Injury data

0 % missing TL

Repeat steps 1-4 4. Calculate
1. Ampute 1900 times performance
\ 4
Training load data Logistic
Injury data regression
50 % missing TL model
2. Impute or delete
missing observations
\ 4

Training load data 3. Run logistic regression

Injury data —
0 % missing TL Training —>
load

Injury

Figure 12. The simulation workflow in Paper I: Injuries were simulated based on probabilities from a logistic
regression model. The simulation steps were then (1) introduce missing data to the training load (TL) variable,
eleven different amounts under missing completely at random and three amounts under missing at random. A
scenario of 50% missing is shown as an example. (2) impute or delete missing data in training load with one of
five methods; (3) fit a logistic regression model with the imputed or deleted training load as the exposure and
the simulated injuries as the outcome; (4) calculate performance measures and compare predicted probabilities
with the simulated probabilities.
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Figure 13. The five steps of the simulation workflow in Paper II: (1) sample training load values from the elite U-
19 football data; (2) simulate correlations between training load values on the same individual; (3) calculate
coefficients of injury probability according to three different training load/injury relationships; (4) fit one of seven
different models with injury as the outcome and training load as the explanatory variable; (5) calculate
performance measures and compare predicted probabilities with the simulated probabilities.
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Figure 14. The five steps of the simulation workflow in Paper III: (1) extract training load exposure measured by
session Rating of Perceived Exertion (sRPE) from the Norwegian Premier League dataset and (2) simulate training
load exposure for 250 participants across 300 days; (3) calculate 1 of 7 scenarios of injury probabilities based on
the cumulative training load observed the last 28 days, a combination of effect from both the magnitude of the
training load (level of sRPE or %AsRPE) and the time since the training load occurred. Simulate injuries based on
these probabilities to generate time-to-event data. (4) modify the absolute and relative training load exposures
with seven different functions in Cox regression models; (5) calculate performance measures by comparing
model with the simulated coefficients.
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2.6.1 Preparing data

The Norwegian Premier League football data was used in Paper I and Paper III (4 725 sRPE and

2 292 total distance values of approximately Gaussian distributions, Paper I Figure SI). In Paper I,
one dataset was formed with the sSRPE and other variables, and one was formed with total
distance and other variables. The correlations between all variables in the datasets were retained
(Paper I Table 1). This was to ensure that methods of handling missing data that use other
variables in the dataset as predictors for imputed values had realistic predictive ability, and
potential important predictors could be identified. In Paper I1I, we sampled sRPE values with
replacement to generate a faux study of 250 participants (10 football teams), followed for one full
season (300 days). In addition to absolute training load, the relative training load from one day to
the next was calculated with the symmetrized percentage change (YoAsRPE, Curran-Everett &

Williams, 2015), ranging from -100% to 100%.

In Paper 11, the simulations were based on the Norwegian elite U-19 football dataset. Two
datasets were used. One with the original 8 495 sRPE and 6 308 ACWR values, and one created
by sampling sSRPE and ACWR values with replacement to generate a scenario of 3 football teams
(75 players) followed for a season (300 days; n training load values = 22 500). We simulated a
longitudinal design with an autoregressive correlation structure. This structure imposes stronger
correlations between observations closer in time than those more distant in time, which is
considered realistic of longitudinal sports data on human participants (Wilkinson & Akenhead,
2013). In both datasets, the sRPE distribution was highly skewed to the right, as O was by far the
most common value. The remaining distribution centered around an sRPE of 500, but many
values were spread out in the 800 to 1500 range (Paper II Supplementary Figure S4). The ACWR
distribution was approximately Gaussian (Paper II Figure S4).

2.6.2 Simulating a relationship between training load and injury

Simulated events (1/0) were added to the prepared datasets with a predefined, probabilistic
relationship with training load. Only one event was simulated per individual. We used the term
injury to describe the simulated events. However, the events can also be considered occurrences

of pain or other health problems.
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2.6.2.1 Logistic regression (Paper I-II)

A linear relationship between sRPE and probability of injury was simulated in Paper I-II, with the

logit link function.

. 1
lOngth(X) = m
Prob(Injury) = logistic(By + B1x)

Where By + [1x was defined as

Paper I —2+ 0.003 * sRPE
—2 4 0.0003 = Total Distance

Paper IT —0.5+ 0.001 * sRPE

In addition, to test the ability of methods for detecting non-linear relationships, two additional

relationships were simulated in Paper IL.
U shape. A symmetrical parabola with sRPE (Gamble, 2013).
Prob{Y = 1|sRPE} = logistic(—1 + 0.0000002 * (sRPE — 1500)?)
J shape. An asymmetrical parabola with ACWR (Blanch & Gabbett, 2016; Carey et al., 2018).

—34+2+(1—ACWR)?,  ACWR<1
Prob{Y = 1|JACWR} = logistic({  —3.4+ (1 —ACWR)?, 1<ACWR<1.7)
1.5+« ACWR —54, ACWR > 1.7

Altogether, two relationships were simulated in Paper I, and three relationships in Paper II. After
simulating relationships in Paper II, noise was added to training load values with the default jitter

value in the statistical program to mimic measurement errof.

2.6.2.2 Cox regression (Paper III)

In Paper III we considered a time-to-event approach and simulated survival histories (time to

injury) using the Cox regression model:

h(t) = ho(t) * exp(Bx)
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Where hy is the baseline hazard, and h(t) is the hazard at timepoint t. The coefficient § was the
result of a bidimensional function S on both the magnitude of the training load x, and the

distance in time, the time lag [, from the timepoint t.

h(t) = ho(t) * exp(s(xey wous Xy ooy Xe—1))
Training load x was measured with the sSRPE. The function s describes the relationship between
training load x and the hazard of injury, measured over the lag interval [ = 0, ..., L where L is the

maximum lag. The current day, Day 0, was [ = 0. The max lag was L = 27, in other words, 28

days (4 weeks).

For every day between | = 0 and [ = 27 we ran a functon f(x) on the magnitude of training
load, and function w(l) on the time since the current day. We simulated s to be a cumulative

sum of these 28 results, moving iteratively from one day to the next.

e B WIORTC
=0

The relationship between the magnitude of training load and probability of injury f(x) was

simulated with two different functions (Paper I1I Figure S2A, S2C).

((600 — x)/200)*1.5/10, x < 600

J shape. For absolute training load. fx) = {((x — 600)/200)%3/30), x > 600

Linear shape. For relative training load.  f(%Ax) = 0.009 * %Ax

The relationship between the time since current day and probability of injury w(l) was simulated

with four different functions, corresponding to various hypothetical scenarios (Paper I1I Figure

S3A-D).
Constant. Across 4 wecks, the effect of training load was constant each day.
w(l)=0.8

Decay. Across 4 weceks, the effect of training load gradually decayed for each day.

l
w(b) = exp (~155)

Exponential decay. The effect of training load dropped exponentially during the past 4 weeks.
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2

w(l) =exp (— %)

Direct, then inverse. Training load values on the current week (acute) increased risk of injury,
whilst the training load values three weeks before the current week (chronic) decreased risk of

injury (Blanch & Gabbett, 2016).

I £\2
exp(— ) , <6
w(l) = 2

—exp (%> , I >6

The relationships constant, decay and exponential decay were used both for the absolute training
load and for the relative training load. The “Direct, then inverse” relationship was only simulated
for the absolute training load exposure (Gabbett, 2016; C. Wang, T. Stokes, R. Stecle, et al., 2021;
C. Wang, T. Stokes, J. T. Vargas, et al., 2021). In addition, for this time-lag scenario, and for this

time-lag scenario only, we simulated a linear relationship with the absolute training load (Paper IIT

Figure S2B):

f(x) =0.0009 * x

All in all, in Paper III, seven different relationships between training load and injury risk were
simulated, four with absolute training load and three with relative training load (Paper III Figure 1—
2). A censoring timepoint was drawn at random from a uniform distribution ranging from 0 to 600
days per individual. The mean number of simulated injuries for 25 participants (a football team)
across 100 simulations for each of the seven scenarios, was 18.7 per season; reasonably realistic of
a study with small-to-moderate effect between training load and a specific injury type (i.e. a study

on hamstring injury).

2.6.3 Simulating missing data

In Paper I, we also simulated missing data. From the sRPE dataset and total distance dataset —
now with simulated relationships with injury — eleven datasets were created with amounts of
missing sampled under the assumption of Missing Completely at Random (MCAR): 5%, 10%,
20%, 30%, 40%, 50%, 60%, 70%, 80%, and 90%, to cover a range of percentages of missing data
(Vink, 2016).
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We also created three datasets under the assumption of Missing at Random (MAR).
The probability of missing in SRPE or total distance under MAR was based on the following

functions:
Light MAR (~25% missing)
Prob(Missing) = logistic(—2 + 0.03 * Age + 0.02 * Sex + 0.3 * Recovery day)

Medium MAR (~50% missing)

Prob(Missing) = logistic(—2 + 0.08 * Age + 0.04 * Sex + 0.8 * Recovery day)

Strong MAR (~80% missing)

Prob(Missing) =

logistic(—2 4+ 0.13 * Age + 0.1 * Sex + 1.8 x Recovery day + 1.8 * Match)

Simulated age values were drawn at random (uniformly) from 18 to 30 years and added to the

dataset. Simulated sex values were randomly sampled from female 0 and male 1, with probability

50% for each sex. A recovery day (0/1) was the day after a match or two days after a match

(M+1 or M+2), and match was also coded 0/1 (available in the observed data).

In summary, 11 MCAR datasets and 3 MAR datasets were generated for the sRPE and total

distance datasets (24 datasets).

2.6.4 Choosing statistical methods for comparison

Several methods were compared in their ability to handle missing data (Paper I), handle non-linearity

(Paper I1), and handle the cumulative protracted time-lagged effect of long-term training load (Paper

1II). We chose statistical methods of comparison on the following bases:

e Methods frequently used in the training load and injury risk field. In Paper I, we used our

systematic review of the field of training load and injury risk for an estimate of the most

popular methods.
e Methods recommended in the training load and injury risk field.

e Methods we considered having potential in the corresponding scenario.
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Methods for handling missing data

Strategies of imputing a derived variable

sRPE is a derived variable, the product of RPE and activity duration in minutes. We analyzed how
sRPE should be imputed. After simulating a relationship between sRPE and injury, the sRPE
variable was removed from the dataset, and 25% of RPE and duration observations were imputed
completely at random, using multiple imputation with predicted mean matching, under four

different strategies.

Impute, then transform. Impute duration and RPE without sRPE in the dataset, and calculate
sRPE after imputation (Von Hippel, 2009). With this method, the product, sRPE, is not available

to inform the imputation model. However, it may reduce collinearity issues.

Transform, then impute. Calculate sRPE, and impute duration, RPE and sRPE as regular
variables (Von Hippel, 2009; White et al., 2011). Here, sRPE is present to inform the imputation

model.

Passive imputation. Calculate sSRPE and impute, but add the relationship between RPE,
duration and sRPE in the imputation model, thereby transforming on-the-fly within the
imputation algorithm (Van Buuren, 2018). This may be an improvement over using them merely

as explanatory variables.

Impute product without factors.” Calculate sRPE, remove RPE and duration from the dataset,
then impute. Under this scenario, the factors, RPE and duration, are not available to inform the
imputation model, but it may reduce collinearity issues. This may be reasonable for studies which

only have access to the product, SRPE.

The amount of bias introduced from the strategies were compared. The most accurate method
determined in these simulations were used in the main comparison.
Main comparison

The missing observations in the 14 sRPE and 14 total distance datasets were imputed or deleted

with five different methods.

2This approach was used to impute sRPE in datasets used in this dissertation before Paper | was conducted.
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e Complete case analysis

e Mean imputation by the mean per player
e Mean imputation by the mean per week
e Regression imputation

e Multiple imputation with predicted mean matching (PMM)

Regression imputation and PMM uses the other variables in the dataset to predict training load
observations in place of missing values. In both cases, we used a linear model, and the variables
used as predictors are listed in Paper I Table 1. PMM draws at random from a pool of so-called
donor observations, that are predicted to be most similar to the missing value. We used 5 donors,
and 5 datasets to be imputed in the multiple imputation framework (Van Buuren, 2018). In
addition, we compared PMM run with single and multiple imputation, to have an idea of how

much of its performance stems from the multiple imputation framework.

Logistic regression models were run with training load, either sSRPE or total distance, as the
exposure, and the simulated injuries as the outcome variable, on each of the imputed 14 sRPE

and 14 total distance datasets.

Imputation with extra variables available

To see how imputation models used in regression imputation and multiple imputation perform

with and without certain variables, the simulation was repeated under different scenarios.

1. Only total distance was imputed, and no extra variables were in the imputation model.

2. Only total distance was imputed, and the player’s playing position was among the variables in
the imputation model.

3. Only total distance was imputed, and both the player’s playing position and the sRPE was
among the variables in the imputation model.

4. All GPS variables were imputed, and no extra variables were in the imputation model.

5. All GPS variables were imputed, and the player’s playing position was among the variables in
the imputation model.

6. All GPS variables were imputed, and both the player’s playing position and the sSRPE was

among the variables in the imputation model.
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Methods for handling non-linearity

A mixed effects logistic regression model was used to estimate the relationship between training
load and predefined injury probability. Seven different model specifications of training load were

compared in their ability to detect this predefined relationship.

Linear Model. A standard logistic regression was run to determine the magnitude of error that
can be the result of assuming linearity when the relationship is non-linear. In a logistic regression

with x; representing the training load variable, the formula was as follows:

exp (Bo + Bix1+7v)
1+ exp (Bo + B1x1+7v)

Whete ¥ was the random effect term.

Prob{Y = 1|X} =

= logistic(By + P1x1 +7)

Categorization. We attempted to reproduce the results of categorization in Carey et al. (2018) in
an environment of highly skewed sRPE values. To determine whether results can differ
depending on how the data are categorized, we used two different approaches to choose the cut-
off values for the categories. In one, the data-driven approach, training load was delineated by
quartiles (like in Cross et al., 2016; Malone et al., 2019; Stares et al., 2018). In the other, the

subjective approach, cut-offs were decided based on the range of the data.

sRPE was parted in four categories.

e <=499

e 500-1499

e 1500-2 499
e >=2500

ACWR was parted in three categories, same as in Carey et al. (2018).

e <1
o 1-1.74
e >=1.75

Quadratic model. To assess whether quadratic regression is sufficiently accurate if the
relationship is U- or J-shaped, a quadratic model was among the compared methods. In a

quadratic model, the explanatory variable is modeled with a polynomial to the second power.

Prob{Y = 1|X} = logistic(By + Bix1 + Bax:i’ +7)
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Fractional polynomials. Fractional polynomials add either a single polynomial term (FP1) or
two polynomial terms (FP2) to the pth power to the regression model (Royston & Altman,
1994). FP2 was used in all models in Paper I1, as it is the most optimal choice in most cases

(Binder et al., 2013). The logistic regression model with FP2 was as follows:

Prob{Y = 1|X} = logistic(By + Bix1 + Box:"* + Bsx: P2 +7)
Whete pl and p2 are exponents selected from {-2, -1, -0.5, 0, 0.5, 1, 2, 3} by a form of backward
elimination (Ambler & Benner, 2015). If p1 or p2 = 0, x? is replaced with In (x).

Restricted cubic splines. In restricted cubic splines (RCS), the X-axis is divided into intervals
by a number of endpoints (knots). At these knots, different cubic polynomials are joined and
forced to have a consistent function, slope and acceleration (second derivative) until the next
knot. At the knot, the rate change of acceleration (third derivative) may change. For three knots

a, b and c, our logistic regression formula was:

Prob{Y = 1|X} =
logistic[Bo + B1x1 + ﬂlez + 337513 + Ba(xy — @) + Bs(x1 — b)* + Be(x1 — ©)* + ¥]
In all simulation models, 3 knots were used (Harrell Jr, 2017). We compared two different ways
of choosing knot location. In the first, the knot locations were chosen by the default approach in
the statistical software (data-driven), and in the other, knot locations were cut-off subjectively at
sRPE = 500, 1 500 and 2 500, and likewise at ACWR = 1, 1.75 and 2, to cover the range of the

training load measures.

Methods for handling cumulative, protracted, time-lagged effects

A Cox regression model was used to estimate the relationship between training load and
predefined injury probability. Seven different modifications or model specifications of training
load were compared in their ability to detect the seven scenarios of cumulative, protracted time-
lagged effects of training load on injury risk, four for the absolute training load x, and three for
the relative training load %Ax. To compate methods under the same conditions, absolute
training load was modelled with a quadratic term under all time-lag scenarios except for the
“Direct, then inverse”, where a linear term was used. Relative training load was modelled with a

linear relationship with injury risk.

Some methods could not be used on incomplete time-windows. We therefore did not include the

initial 27 days per individual when performing all methods, to improve comparability.
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Absolute training load
RA. For training load denoted X, the rolling average RA is defined by:

_ Xg—nt1t Xgpy2 T Xy
n

RA

Essentially, the RA is the mean of each time-lag window, where 7 is the size of the time-lag
window (28 days). The calculation moved iteratively, one day at a time, in a sliding window. If k
is the last value in the time-lag window for an individual, the first window was k = 28 (the first 4

weeks), the second window, k = 29, and so on, up until k = 300.

1
RAtoday = RAyesterday + E(xk+1 = Xp—1+1)

EWMA. The exponentially weighted moving average (EWMA) is calculated in the same way as
the RA, but with a weighting tetm A on the time since exposute by number of days 1, up to a

maximum of n = 28.
EWMAtoday = Xtoday + A+ ((1 -+ EWMAyesterday)

We used the same definition of 4 as in Williams, West, et al. (2017) and Moussa et al. (2019).

REDI. The Robust Exponential Decreasing Index (REDI), developed by Moussa et al. (2019),
multiplies a vector of coefficients (weights) with the vector of training load values, for the lag
interval [ = 0, ..., L whete [ = 0 is the cutrent day, and L is the maximum lag 27. These weighted

training load values are subsequently summed.

L
Weighted x = Z o * x
1=0
The coefficient, 0(%‘ is determined as follows:
ot = { 0 if x is missing
L exp(—A 1) if xisnot missing
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We assumed the observations had been imputed before-hand, and hence, 0(?‘ = exp(—A * 1) for
every value. The weighted training load values were then divided by the sum of the weight

coefficients:

L

1
RED[ = ——— Z A
Weighted x L%

We chose lambda = 0.1, same as in Moussa et al. (2019), since it was the highest lambda value

whete training load on the 27 lag day still contributed to the cumulative effect.
DLNM. We previously described how the ff-coefficient for training load can be a result of the s
function, S(x¢, ..., X;_;). By defining S as the product of the variable function f(x) and the lag

function w(x, l), we can considet S as the result of bi-dimensional exposure-lag-

response function f(x) - w(x, ) in a distributed lag non-linear model (Gaspartini, 2014):

L
$Cte oy Xe) = ) G Wt D)
=0

We modelled f(x) with a quadratic term in the Cox regtession model, except for the “Direct,
then inverse” time-lag scenario, where we used a linear term instead (same as for the other
methods). We modelled the lag-response function w(x, l) with restricted cubic splines using 3

knots under all scenarios.

Relative training load

Week-to-week %-change The percentage difference in weekly sSRPE sums between the current
week and the previous week (Ramskov et al., 2021; Ryan et al., 2021). We used the symmetrized
percentage change (Curran-Everett & Williams, 2015):

Wi — W1

%AW = — K1
0 W, + Wy,

* 100

Whete Wis the sum of daily sSRPE across 7 days, and k is the cutrent week. The week-to-week

percentage change calculation moved iteratively from one week to the next.

7:28 coupled ACWR. The traditional Acute: Chronic Workload Ratio (ACWR) was the most

common form of calculation in a systematic review of ACWR in male football research (A. Wang
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et al,, 2021). This was the sum of training load on the current week (Day 6 up to Day 0)—the
acute training load—divided by the rolling average of the current week and the previous three

weeks (Day 27 up to Day 0).

Acute Week _ Wi
Chronic Weeks * 0.25  (Wj_3 + Wy_y + Wi_; + W) * 0.25

ACWR =

Wherte k is the current week. The ACWR calculation was moved iteratively from one day to the

next (Carey et al., 2017).

DLNM. In addition to the absolute training load, DLLNM was also compared on the relative
training load. The exposure-response function f(%Ax) was modelled lineatly, same as for the
ACWR and week-to-week petcentage change. The lag-response function w(x, [) was modelled

with restricted cubic splines using 3 knots under all scenarios.

2.6.5 Assessing performance

The final step in all simulation studies was to assess the performance of compared methods.

In Paper I, we assessed the validity of the imputation by visually comparing the imputed with the
observed data for 50% missing under MCAR and =80% missing under MAR. Ideally, the

imputed data should follow the same distribution as the observed data.

After running a logistic regression model on imputed datasets in Paper I, the percentage bias was
calculated to determine accuracy of detecting a relationship between training load and injury risk.
It was based on the absolute percentage difference between the estimated coefficients and the

true coefficients used to simulate injuries. The upper limit for acceptable performance was | 5% |

(Demirtas et al., 2008). The percent bias per method was visualized for each scenario of missing.

From the absolute bias, we derived the Root-Mean-Squared Error (RMSE). The RMSE is a
combined metric of accuracy and precision, and was the main numeric performance measure in
Paper 1 and Paper 111, where it was calculated between the simulated (true) probability of injury

and the probability predicted by the compared models.

RMSE = fmean((é - 9)2) = \/mean(bias?)
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RMSE is used to rank methods—the lower the RMSE, the better the method. However, the scale
of the RMSE depends on the analysis in question, and the values cannot be interpreted in
isolation (Mortis et al., 2019). In both papers, RMSE was arranged from highest to lowest in dot

plots.

The ACWR and week-to-week percentage change methods for assessing relative training load in
in Paper I1I distorted the coefficients to a different scale, and the difference between estimated
and true risk could not be calculated. We therefore also included the RMSE calculated on the
residuals (internal RMSE), and Akaike’s Information Criterion (AIC) as alternative measures of

model fit in Paper III. The internal RMSE and AIC were also visualized in dot plots.

To compare the uncertainty of measures, coverage of 95% confidence intervals (CIs) and average

width (AW) of 95% Cls were assessed in Paper I and Paper I11.

In Paper 11, predictive ability and model fit as described by Brier scores, C-statistics, and 95%

prediction intervals (Pls) were also considered.

The number of simulations needed for an accurate estimation of coverage was estimated based

on a Monte Carlo Standard Error of 0.5 (Mortis et al., 2019):

_ E(Coverage)(1 — E(Coverage)  95%*5
Mcoverage = (Monte Carlo SEyq)? ©0.52

=1900

The simulations in Paper I-II] were repeated 1 900 times for all methods and relationship

scenarios. The mean of each performance measure was calculated across these 1 900 simulations.

Visualizations were made in Paper IT and Paper 111 with the simulated risk of injury for each level
of sSRPE, compared with risk of injury estimated by the different methods. Only 1 of the 1 900

simulations were chosen at random to be displayed in these figures.

2.7 Statistical analysis 3: Observed sports data

We assessed whether there were any signs of non-linearity, cumulative protracted time-lagged
effects, and/or interactions in the relationship between training load and injury risk, in different
sport populations. All Norwegian populations were assessed in Paper II, the Norwegian elite
youth handball was assessed again in Paper II1, and the Norwegian elite U-19 football (again) and
Qatar Stars League football were assessed in Paper I17 (Table 1).
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Table 1. Overview of models exploring complex effects in the relationship between training load and injury risk.

Study TL measures Model Non-linearity Time-lagged Interaction
effects
Paper Il
Norwegian Premier League sRPE, daily ACWR, Logit X
micro-cycle ACWR
Norwegian elite U-19 SRPE, daily ACWR, Logit X
micro-cycle ACWR
Norwegian elite youth handball sRPE, daily ACWR, Logit X
micro-cycle ACWR
Paper Il
Norwegian elite youth handball sRPE Cox X X
Paper IV
Qatar Stars League Minutes in activity  Logit X X X
Norwegian elite U-19 SsRPE Logit X X X

Abbrevations: ACWR = Acute:Chronic Workload Ratio; sRPE = session Rating of Perceived Exertion; TL = Training load

2.7.1 Training load measure modification

In Paper 11, we investigated whether there were any tendencies of non-linearity between training
load and probability of injury in all three Norwegian sports populations. Since the shape of the
relationship between training load and injury is potentially different for absolute versus relative
training load, we calculated the relative training load in addition to the absolute training load. The
relative training load was calculated with the Acute:Chronic Workload Ratio (ACWR); both daily
and micro-cycle ACWR.

Daily uncoupled ACWR 7:21 The mean sRPE of 7 days (acute load) divided by the
exponentially-weighted-moving average (EWMA) of the previous 21 days (chronic load). The
acute load was not included in the 21 days of the denominator (uncoupled ACWR, C. Wang et
al., 2020). The calculation was performed on a sliding window moving iteratively one day at a
time from and including the 28" day (Carey et al., 2017). The last day in the acute load was

considered the current day (Day 0).

Micro-cycle ACWR 1:3 The mean sRPE per micro-cycle divided by the EWMA of the previous
3 micro-cycles, uncoupled. A micro-cycle was all recovery days after the previous match, and the
training days before the next match (Figure 8). The calculation was performed in the same

manner as daily ACWR, though on a sliding window moving one micro-cycle at a time from and

including the 4™ micro-cycle.
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2.7.2 Statistical analysis

To model the association between training load and injury risk, we used mixed-effects logistic
regression (Nielsen, Shtier, et al., 2020) in Paper II and Paper I1/, and in Paper I1I, Cox regression
with frailty (Nielsen et al., 2019; Ullah et al., 2014). The random intercept terms and the frailty
term were modelled per handball or football player in the data, to account for within-player
dependencies. Injury (yes/no) was the outcome in all models.” Days whete players were not at
risk (sSRPE = 0) were removed before analysis, as recommended in Mustapich and Koehle (2021).

See Table 1 for an overview of the models.

Training load was the independent variable. Absolute training load measured by daily sRPE was
used in all cases, expect the Qatar Stars League model, which only had the daily activity duration
in minutes (Paper I17). Relative training load, as calculated by the daily ACWR and micro-cycle
ACWR, was additionally used in Paper II. In all cases, training load was modelled with restricted
cubic splines using three knots. In Paper I and Paper I11, the knots wete located at quartiles of
training load measures, in Paper I17, they were subjectively placed based on the range of the sRPE
values. The models were repeated without splines in Paper II to determine the relationship we

would have discovered if linearity was assumed.

The potential effect of past (chronic) training load was analyzed differently in the three papers.
Paper II considered the effect of training load sustained five days ago (Lag day 4, or day -4) on the
occurrence of injury during the next four days (Day -3 to Day 0), where the training observation
day (Day -4) was not included (Paper II Figure 1). For micro-cycle ACWR, we estimated the
association of relative training load in the previous micro-cycle with the risk of injury occurring

during the next micro-cycle excluding Day 0 (Paper II Figure 1).

To explore the potential for cumulative, protracted, time-lagged effects of past training load in
Paper 11T and Paper I, the last four weeks (28 days) of sSRPE was modelled with the distributed
lag non-linear model desctibed in 2.6.4 (Gaspatrini, 2014). The lag-response function w(x, [) was
modelled using a restricted cubic splines with three knots in the Norwegian elite youth handball
model (Paper IIT) and Norwegian elite U-19 football model (Paper I17), and with four knots in the
Qatar Stars League model (Paper I17), as it had a high sample size. Although risk-free days (sRPE

3 In Paper Ill, we erroneously wrote that we studied all health problems in the Norwegian elite youth handball
model, although we only studied injuries.
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= 0) were not included in the model, they were included in the DLNM calculation of past

training load.

Day 0 was not included in the last four weeks of sSRPE in Paper I1”. Instead, it was included as a
separate variable in the model and considered the acute load. The past training load modelled
with DLNM was considered the chronic load. An interaction was added between the acute load
and the chronic load. In addition to the DLNM, the EWMA method was run on the chronic load

to see if a simpler approach was appropriate.

Age and sex were adjusted for in the Norwegian elite U-19 football (Paper II) and Norwegian elite
youth handball models (Paper II-I1]), and age was adjusted for in the Norwegian Premier League
model (Paper II).

The main result in all three papers was a visualization of the model predictions to determine the
shape of the relationship between training load and injury risk, in line with recommendations in
Shrier et al. (2021). Exploration of the effects of chronic training load were also visualized in

Paper IIT (Norwegian elite youth handball) and Paper IT” (Qatar Stars L.eague model only).

2.8 Data tools

Data preparation, statistical analyses and simulations were performed using R (R Cote Team,
2021). Aside from packages in base R and in the Tidyverse family (Wickham, 2019; Wickham et
al., 2019)—used for handling, reading and plotting of data—other packages were used for
specific purposes (Table 2). A GitHub repository with R code and study protocols was made
publicly available for each study: Paper I (Bache-Mathiesen, 2021a), Paper II (Bache-Mathiesen,
2021b), Paper III (Bache-Mathiesen, 2022b), Paper IV (Bache-Mathiesen, 2022a). Infographics and
flowcharts were made in diagrams.net v.20.2.7 (Alder, 2018).
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Table 2. R packages used in this dissertation.

Package Purpose Reference

chron Manipulating time data James (2020)

clubSandwich Cluster-robust confidence intervals Pustejovsky (2021)
directlabels Labeling line graph lines Hocking (2021)

DLNM Distributed lag non-linear models Gasparrini (2011)

doParallel Running multiple cores simultaneously Weston and Microsoft (2022a)
egg Labeling plots in a panel Auguié (2019)

foreach For-loops run in doParallel Weston and Microsoft (2022b)
ggeffects Model predictions Ludecke (2018)

Ime4 Generalized mixed effects models Bates et al. (2015)

merTools Prediction intervals for mixed models Knowles and Frederick (2019)
mfp Fractional polynomials Ambler and Benner (2015)
mice Multiple imputation Buuren (2011)

PermAlgo Simulating time-to-event data Sylvestre and Abrahamowicz (2008)
rms Restricted cubic splines Harrell Jr (2019)
SimCorMultRes Simulating longitudinal data Touloumis (2016)

sjPlot Plotting splines predictions Ludecke (2022)

slider Functions on sliding windows Vaughan (2021)

tsModel Structuring time series data Peng and McDermott (2022)
TTR Exponentially weighted moving averages  Ulrich (2020)

visdat Visualizing missing data Tierney (2017)

Z00 Rolling averages Zeileis and Grothendieck (2005)
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3 Results

3.1 Review results

3.1.1 Current practices of handling missing data in training load

In our review of 108 studies, 34% reported whether the training load variable had any missing
observations. This varied between 30%—50% the last five years (Paper I Figure 2). Fewer studies
(23%) reported how they handled the missing data (Table 3), and fewer still (17%) reported the
amount of missing data. The mean percentage missing was 7% (SD = 6%). Mean imputation (n
= 11) and complete case analysis (n = 8) were the most frequently used methods for handling

missing data (Table 3).

Table 3. The methods used to handle missing data in training
load in the field of training load and injury risk (n = 36Y).

Missing Data Method N studies % of studies
Unclear? 12 33%
Mean Imputation 11 31%
Complete Case Analysis 8 22%
Median Imputation 2 6%
Multiple Imputation 2 6%
Regression Imputation 1 3%

1 Although 37 (34%) of 108 studies reported whether they had
missing data in the training load variable, one of the 37 studies
had no missing data, and therefore removed from this analysis.

2 Cases were defined as “unclear” if authors reported having
missing data, but the method used to handle them were unclear.

3.1.2 Sample sizes in training load and injury risk studies

Most studies reviewed in Paper I were conducted across 1 season/year/school year of the target
population (52% of 108 studies). See Paper I Table 2 for study characteristics. The number of
analyzed injuries followed a right-skewed distribution (Figure 15). The median number was 85,

with a 25" and 75™ percentile at 36 and 159 injuries, respectively.
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Figure 15. The number of injuries analyzed in training load and injury studies formed a right-skewed
distribution. Descriptive statistics: Median = 85, 25t percentile = 36, 75" percentile = 159, interquartile range =
123. Based on 99 of 108 studies that reported the number of registered injuries.

3.2 Simulation results

3.2.1 Handling missing data in session Rating of Perceived Exertion

In the pilot simulation, “Impute, then transform” had the lowest bias (1.4%) and “Impute
product without factors” the second-lowest (1.8%) of the four approaches of imputing the

compound variable sSRPE (Table 4).

In the main simulation, multiple imputation using Predicted Mean Matching (PMM) had the
lowest average bias across all proportions of missing data under MCAR (6% vs. >= 10% [all
other methods]) and a sufficient coverage of 95% (Table 5). It was the only method with

acceptable bias (< |5%|) up to 50% missing (Figure 16A).

Table 4. The mean percent bias, root-mean-squared-error, and average width of 95%
confidence intervals across 1 900 simulations, for four approaches of imputing sRPE.

Imputation Method % Bias RMSE AW
Impute, then transform 1.4% 0.0000124 0.000745
Transform, then impute 2.6% 0.0001100 0.000943
Passive imputation 2.5% 0.0000894 0.000713
Impute product without factors 1.8% 0.0000599 0.000895

Abbreviations: AW, Average width; sRPE, session Rating of Perceived Exertion; RMSE,
Root-Mean-Squared-Error
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Table 5. The mean performance for five methods of imputing/deleting missing data in session Rating of

Perceived Exertion (sRPE) and total running distance. Calculated across 11 scenarios of MCAR

(n=20900) and 3 scenarios of MAR (n =5 700). Compared to performance without missing data (None).

Missing Missing variables® PB2 RMSE? Coverage® AW
None 1.4% 0.000042 100% 0.000624
MCAR  sRPE Complete Case Analysis 10% 0.000319 95% 0.001910
Mean per player 11.4% 0.000357 80% 0.000938

Mean per week 10.4% 0.000338 65% 0.000922

Ml -PMM 5.8% 0.000191 95% 0.001400

Regression Imputation 33.7% 0.001040 30% 0.000828

MAR Complete Case Analysis 7.7% 0.000280 100% 0.001699
Mean per player 7.9% 0.000254 100% 0.000991

Mean per week 8.8% 0.000275 100% 0.000968

Ml -PMM 3.8% 0.000144 100% 0.001112

Regression Imputation 38.8% 0.001175 33% 0.000833

None 1% 0.000012 100% 0.000081
MCAR  All GPS variables Complete Case Analysis 8.2% 0.000025 100% 0.000126
Mean per player 8.6% 0.000026 90% 0.000103

Mean per week 13.1% 0.000039 90% 0.000099

Ml -PMM 10.7% 0.000032 87%  0.000082

Regression Imputation 24.8% 0.000075 40%  0.000091

Total distance only Complete Case Analysis 8.9% 0.000027 93% 0.000122

Mean per player 9.6% 0.000029 90% 0.000102

Mean per week 18.2% 0.000055 70%  0.000098

Ml —-PMM 3.3% 0.000010 100% 0.000081

Regression Imputation 6.1% 0.000018 100% 0.000078

MAR All GPS variables Complete Case Analysis  20.3% 0.000061 78% 0.000156
Mean per player 11.3% 0.000034 78% 0.000123

Mean per week 11.7% 0.000035 89% 0.000120

Ml -PMM 9.5% 0.000029 78% 0.000198

Regression Imputation 60.5% 0.000181 67% 0.000124

Total distance only Complete Case Analysis  14.1% 0.000042 100% 0.000143

Mean per player 9.9% 0.000030 100% 0.000118

Mean per week 11.4% 0.000034 89% 0.000114

Ml -PMM 6.7% 0.000020 100% 0.000098

Regression Imputation 11.7% 0.000035 67% 0.000084

Abbreviations: AW, Average Width of 95% confidence intervals; GPS, Global Positioning System; MAR,
Missing at Random; MCAR, Missing Completely at Random; PB, Absolute Percent Bias; sRPE, Session
Rating of Perceived Exertion; RMSE, Root-Mean-Squared-Error
IAll GPS variables = All GPS-variables have missing data, Total distance only = Only total distance has
missing data
2Monte Carlo standard error < 0.0001
3Monte Carlo standard error = 0.5
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Complete case analysis was within acceptable bias up to 20% missing, and the other methods had
acceptable bias up to 10% missing (Figure 16A). PMM was the only method within acceptable
bias under both the light (~25% missing) and medium (~50% missing) MAR scenarios (Figure
16B), at low cost to certainty (100% coverage, Table 5). Regression imputation was not within
acceptable bias under any MAR scenarios (Figure 16B), while the other methods were within

acceptable limits under light MAR (~25% missing).

PMM run in a single or a multiple imputation framework had varying results: For some levels of
missing data, single imputation had the lowest bias, however for other levels of missing data,

multiple imputation had the lowest bias (Paper I Table S1).

30%- A 30%- B
25% 25% -
20% A 20%-
©
15% @ 15%-
32
10% A 10%
5% 5%
0% A 0% A
10% 20% 30% 40% 50% 60% 70% 80% 90% Light Medium Strong
% Missing under MCAR Missing amount under MAR

Regression Imputation - MI - Predicted Mean Matching
= Mean per player Complete Case Analysis
- Mean per week

Figure 16. Accuracy of a logistic regression model after imputing or deleting missing observations in the session
rating of perceived exertion (sRPE) with five different methods. Accuracy is measured by the mean absolute
percent bias (% Bias) across 1 900 simulations. The X-axis displays varying levels of missing data under the
assumption of (A) Missing Completely at Random (MCAR), and (B) Missing at Random (MAR). Under MAR, the
probability of missing is dependent on other variables: Light (=25% missing); Medium (=50% missing); Strong
(=80% missing). The most accurate methods are closest to 0, and the light blue line indicates the maximum range
of acceptable bias (0% to 5%). Methods off the chart had > 30% bias. Without missing data, the logistic regression
had an inherent bias of 1.4%. Monte Carlo standard error < 0.00001.
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3.2.2 Handling missing data in GPS-measures

Under MCAR, PMM was the only method with acceptable bias up to 90% missing in the GPS-

measure of total distance run (3.3% mean bias across all proportions of missing, 100% coverage,

Table 5). Complete case analysis was also acceptable up to 50% missing data (Figure 17A).

When all GPS variables were missing simultaneously, PMM was only within acceptable bias at

10% missing or less (Paper I Figure 6A). Here, complete case analysis and mean imputation by the

mean per player was acceptable up to 20%, and mean imputation by the mean per week up to

30% missing data.

Mean imputation by the mean per player was also within acceptable bias up to and including

~50% missing data, in 4 out of 6 scenatios of MAR (Paper I Figure 7). PMM was also within

acceptable bias up to ~50% missing when the total distance variable was the only variable

missing (Figure 17B), but only up to ~25% missing if all GPS-variables were missing

simultaneously (Paper I Figure 7A).
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Figure 17. Accuracy of a logistic regression model after imputing or deleting missing observations in total distance

with five different methods. Accuracy is measured by the mean percent bias (% Bias) across 1 900 simulations, under

the assumption of (A) Missing Completely At Random (MCAR) and (B) Missing At Random (MAR). Under MAR, the
probability of missing is dependent on other variables: Light (=25% missing); Medium (=50% missing); Strong (=80%
missing). The most accurate methods are closest to 0, and the light blue line indicates the maximum range of
acceptable bias (0% to 5%). Methods off the chart had > 30% bias. Without missing data, the logistic regression had
an inherent bias of 4%. Monte Carlo standard error < 0.00001. M| = Multiple Imputation.
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Adding the playet’s playing position in the football team to the imputation model did not
improve performance of PMM or regression imputation, but including the sSRPE lowered bias of

PMM and regression imputation under both MCAR and MAR (Paper I Figure 6-7).

3.2.3 Methods for addressing non-linearity

The quadratic model, fractional polynomials, and restricted cubic splines with subjectively placed
knots were the only methods that accurately modeled the non-linear U-shaped relationship
(Figure 18) and they had the lowest RMSE under this scenario (Paper II Figure 4A, Table 6).

Here, restricted cubic splines with the data-driven approach had second-to highest RMSE.

For the J shaped relationship—the one based on ACWR—the quadratic model and fractional
polynomials had the lowest RMSE (Table 6). Although both restricted cubic splines approaches
had similar RMSE to the two categorization approaches (Table 6), the two categorization
approaches had a coverage of prediction intervals at 79% and 89% respectively under n = 6 308,
versus 94% and 90% for the two restricted cubic splines approaches, with similar coverage

distributions under n = 22 500 (Table 6).

Categotization had poor coverage in general (Table 6), and categorizing by quartiles had
particularly poor coverage for the linear shape (25% vs. > 99% for other methods, Table 06).
Despite the poor coverage, under this scenario, categorizing by quartiles had a comparable brier
score (0.24 vs = 0.24 for other methods, n = 22 500) and C-statistic (0.59 vs. ~0.59 for other
methods, n = 22 500). Similatly, the linear model could not form the U shape (Figure 18D) and
had the highest RMSE for both non-linear shapes (Table 6), but it had a high C-statistic (> 0.8)
for the U shape and moderate to poor C-statistic of the ] shape (C-statistic = 0.77 for n = 6 308,
C-statistic = 0.62 for n = 22 500).
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Figure 18. Probability of injury for each level of session Rating of Perceived Exertion (sRPE) as predicted
by a logistic regression model run with seven different methods of model specification. The black line is
the simulated, true, relationship between sRPE and injury—the yellow line represents the ability of the
method to model this relationship. Ideally, the yellow line should follow the black line as closely as
possible for the highest accuracy. The yellow area reflects the 95% prediction interval. The predictions
are based on 8 494 sRPE values sampled from a highly skewed distribution in Norwegian elite U-19
football. The figure shows 1 random simulation of 1 900 performed. Arb. u = arbitrary units.
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Table 6. The mean Root-Mean-Squared Error, Brier Score, C-Statistic and coverage of prediction intervals for
methods modelling non-linear (U or J shape) and linear relationships between training load and injury,

across 1900 simulations.

Relationship N Method RMSE Brier Score C Coverage
U shape 22 500 Linear Model 2.344 0.097 0.827 100.000%
Categorized (Quartiles) 0.995 0.101 0.809 99.678%
Categorized (Subjectively) 0.996 0.102 0.758  94.600%
Quadratic Model 0.993 0.097 0.826 100.000%
Fractional Polynomials 0.994 0.096 0.829 100.000%
Restricted Cubic Splines (Data-Driven)  1.065 0.097 0.826 100.000%
Restricted Cubic Splines (Subjectively)  0.981 0.097 0.827 100.000%

8494 Linear Model 2.935 0.093 0.851  98.048%
Categorized (Quartiles) 0.958 0.096 0.838 98.769%
Categorized (Subjectively) 0.965 0.098 0.809 84.600%
Quadratic Model 0.956 0.092 0.850 98.937%
Fractional Polynomials 0.956 0.092 0.852 98.942%
Restricted Cubic Splines (Data-Driven)  1.079 0.092 0.849 98.686%
Restricted Cubic Splines (Subjectively)  0.936 0.092 0.851 98.687%

J shape 22 500 Linear Model 1.044 0.063 0.618  77.694%
Categorized (Quartiles) 0.993 0.064 0.689 88.652%
Categorized (Subjectively) 0.993 0.063 0.690 96.404%
Quadratic Model 0.984 0.061 0.732 99.997%
Fractional Polynomials 0.986 0.061 0.740 100.000%
Restricted Cubic Splines (Data-Driven)  0.992 0.061 0.735  99.999%
Restricted Cubic Splines (Subjectively)  0.993 0.061 0.721 99.869%

6308 Linear Model 0.942 0.060 0.774 54.493%
Categorized (Quartiles) 0.919 0.060 0.791 79.120%
Categorized (Subjectively) 0.917 0.059 0.795  89.393%
Quadratic Model 0.912 0.057 0.817 93.272%
Fractional Polynomials 0.915 0.057 0.821 95.517%
Restricted Cubic Splines (Data-Driven)  0.918 0.057 0.818 94.281%
Restricted Cubic Splines (Subjectively)  0.919 0.057 0.812 89.959%

Linear 22500 Linear Model 0.999 0.239 0.591 100.000%
Categorized (Quartiles) 0.999 0.240 0.588  25.000%
Categorized (Subjectively) 0.999 0.241 0.579  99.995%
Quadratic Model 0.999 0.239 0.591  99.999%
Fractional Polynomials 0.999 0.239 0.592 100.000%
Restricted Cubic Splines (Data-Driven)  0.999 0.239 0.591 100.000%
Restricted Cubic Splines (Subjectively)  0.999 0.239 0.591  99.997%

8494 Linear Model 0.991 0.228 0.655  99.795%
Categorized (Quartiles) 0.991 0.228 0.653  24.957%
Categorized (Subjectively) 0.991 0.229 0.649 99.678%
Quadratic Model 0.991 0.228 0.656  99.786%
Fractional Polynomials 0.991 0.228 0.656 99.788%
Restricted Cubic Splines (Data-Driven)  0.991 0.228 0.656  99.789%
Restricted Cubic Splines (Subjectively)  0.991 0.228 0.656  99.791%

Abbreviations: C, C-statistic; RMSE, Root-Mean-Squared Error
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3.2.4 Methods for detecting cumulative, protracted, time-lagged effects

The Distributed Lag Non-Linear Model (DLNM) discovered both the J-shaped relationship
between absolute training load (sRPE) and injury probability (Figure 19D,H,L), and the linear
relationship between relative training load (%A sRPE) and injury probability (Paper III Figure
4C,F.I), under all time-dependent scenarios. DLNM had the lowest mean external RMSE,
internal RMSE and AIC, and narrowest 95% confidence intervals in all simulated scenarios,
except in the Exponential Decay scenario for relative training load, where it had the lowest AIC,

but the highest internal RMSE (Table 7).

The rolling average could model the constant scenario (Figure 19A), and EWMA could model
the decay and exponential decay scenarios between absolute training load and injury risk (Figure
19F,]). No methods were able to detect the Direct, then inverse scenario (Paper III Figure S5).
EWMA had the lowest mean external RMSE (aside for DLNM) under all scenarios (Table 7).
REDI had the lowest performance across the board, with highest mean external RMSE, highest
mean AIC, and it estimated that injury probability decreased (when the true probability increased)

for each level of absolute training load under the exponential decay scenario (Figure 19K).

All methods of modelling absolute training load displayed poor coverage, ranging from 19% to
36% under all scenarios (Table 7), though the coverage estimates were uncertain (monte carlo

standard error 0.6-0.9).

ACWR was not able to detect a relationship between relative training load (%A sRPE) and injury
probability under the constant and exponential decay scenarios, while the week-to-week
percentage change was not able to detect the relationship under the constant scenario. Both had

broad confidence intervals and high internal RMSE and AIC compared with DLNM (Table 7).
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Figure 19. Risk of injury on the current day (Day 0) for each level of session Rating of Perceived Exertion (sRPE)
as predicted by a Cox regression model run with four different methods for assessing training load. The black line
is the simulated, true, relationship between sRPE and injury—the yellow line represents the ability of the method
to model this relationship. Ideally, the yellow line should follow the black line as closely as possible for the highest
accuracy. The Y-axis denotes the sum of all instantaneous risks of injury from the past up until the current day,
the cumulative hazard. Relationships were simulated under different scenarios: (A—D) Constant: In the previous
27 days, the occurred sRPE contributed equally to injury risk on the current day; (E-H) Decay: The effect of sRPE
was at its highest on the current day (Day 0) and reduced linearly for each day back in time; (I-L) Exponential
Decay: The risk of sSRPE was at its highest on the current day (Day 0) and reduced exponentially for each day back
in time. The methods compared were: Rolling Average, the Exponential Weighted Moving Average (EWMA), The
Robust Exponential Decreasing Index (REDI), and the Distributed Lag Non-Linear Model (DLNM). Yellow bands
represent 95% confidence intervals. The figure shows 1 random simulation of 1 900 performed. Arb. u = arbitrary
units.
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Table 7. Mean performance of methods for handling time-dependent effects between training load

and injury risk.

Coverage
Relationship Method E-RMSE? I-RMSE AIC Coverage AW MCSE
Absolute training load
Constant Rolling Average 4.85 0.113547 14229 35% 5.175 0.90
EWMA 4.77 0.113548 1423.4 36% 5.172 0.91
REDI 5.53 0.113557 1424.1 20% 3.401 0.74
DLNM 1.44 0.112434 1317.2 35% 2.056 0.95
Decay Rolling Average 5.38 0.113590 1421.8 30% 5.169 0.87
EWMA 5.17 0.113587 14219 32% 5.126 0.88
REDI 6.21 0.113605 1423.8 19% 3.422 0.71
DLNM 1.55 0.112245 1295.3 32% 2.080 0.93
Exponential
Decay Rolling Average 2.13 0.113599 1424.7 85% 5.547 0.58
EWMA 1.88 0.113588 1423.9 85% 5.371 0.61
REDI 1.97 0.113603 1425.0 74% 3.692 0.64
DLNM 0.76 0.113368 1407.1 82% 2.026 0.65
Relative training load (%A)?
Constant ACWR 0.113643 1426.2
Week-to-week %A 0.113646 1426.4
DLNM %A 0.113627 1389.3
Decay ACWR 0.113615 1424.7
Week-to-week %A 0.113617 1425.1
DLNM %A 0.113553 1383.5
Exponential
Decay ACWR 0.113565 1423.3
Week-to-week %A 0.113566 1423.3
DLNM %A 0.113700 1401.4

Abbreviations: ACWR = Acute:Chronic Workload Ratio; AIC = Akaike’s Information Criterion; AW =

Average Width of 95% confidence intervals; Coverage = Coverage of 95% confidence intervals; E-RMSE
= External RMSE; I-RMSE = Internal RMSE; MCSE = Monte Carlo Standard Error; EWMA = Exponentially
Weighted Moving Average; DLNM = Distributed Lag Non-Linear Model; REDI = Robust Exponential

Decreasing Index; RMSE = Root-Mean-Squared Error
!Monte Carlo Standard Error for RMSE was < 0.001 for all 1 900 simulations.
2Due to differences in scale between methods and simulation for relative training load, external RMSE,
coverage, and AW could not be calculated in a comparable manner.
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3.3 Observed sports data results

None of the Norwegian football cohorts, when analyzed in Paper II, revealed any relationship
between measures of training load and probability of injury (Paper IT Supplementary Figure S5—
S6). In Paper IV, the Norwegian elite U-19 model showed some signs of an association between
4-week chronic training load and injury risk (Figure 20B), though confidence intervals were broad
for multiple spline-intervals, and in some cases, coefficients were inestimable (Paper I1” Table S3).
The model indicated the highest risk of injury if chronic load was low (sRPE), intermediate risk if
chronic load was high, and lowest risk at medium levels of chronic load (Figure 20B). The slopes
of acute load changed with different levels of chronic load, indicating an interaction between

acute and chronic load.

In the elite youth handball players, a strong J-shaped relationship was found between sRPE and
the probability of injury on the current day in a mixed effects logistic regression model (p <
0.001, Paper II Figure 2A). This relationship had the same shape in the frailty model used in Paper
IT1, but with much broader confidence intervals (p > 0.8, Paper III Figure 5). An uncertain M-
shaped relationship between sRPE (Day -4) and probability of injury in the next four days (Day-3
to Day 0) was found in Paper II (p = 0.06, Paper II Figure 2B). The DLNM in Paper III indicated
increased risk of injury on the current day for high levels of SRPE sustained in the near past (Day
-1 to Day-0), no effect of SRPE reported 6 days prior to the current day (Day -7), and thereafter
(Day -8 to Day -27), high levels of sRPE indicated reduced risk (HR between 0.75 and 1.0 Paper
11 Figure 5).

The daily ACWR failed to adjust the numerator to the denominator (Paper II Figure S3), while the
micro-cycle ACWR had no relationship in any models (Paper II Figure S5-S6).

The Qatar Stars League model showed reduced risk of injury with every minute in activity on the
current day (p < 0.001, Figure 20A), which is expected when players end activity due to injury.
Following the same pattern as the Norwegian elite U-19 model, highest risk was at zero and low
chronic load, intermediate risk from high chronic load, and finally, the lowest risk was on days
with medium chronic load, where multiple terms had significant p-values (Paper IT” Table 1). The
slopes of the relationship between acute load (minutes in activity on the current day) and injury
risk varied considerably for different levels of chronic load, indicating an interaction. The risk
declined rapidly for zero and low chronic loads, while it declined gradually for high and medium

chronic loads (Figure 20A).
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Figure 20. Probability of injury on the current day (acute load) for each level of training load variables, given
different levels of cumulative chronic training load, predicted by logistic regression with an interaction term
between acute and chronic load. Shown for (A) Qatar Stars League model (420 329 exposure values, 1 977
injuries), where training load was defined as the number of minutes in training and/or match activity, and (B)
Norwegian elite U-19 model (4 719 exposure values, 60 injuries), where training load was defined as the session
rating of perceived exertion, measured in arbitrary units (arb. u). For the Qatar Stars League model: zero = 27-
day sum of 0 minutes, low = 180 minutes, medium = 1435 minutes, high = 1900 minutes. For the Norwegian elite
u-19 model, low = 27-day sum of 80 sRPE (near zero), medium = 7 163, high = 8 800. See Paper IV Supplemental
Table S1 for the exact chronic load profiles used.
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4 Discussion

4.1 Missing data in training load

4.1.1 Missing data reporting practices in the field of training load and injury risk

The percentage of studies that reported whether or not they had missing data was alarmingly low
(34%), especially compared to similar reviews in other fields, such as clinical RCT's (72% Diaz-
Ordaz et al., 2014) and developmental psychology (57%, Jelici¢ et al., 2009). Of studies that
reported whether they had missing data, only half (49%) reported the amount of missing training
load data. The mean reported amount of missing data was 7.3%, which is surprisingly low for
longitudinal studies (Karahalios et al., 2012). We speculate that this underreporting was under the
mechanism of missing not at random; that the probability of a study reporting the amount of
missing data depended on the amount of missing itself. We encourage future researchers to
report missing data and how they were handled, and recommend reporting guidelines in Borg et

al. (2022).

4.1.2 Sample sizes in the field of training load and injury risk

To our knowledge, Paper I was the first study to map the number of injuries assessed in training
load and injury risk studies. By mathematical exploration, 96 participants with 48 events were
needed for an accurate logistic regression model without independent variables (Riley et al.,
2019). Logistic regression, which requires a binary outcome, is the most frequently used method
in the training load and injury risk field (Windt et al., 2018). Although the ideal sample size will
vary from study to study (Riley et al., 2019), the numbers seen currently are unlikely to satisfy
minimum requirements (Figure 15). Consequently, it reduces the ability of studies to consider
complexities such as within-subject correlations, non-linearity and confounding, along with

increased risk of overfitting in prediction studies.

4.1.3 Handling missing data in training load measures

Imputation of missing training load observations may retain injuries that otherwise would have
been removed and thus improve sample sizes. We recommend multiple imputation using

predicted mean matching—if preferable, through collaboration with a sports biostatistician
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(Sainani et al., 2021)—to impute missing data in continuous training load measures. In our
simulation, PMM had improved performance over the other methods, with < 3% bias up to 50%
missing in SRPE under MCAR and MAR, and = 5% bias up to 90% missing in total distance
under MCAR, 50% under MAR. One can argue that this performance is no surprise, as it is a
multiple imputation method. However, our secondary simulation showed that PMM sometimes
had the lowest bias in the single imputation, and sometimes lowest in the multiple imputation
framework, with no clear winner (Paper I Table S1); multiple imputation was developed mainly to
improve the calculation of uncertainty estimates, standard errors and confidence intervals (Van

Buuren, 2018).

We recommend imputing duration and RPE before calculating sRPE, if possible, as it had the

lowest mean percent bias of the approaches to impute sRPE (1.4%).

PMM underperformed when imputing GPS variables if all the GPS variables were missing
simultaneously. This indicates high correlations between the GPS variables. The only other
information from which PMM predicted the missing GPS obsetvations were match (yes/no) and
the micro-cycle-day. PMM is prone to imputing duplicates if the predictors are poor or the non-
missing sample size is too small (Van Buuren, 2018), which can explain why it performed worse
than mean imputation and complete case analysis in this scenario. The aim of limiting the
number of predictors in the imputation model was to allow complete reproducibility of the
simulation, without violating anonymization laws. We argue, that if PMM had such superior
performance to the other methods when GPS variables were present, and only declined when
GPS variables were missing, it should perform even better in a real study. PMM was nearly on
par with the other methods when sRPE was included in the imputation model. In our review of
the training load and injury risk field, 15% of studies had both sRPE and GPS measures, and in a
review of training load monitoring in football, 45% studies had both (Miguel et al., 2021). We
encourage future researchers to include sRPE in the imputation model when imputing GPS

variables.

If resources are not available, mean imputation might be considered in select circumstances.
While the percentage missing should not be used to guide multiple imputation choices (Madley-
Dowd et al., 2019), for mean imputation, the number of imputed observations relative to the
observed observations may be a gauge of how much the imputation may bias the results. It can
also be helpful to consider the distribution of the data. The total distance measure used in our

simulation had a bimodal (camel-hump) distribution (Paper I Figure S1B), and the performance of
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mean imputation, whether by the weekly mean or the player mean, varied between being among
the worst, to among the best (Paper I Figure 6—7), and it was particularly volatile under MAR
(Paper I Figure 7). Weekly means, as opposed to player means, had the best performance in 4 of 6
scenarios of total distance under MAR, which supports results and recommendations in Benson,
Stilling, et al. (2021), but it may have been due to chance. The performance of the two mean
imputation variants in each of the 1 900 simulations may have been strongly influenced by which
observations were missing, determining whether the mean would be representative of the training

load or not.

Plotting the imputed versus the observed values, such as in Paper I Figure S2-5, may also aid in
determining how much the mean imputation will introduce bias. It could also be worthwhile to
check how many injuries would be discarded with the complete case analysis approach, as it

generally had improved performance over mean imputation, especially for sSRPE.

For count data (e.g. number of strength training sessions), PMM can also be a valid approach if
data are not extremely skewed (Van Buuren, 2018). In Paper I/, we compared imputation
performance from a Poisson regression imputation and PMM before settling on PMM for the
number of minutes in activity in the Qatar Stars League data. Multiple imputation by the random
hot deck approach is also a promising alternative for count data if constraints ate present (C. S.
Wang, Tyrel et al., 2020), such as, if total number of training sessions is three, than the number of
strength training sessions cannot exceed three. In the random hot deck approach, this can be

specified.

In our discussion and recommendations, we assumed that training load data are MAR. Using
methods of multiple imputation handles this missing mechanism, and when using such methods,
tests for missing completely at random are generally not necessary. Longitudinal data are
generally MAR, especially participant-reported data (Barnett et al., 2017), and Benson, Stilling, et
al. (2021) reported their sSRPE data to follow a pattern of MAR. In all football populations
studied in this dissertation, the data were MAR from various causes (Paper I Figure S2, Paper IV
Figure S2). Note that exploring the missing data pattern with visualizations is still useful to
understand which variables should be included or excluded from the imputation model, among

other considerations(Van Buuren, 2018).

In contrast to the MAR assumptions of the football cohorts, the Norwegian elite youth handball

data studied in Paper [I-III was suspected to be MNAR (Bjorndal et al., 2021), with the theory
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that players who were more invested in the sport—and thus also trained more—had a higher
probability of responding. The population had high levels of training load, which may be the
result of selection bias. Although using imputation methods, even methods that handle MAR,
may not necessarily be valid, complete case analysis will introduce selection bias, as demonstrated

in our simulation (Figure 16, Figure 17). In conclusion, if MNAR is suspected and the true

observations cannot be gathered retrospectively, it can still be beneficial to impute with PMM to

conserve injuries, but the implications should be considered and discussed.

4.2 Non-linearity between training load and injury risk

4.2.1 Non-linearity in training load and injury risk relationships

Two main theories suggest non-linearity between training load and injury risk: (1) both too little
and too much absolute training load increases risk, and reduced risk is at intermediate levels
(Gamble, 2013), (2) contribution of training load on injury risk decays exponentially with time
(Williams, West, et al., 2017). Note, theory 1 pertains to non-linearity in chronic (past) training

load only, and theory 2 pertains to non-linearity between training load, injury risk, and time.

We speculated that the football cohorts studied in Paper II showed no association between sRPE
and injury risk due to limited sample sizes; most of the statistical models had fewer than 50
events (Paper II Supplementary Table S2). When the Norwegian elite U-19 football was later
studied again in Paper I/, it indicated, with high uncertainty, non-linearity between sRPE on the
current day (acute load) and injury risk, and between 27-day sRPE (chronic load) and injury risk.
The risk for each level of acute load decayed exponentially, but only for medium and high

chronic load; for low chronic load, the risk first increased and then decreased in a sharp parabola.

Interestingly, the Qatar Stars League (QSL) model had a similar risk pattern between minutes in
activity and injury risk, but with narrow confidence intervals and multiple significant p-values (p
< 0.05). In this model, the risk decayed exponentially for each level of acute load if chronic load
was zero or low, and decayed gradually if chronic load was medium or high. In essence, both the
QSL and the Norwegian model suggested a substantially elevated risk at low chronic loads and
decreased risk at medium chronic load, while high chronic load was at intermediate risk. This
supports the theory that both too little and too much training load (in the past) may increase risk

of injury compared with medium levels (Gamble, 2013; Windt & Gabbett, 2017).
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In the models explored with DLLNM, that is, the Norwegian elite youth handball model in Paper
IIT and QSL model in Paper I/, effect sizes of absolute chronic load were exponentially smaller
for each day in the past. This supports the theory that the contribution of training load on injury

risk decays exponentially with time (Williams, West, et al., 2017).

In the QSL model (Paper I1/), the U-shaped pattern of increased risk with high and low levels of
training load was present every day in the past from day -1 to day -27. This pattern was not
present in the handball model (Paper I1I). The model suggested, with high uncertainty (p >= 0.8),
that high levels of training load increased risk on the current day, but decreased risk if they
occurred approximately ten days ago or more. This is more supportive of the theory that acute
(current) training load increases risk and chronic (past) training load decreases risk (Gabbett,
2016). This theory has been critiqued severely (Franco M Impellizzeri et al., 2020), however, and
the model may fit by coincidence. The sparse data in high training load levels likely caused
imprecision, and the large amounts of missing data and poor timeliness may have introduced
more noise and uncertainty. These results indicate that the relationship is either too complex, or
has too small effect sizes, for data of this size (471 injuries) and quality to be sufficient for this
population. Notably, the sample size was larger than most training load and injury risk studies
reviewed in Paper I (median = 85 injuries). To explore non-linearity, whether in training load’s

relationship with time, or inherently, data should be collected with this goal in mind.

4.2.2 Handling non-linearity between training load and injury risk

Fractional polynomials and Restricted Cubic Splines (RCS) could accurately detect non-linear
relationships between training load and injury risk and had superior performance to the other
methods in our simulation. This reproduces the results in Carey et al. (2018) and substantiates

their recommendations.

In our results, the performance of restricted cubic splines depended on the location of the knots,
from being among the best methods to among the worst. This contradicts previous claims that
the number of knots is more important than the location (Harrell Jr, 2017; Stone, 1986). We
believe this is context-specific, and in our case, where the data was exceedingly skewed, data-
driven location biased results. Indeed, using a data-driven approach for knot-placement of RCS
may have biased results on the observed data analyses in Paper I and Paper I1I. The Norwegian

elite U-19 football model went from showing no relationship between sRPE and injury on the
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current day in Paper II to a small effect estimate in Paper [I”—though still with confidence

intervals overlapping with 1. Knot locations may have contributed to this change.

Collinearity was an issue in both the Norwegian elite U-19 model and the Qatar Stars League
football models in Paper I17. It is likely that some spline terms were too correlated, and
consequently, confidence intervals surrounding predicted probabilities could not be estimated.
We chose splines to more readily detect sudden changes in the direction of effect, but I reason
that the collinearity issue might have been amended by using fractional polynomials (FP). If
splines knots are located too closely, the model may struggle to estimate the difference between
two very similar intervals. In contrast, FP fits a function on the entire range of values, and
therefore, collinearity between intervals within the range should be of no concern. This property
also makes it less susceptible to bias from data-spatse regions (Binder et al., 2013). FP also had
lower RMSE than both RCS-versions for the J-shaped relationship and better coverage in all
simulated scenarios in Paper II. Since the splines-function formed a parabola in the relationship
between acute load and injury risk, we could also have chosen a quadratic model for simplicity

and interpretability in this specific case.

Recently, thin plate splines have been used to study training load and injury (Wang et al., 2022).
Thin plate splines is a two-dimensional application of the cubic splines, meaning it can determine
the combined effect of two continuous explanatory variables on an outcome. This may be
suitable for handling multiple measures of the same training load dimension, such as total run
distance and sprint distance. On the other hand, it is a more advanced method that may require

collaboration with a sports biostatistician (Sainani et al., 2021).

By using fractional polynomials or RCS (methods of model specification), step 4 in Figure 6,
categorization, can be eliminated. The performance of categorization was worse in our study than
in Carey et al. (2018), as categorization by quartiles could not even accurately model the linear
shape (coverage of 95% prediction intervals = 25%, vs. >99% for all other methods).
Categorization increases both Type I and Type II errors rates (Harrell Jr, 2017), assumes that
observations within intervals are equal, and assumes that the relationship shape between training
load and injury risk is flat within intervals (Figure 18)—both of which may be a more unrealistic
assumption than linearity (Froslie et al., 2010). It also reduces comparability and reproducibility
(Holldnder et al., 2004); reduces precision and power (Collins et al., 20106), thus, requires larger
sample sizes, and requires more hypothesis tests, thereby risking multiple testing issues (Dalen-

Lorentsen, Andersen, et al., 2021).
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Categotization has such severe disadvantages (Froslie et al., 2010), it can only be justified in a
study where analysts have no choice; where the training load measures were pre-collected as
categories. I do not believe that results from categorization can be considered evidence of, or
refute, a non-linear, U-shaped relationship between training load and injury risk, as some studies
have claimed (Cross et al., 2016; Malone et al., 2018; S. Malone et al., 2017; Sedeaud et al., 2020);

at best, such results are hypothesis-generating.

If categories are of interest, I urge researchers to model training load as a continuous variable
regardless, and rather show the predicted injury counts or probabilities for each category of

interest post-analysis, as recommended in (Rhon et al., 2022).

4.2.3 Non-linearity between predictors of training load

When simulating a relationship between training load and injury and introducing missing data
with different mechanisms in Paper I, we did not interfere with the relationship between other
variables in the observed football data. Continuous variables, particularly age and time (e.g.
calendar week), may have a non-linear relationship with training load (Gabbett, 2016). Given our
results in Paper II, the imputation model for regression imputation and PMM may also be
improved by specifying fractional polynomials or RCS for such predictors in future studies.
Classification and regression trees, like random forest, and unsupervised learning, like K-means
clustering, may also be useful in imputation of missing training load data with non-linear
relationship, as overfitting is not as problematic when the classification is not meant for external

use (Harrell Jr, 2017).

4.3 Time-dependent effects in the training load and injury risk

relationship

4.3.1 Modelling time-dependent effects with distributed lag non-linear models

The distributed lag non-linear model (DLLNM) had an impressive level of performance for
estimating the cumulative, protracted, time-lagged effects of training load on injury probability in
the simulation study of Paper I1I. It had the highest accuracy, precision and certainty in all
simulated scenarios, and since it was the only method that uncovered most of the non-linear
shapes between training load, injury probability and time, it was also the most flexible. Finally, the

DLNM does not require partitioning the data in time intervals before analysis, and using this
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method eliminates step 2 in Figure 6. We promote the DLNM method as the current best
practice for estimating the relationship between cumulative, long-term training load and injury

risk.

While DLNM was ideal in a simulation, in practice, it had a few practical considerations that
should be discussed. First, it has limited software implementation. The DLNM R-package was
developed in the field of environmental epidemiology, and is compatible with most types of
models, including mixed models and time-to-event analysis. It is not necessarily compatible with
certain other R packages used to handle other, more edge case complexities. I have experienced
setbacks using the DLNM with multistate modelling, which may be relevant for studies of

gradual onset injuries.

Second, in the context of training load, it is often necessary to remove days in which the athlete is
not at risk, i.e., is not participating in any activity and therefore has no training load. Days in
which the athlete did not participate in activity is still relevant for the cumulative, long-term
training load, and should not be removed from the past observations in the DLLNM-calculation.
The DLNM R package had no option to handle this automatically, and although we solved it
manually, confidence intervals and p-values for the chronic load coefficient estimates were based
on the smaller sample size of the acute load, meaning that uncertainty estimates were larger than
in reality. In addition, DLNM R-package prediction functionalities could not be used, which

hampered our analyses in Paper I1/.

Finally, to explore time-lagged effects with DLNM, training load and injury measures must be

collected and analysed at the daily level. This may not be feasible for many studies.

4.3.2 Other alternatives to handling time-dependent effects

Although DLNM has some practical considerations, we implore researchers to consider this
method over other options currently available, even if it entails collaboration with a biostatistician

(Casals & Finch, 2017; Sainani et al., 2021).

Menaspa (2017) illustrated how weekly training load patterns become washed out with rolling
averages, to which Drew et al. (2017) asked for evidence of a better alternative, and Williams,
West, et al. (2017) responded with the EWMA. The EWMA was later considered the improved
option because relative training load had larger effect sizes in its association with injury risk when

ACWR was calculated by EWMA than by the rolling average, in Australian football and elite
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rugby union (Murray et al., 2017; West et al., 2020). Although the same comparison was done in
female football and recreational running, the opposite result was found (Nakaoka et al., 2021;
Sedeaud et al., 2020). Sedeaud et al. (2020) additionally compared ACWR by REDI (Moussa et
al.,, 2019), which had one more significant p-value than ACWR by rolling average. The results in
Sedeaud et al. (2020) were inconsistent; the methods did not agree which ACWR zones were
significant. This disagreement, by our results in Paper II and Carey et al. (2018), may have been

exacerbated by categorizing ACWR.

T argue that the results in Murray et al. (2017), S. W. West et al. (2021) and Sedeaud et al. (2020)
are not enough to declare EWMA or REDI an improvement over the other, nor over the rolling
average. Either method may have had Type I or Type II errors without knowing. In a simulation,
the true relationship is known, and the ability of methods to detect relationships is more easily
assessed. In our simulation, all three methods of aggregation had poor performance relative to
DINM. While they could model the simulated relationships somewhat (Figure 19), DLNM had
ca. 1000 points lower mean internal RMSE than all three for the constant and decay relationships,

and 300 lower for the exponential decay (Paper I1I Table 1).

REDI consistently had the worst performance (highest RMSE and AIC), and even modelled an
inverse relationship between sRPE and injury probability in the exponential decay scenario
(advocated as the most likely scenario (Williams, West, et al., 2017)), when the true relationship
was the opposite. Yet, it had narrower confidence intervals on average (covering on average 3
cumulative hazard) than EWMA and rolling average (5 cumulative hazard), meaning it was
precise in its bias. This can mislead well-intentioned analysts into believing REDI is the better
choice in a real study, when it shows narrower confidence intervals and perhaps significant p-
values where EWMA or rolling average does not. This might have happened in Sedeaud et al.
(2020).

Renfree et al. (2021) hypothesized that the effect of training load levels depends on how the
training load is distributed across a week, and with methods of aggregation, this information is
lost. EWMA and the rolling average had much broader confidence intervals (average 95% CI
width (AW) = 5) than DLNM (AW = 2) in Paper I1I. I suspect methods of aggregation may
increase risk of Type II errors. In a study on the New York City Marathon (Toresdahl et al.,
2022), 30 independent tests were run with different combinations of time period and training
load measures. Given the multiple testing combined with a high sample size (699 runners), one

would expect multiple significant p-values. Only two tests had significant results, and that
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aggregation combined with categotization, both of which reduces power (Froslie et al., 2010),

may have led to negative findings.

The EWMA performed better than the rolling average (lower RMSE and AIC) when we assumed
that the contribution of training load decayed linearly or exponentially. This scenario is more
realistic than the assumption that training load contributes equally to injury risk regardless of time

since the activity. I therefore recommend the EWMA over the rolling average.

Lazarus et al. (2017) suggested a modification of the EWMA in studies on performance, which
later Coyne et al. (2022) marketed as equal to the traditional EWMA®*. We have no reason to
believe that the modified EWMA would perform better than the traditional EWMA. It weighs
recent observations less—so that it is more similar to the rolling average, and thus, forms the
assumption that the relationship decay is more constant than the traditional EWMA. More
research is needed with explorative methods like DLNM to determine whether this assumption is

reasonable, before it can be advocated.

When we attempted to use EWMA in Paper I1/, it failed to discover a relationship between
chronic load and injury risk in the Qatar Stars League data consisting of 1 136 223 training load
observations and 1 977 injuries. Given such a large sample size, we speculate whether EWMA
could have found the relationship that DLNM found at all, even if n — 0. After all, EWMA tries
to describe 28 data points with one number; an issue shared between all methods of aggregation.
While we do not consider EWMA to necessarily be a wrong choice for a training load and injury
risk study, and consider it an improvement over the rolling average, researchers should be aware
of the increased uncertainty and need of a larger sample size with this method, especially

compated with DLNM.

4.4 The effect of relative training load on injury risk

4.4.1 Absolute versus relative training load

In addition to the dimensions of external and internal training load, training load can be divided
into absolute training load, absolute change in training load, and the relative (change in) training

load. This distinction is important, as hypotheses of how absolute training load affects injury are

4 Traditional refers to the EWMA calculation in Williams, West, et al. (2017), used in this dissertation.
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different relative training load (Gabbett et al., 2016; Gamble, 2013), and may have different causal
pathways to injury. Absolute training load describes how much the athlete was exposed to
training load, and may answer “How much is too much?”, and whether there are thresholds of
too little training (Gamble, 2013). Relative training load describes, in theory, the change between
current training load and the amount of training load the athlete is accustomed to (Gabbett,
2016). This measure may answer how much change in training load is too abrupt a change for

tissue to tolerate (Vanrenterghem et al., 2017).

Studies that measure training load by the ACWR (Andrade et al., 2020), assess relative training
load only.” Often, the type of training load is not specified, including in methodological studies
that compare methods of assessing absolute training load with methods of assessing relative
training load as though they are the same (Coyne et al., 2021; Moussa et al., 2019). The effect
estimates for a method of absolute training load (such as EWMA) describes different training
load phenomena than that of relative training load (such as ACWR), and may be larger or smaller
based on the scale (Impellizzeri et al., 2021), not necessarily because absolute training load

contributes less to injury risk.

In Paper 111, we made a simulation to compare methods of absolute and relative training load
separately. We experienced that the two constructs required different assumptions, and had
different challenges. To answer the question “At what timepoint in the past does the effect of the
magnitude of (absolute or relative) training load change?”, DLNM could be used to explore such
time-dependent effects in absolute training load, but in relative training load, this had to be
calculated and assumed before-hand. In addition, training loads of 0 were treated like any other
value for absolute training load, but was a challenge when assessing relative training load, where

either the numerator or denominator in a ratio could be O.

Sedeaud et al. (2020) compared the performance of EWMA and REDI with the traditional,
rolling average ACWR by including them within the same ACWR calculation. Scientists should
follow their lead by ensuring methods are comparable, and be clear on whether methods aim to

capture absolute, relative, or other training load constructs.

5 Although the coupled ACWR is not a true measure of change in training load (Wang et al. 2020), it is still, from
a statistical standpoint, a measure of relative as opposed to absolute training load
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4.4.2 How to estimate the effect of relative training load on injury risk

The acute:chronic workload ratio, a method for assessing relative training load, has been a hot
topic in the field of training load and injury risk the last decade (Figure 1). Discussions
surrounded the advantages and disadvantages of the ratio (Blanch & Gabbett, 2016), and how the
ratio should be calculated (Lolli et al., 2019). One issue was how to determine the acute and
chronic time intervals, as calendar weeks may be arbitrary for many sports (Franco M Impellizzeri
et al,, 2020). In Paper II, we tried the micro-cycle uncoupled ACWR. Since the calculation moved
iteratively from one micro-cycle to the next (as opposed to from one day to the next), and
multiple injuries sustained in the period was considered 1 event, the sample size of injury events
was reduced. While this is an improvement over the traditional one week to the next, it still
reduces statistical power. In addition, since time intervals are of unequal size, one value to the
next may not be comparable: Is one micro-cycle ACWR larger than the other because intense
activities were sustained during a handful of days, or because less intense activities were spread
across a larger number of days? This difference in distribution may be important to capture when
assessing injury risk (Renftree et al., 2021). A potential solution may be to include the micro-cycle
day as a variable in the statistical model alongside the daily training load values, such that
confounding effects from the type of day is accounted for—if relevant to the sport and research
question. This was successfully done in Paper I to improve prediction of training load values used

to impute missing data.

In Paper 111, the daily coupled ACWR was compared with other methods in a simulation, where it
failed to detect the simulated relationship between relative training load and injury risk under the
constant and exponential decay scenarios (Paper III Figure 4). The week-to-week percentage
change was not much better, though, as it was also unable to detect the constant scenario. In
addition, which of the two had the lowest internal RMSE and AIC varied between scenarios, with
negligible differences. Replacing the ACWR with the week-to-week %-change is not necessarily

an improvement.

Although the simulation confirmed concerns of the ACWR (and perhaps the week-to-week %-
change), it was still difficult to determine how relative training load should be assessed. The
DINM had superior performance overall, but the simulation assumed that daily percentage
changes affected injury risk, and these must be calculated before running DLNM. Using this
method, analysts would still have to subjectively determine time interval cut-offs for percentage

changes, and consider how to deal with numerators or denominators of 0.
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In Paper IV, we attempted to solve this issue by modelling acute and chronic loads separately, as

proposed by C. Wang et al. (2020). Here, the chronic load (Day -1 to Day -27) was modelled with

the DLNM without any calculations of percentage change before-hand, but assessed as the

absolute chronic load. Only the current day (Day 0) was considered the acute load. We argued

that the current day was sufficiently different from past training load days, given hypotheses and

assumptions, to warrant a separate variable. No ratio was calculated; the idea was that the injury

risk of acute load, dependent on the level of chronic load—and vice versa—can be discerned by

including both in the same model. Our results showed the effect of acute load for different levels

of chronic load, in both the Qatar Stars League football population and the Norwegian elite U-19

population. Using such methodology has several advantages:

)

©)

S)

)

®)

©)

The acute load is properly adjusted for chronic load. The daily uncoupled ACWR
calculated in Paper II is an example where the ratio failed to adjust numerator to the
denominator (Paper II supplementary Figure S3), and this could have been avoided.
Likewise, the chronic load is properly adjusted for the acute load. In many cases, the
chronic load is of more interest than the acute load, as indicated by studies that analyze
the chronic load for different levels of ACWR (such as in Bowen et al., 2020; Stares et al.,
2018).

The model outputs effect estimates for acute load and chronic load separately. Unlike the
ACWR, which describes both with a single number, researchers can determine which is
more important regarding injury risk (C. Wang et al., 2020).

Training load values of 0 are modelled in the same manner as other values. If researchers
would otherwise have removed chronic loads of 0, this also reduces missing data and
selection bias.

Small absolute changes in training load can cotrespond to extremely large relative changes
if the denominator (chronic load) is small. For instance, being a cricket bowler, going
from throwing 5 balls a week to 15 balls a week is a 300% relative increase. Such relative
increases were at times not considered clinically meaningful, and typically also removed
from analyses (Hulin et al., 2016; Stares et al., 2018). By modelling acute and chronic
loads separately, this problem is solved.

By use of DLNM on the chronic load, time-dependent effects can be explored without

aggregation, and without partitioning the data in potentially arbitrary time intervals.
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Other than practical considerations of the DLNM, the “separating the acute from the chronic”
method has only one major disadvantage. By only considering the current day as the acute load, it
assumes that there are no effects of relative training load in observations further in the past. For
instance, if training load sustained 5 days in the past, relative to that sustained 10 days in the past,
increases the risk of injury on Day 0, this is not assessed. Such relationships of relative training
load within the long-term training load may be important features in prediction studies. In causal
inference, the consequences of ignoring such relative relationships depends on whether they
form confounding pathways on the training load dimensions of interest. For example, if a high
training load one day in the past (Day -1), relative to that sustained 2 days in the past (Day -2),
affects the absolute training load level sustained on the current day (Day 0), and this a/w affect
the injury risk on the current day, it forms a confounding pathway for the risk assessment of
acute load (Day 0) on injury risk. This can be relevant in real-world sports settings where coaches
modify training schedules after “spikes” of training load. Notably, the ACWR also has this

challenge, as it, too, only assesses one time period relative to another.

While modelling acute and chronic separately is a valid approach to achieve statistical effect
estimates, I caution that it is only one of several methodology components needed to approach
an unbiased estimate of causal effects. Causal inference requires study design and/ot

methodology that accounts for confounding and other sources of bias (Stovitz & Shrier, 2019).

4.4.3 Interaction between acute and chronic training load

Bittencourt et al. (2016) described how multiple factors or causes of injury may contribute to
injury risk multiplicatively rather than additively, and recommended researchers in sports
medicine consider such interactions to capture the full extent of the sports injury problem. In
causal inference, identifying interactions can determine mediating and modifying effects which

can, in turn, improve injury prevention strategies.

We discovered an interaction between acute load, defined as the current day of activity, and
chronic load, defined as the previous 27 days of activity, in their relationship with injury risk in
Qatar Stars League football players (Paper IT”). Tendencies of a similar interaction were found in
the Norwegian elite U-19 model, albeit with higher levels of uncertainty (some spline terms were
inestimable, and confidence intervals were broad). Both analyses showed a pattern of steeper
slopes (decreasing fast) per level of acute load if chronic load was low, but gentle slopes

(decreasing slowly) if chronic load was medium or high (Figure 20). Since we only searched for
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associations, and did not apply a causal inference approach, we cannot with any certainty give the
patterns in the data a clinical explanation. Nevertheless, these results demonstrate that this simple
approach can be used to test the too much, too soon theory (Gabbett et al., 20106), given that
other methodological considerations for causal inference have been addressed. It can also be
used to investigate which training load construct contributes most to injury risk: changes in

training load or the absolute magnitude of training load.

Some studies have investigated interactions by assessing the association of acute load or ACWR
with injury risk for different subgroups of chronic load (Bowen et al., 2020; Hulin et al., 2016; F.
Impellizzeri et al., 2020). Bowen et al. (2020) found increased risks of non-contact time-loss
injuries in football if uncoupled ACWR was = 2 while the previous 4-week rolling averages
(chronic load) of various GPS measures were defined as low. The pattern was present in total
distance, low-intensity speed distance (distance covered below 14.4 km/h), accelerations and
deaccelerations, with odds ratios between 4 and 6 and p< 0.05, based on 91 injuries. This aligns
well with our result of increased injury risk at low and zero chronic loads; however, for acute
load, comparability is low, as the authors defined acute load as the previous 1 week, including the
cutrent day, while we only considered the cutrent day as the acute load. In addition, we used

minutes in activity and sRPE as training load measures, while they used GPS measures.

The definition of low chronic load in Bowen et al. (2020) was any observation below the median
of each GPS measure. GPS measutes are often left-skewed (Thoseby et al., 2022), but they may
also have a bimodal distribution if training and match loads have considerably different
distributions, which was the case for the total distance measure in Paper I Figure S1B. This means
that it is unclear whether the “low” chronic load category covered running distances from 0 to
moderate levels, or perhaps covered running distances representative of typical training sessions.
In addition, due to sparse data in the subgroup, the authors decided not to assess the association
between ACWR and injury while chronic load was defined as high (above the median), which was
a good choice as the results would be highly uncertain, though this meant interactions could not
be determined. The advantage of modeling interactions, rather than performing subgroup
analyses, is an efficient use of the available data (Brankovic et al., 2019). Modeling interactions
also avoids categorizing the acute or chronic loads, a requirement of subgroup analyses that

reduces statistical power further (Collins et al., 20106).

Stares et al. (2018) studied the association between ACWR and 133 non-contact time-loss injuries

in 70 Australian football players. Commendably, they used generalized estimating equations with
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a Poisson link, fitted the ACWR of each GPS measure and sRPE with a quadratic term
(independently), and modelled their interaction with four categories of chronic load. This allowed
them to account for within-individual correlations and avoid the many pitfalls of categorizing
ACWR described in section 4.2.2. At low levels of sprint distance ACWR, the two categories of
intermediate chronic loads (low and high) were at lowest risk. However, the slopes changed as
ACWR increased, and at high ACWR levels, the two categories of extreme chronic load (very
high and very low) were at lowest risk (Stares et al., 2018, Figure 1B). Since the level of acute load
is obfuscated by the ACWR calculation, and low ACWR may mean that players were injured early
in the week and thus had reduced loads the remaining days of that week, the results in Stares et
al. (2018) are difficult to interpret. In addition, they removed extreme ACWR values resultant of
regular training after periods of extremely low chronic loads, which means the lowest chronic
loads were not assessed. Nevertheless, the overall impression of the results in Stares et al. (2018)
is that an interaction between acute and chronic loads may also be present in Australian football;

however, further research involving interactions is needed for more evidence.

Interactions should only be included in studies of causal inference, however, if there are
hypotheses or rationale that suggest there may be an interaction. Searching for interactions in a
data-driven manner increases risk of Type I errors and spurious correlations (Harrell Jr, 2017).
Interaction terms require higher sample sizes, and if they are not required, a simple model may be
a more efficient use of the data. Lathlean et al. (2022) and Ramskov et al. (2021) are exemplary, as

the authors justified the testing of interactions with plausible theories.

4.5 Causal inference versus prediction modelling

Sampson et al. (2017), in response to the methodology editorial chain of 2017 (Drew et al., 2017;
Menaspa, 2017; Williams, West, et al., 2017), argued that some methods may be more appropriate
for some sports and populations than others, and one model is not necessarily the best fit for all.
They recommended applying multiple methods on the same data across different sports to
determine the best method(s) for each of them. Recently, Coyne et al. (2022) recommended data-
driven approaches (including the AIC) to determine the best metric (e.g. EWMA vs. rolling
average), the length of acute and chronic time periods, and variable selection, in monitoring

training load for performance.

Data-driven practices appear to be prevalent also in the field of injury risk (Franco M.
Impellizzeri et al., 2020b), where researchers assess multiple metrics of absolute and relative
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training load (e.g. including both ACWR and EWMA), calculation variants (e.g. coupled and
uncoupled ACWR), time intervals (e.g. 3-day acute load and 7-day acute load), categories (e.g.
high vs. low training load and medium vs. low), variables (e.g. total distance and high speed
running distance), and injury definitions (e.g. contact and non-contact injuries), as illustrated in
Figure 6. The current practices result in multiple testing issues (Dalen-Lorentsen, Andersen, et al.,
2021), and interpretation becomes nearly impossible. Why did the 3-day acute petiod, 28 day
chronic period, coupled ACWR by EWMA show up as significant, when the wncoupled ACWR by
EWMA did not (West et al., 2020)? Inconsistent results perplex researchers and practitioners

(Franco M. Impellizzeri et al., 2020b), and muddle systematic reviews (Griffin et al., 2020).

These data-driven approaches to search for the most optimal variables and metrics—as decided
by significance or predictive ability—may stem from methodology used in studies of prediction.
Data scientists regularly run different machine learning models (algorithms) and choose the one
with the best predictive ability (e.g. Jamil et al., 2021). Deciding the number of trees in a random
forest, or the number of knots in splines, is done through data-driven approaches in so-called
hyperparameter optimization (Majumdar et al., 2022). Regularization methods like lasso or elastic
net are used to peal away uninformative predictors (Zumeta-Olaskoaga et al., 2021). Researchers
in prediction studies may remove variables for many reasons. If variables are time-consuming or
expensive to collect, it would be easier to implement the prediction model if it can predict
sufficiently without them. In high-dimensional data with no apriori information to determine
predictors, such as in genome studies, identifying the most important predictors can be
hypothesis-generating (Johnstone & Titterington, 2009). When uninformative variables offer
more noise than signal, they may worsen predictions (Han et al., 2008). Lastly, perhaps the
sample size is too small to justify using all predictors available (Hatrell Jr, 2017). The latter is the

only one that applies to training load and injury risk studies of causal inference.

In causal inference, the scientist aims to achieve an unbiased estimate of the effect of the
exposure of interest on the outcome. The variable(s) that describe the exposure of interest are
included in the model (or test) to determine the effect size of each. Other variables ate only
included to eliminate or reduce confounding, or perhaps, to understand how much of the effect
is mediated by other constructs (such as in Lathlean et al., 2022). Including all variables available,
without drawing assumptions of how they play into the causal pathway between training load and
injury, risks Table 2 fallacy—interpreting all coefficients in the model as though they describe the

total effect of each construct, when in reality, they do not (Westreich & Greenland, 2013). Data-
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driven approaches for variable selection are therefore not used. If a training load variable offers
more noise than signal (implying that it does not affect injury risk) this is considered interesting,
and whether it reduces the collective predictive ability of the model is not important. These are

fundamental differences between studies of prediction and studies of causal inference.

In Paper I, a linear model had superb predictive ability for the non-linear shapes (C-statistic >
0.8), even though it could not model the relationship at all, because the training load values were
skewed. Such a model could potentially still be used in a prediction study (especially if external
validity is of no concern), but in causal inference, it would be disastrous. The wrong conclusions
would be drawn on the relationship between training load and injury risk, and in turn, the wrong

recommendations for injury prevention would be made.

Using p-values to dictate the inclusion of a variable or metric, such as backwards stepwise
elimination, is unadvised for both causal inference and prediction (Derksen & Keselman, 1992;
Steyerberg et al., 1999). Even though variables are not significant, they can still be informative
predictors, and even though they are significant, they may still be biased. In our simulation in
Paper 111, the REDI had poor accuracy, but higher precision than the other methods, and could

potentially bias assessments of both effect size and predictive ability.

I recommend choosing the method(s) that best fits the assumptions, resources and aims of the
study, and not fall into the temptation of including them all. I agree with Sampson et al. (2017)
that some methods may be better suited in some sports and populations, but, the assumptions of
said sport should be considered when choosing methods, and not be up to data-driven

approaches influenced by chance to decide (Gamble et al., 2020), especially for causal inference.

4.6 Machine learning alternatives

Recently, machine learning has been recommended for sports injury research (Bittencourt et al.,
2016; Nielsen, Shrier, et al., 2020; Ruddy et al., 2019). While machine learning methods may be
used for other aims, in this discussion, we will focus on prediction, where they are more often

used (Claudino et al., 2019).

One machine learning branch that has been recommended, are classification methods. So-called
Classification And Regression Trees (CARTS) classify data in binary groups, such as “injured”
and “not injured”. Examples include decision trees, random forest, and support vector machines

(Sidey-Gibbons & Sidey-Gibbons, 2019), and are the most used machine learning methods so far

88



Discussion

in the training load and injury risk field (de Leeuw et al., 2022; Lovdal et al., 2020; Majumdar et
al., 2022; Mandorino, Figueiredo, Cima, et al., 2022; Nunes et al., 2022). They are run with
minimal to no model specification input from the user with minimal assumptions, and can—in
theory—predict outcomes from associations in complex non-additive systems, including contexts

of non-linearity, time-dependence and interactions (Bittencourt et al., 2016).

CART algorithms are a series of if-else statements that are used to predict the classification of the
observation. Through recursive partitioning, predictor(s) with the best-performing binary split are
chosen. For continuous predictors, such as training load, this split must be above and below a set
cut-off; it dichotomizes the predictor. While these binary categories may be more parsimonious
than our categorization approaches in Paper II, as they are calibrated through predictive ability,
they still involve the strong assumptions of dichotomization—that the relationship between
predictors and outcome are flat within intervals (Royston et al., 2006). Rhon et al. (2022)
demonstrated lower predictive ability of injury prediction models when predictors were

dichotomized rather than modelled as continuous.

CARTS are also more prone to overfitting than regression analyses—meaning that the model
uses the noise and idiosyncrasies in the training data to improve predictions (Bullock et al., 2022).
This can be difficult to detect, as the algorithm may still have high predictive performance in
internal validation. For example, Rossi et al. (2018), who studied 26 football players with 23 injury
events, compared a single decision tree, random forest, and logistic regression; the single decision
tree, most prone to overfitting, had seemingly the best predictive performance, and logistic
regression, the least prone to overfitting, had the worst predictive performance. The successful
results in the study have been suspected to be ungeneralizable (Lévdal et al., 2020; Theron, 2020).
To reduce risk of overfitting, CARTS require higher sample sizes than regression (van der Ploeg

et al, 2014).

Finally, CARTS are sensitive to cases where the event (injury) is rare compared to non-events (no
injury), a situation known as class imbalance (Majumdar et al., 2022). For instance, in the 74
competitive runners studied in Lovdal et al. (2020), had 41 183 non-events and 583 injury events,
a distribution not uncommon in sports injury data (Bahr, 2016). The best CART classifier would
classify all 41 766 observations as a non-event, and it would have classified 99% events
correctly—thereby never predicting an event. In Lovdal et al. (2020) and in four football studies
reviewed in Majumdar et al. (2022), sampling approaches were used to balance the event to non-

event ratio. However, using such approaches, the distribution of injuries to non-injuries no
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longer represent the true distribution in the target population, and the corresponding
classification is therefore less likely to predict correctly in external validation and in real-life

applications (Goorbergh et al., 2022).

Neural networks are a branch of machine learning that does not require the dichotomization of
continuous variables. Unlike classification methods, the output can be continuous, and can also
be the probability of the event (injutry) occurring, which potentially, a coach or clinician can act
upon. To my knowledge, no study has so far attempted neural networks in the training load and
injury risk field. One avenue where neural networks may be advantageous over regression
modelling, is to search for time periods relative to previous time periods that can predict injury
risk, which may improve our knowledge of whether relative training load effects are present
further in the past. Whether, say, training load 3 to 6 days previously relative to 7 to 10 days
previously predicts injury. While specific time period cut-offs are likely to be arbitrary and data-
set specific, such a data-driven approach can provide hypothesis-generating approximations of
time periods—an indication of day-to-day differences, 3-day relative differences, or 10 day
relative differences, that could later be considered in studies of causal inference. Although, neural
networks are at increased risk of overfitting (even more so than CARTSs) and require considerable
amounts of data, having steeper requirements than both logistic regression and classification
methods (van der Ploeg et al., 2014). In a situation with big data (billions of rows) neural
networks may provide the opportunity to study more complex relationships between variables

than is feasible using traditional regression.

Given the sample sizes reported in Paper I, I argue that the training load and injury risk field must
first improve data collection procedutes to warrant the use of neural networks. In Paper II, Paper
III and Paper IV, we demonstrate that regression analyses with proper model specification can
model non-linearity, time-dependent effects and interactions, respectively. Logistic regression and
time-to-event regression are probability-based methods which can handle imbalanced outcomes,
are data efficient, and provide predicted probabilities which can inform practitioners. Machine
learning approaches (herein CART and neural networks) should be used if they meet the aims
and assumptions of the study, and not solely for their capability to handle non-linearity or other

complexities.
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4.7 Methodological considerations

4.7.1 Methodological considerations in simulations

In Paper I-I1I, statistical methods were compared in estimating the relationship between training
load and injury under various circumstances. To feasibly report and interpret results, we limited
the number of methods compared in each study by selecting from a variety of available
approaches. We prioritized methods used frequently in the training load injury risk field, methods
that were recommended but suspected to underperform, as well as currently proposed methods.
Consequently, there was little space for comparing less known methods that have shown
potential in other fields of research. For instance, in Paper I, we only included one form of
multiple imputation, predicted mean matching, though other varieties, such as hot deck
imputation or random forest imputation (C. S. Wang, Tyrel et al., 2020), may also be suitable in a
multiple imputation framework. In Paper I, it may have been fruitful to include logarithmic
transformation and machine learning classification for handling non-linearity (Bittencourt et al.,

2016; Xiao et al., 2011). This reduces the novelty of the findings in Paper I-I1.

We chose a varying degree of realism in the three simulation studies. In Paper I, we kept the data
as-is and simulated missing data—meaning that all correlations, measurement error and
distributions of variables were retained. We could therefore answer whether these variables were
sufficient for the petrformance of PMM and/or regression imputation in a real study. In Paper 1]
we added correlations between sampled sRPE observations to simulate longitudinal data, added
noise to simulate measurement error, and simulated two sample sizes. Here, we had apriori
hypotheses of method performance: the question was not whether the methods could detect the
non-linear or linear shapes, but which was most optimal in a training load and injury scenatio. In
contrast, we did not simulate any correlations between measures or measurement error in Paper
I, since the abilities of the methods to detect the relationships were largely unknown. If we had
added noise/cotrelations, there would be no way of knowing whether methods did not detect a
relationship because they cannot detect it at all, or whether it was due to noise and/ot

correlations. Consequently, the methods’ performances under more realistic conditions is unclear.

The statistical performance measures varied between the simulations conducted in this
dissertation. Firstly, RMSE, used in all simulation studies, does not describe the bias and
precision of a method other than that relative to other methods. The visualizations in Paper IT and

Paper 11T were necessary additions to understand whether methods that were, based on RMSE,
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more accurate than other methods, also had high accuracy. The petrcent bias used in Paper I did
not have this limitation. In Paper II, conducted chronologically before Paper I, we chose some of
the same measures as in Carey et al. (2018) for reproducibility. In Paper I1I, we followed
methodology and recommendations in Gasparrini (2014). In hindsight, we should have used the

raw and percent bias in these papers as well.

Secondly, coverage had varying usefulness in the studies. In Paper II, we initially considered using
coverage of 95% confidence intervals as to gauge certainty and bias. This rewarded uncertain
methods: even though there was a large discrepancy between prediction and the simulated
observation, the confidence intervals could still overlap due to high uncertainty. Vice versa, it
punished more certain methods that may have been less biased than the uncertain methods, but
their narrow confidence intervals did not necessarily overlap with the true observation. We
therefore changed to 95% prediction intervals. Coverage of 95% confidence is potentially more
useful when methods have similarly broad confidence intervals. However, coverage still has the
disadvantage that it asks a yes/no question when a continuous answer may be more useful: If CIs
do not overlap with the true relationship, by how much does the CI miss the mark? This may
potentially be answered with an estimate of the area under the curve between the true
relationship and the high or low confidence interval, depending on the direction of deviation. In
our simulations, a combination of the percent bias, and average width of confidence intervals,

was more descriptive of the performance we were aiming to determine than coverage metrics.

4.7.2 Methodological considerations in observed data analysis

All data used in this dissertation had limitations. The Norwegian football cohorts had few injury
events, which likely made estimates highly uncertain and non-significant. The Norwegian elite
youth handball data had poor timeliness and high amounts of missing data, possibly under
missing not at random, which introduces selection bias. Finally, the Qatar Stars League cohort
had no source of training load measure that describes the intensity of the activity, only the

duration. This likely added noise to the model estimates.
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4.8 Future directions

4.8.1 Future research in statistics for training load-injury research

Distributed lag non-linear models have shown potential as a method for determining the effect of
training load on the risk of injury. However, little is known about how sensitive the method is to
measurement error and limited sample size. Our results in Paper I and Paper I1I suggest that an
accurate depiction of the relationship between training load and injury may require larger sample
sizes than available in current literature, and DLNM may require even more to model detailed
non-linear changes in the time-dependent effects. In addition, to use DLNM, the lag-period of
effect must be defined before-hand. In our analysis of the handball population in Paper III and
the football populations in Paper I/, we assumed that the previous four weeks of training load
affected injury risk, and that any training load sustained before those four weeks had no effect.
This is a strong assumption. Ideally, researchers can explore how far into the past training load
affects injury risk before it is clinically irrelevant. Providing DLNM with a lag-period of a season,
a year, or multiple years, will allow exploration of the decay of time-dependent effects. This is
likely to require tremendous amounts of data. Defining how much data is needed to determine

accurate effects of decay would be a beneficial avenue of research.

Collinearity is of concern for researchers in the space of training load monitoring and the field of
training load and injury risk research (Weaving et al., 2020). Collinearity is a situation when highly
correlated variables are included in a regression model, which inflate standard errors and
therefore restrains the ability of the model to detect associations (Dormann et al., 2013).
Coefficients can become volatile, and it can be difficult to separate the effect estimate from one
variable and another (Dormann et al., 2013). Often, researchers gather multiple measures when
describing the construct of training load. In football studies, for instance, this can be biomarkers,
heart rate, athlete-reported intensity and multiple GPS measures (Miguel et al., 2021), and thus
high between-measure correlations are expected. Collinearity may also present itself between time

periods in past training load (Basagafna & Barrera-Gémez, 2021).

Coyne et al. (2022) suggested using data-driven approaches for variable selection, either AIC/R?
for predictive ability, or dimension reduction methods such as principal components analysis
(PCA). Williams, Trewartha, et al. (2017) and Weaving et al. (2020) recommended PCA and
demonstrated how it could be used in rugby union. Thornton et al. (2017) used random forest,

also in rugby union, to determine importance of different GPS variables in prediction of injury
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risk. It is unknown which approach is most feasible for causal inference and prediction,
respectively, and how much data-driven approaches can be influenced by randomness. When
independent variables in a model influence each other’s estimates due to collinearity, it may cause
data-driven selection of variables to become arbitrary (Harrell Jr, 2017). It is also unclear how
correlated training load measures must be before they influence coefficient estimates. Applying a
simulation may show how severe the issue of collinearity is in a training load approach and
provide recommendations for how to handle collinearity between typical measures of training

load.

4.8.2 Bridging the gap between research and practice

The statistical approaches promoted in this dissertation are targeted towards sport scientists,
sport biostatisticians, and clinical researchers, to improve statistical methodology in research. This
dissertation neither addressed implementing training load research to sports medicine and sports
science practice (Finch, 2006), nor addressed statistical methodology in the field of quality
improvement (Wheeler & Chambers, 2010). Research and quality improvement are different

paradigms of analysis (Reinhardt & Ray, 2003).

In the quality improvement field, the current best practice (as dictated by research) is
implemented to increase performance and mitigate injuries. Here, it is beneficial to determine
how closely practice follows current guidelines, by monitoring so-called quality indicators—
metrics that contribute to sporting success (Provost & Murray, 2011; Wheeler & Chambers,
2010). Unlike in research, where as much as data as possible is preferred to generalize findings, in
quality improvement, narrowing down time series to the athlete level can be more informative
than overviews of the whole, such as a football team (Provost & Murray, 2011; Ward et al., 2018).
Because of the overarching differences between research and quality improvement, the statistical
methodology considered best practice in reseatch is not necessarily transferable to quality

improvement in a real-world setting (Nijman et al., 2020; Sands et al., 2017).

Some studies have claimed that load monitoring—the process of surveying training load in real-
time—can be used by coaches and athletes to both improve performance and reduce injury risk
(Blanch & Gabbett, 2016; Hamlin et al., 2019), meaning, it can be used for continuous quality
improvement. Such studies have so far only recommend monitoring variables associated with
injury and/or petformance. Without studies of causal inference, it is unclear whether these

training load variables represent a construct that can be modified to improve practice, and even
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much less clear sow these may be modified. Therefore, based on current knowledge in the
training load and injury risk area, it is uncertain whether it is worth the limited time of
practitioners in the real-world setting to collect and monitor the above-mentioned variables. The
statistical methodology recommended in this dissertation has opened bartiers to performing the
research needed to understand how training load affects injury risk. Studies of causal inference in

training load in injury risk are warranted.

So far, studies on training load monitoring have approached the subject through the lens of
research, where thorough data collection and testing procedures are warranted (Haller et al.,
2022). To my knowledge, no study has assessed how to monitor training load to achieve desired
outcomes using the perspective of quality improvement. This is a low hanging fruit of research
that may partially explain why so few injury prevention measures and strategies have been
successfully implemented (O'Brien et al., 2017). Research has shown that athletes and coaches are
positive to adopt injury prevention programs, but struggle to maintain compliance once it has

been implemented (Haroy et al., 2019; McCall et al., 2016).

Research requires rigorous data collection with high demands for accuracy and precision
(Reinhard & Ray, 2003). Quality improvement can make do with a handful of the most important
metrics, ideally these are cost-efficient and easy to collect for daily, weekly, or monthly trend
analyses (Provost & Murray, 2011). The data are collected and analyzed continuously, maybe in
real-time, which may also have different statistical requirements than the finite data collection
done for research (Nijman et al., 2020). In addition, the context of the target population must be
considered (Finch, 20006), without necessarily aiming to generalize the findings. Use of quality
improvement approaches may potentially improve compliance and adherence to injury

prevention interventions.

In summary, to bridge the gap between research and sports medicine and sports science practice,
studies are needed to 1) determine the causal relationships between training load and injury risk

and 2) apply quality improvement approaches in sport settings.
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5 Conclusion

This dissertation addresses key areas in how to study the relationship between training load and

injury risk. Tangible recommendations can be made for these areas.

1) Missing data in continuous training load measures should be imputed with multiple
imputation. If resources for performing multiple imputation are not available, complete case
analysis is preferred over mean imputation, unless this would result in the deletion of a large

proportion of injuries in the data.

2) Non-linearity should be explored with fractional polynomials or restricted cubic splines, where

the choice of one over the other is a matter of preference and nuances in the data.

3) The cumulative effect of long-term training load on injury risk can be modelled with
distributed lag non-linear models. If resources for performing DILNM are not available, the

EWMA is, until further research proves otherwise, the second-best alternative.

4) Instead of using an acute:chronic workload ratio, relative training load can be assessed by

modelling acute and chronic loads separately.

The use of recommendations presented in this dissertation will, hopefully, lead towards a
consensus on how to analyze training load and injuty risk, which would reduce multiple testing

issues, improve interpretation, and finally, allow between-study compatisons and meta-analyses.

96



References

6 References

Ahmun, R., McCaig, S., Tallent, J., Williams, S., & Gabbett, T. (2019). Association of Daily
Workload, Wellness, and Injury and Illness During Tours in International Cricketers.
International journal of sports physiology and performance, 14(3), 369-377.
https://doi.org/10.1123 /ijspp.2018-0315

Akenhead, R., & Nassis, G. P. (20106). Training Load and Player Monitoring in High-Level
Football: Cutrent Practice and Perceptions. International journal of sports physiology and
performance, 11(5), 587-593. https://doi.org/10.1123 /ijspp.2015-0331

Albrecht, J., Biese, K. M., Bell, D. R., Schaefer, D. A., & Watson, A. M. (2020). Training L.oad
and Injury Among Middle School-Aged Athletes. Journal of athletic training, 55(9), 954-959.
https://doi.org/10.4085/1062-6050-435-19

Alder, G. (2018). diagrams.net. In (Version 20.2.7) [Computer program]. JGraph Ltd.
https://app.diagrams.net

Almon, S. (1965). The distributed lag between capital appropriations and expenditures.
Econometrica: Jonrnal of the Econometric Society, 33(1), 178-196.
https://doi.org/10.2307/1911894

Ambler, G., & Benner, A. (2015). mfp: Multivariable Fractional Polynomials. In (Version 1.5.2) [R
package|. The Comprehensive R Archive Network. https://CRAN.R-

project.org/package=mfp

Andrade, R., Wik, E. H., Rebelo-Marques, A., Blanch, P., Whiteley, R., Espregueira-Mendes, J., &
Gabbett, T. J. (2020). Is the Acute: Chronic Workload Ratio (ACWR) Associated with
Risk of Time-Loss Injury in Professional Team Sports? A Systematic Review of
Methodology, Variables and Injury Risk in Practical Situations. Sports Medicine, 50(9),
1613-1635. https://doi.org/10.1007/s40279-020-01308-6

Arazi, H., Asadi, A., Khalkhali, F., Boullosa, D., Hackney, A. C., Granacher, U., & Zouhal, H.
(2020). Association Between the Acute to Chronic Workload Ratio and Injury
Occurrence in Young Male Team Soccer Players: A Preliminary Study. Frontiers in
physiology, 11. https://doi.org/10.3389/fphys.2020.00608

Armstrong, B. (2006). Models for the relationship between ambient temperature and daily
mortality. Epidemiology, 17(6), 624-631.
https://doi.org/10.1097/01.ede.0000239732.50999.8f

Auguié, B. (2019). egg: Exctensions for 'ggplot2': Custom Geom, Custom Themes, Plot Aljgnment, Labelled
Panels, Symmetric Scales, and Fixed Panel Size. In (Version 0.4.5) [R package].
https://CRAN.R-project.org/package=cgg

Bache-Mathiesen, L. K. (2021a). Missing data in training load: R code repository. In (Version 1.0) [R
code repository]. GitHub. https://github.com/lenakba/missing-data-in-training-load

Bache-Mathiesen, L. K. (2021b). Modelling non-linearity in training load and injury research: R code
repository. In (Version 1.0) [R code repository|. GitHub.
https://github.com/lenakba/load-injury-non-linearity-study

97


https://doi.org/10.1123/ijspp.2018-0315
https://doi.org/10.1123/ijspp.2015-0331
https://doi.org/10.4085/1062-6050-435-19
https://app.diagrams.net/
https://doi.org/10.2307/1911894
https://cran.r-project.org/package=mfp
https://cran.r-project.org/package=mfp
https://doi.org/10.1007/s40279-020-01308-6
https://doi.org/10.3389/fphys.2020.00608
https://doi.org/10.1097/01.ede.0000239732.50999.8f
https://cran.r-project.org/package=egg
https://github.com/lenakba/missing-data-in-training-load
https://github.com/lenakba/load-injury-non-linearity-study

References

Bache-Mathiesen, L. K. (2021c). Training load and injury studies data file (20217) Version 1.0) GitHub.
https://github.com/lenakba/missing-data-in-training-

load/blob/main/studies missing reporting.xlsx

Bache-Mathiesen, L. K. (2022a). Modelling the acute and chronic loads separately: R code repository. In
(Version 1.0) [R code repository]. https://github.com/lenakba/separating-acute-from-
chronic

Bache-Mathiesen, L. K. (2022b). Modelling the cunnlative effect of training load on injury risk: R code
repository. In (Version 1.0) [R code repository]. https://github.com/lenakba/modelling-
training-load

Bache-Mathiesen, L. K. (2022c). Training load and injury studies data file (2022) Version 2.0) GitHub.
https://github.com/lenakba/Training-load-review-
data/blob/main/tl injury studies.xlsx

Bahr, R. (2016). Why screening tests to predict injury do not work—and probably never will...: a
critical review. British journal of sports medicine, 50(13), 776-780.
https://doi.org/10.1136/bjsports-2016-096256

Bahr, R., Clarsen, B., Derman, W., Dvorak, J., Emery, C. A, Finch, C. F., Higglund, M., Junge,
A., & Kemp, S. (2020). International Olympic Committee Consensus Statement: Methods
for Recording and Reporting of Epidemiological Data on Injury and Illness in Sports
2020 (Including the STROBE Extension for Sports Injury and Illness Sutveillance
(STROBE-SIIS)). Orthopaedic journal of sports medicine, 8(2).
https://doi.org/10.1177/2325967120902908

Bahr, R., & Holme, I. (2003). Risk factors for sports injuries—a methodological approach. British
Journal of sports medicine, 37(5), 384-392. https://doi.org/10.1136/bjsm.37.5.384

Bahr, R., & Krosshaug, T. (2005). Understanding injury mechanisms: a key component of
preventing injuries in sport. British journal of sports medicine, 39(6), 324-329.
https://doi.org/10.1136/bjsm.2005.018341

Banister, E., Calvert, T., Savage, M., & Bach, T. (1975). A systems model of training for athletic
performance. Australian journal of sports medicine, 7(3), 57-61.
https://doi.org/10.1109/TSMC.1976.5409179

Barnett, A. G., McElwee, P., Nathan, A., Burton, N. W., & Turrell, G. (2017). Identifying
patterns of item missing survey data using latent groups: an observational study. BM] gpen,
7(10), e017284. https://doi.org/10.1136 /bmjopen-2017-017284

Barzi, F., & Woodward, M. (2004). Imputations of missing values in practice: results from
imputations of serum cholesterol in 28 cohort studies. Awmerican journal of epidemiology,
160(1), 34-45. https://doi.org/10.1093/aje/kwh175

Basagafia, X., & Barrera-Gémez, J. (2021). Reflection on modern methods: visualizing the effects
of collinearity in distributed lag models. International journal of epidemiology, 51(1), 334-344.
https://doi.org/10.1093 /ije/dvab179

Bates, D., Maechler, M., Bolker, B., & Walker, S. (2015). Fitting Linear Mixed-Effects Models
Using Ime4. Journal of Statistical Software, 67(1), 1-48. https://doi.org/10.18637/jss.v067.i01

Bekker, S. (2019). Shuffle methodological deck chairs or abandon theoretical ship? The
complexity turn in injury prevention. Injury prevention, 25(2), 80-82.
https://doi.org/10.1136/injuryprev-2018-042905

98


https://github.com/lenakba/missing-data-in-training-load/blob/main/studies_missing_reporting.xlsx
https://github.com/lenakba/missing-data-in-training-load/blob/main/studies_missing_reporting.xlsx
https://github.com/lenakba/separating-acute-from-chronic
https://github.com/lenakba/separating-acute-from-chronic
https://github.com/lenakba/modelling-training-load
https://github.com/lenakba/modelling-training-load
https://github.com/lenakba/Training-load-review-data/blob/main/tl_injury_studies.xlsx
https://github.com/lenakba/Training-load-review-data/blob/main/tl_injury_studies.xlsx
https://doi.org/10.1136/bjsports-2016-096256
https://doi.org/10.1177/2325967120902908
https://doi.org/10.1136/bjsm.37.5.384
https://doi.org/10.1136/bjsm.2005.018341
https://doi.org/10.1109/TSMC.1976.5409179
https://doi.org/10.1136/bmjopen-2017-017284
https://doi.org/10.1093/aje/kwh175
https://doi.org/10.1093/ije/dyab179
https://doi.org/10.18637/jss.v067.i01
https://doi.org/10.1136/injuryprev-2018-042905

References

Benson, L. C., Owoeye, O. B., Riisinen, A. M., Stilling, C., Edwards, W. B., & Emery, C. A.
(2021). Magnitude, Frequency, and Accumulation: Workload Among Injured and
Uninjured Youth Basketball Players [Original Research]. Frontiers in sports and active living, 3.
https://doi.org/10.3389/fspor.2021.607205

Benson, L. C., Réisidnen, A. M., Volkova, V. G., Pasanen, K., & Emery, C. A. (2020). Workload
a-WEAR-ness: monitoring workload in team sports with wearable technology. a scoping
review. Journal of Orthopaedic & Sports Physical Therapy, 50(10), 549-563.
https://doi.org/10.2519 /jospt.2020.9753

Benson, L. C,, Stilling, C., Owoeye, O. B., & Emery, C. A. (2021). Evaluating Methods for
Imputing Missing Data from Longitudinal Monitoring of Athlete Workload. Journal of
Sports Science and Medicine, 20(2), 187-195. https://doi.org/10.52082/jssm.2021.188

Bhaskaran, K., Gasparrini, A., Hajat, S., Smeeth, L., & Armstrong, B. (2013). Time series
regression studies in environmental epidemiology. International journal of epidemiology, 42(4),
1187-1195. https://doi.org/10.1093 /ije/dyt092

Binder, H., Sauerbrei, W., & Royston, P. (2013). Comparison between splines and fractional
polynomials for multivariable model building with continuous covariates: a simulation
study with continuous response. Statistics in medicine, 32(13), 2262-2277.
https://doi.org/10.1002/5im.5639

Bittencourt, N., Meeuwisse, W., Mendonga, L., Nettel-Aguirre, A., Ocatino, J., & Fonseca, S.
(2016). Complex systems approach for sports injuries: moving from risk factor
identification to injury pattern recognition—narrative review and new concept. British

Journal of sports medicine, 50(21), 1309-1314. https://doi.org/10.1136/bjsports-2015-095850

Bjorndal, C. T., Bache-Mathiesen, L. K., Gjesdal, S., Moseid, C. H., Myklebust, G., & Luteberget,
L. S. (2021). An Examination of Training Load, Match Activities, and Health Problems in
Norwegian Youth Elite Handball Players Over One Competitive Season [Original
Research|. Frontiers in sports and active living, 3(30).
https://doi.org/10.3389/fspor.2021.635103

Blanch, P., & Gabbett, T. J. (2016). Has the athlete trained enough to return to play safely? The
acute: chronic workload ratio permits clinicians to quantify a player's risk of subsequent
injury. British journal of sports medicine, 50(8), 471-475. https://doi.org/10.1136/bjsports-
2015-095445

Borg, D. N., Nguyen, R., & Tierney, N. J. (2022). Missing Data: Current Practice in Football
Research and Recommendations for Improvement. Science and Medicine in Football, 6(2),
262-267. https://doi.org/10.1080/24733938.2021.1922739

Borg, G., Hassmén, P., & Lagerstrom, M. (1987). Perceived exertion related to heart rate and
blood lactate during arm and leg exercise. Eurgpean journal of applied physiology and
occupational physiology, 56(6), 679-685. https://doi.org/10.1007 /BF00424810

Bourdon, P. C., Cardinale, M., Murray, A., Gastin, P., Kellmann, M., Varley, M. C., Gabbett, T. J.,
Coutts, A. J., Burgess, D. J., & Gregson, W. (2017). Monitoring athlete training loads:
consensus statement. Infernational journal of sports physiology and performance, 12(s2), S2-161-
$162-170. https://doi.org/10.1123/1JSPP.2017-0208

Bowen, L., Gross, A. S., Gimpel, M., Bruce-Low, S., & Li, F.-X. (2020). Spikes in acute: chronic
workload ratio (ACWR) associated with a 5-7 times greater injury rate in English Premier

99


https://doi.org/10.3389/fspor.2021.607205
https://doi.org/10.2519/jospt.2020.9753
https://doi.org/10.52082/jssm.2021.188
https://doi.org/10.1093/ije/dyt092
https://doi.org/10.1002/sim.5639
https://doi.org/10.1136/bjsports-2015-095850
https://doi.org/10.3389/fspor.2021.635103
https://doi.org/10.1136/bjsports-2015-095445
https://doi.org/10.1136/bjsports-2015-095445
https://doi.org/10.1080/24733938.2021.1922739
https://doi.org/10.1007/BF00424810
https://doi.org/10.1123/IJSPP.2017-0208

References

League football players: a comprehensive 3-year study. British journal of sports medicine, 54,
731-738. https://doi.org/10.1136 /bisports-2018-099422

Boyd, L. J., Ball, K., & Aughey, R. J. (2011). The reliability of MinimaxX accelerometers for
measuring physical activity in Australian football. Infernational journal of sports physiology and
performance, 6(3), 311-321. https://doi.org/10.1123/ijspp.6.3.31121911857

Brankovic, M., Kardys, L., Steyerberg, E. W., Lemeshow, S., Markovic, M., Rizopoulos, D., &
Boersma, E. (2019). Understanding of interaction (subgroup) analysis in clinical trials.
European Journal of Clinical Investigation, 49(8), e13145.
https://doi.org/https://doi.org/10.1111/eci.13145

Brink, M. S., Nederhof, E., Visscher, C., Schmikli, S. L., & Lemmink, K. A. (2010). Monitoring
load, recovery, and performance in young elite soccer players. The Journal of Strength &
Conditioning Research, 24(3), 597-603. https://doi.org/10.1519/]SC.0b013e3181c4d38b

Bullock, G. S., Hughes, T., Arundale, A. H., Ward, P., Collins, G. S., & Kluzek, S. (2022). Black
Box Prediction Methods in Sports Medicine Deserve a Red Card for Reckless Practice: A
Change of Tactics is Needed to Advance Athlete Care. Sports Medicine, 52(8), 1729-1735.
https://doi.org/10.1007/s40279-022-01655-6

Bullock, G. S., Hughes, T, Sergeant, J. C., Callaghan, M. J., Riley, R., & Collins, G. (2021).
Methods matter: clinical prediction models will benefit sports medicine practice, but only
if they are propetly developed and validated. British journal of sports medicine, 55(23), 1319-
1321. https://doi.org/10.1136/bjsports-2021-104329

Buuren, S. v. G.-O., Karin. (2011). mice: Multivariate Imputation by Chained Equations in R.
Journal of Statistical Software, 45(3), 1-67. https://doi.org/10.18637/ss.v045.103

Cameron, K. L. (2010). COMMENTARY: Time for a Paradigm Shift in Conceptualizing Risk
Factors in Sports Injury Research. Journal of athletic training, 45(1), 58-60.
https://doi.org/10.4085/1062-6050-45.1.58

Carbone, L., Sampietro, M., Cicognini, A., Garcfa-Sillero, M., & Vargas-Molina, S. (2022). Is the
Relationship between Acute and Chronic Workload a Valid Predictive Injury Tool? A
Bayesian Analysis. Journal of Clinical Medicine, 11(19), 5945.
https://doi.org/10.3390/jcm11195945

Carey, D. L., Blanch, P., Ong, K.-L., Crossley, K. M., Crow, J., & Morris, M. E. (2017). Training
loads and injury risk in Australian football—differing acute: chronic workload ratios
influence match injury risk. British journal of sports medicine, 51(16), 1215-1220.
https://doi.org/10.1136/bjsports-2016-096309

Carey, D. L., Crossley, K. M., Whiteley, R., Mosler, A., Ong, K.-L., Crow, J., & Morris, M. E.
(2018). Modeling Training Loads and Injuries: The Dangers of Discretization. Medicine and
science in sports and exercise, 50(11), 2267-2276.
https://doi.org/10.1249 /MSS.0000000000001685

Casals, M., & Finch, C. F. (2017). Sports Biostatistician: a critical member of all sports science
and medicine teams for injury prevention. Injury prevention, 23(6), 423-427.
https://doi.org/10.1136/injuryprev-2016-042211

Chhabra, G., Vashisht, V., & Ranjan, J. (2017). A comparison of multiple imputation methods
for data with missing values. Indian Journal of Science and Technology, 10(19), 1-7.
https://doi.org/10.17485/ijst/2017/v10i19/110646

100


https://doi.org/10.1136/bjsports-2018-099422
https://doi.org/10.1123/ijspp.6.3.31121911857
https://doi.org/https:/doi.org/10.1111/eci.13145
https://doi.org/10.1519/JSC.0b013e3181c4d38b
https://doi.org/10.1007/s40279-022-01655-6
https://doi.org/10.1136/bjsports-2021-104329
https://doi.org/10.18637/jss.v045.i03
https://doi.org/10.4085/1062-6050-45.1.58
https://doi.org/10.3390/jcm11195945
https://doi.org/10.1136/bjsports-2016-096309
https://doi.org/10.1249/MSS.0000000000001685
https://doi.org/10.1136/injuryprev-2016-042211
https://doi.org/10.17485/ijst/2017/v10i19/110646

References

Claudino, J. G., de Oliveira Capanema, D., de Souza, T. V., Serréo, J. C., Pereira, A. C. M., &
Nassis, G. P. (2019). Current approaches to the use of artificial intelligence for injury risk
assessment and performance prediction in team sports: a systematic review. Sports
Medicine-Open, 5(1), 28. https://doi.org/10.1186/s40798-019-0202-3

Colby, M. J., Dawson, B., Peeling, P., Heasman, J., Rogalski, B., Drew, M. K, Stares, ]., Zouhal,
H., & Lester, L. (2017). Multivariate modelling of subjective and objective monitoring
data improve the detection of non-contact injury risk in elite Australian footballers.
Journal of science and medicine in sport, 20(12), 1068-1074.
https://doi.org/10.1016/}.jsams.2017.05.010

Collins, G. S., Ogundimu, E. O., Cook, J. A., Manach, Y. L., & Altman, D. G. (2016).
Quantifying the impact of different approaches for handling continuous predictors on the
performance of a prognostic model. Statistics in medicine, 35(23), 4124-4135.
https://doi.org/10.1002/5im.6986

Coyne, J. O. C,, Coutts, A. J., Newton, R. U., & Haff, G. G. (2022). The Current State of
Subjective Training L.oad Monitoring: Follow-Up and Future Directions. Sports Medicine -
Open, 8(1), 53. https://doi.org/10.1186/s40798-022-00433-y

Coyne, J. O. C, Newton, R. U., & Haff, G. G. (2021). Relationships Between Internal Training
Load in a Taper With Elite Weightlifting Performance Calculated Using Different
Moving Average Methods. International journal of sports physiology and performance, 16(3), 342-
352. https://doi.org/10.1123 /ijspp.2020-0002

Cross, M. J., Williams, S., Trewartha, G., Kemp, S. P., & Stokes, K. A. (2016). The influence of
in-season training loads on injury risk in professional rugby union. International jonrnal of
sports physiology and performance, 11(3), 350-355. https://doi.org/10.1123 /ijspp.2015-0187

Curran-Everett, D. (2013). Explorations in statistics: the analysis of ratios and normalized data.
Adpances in physiology edncation, 37(3), 213-219. https://doi.org/10.1152/advan.00053.2013

Curran-Everett, D., & Williams, C. L. (2015). Explorations in statistics: the analysis of change.
Advances in physiology education, 39(2), 49-54. https://doi.org/10.1152/advan.00018.2015

Dalen-Lorentsen, T. (2021). Training load and health problems in football: More complex: than we first
thought? [Doctoral thesis, Norwegian School of Sport Sciences]. Oslo.

https://hdlhandle.net/11250/2834827

Dalen-Lorentsen, T., Andersen, T. E., Bjorneboe, J., Vagle, M., Martin, K. N., Kleppen, M.,
Fagerland, M. W., & Clarsen, B. (2021). A Cherry, Ripe for Picking: The Relationship
Between the Acute-Chronic Workload Ratio and Health Problems. Journal of Orthopaedic
& Sports Physical Therapy, 51(4), 162-173. https://doi.org/10.2519 /jospt.2021.9893

Dalen-Lorentsen, T., Bjorneboe, J., Clarsen, B., Vagle, M., Fagerland, M. W., & Andersen, T. E.
(2021). Does load management using the acute:chronic workload ratio prevent health
problems? A cluster randomised trial of 482 elite youth footballers of both sexes. British

Journal of sports medicine, 55(2), 108-114. https://doi.org/10.1136/bjsports-2020-103003

Datatilsynet. (2017). The anonymisation of personal data. Norwegian Data Protection Agency.
Retrieved 2022-11-07 from https://www.datatilsynet.no/en/regulations-and-
tools/reports-on-specific-subjects /anonymisation

de Leeuw, A.-W., van der Zwaard, S., van Baar, R., & Knobbe, A. (2022). Personalized Machine
Learning Approach to Injury Monitoring in Elite Volleyball Players. European Jonrnal of
Sport Science, 22(4), 511-520. https://doi.org/10.1080/17461391.2021.1887369

101


https://doi.org/10.1186/s40798-019-0202-3
https://doi.org/10.1016/j.jsams.2017.05.010
https://doi.org/10.1002/sim.6986
https://doi.org/10.1186/s40798-022-00433-y
https://doi.org/10.1123/ijspp.2020-0002
https://doi.org/10.1123/ijspp.2015-0187
https://doi.org/10.1152/advan.00053.2013
https://doi.org/10.1152/advan.00018.2015
https://hdl.handle.net/11250/2834827
https://doi.org/10.2519/jospt.2021.9893
https://doi.org/10.1136/bjsports-2020-103003
https://www.datatilsynet.no/en/regulations-and-tools/reports-on-specific-subjects/anonymisation/
https://www.datatilsynet.no/en/regulations-and-tools/reports-on-specific-subjects/anonymisation/
https://doi.org/10.1080/17461391.2021.1887369

References

Demirtas, H., Freels, S. A., & Yucel, R. M. (2008). Plausibility of multivatiate normality
assumption when multiply imputing non-Gaussian continuous outcomes: a simulation
assessment. Journal of Statistical Computation and Simulation, 78(1), 69-84.
https://doi.org/10.1080/10629360600903866

Dennis, R., Farhart, R., Goumas, C., & Orchard, J. (2003). Bowling workload and the risk of
injury in elite cricket fast bowlers. Journal of science and medicine in sport, 6(3), 359-367.
https://doi.org/10.1016/51440-2440(03)80031-2

Derksen, S., & Keselman, H. J. (1992). Backward, forward and stepwise automated subset
selection algorithms: Frequency of obtaining authentic and noise variables. British Journal
of Mathematical and Statistical Psychology, 45(2), 265-282. https://doi.org/10.1111/}.2044-
8317.1992.tb00992.x

Diaz-Ordaz, K., Kenward, M. G., Cohen, A., Coleman, C. L., & Eldridge, S. (2014). Are missing
data adequately handled in cluster randomised trials? A systematic review and guidelines.
Clinical Trials, 11(5), 590-600. https://doi.org/10.1177/1740774514537136

Dormann, C. F., Elith, J., Bacher, S., Buchmann, C., Carl, G., Carré, G., Marquéz, J. R. G.,
Gruber, B., Lafourcade, B., Leitao, P. J., Munkemdller, T., McClean, C., Osborne, P. E.,
Reineking, B., Schréder, B., Skidmore, A. K., Zurell, D., & Lautenbach, S. (2013).
Collinearity: a review of methods to deal with it and a simulation study evaluating their
performance. Ecography, 36(1), 27-46. https://doi.org/10.1111/1.1600-0587.2012.07348 .x

Drew, M. K., Blanch, P., Purdam, C., & Gabbett, T. J. (2017). Yes, rolling averages are a good
way to assess training load for injury prevention. Is there a better way? Probably, but we
have not seen the evidence. British journal of sports medicine, 51(7), 618-619.
https://doi.org/10.1136/bjsports-2016-096609

Eckard, T. G., Padua, D. A, Hearn, D. W., Pexa, B. S., & Frank, B. S. (2018). The relationship
between training load and injury in athletes: a systematic review. Sports Medicine, 48(8),
1929-1961. https://doi.org/10.1007/s40279-018-0951-2

Enright, K., Green, M., Hay, G., & Malone, J. J. (2020). Workload and Injury in Professional
Soccer Players: Role of Injury Tissue Type and Injury Severity. International journal of sports
medicine, 41(02), 89-97. https://doi.org/10.1055/2-0997-6741

Esmaeili, A., Hopkins, W. G., Stewart, A. M., Elias, G. P., Lazarus, B. H., & Aughey, R. J. (2018).
The individual and combined effects of multiple factors on the risk of soft tissue non-
contact injuries in elite team sport athletes. Frontiers in physiology, 9.
https://doi.ore/10.3389 /fphys.2018.01280

Fanchini, M., Rampinini, E., Riggio, M., Coutts, A. J., Pecci, C., & McCall, A. (2018). Despite
association, the acute: chronic work load ratio does not predict non-contact injury in elite
footballers. Science and Medicine in Football, 2(2), 108-114.
https://doi.org/10.1080/24733938.2018.1429014

Finch, C. (2006). A new framework for research leading to sports injury prevention. Journal of
science and medicine in sport, 9(1), 3-9. https://doi.org/10.1016/}.jsams.2006.02.009

Finch, C. F., & Cook, J. (2014). Categorising sports injuries in epidemiological studies: the
subsequent injury categorisation (SIC) model to address multiple, recurrent and
exacerbation of injuries. British journal of sports medicine, 48(17), 1276-1280.
https://doi.org/10.1136/bjsports-2012-091729

102


https://doi.org/10.1080/10629360600903866
https://doi.org/10.1016/S1440-2440(03)80031-2
https://doi.org/10.1111/j.2044-8317.1992.tb00992.x
https://doi.org/10.1111/j.2044-8317.1992.tb00992.x
https://doi.org/10.1177/1740774514537136
https://doi.org/10.1111/j.1600-0587.2012.07348.x
https://doi.org/10.1136/bjsports-2016-096609
https://doi.org/10.1007/s40279-018-0951-z
https://doi.org/10.1055/a-0997-6741
https://doi.org/10.3389/fphys.2018.01280
https://doi.org/10.1080/24733938.2018.1429014
https://doi.org/10.1016/j.jsams.2006.02.009
https://doi.org/10.1136/bjsports-2012-091729

References

Fonseca, S. T., Souza, T. R., Verhagen, E., Van Emmerik, R., Bittencourt, N. F., Mendonga, L.
D., Andrade, A. G., Resende, R. A., & Ocarino, J. M. (2020). Sports injury forecasting
and complexity: a synergetic approach. Sports Medicine, 1-14.
https://doi.org/10.1007/s40279-020-01326-4

Foster, C., Florhaug, J. A., Franklin, J., Gottschall, L., Hrovatin, L. A., Parker, S., Doleshal, P., &
Dodge, C. (2001). A New Approach to Monitoring Exercise Training. Journal of strength
and conditioning research, 15(1), 109-115. https://europepme.org/article/med /11708692

Froslie, K. F., Roislien, J., Laake, P., Henriksen, T., Qvigstad, E., & Veierad, M. B. (2010).
Categorisation of continuous exposure variables revisited. A response to the
Hyperglycaemia and Adverse Pregnancy Outcome (HAPO) Study. BMC medical research
methodology, 10(1), 103. https://doi.org/10.1186/1471-2288-10-103

Fuller, C. W., Ekstrand, J., Junge, A., Andersen, T. E., Bahr, R., Dvorak, J., Higglund, M.,
McCrory, P., & Meeuwisse, W. H. (2006). Consensus statement on injury definitions and
data collection procedures in studies of football (soccer) injuries. Scandinavian journal of
medicine & science in sports, 16(2), 83-92. https://doi.org/10.1111/1.1600-0838.2006.00528.x

Gabbett, T. J. (2016). The training—injury prevention paradox: should athletes be training
smarter and harder? British journal of sports medicine, 50(5), 273-280.
https://doi.org/10.1136/bjsports-2015-095788

Gabbett, T. J. (2018). Debunking the myths about training load, injury and performance:
empirical evidence, hot topics and recommendations for practitioners. British journal of
sports medicine, 54, 58-66. https://doi.org/10.1136/bjsports-2018-099784

Gabbett, T. J., Hulin, B. T., Blanch, P., & Whiteley, R. (2016). High training workloads alone do
not cause sports injuries: how you get there is the real issue. British jonrnal of sports medicine,
50, 444-445. https://doi.org/10.1136 /bjsports-2015-095567

Gamble, P. (2013). Reducing injury in elite sport-is simply restricting workloads really the
answer? [Review|. New Zealand Journal of Sports Medicine, 40, 36-38.
https://sportsmedicine.co.nz/wp-content/uploads/2016/02/NZJSM-Vol-40-Issue-
1.pdf#page=38

Gamble, P., Chia, L., & Allen, S. (2020). The illogic of being data-driven: reasserting control and
restoring balance in our relationship with data and technology in football. Science and
Medicine in Football, 4(4), 338-341. https://doi.org/10.1080/24733938.2020.1854842

Gasparrini, A. (2011). Distributed lag linear and non-linear models in R: the package dlnm. Journal
of Statistical Software, 43(8), 1. https://doi.org/10.18637 /iss.v043.108

Gasparrini, A. (2014). Modeling exposure—lag—response associations with distributed lag non-
linear models. Szatistics in medicine, 33(5), 881-899. https://doi.org/10.1002/5im.5963

Gasparrini, A. (2016). Modelling lagged associations in environmental time series data: a
simulation study. Epidemiology, 27(6), 835-842.
https://doi.org/10.1097/EDE.0000000000000533

Gauthier, J., Wu, Q., & Gooley, T. (2020). Cubic splines to model relationships between
continuous variables and outcomes: a guide for clinicians. Boze Marrow Transplant, 55, 675-
680. https://doi.org/10.1038/541409-019-0679-x

General Assembly of the World Medical Association. (2013). World Medical Association
Declaration of Helsinki: ethical principles for medical research involving human subjects.
Jama, 310(20), 2191-2194. https://doi.org/10.1001/jama.2013.281053

103



https://doi.org/10.1007/s40279-020-01326-4
https://europepmc.org/article/med/11708692
https://doi.org/10.1186/1471-2288-10-103
https://doi.org/10.1111/j.1600-0838.2006.00528.x
https://doi.org/10.1136/bjsports-2015-095788
https://doi.org/10.1136/bjsports-2018-099784
https://doi.org/10.1136/bjsports-2015-095567
https://sportsmedicine.co.nz/wp-content/uploads/2016/02/NZJSM-Vol-40-Issue-1.pdf#page=38
https://sportsmedicine.co.nz/wp-content/uploads/2016/02/NZJSM-Vol-40-Issue-1.pdf#page=38
https://doi.org/10.1080/24733938.2020.1854842
https://doi.org/10.18637/jss.v043.i08
https://doi.org/10.1002/sim.5963
https://doi.org/10.1097/EDE.0000000000000533
https://doi.org/10.1038/s41409-019-0679-x
https://doi.org/10.1001/jama.2013.281053

References

Goorbergh, R. v. d., Smeden, M. v., Timmerman, D., & Calster, B. v. (2022). The harm of class
imbalance corrections for risk prediction models: illustration and simulation using logistic
regression. Methodology (stat. ME), arXiv:2202.09101.
https://doi.org/10.48550/arXiv.2202.09101

Griffin, A., Kenny, I. C., Comyns, T. M., & Lyons, M. (2020). The Association Between the
Acute:Chronic Workload Ratio and Injury and its Application in Team Sports: A
Systematic Review. Sports Medicine, 50(3), 561-580. https://doi.org/10.1007 /s40279-019-
01218-2

Haller, N., Blumkaitis, J. C., Strepp, T., Schmuttermair, A., Aglas, L., Simon, P., Neuberger, E.,
Kranzinger, C., Kranzinger, S., O'Brien, J., Ergoth, B., Raffetseder, S., Fail, C., Diring,
M., & Stoggl, T. (2022). Comprehensive training load monitoring with biomarkers,
performance testing, local positioning data, and questionnaires - first results from elite
youth soccet. Front Physiol, 13, 1000898. https://doi.org/10.3389/fphys.2022.1000898

Hamlin, M. J., Wilkes, D., Elliot, C. A., Lizamore, C. A., & Kathiravel, Y. (2019). Monitoring
training loads and perceived stress in young elite university athletes. Frontiers in physiology,
10, 34. https://doi.org/10.3389/fphys.2019.00034

Han, Q.-J., Wu, H.-L., Cai, C.-B., Xu, L., & Yu, R.-Q. (2008). An ensemble of Monte Carlo
uninformative variable elimination for wavelength selection. Awalytica Chimica Acta,
612(2), 121-125. https://doi.org/10.1016/j.aca.2008.02.032

Harrell Jr, F. E. (2017). Regression modeling strategies. BIOS, 330, 2018.
https://link.springer.com/book/10.1007/978-3-319-19425-7

Harrell Jr, F. E. (2019). rms: Regression Modeling Strategies. In (Version 5.1-5) [R package]. The
Comprehensive R Archive Network. https://CRAN.R-project.org/package=rms

Haroy, J., Wiger, E. G., Bahr, R., & Andersen, T. E. (2019). Implementation of the Adductor
Strengthening Programme: Players primed for adoption but reluctant to maintain — A

cross-sectional study. Scandinavian journal of medicine & science in sports, 29(8), 1092-1100.
https://doi.org/10.1111/sms.13444

Hecksteden, A., Kellner, R., & Donath, L. (2022). Dealing with small samples in football
research. Science and Medicine in Football, 6(3), 389-397.
https://doi.org/10.1080/24733938.2021.1978106

Hernan, M. A. (2018). The C-word: scientific euphemisms do not improve causal inference from
observational data. American jonrnal of public health, 108(5), 616-619.
https://doi.org/10.2105/AJPH.2018.304337

Hildebrandt, C., Oberhoffer, R., Raschner, C., Miller, E., Fink, C., & Steidl-Mdller, L. (2020).
Training load characteristics and injury and illness risk identification in elite youth ski
racing: A prospective study. Journal of sport and health science, 10(2), 230-230.
https://doi.org/10.1016/].jshs.2020.03.009

Hocking, T. D. (2021). directlabels: Direct Labels for Multicolor Plots. In (Version 2021.1.13) [R
package]. The Comprehensive R Archive Network. https://CRAN.R-

project.org/package=directlabels

Hoffman, D. T., Dwyer, D. B., Bowe, S. J., Clifton, P., & Gastin, P. B. (2020). Is injury associated
with team performance in elite Australian football? 20 years of player injury and team
performance data that include measures of individual player value. British journal of sports
medicine, 54(8), 475-479. https://doi.org/10.1136/bisports-2018-100029

104


https://doi.org/10.48550/arXiv.2202.09101
https://doi.org/10.1007/s40279-019-01218-2
https://doi.org/10.1007/s40279-019-01218-2
https://doi.org/10.3389/fphys.2022.1000898
https://doi.org/10.3389/fphys.2019.00034
https://doi.org/10.1016/j.aca.2008.02.032
https://link.springer.com/book/10.1007/978-3-319-19425-7
https://cran.r-project.org/package=rms
https://doi.org/10.1111/sms.13444
https://doi.org/10.1080/24733938.2021.1978106
https://doi.org/10.2105/AJPH.2018.304337
https://doi.org/10.1016/j.jshs.2020.03.009
https://cran.r-project.org/package=directlabels
https://cran.r-project.org/package=directlabels
https://doi.org/10.1136/bjsports-2018-100029

References

Hollinder, N., Sauerbrei, W., & Schumacher, M. (2004). Confidence intervals for the effect of a
prognostic factor after selection of an ‘optimal’ cutpoint. Statistics in medicine, 23(11), 1701-
1713. https://doi.org/10.1002/sim.1611

Hulin, B. T., & Gabbett, T J. (2019). Indeed association does not equal prediction: the never-
ending search for the perfect acute: chronic workload ratio. British journal of sports medicine,
53, 144-145. https://doi.org/10.1136/bjsports-2018-099448

Hulin, B. T., Gabbett, T. J., Blanch, P., Chapman, P., Bailey, D., & Orchard, J. W. (2014). Spikes
in acute workload are associated with increased injury risk in elite cricket fast bowlers.
British journal of sports medicine, 48(8), 708-712. https://doi.org/10.1136/bjsports-2013-
092524

Hulin, B. T., Gabbett, T. J., Lawson, D. W., Caputi, P., & Sampson, J. A. (2016). The acute:
chronic workload ratio predicts injury: high chronic workload may decrease injury risk in
elite rugby league players. British journal of sports medicine, 50(4), 231-236.
https://doi.org/10.1136/bjsports-2015-094817

Higglund, M., Waldén, M., Bahr, R., & Ekstrand, J. (2005). Methods for epidemiological study of
injuries to professional football players: developing the UEFA model. British journal of
sports medicine, 39(6), 340-346. https://doi.org/10.1136/bjsm.2005.018267

Higglund, M., Waldén, M., Magnusson, H., Kristenson, K., Bengtsson, H., & Ekstrand, J. (2013).
Injuries affect team performance negatively in professional football: an 11-year follow-up
of the UEFA Champions League injury study. British journal of sports medicine, 47(12), 738-
742. https://doi.org/10.1136/bjsports-2013-092771

IBM. (2020, 2020-04-16). Pairwise vs. Listwise deletion: What are they and when should 1 use them? IBM
Support. Retrieved 2022-11-07 from https://www.ibm.com/support/pages/pairwise-vs-
listwise-deletion-what-are-they-and-when-should-i-use-them

Ide, B. N, Silvatti, A. P., & Mota, G. R. (2021). Comment on “Training Load and Injury: Causal
Pathways and Future Directions”. Sports Medicine, 51, 2449—2450.
https://doi.org/10.1007/s40279-021-01525-7

Impellizzeri, F., Woodcock, S., Coutts, A. J., Fanchini, M., McCall, A., & Vigotsky, A. (2020).
Acute to random workload ratio is ‘as’ associated with injury as acute to actual chronic
workload ratio: time to dismiss ACWR and its components. Spor/Rxi.
https://doi.org/10.31236/osf.io /e8kt4

Impellizzeri, F., Woodcock, S., McCall, A., Ward, P., & Coutts, A. J. (2019). The acute-chronic
workload ratio-injury figure and its ‘sweet spot’are flawed. SporRxiv.
https://doi.org/10.31236/0sf.io /gs8yu

Impellizzeri, F. M., Marcora, S. M., & Coutts, A. J. (2019). Internal and external training load: 15
years on. International journal of sports physiology and performance, 14(2), 270-273.
https://doi.org/10.1123 /ijspp.2018-0935

Impellizzeri, F. M., Shrier, 1., McLaren, S., Coutts, A. J., McCall, A., Slattery, K, Jeffries, A., &
Kalkhoven, J. (2022). Understanding training load as exposure and dose. Spor/Ryi.
https://doi.org/10.51224/SRXIV.186

Impellizzeri, F. M., Tenan, M. S., Kempton, T., Novak, A., & Coutts, A. J. (2020). Acute: Chronic
Workload Ratio: Conceptual Issues and Fundamental Pitfalls. Inzernational journal of sports
physiology and performance, 15(6), 907-913. https://doi.org/10.1123 /ijspp.2019-0864

105


https://doi.org/10.1002/sim.1611
https://doi.org/10.1136/bjsports-2018-099448
https://doi.org/10.1136/bjsports-2013-092524
https://doi.org/10.1136/bjsports-2013-092524
https://doi.org/10.1136/bjsports-2015-094817
https://doi.org/10.1136/bjsm.2005.018267
https://doi.org/10.1136/bjsports-2013-092771
https://www.ibm.com/support/pages/pairwise-vs-listwise-deletion-what-are-they-and-when-should-i-use-them
https://www.ibm.com/support/pages/pairwise-vs-listwise-deletion-what-are-they-and-when-should-i-use-them
https://doi.org/10.1007/s40279-021-01525-7
https://doi.org/10.31236/osf.io/e8kt4
https://doi.org/10.31236/osf.io/gs8yu
https://doi.org/10.1123/ijspp.2018-0935
https://doi.org/10.51224/SRXIV.186
https://doi.org/10.1123/ijspp.2019-0864

References

Impellizzeri, F. M., Ward, P., Coutts, A. J., Bornn, L., & McCall, A. (2020a). Training Load and
Injury: Part 1—The Devil Is in the Detail—Challenges to Applying the Current Research
in the Training Load and Injury Field. Journal of Orthopaedic & Sports Physical Therapy,
50(10), 574-576. https://doi.org/10.2519 /jospt.2020.9675

Impellizzeri, F. M., Ward, P., Coutts, A. J., Bornn, L., & McCall, A. (2020b). Training Load and
Injury: Part 2—Questionable Research Practices Hijack the Truth and Mislead Well-
Intentioned Clinicians. Journal of Orthopaedic & Sports Physical Therapy, 50(10), 577-584.
https://doi.org/10.2519 /jospt.2020.9211

Impellizzeri, F. M., Woodcock, S., Coutts, A., Fanchini, M., McCall, A., & Vigotsky, A. (2021).
What Role Do Chronic Workloads Play in the Acute to Chronic Workload Ratio? Time
to Dismiss ACWR and Its Underlying Theory. Sports Medicine, 51, 581-592.
https://doi.org/10.1007 /s40279-020-01378-6

Information Commissionet's Office (ICO). (2018). Guide to the UK General Data Protection
Regulation (UK GDPR). Retrieved 2022-11-07 from https://ico.org.uk/for-

organisations/guide-to-data-protection/guide-to-the-general-data-protection-regulation-

odpr/principles/purpose-limitation

Jakobsen, J. C., Gluud, C., Wetterslev, J., & Winkel, P. (2017). When and how should multiple
imputation be used for handling missing data in randomised clinical trials—a practical
guide with flowcharts. BMC medical research methodology, 17(1), 162.
https://doi.org/10.1186/s12874-017-0442-1

James, D. H., Kurt. (2020). chron: Chronological Objects which Can Handle Dates and Times. In (Version
version 2.3-56) [R package]. The Comprehensive R Archive Network. https://CRAN.R-

project.org/package=chron

Jamil, M., Phatak, A., Mehta, S., Beato, M., Memmert, D., & Connor, M. (2021). Using multiple
machine learning algorithms to classify elite and sub-elite goalkeepers in professional
men’s football. Scentific Reports, 11(1), 22703. https://doi.org/10.1038/s41598-021-
01187-5

Janssen, K. J., Donders, A. R. T\, Hatrell Jr, F. E., Vergouwe, Y., Chen, Q., Grobbee, D. E., &
Moons, K. G. (2010). Missing covariate data in medical research: to impute is better than
to ignore. Journal of clinical epidemiology, 63(7), 721-727.
https://doi.org/10.1016/}.jclinepi.2009.12.008

Jeli¢i¢, H., Phelps, E., & Letner, R. M. (2009). Use of missing data methods in longitudinal
studies: The persistence of bad practices in developmental psychology. Develgpmental
psyehology, 45(4), 1195-1199. https://doi.org/10.1037 /20015665

Johansson, F., Gabbett, T., Svedmark, P., & Skillgate, E. (2021). External Training LLoad and the
Association With Back Pain in Competitive Adolescent Tennis Players: Results From the
SMASH Cohortt Study. Sports bealth, 14(1), 111-118.
https://doi.org/10.1177/19417381211051636

Johnston, R., Cahalan, R., Bonnett, L., Maguire, M., Nevill, A., Glasgow, P., O’Sullivan, K., &
Comyns, T. (2019). Training load and baseline characteristics associated with new
injury/pain within an endurance sporting population: a prospective study. International
Journal of sports physiology and performance, 14(5), 590-597.
https://doi.org/10.1123 /ijspp.2018-0644

106


https://doi.org/10.2519/jospt.2020.9675
https://doi.org/10.2519/jospt.2020.9211
https://doi.org/10.1007/s40279-020-01378-6
https://ico.org.uk/for-organisations/guide-to-data-protection/guide-to-the-general-data-protection-regulation-gdpr/principles/purpose-limitation/
https://ico.org.uk/for-organisations/guide-to-data-protection/guide-to-the-general-data-protection-regulation-gdpr/principles/purpose-limitation/
https://ico.org.uk/for-organisations/guide-to-data-protection/guide-to-the-general-data-protection-regulation-gdpr/principles/purpose-limitation/
https://doi.org/10.1186/s12874-017-0442-1
https://cran.r-project.org/package=chron
https://cran.r-project.org/package=chron
https://doi.org/10.1038/s41598-021-01187-5
https://doi.org/10.1038/s41598-021-01187-5
https://doi.org/10.1016/j.jclinepi.2009.12.008
https://doi.org/10.1037/a0015665
https://doi.org/10.1177/19417381211051636
https://doi.org/10.1123/ijspp.2018-0644

References

Johnstone, I. M., & Titterington, D. M. (2009). Statistical challenges of high-dimensional data.
Philosophical Transactions of the Royal Society A: Mathematical, Physical, and Engineering Sciences,
367, 4237-4253. https://doi.org/10.1098 /rsta.2009.0159

Kabacoff, R. (2011). R én Action. Manning publications Shelter Island, NY, USA.

www.manning.com/books/r-in-action-second-edition

Kalkhoven, J. T., Watsford, M. L., Coutts, A. J., Edwards, W. B., & Impellizzeri, F. M. (2021).
Training load and injury: causal pathways and future directions. Sports Medicine, 51, 1137—
1150. https://doi.org/10.1007/s40279-020-01413-6

Karahalios, A., Baglietto, L., Carlin, ]. B., English, D. R., & Simpson, J. A. (2012). A review of the
reporting and handling of missing data in cohort studies with repeated assessment of
exposure measures. BMC medical research methodology, 12(1), 96.
https://doi.org/10.1186/1471-2288-12-96

Keylock, L., Alway, P., Felton, P., McCaig, S., Brooke-Wavell, K., King, M., & Peirce, N. (2022).
Lumbar bone stress injuries and risk factors in adolescent cricket fast bowlers. Jourmal of
sports sciences, 40(12), 1336-1342. https://doi.org/10.1080/02640414.2022.2080161

Knowles, J. E., & Frederick, C. (2019). merTools: Tools for Analyzing Mixed Effect Regression Models. In
(Version 0.5.0) [R package]. The Comprehensive R Archive Network. https://CRAN.R-

project.ore/package=merTools

Lathlean, T. J., Gastin, P. B., Newstead, S. V., & Finch, C. F. (2019). Absolute and relative load
and injury in elite junior Australian football players over 1 season. International journal of
sports physiology and performance, 15(4), 511-519. https://doi.org/10.1123 /ijspp.2019-0100

Lathlean, T. J. H. (2017). Training Loads, Player Wellness and Injury in Elite Junior Australian Football
Players [Doctoral thesis, Monash University].

Lathlean, T. J. H., Newstead, S. V., & Gastin, P. B. (2022). Elite Junior Australian Football
Players With Impaired Wellness Are at Increased Injury Risk at High Loads. Sports bealth,
0(0). https://doi.org/10.1177/19417381221087245

Lazarus, B. H., Stewart, A. M., White, K. M., Rowell, A. E., Esmaeili, A., Hopkins, W. G., &
Aughey, R. J. (2017). Proposal of a global training load measure predicting match
performance in an elite team sport. Frontiers in physiology, 8, 930.
https://doi.org/10.3389 /fphys.2017.00930

Lich, K. H., Ginexi, E. M., Osgood, N. D., & Mabry, P. L. (2013). A Call to Address Complexity
in Prevention Science Research. Prevention Science, 14(3), 279-289.
https://doi.org/10.1007/s11121-012-0285-2

Lolli, L., Baht, R., Weston, M., Whiteley, R., Tabben, M., Bonanno, D., Gregson, W., Chamari,
K., Di Salvo, V., & van Dyk, N. (2020). No association between perceived exertion and
session duration with hamstring injury occurrence in professional football. Scandinavian

Journal of medicine & science in sports, 30(3), 523-530. https://doi.org/10.1111/sms.13591

Lolli, L., Batterham, A. M., Hawkins, R., Kelly, D. M., Strudwick, A. J., Thorpe, R., Gregson, W.,
& Atkinson, G. (2019). Mathematical coupling causes spurious correlation within the
conventional acute-to-chronic workload ratio calculations. British journal of sports medicine,
53(15), 921-922. https://doi.org/10.1136/bjsports-2017-098110

Lolli, L., Batterham, A. M., Hawkins, R., Kelly, D. M., Strudwick, A. J., Thorpe, R. T., Gregson,
W., & Atkinson, G. (2018). The acute-to-chronic workload ratio: an inaccurate scaling

107


https://doi.org/10.1098/rsta.2009.0159
https://www.manning.com/books/r-in-action-second-edition
https://doi.org/10.1007/s40279-020-01413-6
https://doi.org/10.1186/1471-2288-12-96
https://doi.org/10.1080/02640414.2022.2080161
https://cran.r-project.org/package=merTools
https://cran.r-project.org/package=merTools
https://doi.org/10.1123/ijspp.2019-0100
https://doi.org/10.1177/19417381221087245
https://doi.org/10.3389/fphys.2017.00930
https://doi.org/10.1007/s11121-012-0285-2
https://doi.org/10.1111/sms.13591
https://doi.org/10.1136/bjsports-2017-098110

References

index for an unnecessary normalisation process? British journal of sports medicine, 53, 1510-
1512. https://doi.org/10.1136/bjsports-2017-098884

Lidecke, D. (2018). ggeffects: Tidy data frames of marginal effects from regression models.
Journal of Open Sonrce Software, 3(26), 772. https://doi.org/10.21105/j0ss.00772

Lidecke, D. (2022). yPlot: Data VVisnalization for Statistics in Social Science. In (Version 2.8.11) [R
package|. The Comprehensive R Archive Network. https://CRAN.R-

project.org/package=siPlot

Lovdal, S., den Hartigh, R., & Azzopardi, G. (2020). Injury Prediction in Competitive Runners
with Machine Learning. International journal of sports physiology and performance, 16(10), 1522—
1531. https://doi.org/10.1123 /ijspp.2020-0518

Madley-Dowd, P., Hughes, R., Tilling, K., & Heron, J. (2019). The proportion of missing data
should not be used to guide decisions on multiple imputation. Journal of clinical epidemiology,
110, 63-73. https://doi.org/10.1016/}.jclinepi.2019.02.016

Majumdar, A., Bakirov, R., Hodges, D., Scott, S., & Rees, T. (2022). Machine Learning for
Understanding and Predicting Injuries in Football. Sports Medicine - Open, 8(1), 73.
https://doi.org/10.1186/s40798-022-00465-4

Mallo, J., & Dellal, A. (2012). Injury risk in professional football players with special reference to
the playing position and training periodization. The Journal of sports medicine and physical
Jfitness, 52(6), 631-638. https://europepmc.org/article/med /23187326

Malone, J. J., Di Michele, R., Morgans, R., Burgess, D., Morton, J. P., & Drust, B. (2015).
Seasonal Training-Load Quantification in Elite English Premier League Soccer Players.
International journal of sports physiology and performance, 10(4), 489-497.
https://doi.org/10.1123 /ijspp.2014-0352

Malone, J. J., Lovell, R., Vatley, M. C., & Coutts, A. J. (2017). Unpacking the black box:
applications and considerations for using GPS devices in sportt. International journal of sports
physiology and performance, 12(s2), S2-18-S12-26. https://doi.org/10.1123/ijspp.2016-0236

Malone, S., Collins, K., McCROBERTS, A., & Doran, D. (2020). Understanding the association
between external training load measures and injury risk in Elite Gaelic football. The Journal
of sports medicine and physical fitness, 61(2), 233-243. https://doi.org/10.23736/s0022-
4707.20.11206-4

Malone, S., Hughes, B., Doran, D. A., Collins, K., & Gabbett, T. J. (2019). Can the workload—
injury relationship be moderated by improved strength, speed and repeated-sprint
qualities? Journal of science and medicine in sport, 22(1), 29-34.
https://doi.org/10.1016/j.jsams.2018.01.010

Malone, S., Owen, A., Mendes, B., Hughes, B., Collins, K., & Gabbett, T. J. (2018). High-speed
running and sprinting as an injury tisk factor in soccer: Can well-developed physical
qualities reduce the risk? Journal of science and medicine in sport, 21(3), 257-262.
https://doi.org/10.1016/j.jsams.2017.05.016

Malone, S., Roe, M., Doran, D. A., Gabbett, T. J., & Collins, K. (2017). High chronic training
loads and exposure to bouts of maximal velocity running reduce injury risk in elite Gaelic
football. Journal of science and medicine in sport, 20(3), 250-254.
https://doi.org/10.1016/j.jsams.2016.08.005

Mandorino, M., Figueiredo, A. J., Cima, G., & Tessitore, A. (2022). Predictive Analytic
Techniques to Identify Hidden Relationships between Training LLoad, Fatigue and Muscle

108



https://doi.org/10.1136/bjsports-2017-098884
https://doi.org/10.21105/joss.00772
https://cran.r-project.org/package=sjPlot
https://cran.r-project.org/package=sjPlot
https://doi.org/10.1123/ijspp.2020-0518
https://doi.org/10.1016/j.jclinepi.2019.02.016
https://doi.org/10.1186/s40798-022-00465-4
https://europepmc.org/article/med/23187326
https://doi.org/10.1123/ijspp.2014-0352
https://doi.org/10.1123/ijspp.2016-0236
https://doi.org/10.23736/s0022-4707.20.11206-4
https://doi.org/10.23736/s0022-4707.20.11206-4
https://doi.org/10.1016/j.jsams.2018.01.010
https://doi.org/10.1016/j.jsams.2017.05.016
https://doi.org/10.1016/j.jsams.2016.08.005

References

Strains in Young Soccer Players. Sporzs, 10(1), 3.
https://doi.otg/10.3390/sports10010003

Mandorino, M., Figueiredo, A. J., Condello, G., & Tessitore, A. (2022). The influence of maturity
on recovery and perceived exertion, and its relationship with illnesses and non-contact
injuries in young soccer players. Biology of sport, 39(4), 839-848.
https://doi.org/10.5114/biolsport.2022.109953

Marshall, A., Altman, D. G., Royston, P., & Holder, R. L. (2010). Comparison of techniques for
handling missing covariate data within prognostic modelling studies: a simulation study.
BMC medical research methodology, 10(1), 7. https://doi.org/10.1186/1471-2288-10-7

Maupin, D., Schram, B., Canetti, E., & Orzr, R. (2020). The Relationship Between Acute: Chronic
Workload Ratios and Injury Risk in Sports: A Systematic Review. Open Access Journal of
Sports Medicine, 11, 51-75. https://doi.org/10.2147/OAJSM.S231405

McCall, A., Dupont, G., & Ekstrand, J. (20106). Injury prevention strategies, coach compliance
and player adherence of 33 of the UEFA Elite Club Injury Study teams: a survey of
teams’ head medical officers. British journal of sports medicine, 50(12), 725-730.
https://doi.org/10.1136/bjsports-2015-095259

McCall, A., Dupont, G., & Ekstrand, J. (2018). Internal workload and non-contact injury: a one-
season study of five teams from the UEFA Elite Club Injury Study. British journal of sports
medicine, 52(23), 1517-1522. https://doi.org/10.1136/bjsports-2017-098473

Meeuwisse, W. H. (1994). Assessing Causation in Sport Injury: A Multifactorial Model. Clinical
Journal of Sport Medicine, 4(3), 166-170.
https://journals.lww.com/cjsportsmed/Fulltext/1994/07000/ Assessing Causation in S
port Injury A.4.aspx

Meeuwisse, W. H., Tyreman, H., Hagel, B., & Emery, C. (2007). A dynamic model of etiology in
sport injury: the recursive nature of risk and causation. Clinical Journal of Sport Medicine,
17(3), 215-219. https://doi.org/10.1097 /JSM.0b013e3180592a48

Mehta, S. (2019). Relationship between workload and throwing injury in varsity baseball players.
Physical Therapy in Sport, 40, 66-70. https://doi.org/10.1016/].ptsp.2019.08.001

Menaspa, P. (2017). Are rolling averages a good way to assess training load for injury prevention?
British journal of sports medicine, 51(7), 618-619. https://doi.org/10.1136/bjsports-2016-
096131

Miguel, M., Oliveira, R., Loureiro, N., Garcia-Rubio, J., & Ibafiez, S. J. (2021). Load Measures in
Training/Match Monitoring in Soccer: A Systematic Review. Infernational Journal of
Environmental Research and Public Health, 18(5), 2721.
https://doi.org/10.3390/ijerph18052721

Moreno-Perez, V., Paredes, V., Pastor, D., Garrosa, F. N., Vielcazat, S. J., Del Coso, J., &
Mendez-Villanueva, A. (2021). Under-exposure to official matches is associated with
muscle injury incidence in professional footballers. Biolgy of sport, 38(4), 563-571.
https://doi.org/10.5114/biolsport.2021.100360

Moreno-Pérez, V., Prieto, J., Del Coso, J., Lid6-Micé, J. E., Fragoso, M., Penalva, F. J., Reid, M.,
& Pluim, B. M. (2021). Association of acute and chronic workloads with injury risk in
high-performance junior tennis players. Ewuropean Jonrnal of Sport Science, 21(8), 1215-1223.
https://doi.org/10.1080/17461391.2020.1819435

109


https://doi.org/10.3390/sports10010003
https://doi.org/10.5114/biolsport.2022.109953
https://doi.org/10.1186/1471-2288-10-7
https://doi.org/10.2147/OAJSM.S231405
https://doi.org/10.1136/bjsports-2015-095259
https://doi.org/10.1136/bjsports-2017-098473
https://journals.lww.com/cjsportsmed/Fulltext/1994/07000/Assessing_Causation_in_Sport_Injury__A.4.aspx
https://journals.lww.com/cjsportsmed/Fulltext/1994/07000/Assessing_Causation_in_Sport_Injury__A.4.aspx
https://doi.org/10.1097/JSM.0b013e3180592a48
https://doi.org/10.1016/j.ptsp.2019.08.001
https://doi.org/10.1136/bjsports-2016-096131
https://doi.org/10.1136/bjsports-2016-096131
https://doi.org/10.3390/ijerph18052721
https://doi.org/10.5114/biolsport.2021.100360
https://doi.org/10.1080/17461391.2020.1819435

References

Mortis, T. P., White, I. R., & Crowther, M. J. (2019). Using simulation studies to evaluate
statistical methods. Statistics in medicine, 38(11), 2074-2102.
https://doi.org/10.1002/5im.8086

Moussa, 1., Leroy, A., Sauliere, G., Schipman, J., Toussaint, J.-F., & Sedeaud, A. (2019). Robust
Exponential Decreasing Index (REDI): adaptive and robust method for computing
cumulated workload. BM] Open Sport & Exercise Medicine, 5(1), €000573.
https://doi.org/10.1136 /bmjsem-2019-000573

Mujika, I., Padilla, S., Pyne, D., & Busso, T (2004). Physiological Changes Associated with the
Pre-Event Taper in Athletes. Sports Medicine, 34(13), 891-927.
https://doi.org/10.2165/00007256-200434130-00003

Murray, N. B., Gabbett, T. J., Townshend, A. D., & Blanch, P. (2017). Calculating acute: chronic
workload ratios using exponentially weighted moving averages provides a more sensitive
indicator of injury likelihood than rolling averages. British journal of sports medicine, 51(9),
749-754. https://doi.org/10.1136/bjsports-2016-097152

Mustapich, C. K. W., & Koehle, M. S. (2021). Effects of training load and non-training stress on
injury risk in collegiate ice hockey players. TRANSLATIONAL SPORTS MEDICINE,
4(6), 931-936. https://doi.org/10.1002/tsm2.297

Myklebust, G., & Bahr, R. (2005). Return to play guidelines after anterior cruciate ligament
surgery. British journal of sports medicine, 39(3), 127-131.
https://doi.org/10.1136/bjsm.2004.010900

Myklebust, G., Holm, I., Mahlum, S., Engebretsen, .., & Bahr, R. (2003). Clinical, Functional,
and Radiologic Outcome in Team Handball Players 6 to 11 Years after Anterior Cruciate
Ligament Injury:A Follow-up Study. The American Journal of Sports Medicine, 31(6), 981-989.
https://doi.org/10.1177/03635465030310063901

Nakaoka, G., Barboza, S. D., Verhagen, E., Van Mechelen, W., & Hespanhol, L. (2021). The
association between the acute: chronic workload ratio and running-related injuries in
Dutch runners: a prospective cohort study. Sports Medicine, 51, 2437-2447.
https://doi.org/10.1007 /s40279-021-01483-0

Nielsen, R. O., Bertelsen, M. L., Moller, M., Hulme, A., Mansournia, M. A., Casals, M., & Parner,
E. T. (2020). Methods matter: exploring the ‘too much, too soon’theory, part 1: causal
questions in sports injury research. British journal of sports medicine, 54, 1119-1122.
https://doi.org/10.1136/bjsports-2018-100245

Nielsen, R. O., Bertelsen, M. L., Ramskov, D., Meller, M., Hulme, A., Theisen, D., Finch, C. F.,
Fortington, L. V., Mansournia, M. A., & Parner, E. T. (2019). Time-to-event analysis for
sports injury research part 1: time-varying exposures. British journal of sports medicine, 53(1),
61-68. https://doi.org/10.1136/bjsports-2018-099408

Nielsen, R. O., Shrier, 1., Casals, M., Nettel-Aguirre, A., Moller, M., Bolling, C., Bittencourt, N.
F., Clarsen, B., Wedderkopp, N., & Soligard, T. (2020). Statement on Methods in Sport
Injury Research From the First METHODS MATTER Meeting, Copenhagen, 2019.
Journal of Orthopaedic & Sports Physical Therapy, 50(5), 226-233.
https://doi.org/10.1136/bjsports-2019-101323

Nielsen, R. O., Simonsen, N. S., Casals, M., Stamatakis, E., & Mansournia, M. A. (2020).
Methods matter and the ‘too much, too soon’theory (part 2): what is the goal of your
sports injury research? Are you describing, predicting or drawing a causal inference?

110


https://doi.org/10.1002/sim.8086
https://doi.org/10.1136/bmjsem-2019-000573
https://doi.org/10.2165/00007256-200434130-00003
https://doi.org/10.1136/bjsports-2016-097152
https://doi.org/10.1002/tsm2.297
https://doi.org/10.1136/bjsm.2004.010900
https://doi.org/10.1177/03635465030310063901
https://doi.org/10.1007/s40279-021-01483-0
https://doi.org/10.1136/bjsports-2018-100245
https://doi.org/10.1136/bjsports-2018-099408
https://doi.org/10.1136/bjsports-2019-101323

References

British journal of sports medicine, 54, 1307-1309. https://doi.org/10.1136/bjsports-2020-
102144

Nijman, S. W. J., Hoogland, J., Groenhof, T. K. J., Brandjes, M., Jacobs, J. J. L., Bots, M. L.,
Asselbergs, F. W., Moons, K. G. M., & Debray, T. P. A. (2020). Real-time imputation of
missing predictor values in clinical practice. Ewuropean Heart Journal - Digital Health, 2(1),
154-164. https://doi.org/10.1093/chjdh/ztaa016

Nunes, A. C. L., Mendes, L. A., Mota, L. d. A, Lima, P. O. d. P., & Almeida, G. P. L. (2022).
Training Load, Pain Intensity, and Functioning Can Explain Injuries in Dancers: A
Classification and Regression Tree (CART) Analysis. Medical Problems of Performing Artists,
37(2), 73-77. https://doi.org/10.21091/mppa.2022.2012

O'Brien, J., Young, W., & Finch, C. F. (2017). The use and modification of injury prevention
exercises by professional youth soccer teams. Scandinavian journal of medicine & science in
sports, 27(11), 1337-1346. https://doi.org/10.1111/sms.12756

O'Kelly, M., Anisimov, V., Campbell, C., & Hamilton, S. (2017). Proposed best practice for
projects that involve modelling and simulation. Pharmacentical statistics, 16(2), 107-113.
https://doi.org/10.1002/pst.1789

Okholm Kiryger, K., Dor, F., Guillaume, M., Haida, A., Noirez, P., Montalvan, B., & Toussaint,
J.-F. (2015). Medical reasons behind player departures from male and female professional
tennis competitions. The American Journal of Sports Medicine, 43(1), 34-40.
https://doi.org/10.1177/0363546514552996

Orchard, J. W., Meeuwisse, W., Derman, W., Higglund, M., Soligard, T, Schwellnus, M., & Bahr,
R. (2020). Sport Medicine Diagnostic Coding System (SMDCS) and the Orchard Sports
Injury and Illness Classification System (OSIICS): revised 2020 consensus versions. British
Journal of sports medicine, 54(7), 397-401. https://doi.org/10.1136/bjsports-2019-101921

Owen, A. L., Forsyth, J. J., Wong, D. P., Dellal, A., Connelly, S. P., & Chamari, K. (2015). Heart
rate—based training intensity and its impact on injury incidence among elite-level
professional soccer players. The Journal of Strength & Conditioning Research, 29(6), 1705-1712.
https://doi.org/10.1519/JSC.0000000000000810

Peng, R., & McDermott, A. (2022). tsModel: Time Series Modeling for Air Pollution and Health. In
(Version 0.6-1) [R package]. The Comprehensive R Archive Network. https://CRAN.R-

project.org/package=tsModel

Pepe, M. S., Janes, H., Longton, G., Leisenring, W., & Newcomb, P. (2004). Limitations of the
odds ratio in gauging the performance of a diagnostic, prognostic, or screening marker.
American journal of epidemiology, 159(9), 882-890. https://doi.org/10.1093/aje/kwh101

Powney, M., Williamson, P., Kirkham, J., & Kolamunnage-Dona, R. (2014). A review of the
handling of missing longitudinal outcome data in clinical trials. Trials, 15(1), 237.
https://doi.org/10.1186/1745-6215-15-237

Privacy EU. (2018). General Data Protection Agency Article 13. intersoft consulting. Retrieved 2022-
11-07 from https://gdpr-info.eu/art-13-gdpr

Provost, L. P., & Murray, S. K. (2011). The health care data guide - Learning from data for improvement.
John Wiley Sons Inc. https://www.wiley.com/en-

us/The+Health+Care+Data+Guide%3A+1 earning+from+Data+for+Improvement-p-
9780470902585

111


https://doi.org/10.1136/bjsports-2020-102144
https://doi.org/10.1136/bjsports-2020-102144
https://doi.org/10.1093/ehjdh/ztaa016
https://doi.org/10.21091/mppa.2022.2012
https://doi.org/10.1111/sms.12756
https://doi.org/10.1002/pst.1789
https://doi.org/10.1177/0363546514552996
https://doi.org/10.1136/bjsports-2019-101921
https://doi.org/10.1519/JSC.0000000000000810
https://cran.r-project.org/package=tsModel
https://cran.r-project.org/package=tsModel
https://doi.org/10.1093/aje/kwh101
https://doi.org/10.1186/1745-6215-15-237
https://gdpr-info.eu/art-13-gdpr/
https://www.wiley.com/en-us/The+Health+Care+Data+Guide%3A+Learning+from+Data+for+Improvement-p-9780470902585
https://www.wiley.com/en-us/The+Health+Care+Data+Guide%3A+Learning+from+Data+for+Improvement-p-9780470902585
https://www.wiley.com/en-us/The+Health+Care+Data+Guide%3A+Learning+from+Data+for+Improvement-p-9780470902585

References

Pustejovsky, J. (2021). clubSandwich: Cluster-Robust (Sandwich) V ariance Estimators with Small-Sample
Corrections. In (Version 0.5.3) [R package]. The Comprehensive R Archive Network.
https://CRAN.R-project.org/package=clubSandwich

R Core Team. (2021). R: A langnage and environment for statistical computing. In [Computer program].
Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org

Rago, V., Brito, J., Figueiredo, P., Costa, J., Barreira, D., Krustrup, P., & Rebelo, A. (2020).
Methods to collect and interpret external training load using microtechnology
incorporating GPS in professional football: a systematic review. Research in Sports Medicine,
28(3), 437-458. https://doi.org/10.1080/15438627.2019.1686703

Ramskov, D., Rasmussen, S., Serensen, H., Parner, E. T., Lind, M., & Nielsen, R. (2021).
Interactions between running volume and running pace on injury occutrence in
recreational runners: A secondary analysis. Journal of athletic training, 57(6), 557-563.
https://doi.org/10.4085/1062-6050-0165.21

Reinhardt, A. C., & Ray, L. N. (2003). Differentiating quality improvement from research. Applied
Nursing Research, 16(1), 2-8. https://doi.org/10.1053/apnr.2003.59000

Renfree, A., Casado, A., & McLaren, S. (2021). Re-thinking athlete training loads: would you
rather have one big rock or lots of little rocks dropped on your foot? Research in Sports
Medicine, 30(5), 573-576. https://doi.org/10.1080/15438627.2021.1906672

Rhon, D. I, Teyhen, D. S., Collins, G. S., & Bullock, G. S. (2022). Predictive models for
musculoskeletal injury risk: why statistical approach makes all the difference. BMJ Open
Sport & Exercise Medicine, 8(4), €001388. https://doi.org/10.1136/bmjsem-2022-001388

Richardson, D. B. (2009). Latency models for analyses of protracted exposures. Epideniology,
20(3), 395-399. https://doi.org/10.1097/EDE.0b013e318194646d

Riley, R. D., Snell, K. I, Ensor, J., Burke, D. L., Harrell Jr, F. E., Moons, K. G., & Collins, G. S.
(2019). Minimum sample size for developing a multivariable prediction model: PART II -
binary and time-to-event outcomes. Statistics in medicine, 38(7), 1276-1296.
https://doi.org/10.1002/sim.7992

Rossi, A., Pappalardo, L., Cintia, P., Iaia, F. M., Fernandez, J., & Medina, D. (2018). Effective
injury forecasting in soccer with GPS training data and machine learning. Plos One, 13(7),
€0201264. https://doi.org/10.1371 /journal.pone.0201264

Royston, P., & Altman, D. G. (1994). Regression using fractional polynomials of continuous
covariates: parsimonious parametric modelling. Journal of the Royal Statistical Society: Series C
(Applied Statistics), 43(3), 429-453. https://doi.org/10.2307/2986270

Royston, P., Altman, D. G., & Sauerbrei, W. (2000). Dichotomizing continuous predictors in
multiple regression: a bad idea. Statistics in medicine, 25(1), 127-141.
https://doi.org/10.1002/sim.2331

Ruddy, J. D., Cormack, S. J., Whiteley, R., Williams, M. D., Timmins, R. G., & Opar, D. A.
(2019). Modeling the risk of team sport injuries: a narrative review of different statistical
approaches. Frontiers in physiology, 10, 829. https://doi.org/10.3389/fphys.2019.00829

Ryan, M. R., Napier, C., Greenwood, D., & Paquette, M. R. (2021). Comparison of different
measures to monitor week-to-week changes in training load in high school runners.
International Journal of Sports Science & Coaching, 16(2), 370-379.
https://doi.org/10.1177/1747954120970305

112


https://cran.r-project.org/package=clubSandwich
https://www.r-project.org/
https://doi.org/10.1080/15438627.2019.1686703
https://doi.org/10.4085/1062-6050-0165.21
https://doi.org/10.1053/apnr.2003.59000
https://doi.org/10.1080/15438627.2021.1906672
https://doi.org/10.1136/bmjsem-2022-001388
https://doi.org/10.1097/EDE.0b013e318194646d
https://doi.org/10.1002/sim.7992
https://doi.org/10.1371/journal.pone.0201264
https://doi.org/10.2307/2986270
https://doi.org/10.1002/sim.2331
https://doi.org/10.3389/fphys.2019.00829
https://doi.org/10.1177/1747954120970305

References

Ronneberg, K. L. (2020). Seasonal training load quantification in men’s Norwegian premier league football:
Differences in measured external-and internal training load within microcycles and throughont the
competition phase [Master thesis, Norwegian School of Sport Sciences].
https://hdlhandle.net/11250/2660778

Sainani, K. L., Borg, D. N., Caldwell, A. R., Butson, M. L., Tenan, M. S., Vickers, A. J., Vigotsky,
A. D., Warmenhoven, J., Nguyen, R., Lohse, K. R., Knight, E. J., & Bargary, N. (2021).
Call to increase statistical collaboration in sports science, sport and exercise medicine and
sports physiotherapy. British journal of sports medicine, 55(2), 118-122.
https://doi.org/10.1136/bisports-2020-102607

Sampson, J. A., Fullagar, H., & Murray, A. (2017). Evidence is needed to determine if there is a
better way to determine the acute: chronic workload. British journal of sports medicine, 51(7),
621-622. https://doi.org/10.1136/bjsports-2016-097085

Sampson, J. A., Murray, A., Williams, S., Halseth, T, Hanisch, J., Golden, G., & Fullagar, H.
(2018). Injury risk-workload associations in NCAA American college football. Journal of
science and medicine in sport, 21(12), 1215-1220. https://doi.org/10.1016/j.jsams.2018.05.019

Sampson, J. A., Murray, A., Williams, S., Sullivan, A., & Fullagar, H. H. (2019). Subjective
Wellness, Acute: Chronic Workloads, and Injury Risk in College Football. Journal of
strength and conditioning research, 33(12), 3367-3373.
https://doi.org/10.1519/JSC.0000000000003000

Sandnes, O. T. (2021). Everything about football. TV2. Retrieved 2022-11-07 from
www.altomfotball.no

Sands, W. A., Kavanaugh, A. A., Murray, S. R., McNeal, J. R., & Jemni, M. (2017). Modern
Techniques and Technologies Applied to Training and Performance Monitoring.
International journal of sports physiology and performance, 12(s2), S2-63-S62-72.
https://doi.org/10.1123 /ijspp.2016-0405

Saw, R., Dennis, R. J., Bentley, D., & Farhart, P. (2011). Throwing workload and injury risk in
elite cricketers. British journal of sports medicine, 45(10), 805-808.
https://doi.org/10.1136/bjsm.2009.061309

Sedeaud, A., De Larochelambert, Q., Moussa, 1., Brasse, D., Berrou, J.-M., Duncombe, S.,
Antero, J., Orhant, E., Carling, C., & Toussaint, ].-F. (2020). Does an Optimal
Relationship Between Injury Risk and Workload Represented by the “Sweet Spot” Really
Exist? An Example From Elite French Soccer Players and Pentathletes. Frontiers in
physiology, 11, 1034. https://doi.org/10.3389 /fphys.2020.01034

Shaw, J. W., Mattiussi, A. M., Brown, D. D., Williams, S., Kelly, S., Springham, M., Pedlar, C. R,
& Tallent, J. (2021). Dance Exposure, Individual Characteristics, and Injury Risk over
Five Seasons in a Professional Ballet Company. Medicine & Science in Sports & Exerise,
53(11), 2290-2297. https://doi.org/10.1249 /mss.0000000000002725

Shmueli, G. (2010). To explain or to predict? Statistical science, 25(3), 289-310.
https://doi.org/10.1214/10-STS330

Shrier, I., & Platt, R. W. (2008). Reducing bias through directed acyclic graphs. BMC medical
research methodology, 8(1), 70. https://doi.org/10.1186/1471-2288-8-70

Shrier, I., Wang, C., Stokes, T, Trejovargas, J., Stovitz, S. D., & Steele, R. J. (2022). Causal
effects, workload and injury risk: The importance of specifying the research question.

113


https://hdl.handle.net/11250/2660778
https://doi.org/10.1136/bjsports-2020-102607
https://doi.org/10.1136/bjsports-2016-097085
https://doi.org/10.1016/j.jsams.2018.05.019
https://doi.org/10.1519/JSC.0000000000003000
www.altomfotball.no
https://doi.org/10.1123/ijspp.2016-0405
https://doi.org/10.1136/bjsm.2009.061309
https://doi.org/10.3389/fphys.2020.01034
https://doi.org/10.1249/mss.0000000000002725
https://doi.org/10.1214/10-STS330
https://doi.org/10.1186/1471-2288-8-70

References

Journal of science and medicine in sport, 25(7), 574-578.
https://doi.org/10.1016/j.jsams.2022.03.018

Shrier, I., Wang, C., Stokes, T, Vargas, J. T., & Steele, R. (2021). Important Nuances for Non-
Linear Modeling [Commentary|. BM] Open Sport & Exercise Medicine.
https://bmjopensem.bmj.com/content/7/3/e001119.responses#important-nuances-for-

non-linear-modeling

Siddique, J., Brown, C. H., Hedeker, D., Duan, N., Gibbons, R. D., Miranda, J., & Lavori, P. W.
(2008). Missing Data in Longitudinal Trials — Part B, Analytic Issues. Psychiatric Annals,
38(12). https://doi.org/10.3928/00485713-20081201-09

Sidey-Gibbons, J. A., & Sidey-Gibbons, C. J. (2019). Machine learning in medicine: a practical
introduction. BMC medijcal research methodology, 19(1), 64. https://doi.org/10.1186/s12874-
019-0681-4

Skazalski, C., Whiteley, R., Hansen, C., & Bahr, R. (2018). A valid and reliable method to measure
jump-specific training and competition load in elite volleyball players. Scandinavian jonrnal
of medicine & science in sports, 28(5), 1578-1585. https://doi.org/10.1111/sms.13052

Sniffen, K., Noel-London, K., Schaeffer, M., & Owoeye, O. (2022). Is Cumulative Load
Associated with Injuries in Youth Team Sport? A Systematic Review. Sports Medicine -
Open, 8(1), 117. https://doi.org/10.1186/540798-022-00516-w

Soligard, T., Schwellnus, M., Alonso, J.-M., Bahrt, R., Clarsen, B., Dijkstra, H. P., Gabbett, T.,
Gleeson, M., Higglund, M., & Hutchinson, M. R. (2016). How much is too much?(Part
1) International Olympic Committee consensus statement on load in sport and risk of
injury. British jonrnal of sports medicine, 50(17), 1030-1041.
https://doi.org/10.1136/bjsports-2016-096581

Spanos, A., Harrell, F. E., Jr, & Durack, D. T. (1989). Differential Diagnosis of Acute Meningitis:
An Analysis of the Predictive Value of Initial Observations. Jama, 262(19), 2700-2707.
https://doi.org/10.1001 /jama.1989.03430190084036

Stares, J., Dawson, B., Peeling, P., Heasman, J., Rogalski, B., Drew, M., Colby, M., Dupont, G., &
Lester, L. (2018). Identifying high risk loading conditions for in-season injury in elite
Australian football players. Journal of science and medicine in sport, 21(1), 46-51.
https://doi.org/10.1016/j.jsams.2017.05.012

Staunton, C. A., Abt, G., Weaving, D., & Wundersitz, D. W. T. (2021). Misuse of the term ‘load’
in sport and exercise science. Journal of science and medicine in sport.
https://doi.org/10.1016/}.jsams.2021.08.013

Stern, B. D., Hegedus, E. J., & Lai, Y.-C. (2020). Injury prediction as a non-linear system. Physical
Therapy in Sport, 41, 43-48. https://doi.org/10.1016/.ptsp.2019.10.010

Stern, B. D., Hegedus, E. J., & Lai, Y.-C. (2021). State dependence: Does a prior injury predict a
future injury? Physical Therapy in Sport, 49, 8-14.
https://doi.org/10.1016/}.ptsp.2021.01.008

Sterne, J. A., White, I. R., Carlin, J. B., Spratt, M., Royston, P., Kenward, M. G., Wood, A. M., &
Carpenter, ]. R. (2009). Multiple imputation for missing data in epidemiological and

clinical research: potential and pitfalls. Bz, 338, b2393.
https://doi.org/10.1136/bmj.b2393

114


https://doi.org/10.1016/j.jsams.2022.03.018
https://bmjopensem.bmj.com/content/7/3/e001119.responses#important-nuances-for-non-linear-modeling
https://bmjopensem.bmj.com/content/7/3/e001119.responses#important-nuances-for-non-linear-modeling
https://doi.org/10.3928/00485713-20081201-09
https://doi.org/10.1186/s12874-019-0681-4
https://doi.org/10.1186/s12874-019-0681-4
https://doi.org/10.1111/sms.13052
https://doi.org/10.1186/s40798-022-00516-w
https://doi.org/10.1136/bjsports-2016-096581
https://doi.org/10.1001/jama.1989.03430190084036
https://doi.org/10.1016/j.jsams.2017.05.012
https://doi.org/10.1016/j.jsams.2021.08.013
https://doi.org/10.1016/j.ptsp.2019.10.010
https://doi.org/10.1016/j.ptsp.2021.01.008
https://doi.org/10.1136/bmj.b2393

References

Steyerberg, E. W., Eijkemans, M. J. C., & Habbema, J. D. F. (1999). Stepwise Selection in Small
Data Sets: A Simulation Study of Bias in Logistic Regression Analysis. Journal of clinical
epidemiology, 52(10), 935-942. https://doi.org/10.1016/S0895-4356(99)00103-1

Stone, C. J. (1986). [Generalized Additive Models|: Comment. Statistical science, 1(3), 312-314.
https://doi.org/10.1214/ss/1177013607

Stone, C. J., & Koo, C.-Y. (1985). Additive splines in statistics. Proceedings of the American Statistical

Association., 45, 45-49. https:/ /www.markdiamond.com.au/download/Stone-and-Koo-
1986-A4.pdf

Stovitz, S. D., & Shrier, 1. (2019). Causal inference for clinicians. BM] evidence-based medicine.
https://doi.ore/10.1136/bmijebm-2018-111069

Suzuki, E., Shinozaki, T., & Yamamoto, E. (2020). Causal diagrams: pitfalls and tips. Journal of
epidemiology, 30(4), 153-162. https://doi.org/10.2188 /jea.JE20190192

Sylvestre, M.-P., & Abrahamowicz, M. (2008). Comparison of algorithms to generate event times
conditional on time-dependent covariates. Statistics in medicine, 27(14), 2618-2634.
https://doi.org/10.1002/sim.3092

Theisen, D., Frisch, A., Malisoux, L., Urhausen, A., Croisier, J.-L., & Seil, R. (2013). Injury risk is
different in team and individual youth sport. Journal of science and medicine in sport, 16(3),
200-204. https://doi.org/10.1016/}.jsams.2012.07.007

Theron, G. F. (2020). The use of Data Mining for Predicting Injuries in Professional Football Players
[Master thesis, University of Oslo]. http://urn.nb.no/URN:NBN:no-81831

Thornton, H. R., Delaney, J. A., Duthie, G. M., & Dascombe, B. J. (2017). Importance of various
training-load measures in injury incidence of professional rugby league athletes.
International journal of sports physiology and performance, 12(6), 819-824.
https://doi.org/10.1123 /ijspp.2016-0326

Thoseby, B., Govus, A., Clarke, A., Middleton, K., & Dascombe, B. (2022). Temporal
distribution of peak running demands relative to match minutes in elite football [journal
article]. Biology of sport, 39(4), 985-994. https://doi.org/10.5114/biolsport.2022.110745

Tierney, N. (2017). visdat: Visualising whole data frames. Journal of Open Source Software, 2(16), 355.
https://doi.org/10.21105/joss.00355

Toresdahl, B. G., Metzl, J. D., Kinderknecht, J., McElheny, K., de Mille, P., Quijano, B., &
Fontana, M. A. (2022). Training patterns associated with injury in New York City
Marathon runners. British journal of sports medicine, bjsports-2022-105670.
https://doi.org/10.1136/bjsports-2022-105670

Touloumis, A. (2016). Simulating Correlated Binary and Multinomial Responses under Marginal
Model Specification: The SimCorMultRes Package. The R Journal, 8(2), 79-91.
https://doi.org/10.32614/R]-2016-034

Tysoe, A., Moore, L. S., Ranson, C., McCaig, S., & Williams, S. (2020). Bowling loads and injury
risk in male first class county cricket: Is ‘differential load’ an alternative to the acute-to-
chronic workload ratio? Journal of science and medicine in sport, 23(6), 569-573.
https://doi.org/10.1016/j.jsams.2020.01.004

UCLA. (2021). Missing values | STATA learning modules. UCLA: Statistical Consulting Group.
Retrieved 2021-03-24 from https://stats.idre.ucla.edu/stata/modules/missing-values

115


https://doi.org/10.1016/S0895-4356(99)00103-1
https://doi.org/10.1214/ss/1177013607
https://www.markdiamond.com.au/download/Stone-and-Koo-1986-A4.pdf
https://www.markdiamond.com.au/download/Stone-and-Koo-1986-A4.pdf
https://doi.org/10.1136/bmjebm-2018-111069
https://doi.org/10.2188/jea.JE20190192
https://doi.org/10.1002/sim.3092
https://doi.org/10.1016/j.jsams.2012.07.007
http://urn.nb.no/URN:NBN:no-81831
https://doi.org/10.1123/ijspp.2016-0326
https://doi.org/10.5114/biolsport.2022.110745
https://doi.org/10.21105/joss.00355
https://doi.org/10.1136/bjsports-2022-105670
https://doi.org/10.32614/RJ-2016-034
https://doi.org/10.1016/j.jsams.2020.01.004
https://stats.idre.ucla.edu/stata/modules/missing-values/

References

Udby, C. L., Impellizzeri, F. M., Lind, M., & Nielsen, R. @. (2020). How has workload been
defined and how many workload-related exposures to injury are included in published
sports injury articles? A scoping review. Journal of Orthopaedic & Sports Physical Therapy,
50(10), 538-548. https://doi.org/10.2519 /jospt.2020.9766

Ullah, S., Gabbett, T. J., & Finch, C. F. (2014). Statistical modelling for recurrent events: an
application to sports injuries. British journal of sports medicine, 48(17), 1287-1293.
https://doi.org/10.1136/bjsports-2011-090803

Ulrich, J. (2020). TTR: Technical Trading Rules. In (Version 0.23) [R package]. The Comprehensive
R Archive Network. https://CRAN.R-project.org/package=TTR

Van Buuren, S. (2018). Flexible imputation of missing data (2nd ed.). Chapman and Hall/CRC.
https://stefvanbuuren.name/fimd

van der Ploeg, T., Austin, P. C., & Steyerberg, E. W. (2014). Modern modelling techniques are
data hungty: a simulation study for predicting dichotomous endpoints. BMC medical
research methodology, 14(1), 137. https://doi.org/10.1186/1471-2288-14-137

van Ginkel, J. R,, Linting, M., Rippe, R. C., & van der Voort, A. (2020). Rebutting existing
misconceptions about multiple imputation as a method for handling missing data. Journal
of personality assessment, 102(3), 297-308. https://doi.org/10.1080/00223891.2018.1530680

van Mechelen, W., Hlobil, H., & Kemper, H. C. G. (1992). Incidence, Severity, Aetiology and
Prevention of Sports Injuries. Sports Medicine, 14(2), 82-99.
https://doi.org/10.2165/00007256-199214020-00002

van Smeden, M., de Groot, ]. A., Moons, K. G., Collins, G. S., Altman, D. G., Eijkemans, M. J.,
& Reitsma, J. B. (2016). No rationale for 1 variable per 10 events critetion for binary
logistic regression analysis. BMC medical research methodology, 16(1), 163.
https://doi.org/10.1186/s12874-016-0267-3

Vanrenterghem, J., Nedergaard, N. J., Robinson, M. A., & Drust, B. (2017). Training L.oad
Monitoring in Team Sports: A Novel Framework Separating Physiological and
Biomechanical Load-Adaptation Pathways. Sports Medicine, 47(11), 2135-2142.
https://doi.org/10.1007 /s40279-017-0714-2

Vatley, M. C., Fairweather, I. H., & Aughey1, Robert J. (2012). Validity and reliability of GPS for
measuring instantaneous velocity during acceleration, deceleration, and constant motion.
Journal of sports sciences, 30(2), 121-127. https://doi.org/10.1080/02640414.2011.627941

Vaughan, D. (2021). slider: Sliding Window Functions. In (Version 0.2.1) [R package]. The
Comprehensive R Archive Network. https://CRAN.R-project.org/package=slider

Verheul, J., Nedergaard, N. J., Vanrenterghem, J., & Robinson, M. A. (2020). Measuring
biomechanical loads in team sports — from lab to field. Science and Medicine in Football, 4(3),
246-252. https://doi.org/10.1080/24733938.2019.1709654

Vink, G. (2016). Towards a standardized evaluation of multiple imputation routines. Retrieved 2022-11-07
from
https://www.gerkovink.com/published/%5Bworking%51D%20Towards%202%20standa
rdized%20evaluation%200f%20multiple%20imputation%20routines.pdf

Visnes, H., Fenstad, A. M., Stenvik, S., & Dybvik, E. (2022). Nasjonalt Korsbdndsregister
Arsrapport for 2021 med plan for forbedringstiltak.
https://www.kvalitetsregistre.no/sites /default/files /2022~
09/%C3%85rsrapport%202021%20Nasjonalt%20Korsb%C3%A5ndregister.pdf

116



https://doi.org/10.2519/jospt.2020.9766
https://doi.org/10.1136/bjsports-2011-090803
https://cran.r-project.org/package=TTR
https://stefvanbuuren.name/fimd/
https://doi.org/10.1186/1471-2288-14-137
https://doi.org/10.1080/00223891.2018.1530680
https://doi.org/10.2165/00007256-199214020-00002
https://doi.org/10.1186/s12874-016-0267-3
https://doi.org/10.1007/s40279-017-0714-2
https://doi.org/10.1080/02640414.2011.627941
https://cran.r-project.org/package=slider
https://doi.org/10.1080/24733938.2019.1709654
https://www.gerkovink.com/published/%5Bworking%5D%20Towards%20a%20standardized%20evaluation%20of%20multiple%20imputation%20routines.pdf
https://www.gerkovink.com/published/%5Bworking%5D%20Towards%20a%20standardized%20evaluation%20of%20multiple%20imputation%20routines.pdf
https://www.kvalitetsregistre.no/sites/default/files/2022-09/%C3%85rsrapport%202021%20Nasjonalt%20Korsb%C3%A5ndregister.pdf
https://www.kvalitetsregistre.no/sites/default/files/2022-09/%C3%85rsrapport%202021%20Nasjonalt%20Korsb%C3%A5ndregister.pdf

References

Von Hippel, P. T. (2009). 8. How to impute interactions, squares, and other transformed
variables. Sociological methodology, 39(1), 265-291. https://doi.org/10.1111/].1467-

Wang, A., Healy, J., Hyett, N., Berthelot, G., & Okholm Kryger, K. (2021). A systematic review
on methodological variation in acute: chronic workload research in elite male football
players. Science and Medicine in Football, 5(1), 18-34.
https://doi.org/10.1080/24733938.2020.1765007

Wang, C., Stokes, T, Steele, R., & Shrier, I. (2021). 118 Application of the acute:chronic
workload ratio in children. British journal of sports medicine, 55(Suppl 1), A47-A48.
https://doi.org/10.1136 /bjsports-2021-10C.110

Wang, C., Stokes, T., Vargas, J. T, Steele, R., Wedderkopp, N., & Shrier, I. (2021). Injury risk
increases minimally over a large range of the acute-chronic workload ratio in children.
American journal of epidemiology. https://doi.org/10.1093 /aje/kwab280

Wang, C., Stokes, T., Vargas, J. T, Steele, R., Wedderkopp, N., & Shrier, I. (2022). Predicting
Injury Risk Over Changes in Physical Activity in Children Using the Acute:Chronic
Workload Ratio. Awserican journal of epidemiology, 191(4), 665-673.
https://doi.org/10.1093 /aje/kwab280

Wang, C., Vargas, J. T., Stokes, T., Steele, R., & Shrier, I. (2020). Analyzing Activity and Injury:
Lessons Learned from the Acute: Chronic Workload Ratio. Sports Medicine, 1-12.
https://doi.org/10.1007 /s40279-020-01280-1

Wang, C. S., Tyrel, Steele, R., Wedderkopp, N., & shrier, 1. (2020). Implementing multiple
imputation for missing data in longitudinal studies when models are not feasible: A
tutorial on the random hot deck approach. arXiv preprint methdology.
https://doi.org/arXiv:2004.06630v4

Ward, P., Coutts, A. J., Pruna, R., & McCall, A. (2018). Putting the “I”” Back in Team. International
Journal of sports physiology and performance, 13(8), 1107-1111.
https://doi.org/10.1123 /ijspp.2018-0154

Warren, A., Williams, S., McCaig, S., & Trewartha, G. (2018). High acute: chronic workloads are
associated with injury in England & Wales Cricket Board Development Programme fast
bowlers. Journal of science and medicine in sport, 21(1), 40-45.
https://doi.org/10.1016/}.jsams.2017.07.009

Weaving, D., Dalton-Barron, N., MclLaren, S., Scantlebury, S., Cummins, C., Roe, G., Jones, B.,
Beggs, C., & Abt, G. (2020). The relative contribution of training intensity and duration
to daily measures of training load in professional rugby league and union. Jourmal of sports
sciences, 38(14), 1674-1681. https://doi.org/10.1080/02640414.2020.1754725

Weiss, K. J., Allen, S. V., McGuigan, M. R., & Whatman, C. S. (2017). The relationship between
training load and injury in men’s professional basketball. International jonrnal of sports
Pphysiology and performance, 12(9), 1238-1242. https://doi.org/10.1123 /ijspp.2016-0726

West, S., Williams, S., Cazzola, D., Cross, M., Kemp, S., & Stokes, K. (2021). 119 The
acute:chronic workload ratio: why one size does not fit all. British journal of sports medicine,
55(Suppl 1), A48-A48. https://doi.org/10.1136/bjsports-2021-I0C.111

West, S. W., Clubb, J., Torres-Ronda, L., Howells, D., Leng, E., Vescovi, J. D., Carmody, S.,
Posthumus, M., Dalen-Lorentsen, T, & Windt, J. (2021). More than a Metric: How

117


https://doi.org/10.1111/j.1467-9531.2009.01215.x
https://doi.org/10.1111/j.1467-9531.2009.01215.x
https://doi.org/10.1080/24733938.2020.1765007
https://doi.org/10.1136/bjsports-2021-IOC.110
https://doi.org/10.1093/aje/kwab280
https://doi.org/10.1093/aje/kwab280
https://doi.org/10.1007/s40279-020-01280-1
https://doi.org/arXiv:2004.06630v4
https://doi.org/10.1123/ijspp.2018-0154
https://doi.org/10.1016/j.jsams.2017.07.009
https://doi.org/10.1080/02640414.2020.1754725
https://doi.org/10.1123/ijspp.2016-0726
https://doi.org/10.1136/bjsports-2021-IOC.111

References

Training LLoad is Used in Elite Sport for Athlete Management. International journal of sports
medicine, 42(04), 300-306. https://doi.org/10.1055/a-1268-8791

West, S. W., Williams, S., Cazzola, D., Kemp, S., Cross, M. J., & Stokes, K. A. (2020). Training
load and injury risk in elite rugby union: the largest investigation to date. Infernational
Journal of sports medicine. https://doi.org/10.1055/a-1300-2703

Weston, S., & Microsoft. (2022a). doParallel: Foreach Parallel Adaptor for the 'parallel’ Package. In
(Version 1.0.17) [R package]|. The Comprehensive R Archive Network. https://CRAN.R-
project.org/package=doParallel

Weston, S., & Microsoft. (2022b). foreach: Provides Foreach Looping Constract. In (Version 1.5.2) [R
package]. The Comprehensive R Archive Network. https://CRAN.R-

roject.ore/package=foreach

Westreich, D., & Greenland, S. (2013). The Table 2 Fallacy: Presenting and Interpreting
Confounder and Modifier Coefficients. American journal of epidemiology, 177(4), 292-298.
https://doi.org/10.1093 /aje/kws412

Wheeler, D. J., & Chambers, D. S. (2010). Understanding Statistical Process Control (3td ed.). SPC
Press. https://www.spcpress.com/book understanding statistical process control.php
White, I. R., & Catlin, J. B. (2010). Bias and efficiency of multiple imputation compared with

complete-case analysis for missing covariate values. Statistics in medicine, 29(28), 2920-2931.
https://doi.org/10.1002/sim.3944

White, I. R., Royston, P., & Wood, A. M. (2011). Multiple imputation using chained equations:
issues and guidance for practice. Statistics in medicine, 30(4), 377-399.
https://doi.org/10.1002/sim.4067

Wickham, H. (2019). Tzdyverse. Retrieved 2022-11-07 from https://www.tidyverse.org

Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L. D. A,, Francois, R., Grolemund,
G., Hayes, A., Henry, L., & Hester, J. (2019). Welcome to the Tidyverse. Journal of Open
Source Software, 4(43), 1686. https://doi.org/10.21105/j0ss.01686

Wilkinson, M., & Akenhead, R. (2013). Violation of Statistical Assumptions in a Recent
Publication? International journal of sports medicine, 34(03), 281. https://doi.org/10.1055/s-
0032-1331775

Williams, S., Trewartha, G., Cross, M. J., Kemp, S. P., & Stokes, K. A. (2017). Monitoring what
matters: a systematic process for selecting training-load measures. International jonrnal of
sports physiology and performance, 12(s2), S2-101-5S102-106.
https://doi.org/10.1123 /ijspp.2016-0337

Williams, S., Trewartha, G., Kemp, S. P., Brooks, J. H., Fuller, C. W., Taylor, A. E., Cross, M. J.,
& Stokes, K. A. (2016). Time loss injuries compromise team success in Elite Rugby
Union: a 7-year prospective study. British journal of sports medicine, 50(11), 651-656.
https://doi.org/10.1136/bjsports-2015-094798

Williams, S., West, S., Cross, M. J., & Stokes, K. A. (2017). Better way to determine the acute:
chronic workload ratio? British journal of sports medicine, 51(3), 209-210.
https://doi.org/10.1136/bjsports-2016-096589

Windt, J., Ardern, C. L., Gabbett, T. J., Khan, K. M., Cook, C. E., Sporer, B. C., & Zumbo, B. D.
(2018). Getting the most out of intensive longitudinal data: a methodological review of

118


https://doi.org/10.1055/a-1268-8791
https://doi.org/10.1055/a-1300-2703
https://cran.r-project.org/package=doParallel
https://cran.r-project.org/package=doParallel
https://cran.r-project.org/package=foreach
https://cran.r-project.org/package=foreach
https://doi.org/10.1093/aje/kws412
https://www.spcpress.com/book_understanding_statistical_process_control.php
https://doi.org/10.1002/sim.3944
https://doi.org/10.1002/sim.4067
https://www.tidyverse.org/
https://doi.org/10.21105/joss.01686
https://doi.org/10.1055/s-0032-1331775
https://doi.org/10.1055/s-0032-1331775
https://doi.org/10.1123/ijspp.2016-0337
https://doi.org/10.1136/bjsports-2015-094798
https://doi.org/10.1136/bjsports-2016-096589

References

workload—injury studies. BM] open, 8(10), €022626. https://doi.org/10.1136/bmjopen-
2018-022626

Windt, J., & Gabbett, T. J. (2017). How do training and competition workloads relate to injury?
The workload—injury aetiology model. British journal of sports medicine, 51(5), 428-435.
https://doi.org/10.1136/bjsports-2016-096040

Windyt, J., Gabbett, T. J., Ferris, D., & Khan, K. M. (2017). Training load--injury paradox: is
greater preseason participation associated with lower in-season injury risk in elite rugby
league players? British journal of sports medicine, 51(8), 645-650.
https://doi.org/10.1136/bjsports-2016-095973

World Medical Association. (2013). World Medical Association Declaration of Helsinki: ethical
principles for medical research involving human subjects. Jama, 310(20), 2191-2194.

Xiao, M., Nguyen, J. N., Hwang, C. E., & Abrams, G. D. (2021). Increased Lower Extremity
Injury Risk Associated With Player Load and Distance in Collegiate Women’s Soccer.
Orthopaedic jonrnal of sports medicine, 9(10). https://doi.org/10.1177/23259671211048248

Xiao, X., White, E. P., Hooten, M. B., & Durham, S. L. (2011). On the use of log-transformation
vs. nonlinear regression for analyzing biological power laws. Ecology, 92(10), 1887-1894.
https://doi.org/10.1890/11-0538.1

Zeileis, A., & Grothendieck, G. (2005). zoo: S3 infrastructure for regular and irregular time series.
Journal of Statistical Software, 14(6), 1-27. https://doi.org/10.18637/jss.v014.i06

Zouhal, H., Boullosa, D., Ramirez-Campillo, R., Ali, A., & Granacher, U. (2021). Acute: Chronic
Workload Ratio: Is There Scientific Evidence? Frontiers in physiology, 12.
https://doi.org/10.3389/fphys.2021.66968

Zumeta-Olaskoaga, L., Weigert, M., Larruskain, J., Bikandi, E., Setuain, I., Lekue, ]., Kiichenhoff,
H., & Lee, D.-J. (2021). Prediction of sports injuries in football: a recurrent time-to-event
approach using regularized Cox models. AStLA Adpances in Statistical Analysis.
https://doi.org/10.1007/s10182-021-00428-2

119


https://doi.org/10.1136/bmjopen-2018-022626
https://doi.org/10.1136/bmjopen-2018-022626
https://doi.org/10.1136/bjsports-2016-096040
https://doi.org/10.1136/bjsports-2016-095973
https://doi.org/10.1177/23259671211048248
https://doi.org/10.1890/11-0538.1
https://doi.org/10.18637/jss.v014.i06
https://doi.org/10.3389/fphys.2021.66968
https://doi.org/10.1007/s10182-021-00428-2

Appendices

7 Appendices
Appendix I: Papers






Appendices

Paper |






% Routledge

Taylor & Francis Group

SCIENCE &

J\/M_ED.IN% Science and Medicine in Football

FOOTBALL

e

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/rsmf20

Handling and reporting missing data in training
load and injury risk research

L. K. Bache-Mathiesen, Thor Einar Andersen, Benjamin Clarsen & Morten
Wang Fagerland

To cite this article: L. K. Bache-Mathiesen, Thor Einar Andersen, Benjamin Clarsen & Morten
Wang Fagerland (2021): Handling and reporting missing data in training load and injury risk
research, Science and Medicine in Football, DOI: 10.1080/24733938.2021.1998587

To link to this article: https://doi.org/10.1080/24733938.2021.1998587

A
h View supplementary material &'

@ Published online: 17 Nov 2021.

74
Submit your article to this journal &'

alil Article views: 115

A
& View related articles (&'

@ View Crossmark data (&'

CrossMark

Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalinformation?journalCode=rsmf20


https://www.tandfonline.com/action/journalInformation?journalCode=rsmf20
https://www.tandfonline.com/loi/rsmf20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/24733938.2021.1998587
https://doi.org/10.1080/24733938.2021.1998587
https://www.tandfonline.com/doi/suppl/10.1080/24733938.2021.1998587
https://www.tandfonline.com/doi/suppl/10.1080/24733938.2021.1998587
https://www.tandfonline.com/action/authorSubmission?journalCode=rsmf20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=rsmf20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/24733938.2021.1998587
https://www.tandfonline.com/doi/mlt/10.1080/24733938.2021.1998587
http://crossmark.crossref.org/dialog/?doi=10.1080/24733938.2021.1998587&domain=pdf&date_stamp=2021-11-17
http://crossmark.crossref.org/dialog/?doi=10.1080/24733938.2021.1998587&domain=pdf&date_stamp=2021-11-17

SCIENCE AND MEDICINE IN FOOTBALL
https://doi.org/10.1080/24733938.2021.1998587

Routledge

Taylor & Francis Group

390310y

[ W) Check for updates

Handling and reporting missing data in training load and injury risk research

L. K. Bache-Mathiesen(®?, Thor Einar Andersen

2, Benjamin Clarsen

@b and Morten Wang Fagerland (¢

20slo Sports Trauma Research Centre, Department of Sports Medicine, Norwegian School of Sports Sciences, Oslo, Norway; *Centre for Disease
Burden, Norwegian Institute of Public Health, Bergen, Norway; “Oslo Centre for Biostatistics and Epidemiology, Research Support Services, Oslo

University Hospital, Oslo, Norway

ABSTRACT

Purpose: To map the current practice of handling missing data in the field of training load and injury risk
and to determine how missing data in training load should be handled.

Methods: A systematic review of the training load and injury risk literature was performed to determine
how missing data are reported and handled. We ran simulations to compare the accuracy of modelling
a predetermined relationship between training load and injury risk following handling missing data with
different methods. The simulations were based on a Norwegian Premier League men'’s football dataset
(n = 39). Internal training load was measured with the session Rating of Perceived Exertion (sRPE). External
training load was the total distance covered measured by a global positioning systems (GPS) device.
Results: Only 37 (34%) of 108 studies reported whether training load had any missing observations.
Multiple Imputation using Predicted Mean Matching was the best method of handling missing data
across multiple scenarios.

Conclusion: Studies of training load and injury risk should report the extent of missing data, and how
they are handled. Multiple Imputation with Predicted Mean Matching should be used when imputing
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sRPE and GPS variables.

Introduction

Sport injuries are detrimental to athlete health and perfor-
mance (Hagglund et al. 2013), and are a considerable cost for
clubs and sport organizations (Ferndndez-Cuevas et al. 2010).
With the ultimate goal of injury prevention, researchers in
sports and medicine science strive to identify risk factors for
injury (Bahr and Krosshaug 2005). One potential, modifiable risk
factor is training load (Windt and Gabbett 2017). To assess the
relationship between training load and injury risk, researchers
have often collected longitudinal sports data and performed
regression modelling (Windt et al. 2018). The ability of such
analyses to determine whether training load affects the risk of
injury, and the level of certainty surrounding the estimates,
depends on the study design (Lang 2005; Shmueli 2010), sta-
tistical choices (Lang 2004; Mansournia et al. 2021), and sample
size (statistical power, Bahr and Holme 2003). So far, sample
sizes in the field of training load and injury research have been
criticized (Griffin et al. 2020; Andrade et al. 2020).

A handful of athletes may have hundreds of training load
values each (De Leeuw et al. 2021). When analysing the rela-
tionship between training load and injury risk, the main factor
affecting statistical power is the number of injuries (Bahr and
Holme 2003). In the field of sports injuries, associations are
often small to moderate (Bahr 2016), which requires larger
sample sizes (number of events) than strong associations.
A sample size calculation in Bahr and Holme (2003) suggested
at least 200 injuries. While determining required number of
events is too complex to boil down to a simple rule of thumb

(Van Smeden et al. 2016; Riley et al. 2019; Nielsen et al. 2019),
the number needed is likely to be higher than currently seen in
training load and injury risk studies (Griffin et al. 2020).
Therefore, it is critical to retain as many injuries as possible.

In longitudinal data collection, missing data is almost inevi-
table (Karahalios et al. 2012). In Enright et al. (2019), injuries
(53%) were excluded from analyses due to inconsistent and/or
missing data in training load. Similarly, in a 3-season football
cohort, 124 (81%) out of 154 eligible injuries were excluded due
to insufficient training load data (Lolli et al. 2020). Therefore,
missing observations in training load, unless dealt with appro-
priately, introduce missing injury data. Missing training load
data may, depending on the mechanism for missing data,
also introduce selection bias. Practices such as removing ath-
letes transferred to other clubs (Moreno-Pérez et al. 2020),
including only those who completed > 80% of surveys
(Theisen et al. 2013; Albrecht et al. 2020), or those who com-
pleted a full season (Fanchini et al. 2018), remove consenting
participants with partial data and reduces the external validity
of results. There is, however, no consensus on how to handle
missing data in training load research (Mccall et al. 2018).
Ideally, missing data should be handled in a way that retains
the properties of the observed data and does not affect study
conclusions — as though there were no missing data to begin
with.

Therefore, the purpose of this study was to determine the
best methods of handling missing data in training load and
injury research. First, we performed a systematic review of the
training load and injury risk literature to map current practices
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for handling missing data and to guide our choices of methods.
We then compared the ability of different methods of imputing
and deleting missing observations to accurately model
a known relationship between training load and injury risk.
Based on our results, we propose a best-practice guide to
reporting and handling missing data in training load research.

Materials and methods

Systematic review of missing data in training load and
injury studies

For an estimate of the current practice of reporting and hand-
ling missing data, we performed a systematic review of the field
of training load and injury risk. Inclusion criteria were as follows:

e Studied a sports population

e Analysed training load or relative training load as the
exposure of interest

e Analysed injury or health problem risk as the outcome

e For a picture of the latest decade, year of publication >
2010

Studies were extracted from the most recent, relevant reviews
(Eckard et al. 2018; Windt et al. 2018; Griffin et al. 2020; Maupin
et al. 2020; Andrade et al. 2020; Udby et al. 2020; Dalen-
Lorentsen et al. 2021). To achieve a more accurate picture of
current reporting practices, the PubMed database was also
searched for training load and injury risk studies published
between 2019 and 2021. The search terms were ‘training load
AND injury’, ‘workload AND injury’, "ACWR’, and ‘acute: chronic’.
The search yielded 125 studies (Bache-Mathiesen 2021b). Of
these, 17 were published before 2010 and excluded from the
analyses.

We calculated the proportion of studies reporting
whether they had missing observations in the training
load measure, by year and overall. For those with missing
data, we determined the mean amount of missing obser-
vations in the training load variable and the methods used
to handle missing data. We used our findings to determine
which methods should be compared in the simulation.

Comparison of methods for handling missing data

To compare the performance of different statistical
approaches, it is common to run a simulation (Morris et al.
2019). In our study, we constructed a relationship between
training load and injury using real, observed training load
measures from a football dataset. In the dataset with this
known relationship between training load and injury, we
deleted different amounts of training load observations.
The methods we wished to compare were used to impute
or delete the missing training load data. When the same
analysis was used to determine the relationship between
training load and injury - the only difference from one
analysis to another was the choice of method for handling
missing data - the amount of deviation from the known
relationship could be measured, and the methods compared
(Vink 2016).

Observed sports data

Participants

A total of 42 male professional football players from
a Norwegian Premier League team (mean age 26 years, stan-
dard deviation (SD): 4) were followed for 323 days during the
2019 season (Theron 2020).

The study was approved by the Ethical Review Board of the
Norwegian School of Sport Sciences, and the Norwegian Centre
for Research Data (722773). All participants provided informed
written consent.

Training load definition

Session rating of perceived exertion. Daily, within 30 minutes
after completion of each training session or match (Renneberg
2020), the players reported the duration of each sporting activ-
ity and their internal load expressed as Rating of Perceived
Exertion (RPE, Borg et al. 1987) on the Foster et al. (2001)
scale, using a mobile application (Athlete Monitoring,
Moncton, Canada). For each activity, the RPE was multiplied
by the duration of the activity in minutes to derive the session
RPE (sRPE, Foster et al. 2001).

Global positioning systems. Global Positioning Systems
(GPS) were used to collect external training load measures
(Bourdon et al. 2017), with 10 Hz sampling rate (Catapult
OptimEye X4, Catapult Sports, Australia). Each player always
used the same device, which was applied 30 minutes prior to
start of the training sessions and matches (Renneberg 2020).
Exported variables included (1) total distance covered, (2) dis-
tance covered above 20 km/h (high-speed running distance),
(3) distance covered above 25 km/h (sprint distance), and (4)
the squared instantaneous rate of change in acceleration for
three vectors of direction (x, y, and z axes) divided by 100
(player load, Boyd et al. 2011).

As there is no consensus in the literature on definitions of
high-speed or sprint-speed measured by GPS devices (Dwyer
and Gabbett 2012), and only total distance had the same defini-
tion across training load and injury risk studies (Andrade et al.
2020; Maupin et al. 2020), it was the main focus of our study.

Additional variables. Table 1 shows all variables included
in the study. Additional variables included player ID (anon-
ymised), date of activity, whether the load was during
a match (yes/no), and the micro-cycle-day (M, M-1, M-2,
M-3, M-4, M + 2, M + 1). A micro-cycle consisted of all
activity before a new match (M, Bache-Mathiesen et al.
2021). That is, recovery days after the previous match as
well as the training days before the next match. Days
denoted with negative numbers are training days before
the next match (M-1; being the day before the match,
M-2; two days before a match, and so on). Days with
positive numbers are recovery and training days after
a match (M + 1; being the day after a match, M + 2; two
days after a match). On recovery days, players only reported
activity parameters if they participated in an activity, and so,
if total distance, RPE or session duration was missing on
M + 1 or M + 2 days, they were assumed to be 0.



Table 1. Overview of variables included in the study.
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Dataset Variable Type Units
SRPE Player ID Nominal Integer
Date of activity Date Year-Month-Day (YYYY-MM-DD)
Match Logical Yes/No
Micro-cycle-day® Nominal M, M-1, M-2, M-3, M-4, M+ 2, M + 1
RPE Continuous 0,1,2,3,4,56,7,8,9,10
Minutes in activity Continuous Minutes
Playing Position® Nominal Central Defender, Fullback, Central Midfielder, Winger, Striker, Goal Keeper
GPS Player ID Nominal Integer
Date of activity Date Year-Month-Day (YYYY-MM-DD)
Match Logical Yes/No
Micro-cycle-day® Nominal M, M-1, M-2, M-3, M-4, M+ 2, M + 1
Total distance Continuous m/day
High-speed running distance Continuous m/day
Sprint distance Continuous m/day
Player load Continuous m/day
Playing Position® Nominal Central Defender, Fullback, Central Midfielder, Winger, Striker, Goal Keeper
SRPE® Continuous Minutes*RPE (Arbitrary Units)

Abbreviations: RPE, Rating of Perceived Exertion; sRPE, session Rating of Perceived Exertion; m/day, meters per day
?Days denoted with negative numbers are training days before the next match (M-1; being the day before the match, M-2; two days before a match, and so on). Days
with positive numbers are recovery and training days after a match (M + 1; being the day after a match, M + 2; two days after a match).

PThese variables were only available in select analyses

Simulations

Comparison of imputation methods

We performed stochastic simulations to compare different
methods of imputing and deleting missing data in training
load before modelling the relationship between training load
and injury risk. A detailed description of the simulation process
and equations, as well as justifications for our methodological
choices, is available as an appendix (supplemental file I). See
Box 1 for a summary of the simulation steps.

Box 1. A summary of the simulation steps.

(1) Add missing drawn under MCAR and MAR from the original dataset.

(2) Impute or delete missing data using five different methods.

(3) Fit logistic regression models with injury as the outcome and training load as
the explanatory variable on the imputed or missing-omitted data.

Steps 1-3 was repeated 1 900 times for acceptable accuracy according to a
sample size calculation (Morris et al. 2019).

First, all missing observations was removed from all variables in
the datasets. The final datasets had 4 782 sRPE values and 2 292
total distance values of Gaussian distributions (supplemental file Il
Figure S1). Simulated injuries were added to the datasets with
a predefined, linear relationship between training load and the
probability of injury. This resulted in 1 333 and 859 injuries in the
two datasets, respectively. Logistic regression was run with injury
as the response variable and training load as the explanatory
variable to determine performance when no data were missing.
We caution performing such analyses in a real study; it is unrea-
sonable to assume the relationship between training load and
injury risk is as simple as in this simulation, and more advanced
methods for dealing with repeated measures and recurrent events
are needed (Nielsen et al. 2020).

Imputation strategy for a derived variable

It is unknown how a derived variable such as sRPE should
be imputed (Van Buuren 2018; Benson et al. 2021).
Simulations were performed to compare four strategies of
imputing sRPE

L]

Impute, then transform (Von Hippel 2009). In this method,
the product (sRPE) is not available to inform the imputa-
tion model. However, it may reduce collinearity issues.
Transform, then impute (Von Hippel 2009; White et al.
2011). Here, sRPE is present in the imputation model.
Passive imputation (Van Buuren 2018). The relationship
between intensity, duration and sRPE is described in the
imputation model, which may be an improvement over
using them merely as explanatory variables.

Impute product without factors. Under this scenario, no
issues stemming from the strong correlation between
intensity, duration and sRPE are present, but intensity
and duration are not available to inform the imputation
model.

The most accurate method determined in these simulations
were used in Step 2 below.

Step 1 add missing

We hypothesized that missing observations in total distance
and other GPS variables may often be Missing Completely at
Random (MCAR). Under MCAR, all observations have an
equal probability of missing - the probability is not depen-
dent on other factors. For instance, we can imagine that
technical errors in a GPS device can happen at random, and
are not dependent on the characteristics of the athlete or
the performed activity.

For RPE - an athlete-reported parameter — we theorized
that it is more likely that the probability of missing data
depends on characteristics of the player and also of
the day of activity, which was the case in Benson et al.
(2021). This assumption is known as Missing at Random
(MAR, Janssen et al. 2010). As a hypothetical example, players
may be busier on match days and forget to report RPE. In
such a scenario, whether a day is a match can predict the
probability of missing RPE data. Missing GPS data may also
be MAR if, for instance, the devices were worn in different
locations and environmental obstruction was present in some
locations and not in others (Malone et al. 2017).
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Imputation
Imputed Dataset 1

Imputation
Imputed Dataset 2
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Figure 1. lllustration of the modeling process in the framework of multiple imputation. In the first step, the variables available in the dataset are used to predict m
number of potential imputations for the missing observations. A dataset is created for each of the m sets of predictions. The number of imputed datasets, five, is
recommended in most cases (Van Buuren 2018, section 2.8). The main model of interest is then run on each of the 5 datasets. The estimates from each model are
averaged using Rubin’s rules, which calculate standard errors that account for between-imputation variation and the level of uncertainty that stems from the missing

data (Sterne et al. 2009; Van Buuren 2018).

From the sRPE dataset and the total distance dataset, eleven
datasets were created with different amounts of missing
sampled under the assumption of MCAR, and likewise, three
under the assumption of MAR, where correlations were increas-
ingly stronger between variables and the probability of miss-
ing. This ensured covering a range of missing data amounts and
mechanisms (Vink 2016; Schouten and Vink 2018).

Step 2 impute or delete missing

We imputed or deleted the missing observations in the four-
teen sRPE and the fourteen total distance datasets created in
Step 1 with five different methods, respectively:

e Complete Case Analysis (Listwise deletion, White and
Carlin 2010).

e Mean Imputation using the player mean (Benson et al.
2021; Wang et al. 2021).

e Mean Imputation using the weekly mean (Benson et al.
2021).

e Multiple Imputation using Predicted Mean Matching
(Figure 1, Van Buuren 2018).

® Regression Imputation (Musil et al. 2002).

Step 3 fitting models on imputed data

We ran logistic regression models with training load as the
independent variable, and the simulated injuries as the out-
come variable, on each of the fourteen sRPE and fourteen total
distance datasets imputed in Step 2.

Performance measures

We used the following performance measures (Van Buuren
2018) to compare the performance of the different imputation
methods:

e Percent bias (PB). The upper limit for acceptable perfor-
mance was +5% (Demirtas et al. 2008).

e Root-Mean-Squared Error (RMSE). If all methods have
acceptable bias, they may be distinguished by RMSE.

e Coverage: the proportion of 95% confidence intervals that
contained the true value.

e Average width (AW) of the 95% confidence interval. If all
methods have a coverage > 95%, they may be distin-
guished by average width.

The PB per method was visualized for each scenario of missing. In
addition, a visualization of imputed versus observed data was
created.

Imputation with extra variables available

For more realistic missing data scenarios (Schouten et al. 2018),
the simulations were repeated to test whether the results
changed with the inclusion or exclusion of the player’s playing
position in the imputation model. We also tested whether the
results changed if all GPS-variables were missing whenever
“total distance”, the focus of our study, was missing.

Results
Systematic review of training load and injury studies

The characteristics of 108 studies that assessed the relationship
between training load and injury risk are reported in Table 2.
A total of 37 (34%) studies reported whether the training load
variable had any missing observations, between 30%-50% the last
five years (Figure 2). Of these, 25 (23%) studies described how
missing data were handled (Table 3). The most popular methods
were Mean Imputation (n = 11) and Complete Case Analysis (n = 8).
For 18 studies that reported the amount of missing data in the
training load variable, the Mean Percentage Missing was
7.3% (SD = 6%).

In 9 (24%) of the 37 studies reporting missing data, ath-
letes were removed due to incomplete or missing data, and
in 7 (19%) studies, injuries were removed. Overall, the mean
percentage of removed athletes was 13% (SD = 10), and the



Table 2. The characteristics of the N = 108 studies assessing the relationship
between training load and injury risk.

Study Characteristic N studies % of studies
Sex
Males only 85 79%
Males and Females 20 19%
Females only 3 3%
Training load measure®
SRPE 4 38%
GPS 27 25%
sRPE and GPS 16 15%
Time (hours/minutes in activity) 8 7%
Other measures 16 15%
Study period
1 season/year/school year 48 52%
2 seasons/years/school years 18 19%
3 seasons/years/school years 6 7%
4 seasons/years/school years 7 8%
> 5 seasons/years/school years 4 4%
Other study length metrics® 10 1%
Sport
Football (soccer) 29 27%
Australian Football 20 19%
Rugby 15 14%
Cricket 9 8%
Endurance Sports 7 7%
Multiple Sports 6 6%
Gaelic Football 4 4%
American Football 3 3%
Basketball 3 3%
Tennis 3 3%
Volleyball 3 3%
Handball 2 2%
Other sports® 4 4%

?SRPE = session Rating of Perceived Exertion; GPS = Global Positioning System;
Other measures = sport specific measures such as ‘balls bowled’ in cricket, or
‘number of jumps’ in volleyball; Heart-Rate monitoring; Match Exposure and
more.

bQOther study length metrics’ encompasses reports of 1 preseason, 1 competition
and 1 training camp.

“Other sports’ encompasses alpine ski racing, baseball, CrossFit and hurling.

mean percentage of removed injuries was 34% (SD = 30).
The mean number of injuries analysed in the studies was 210
(SD = 703) and the median 85; 81% of studies had < 200
injuries (Figure 3).

60% 1
50%
40% 1
30%
20%
10%
0%

% Studies
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Table 3. The methods used to handle missing observations in the training load
variable as reported by 36 studies in the field of training load and injury risk
research.

Missing Data Method N studies % of studies
Unclear® 12 33%
Mean Imputation 1" 31%
Complete Case Analysis 8 22%
Median Imputation 2 6%
Multiple Imputation 2 6%
Regression Imputation 1 3%

20f 108 eligible studies, 37 (34%) reported whether they had missing data in the
training load variable. One of the 37 studies had no missing data and was
removed from this analysis.

Methods considered ‘Unclear’ were cases where authors reported having miss-
ing data, but the method used could not be determined.

Missing data in the Norwegian premier league dataset

Across 4 871 days of activity, 650 (13%) RPE observations were
missing. Of 42 players, 6 (14%) provided no RPE responses.
Also, 3 (7%) had no GPS data collection. The remaining players
applied GPS devices for 2 984 days, of which 122 (4%) were
missing due to technical errors. This number is an underesti-
mation, as a database-programmer removed an unknown
number of empty GPS files, which then could not be included
in the calculation. Missing observations were concentrated
towards the end of the study period. The probability of miss-
ing is likely dependent on time, and therefore deemed to be
Missing at Random (supplemental file Il Figure S2).

Simulations

Imputing with the Predicted Mean Matching method had
a lower bias using Multiple Imputation (mean %-bias = 3.5)
than Single Imputation (mean %-bias = 4.1), in addition to
a higher standard error (mean SE = 0.0000218 vs. mean
SE = 0.0000206, supplemental file Il Table S1).

Complete Case Analysis and Multiple Imputation using
Predicted Mean Matching were the only methods that
retained the distribution of the observed sRPE and the
total distance data under the assumption of both MCAR

2010 2012 2014

n studies 4 0 6 4 3

2016 2018 2020

7 8 24 15 21 13

Figure 2. The percentage of studies, by year of publication, that reported whether they had missing data in training load. Since 2021 had yet to come to pass, it was not
comparable to previous years, and so, the analysis was based on the 105 training load and injury risk studies published in the period 2010-2020, only. N studies are the

number of studies published in each year (the denominator).
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Figure 3. Distribution of the number of injuries reported in 99 studies assessing the relationship between training load and injury risk. The distribution is concentrated
below 100 injuries, with a median of 85. Of 108 studies, 99 reported the number of injuries, and 80 of these had < 200 injuries (81%), based on the final number of
injuries used in the studies’ analyses of injury risk.

Table 4. The mean performance of imputing or deleting missing observations across 11 scenarios of Missing Completely at Random (MCAR) and 3 scenarios of Missing
at Random (MAR) in session Rating of Perceived Exertion (sRPE), and total distance covered for the situation where missing is introduced to all GPS variables and
missing is introduced to total distance, only (N simulations = 1 900). Compared to performance without missing data (None).

Missing Missing variables RB* PB* RMSE? Coverage® AW
None 0.00004189 1.4% 0.0000419 100% 0.0006236
MCAR SRPE Complete Case Analysis 0.00030114 10% 0.0003188 95% 0.0019103
Mean per player 0.00034171 11.4% 0.0003572 80% 0.0009377
Mean per week 0.00031297 10.4% 0.0003376 65% 0.0009215
MI - PMM 0.00017309 5.8% 0.0001908 95% 0.0013997
Regression Imputation 0.00101082 33.7% 0.0010398 30% 0.0008282
MAR Complete Case Analysis 0.00022987 7.7% 0.0002798 100% 0.0016990
Mean per player 0.00023632 7.9% 0.0002544 100% 0.0009914
Mean per week 0.00026460 8.8% 0.0002751 100% 0.0009678
Ml - PMM 0.00011496 3.8% 0.0001441 100% 0.0011119
Regression Imputation 0.00116333 38.8% 0.0011751 33% 0.0008325
None 0.00001190 4% 0.0000119 100% 0.0000805
MCAR All GPS variables Complete Case Analysis 0.00002455 8.2% 0.0000246 100% 0.0001255
Mean per player 0.00002574 8.6% 0.0000258 90% 0.0001027
Mean per week 0.00003939 13.1% 0.0000394 90% 0.0000987
Ml - PMM 0.00003213 10.7% 0.0000321 87% 0.0000816
Regression Imputation 0.00007450 24.8% 0.0000745 40% 0.0000913
Total distance only Complete Case Analysis 0.00002672 8.9% 0.0000267 93% 0.0001220
Mean per player 0.00002891 9.6% 0.0000289 90% 0.0001024
Mean per week 0.00005448 18.2% 0.0000545 70% 0.0000984
MI - PMM 0.00000983 3.3% 0.0000098 100% 0.0000808
Regression Imputation 0.00001820 6.1% 0.0000182 100% 0.0000776
MAR All GPS variables Complete Case Analysis 0.00006099 20.3% 0.0000610 78% 0.0001559
Mean per player 0.00003401 11.3% 0.0000340 78% 0.0001229
Mean per week 0.00003511 11.7% 0.0000351 89% 0.0001200
MI - PMM 0.00002850 9.5% 0.0000285 78% 0.0001977
Regression Imputation 0.00018145 60.5% 0.0001814 67% 0.0001241
Total distance only Complete Case Analysis 0.00004217 14.1% 0.0000422 100% 0.0001433
Mean per player 0.00002977 9.9% 0.0000298 100% 0.0001175
Mean per week 0.00003416 11.4% 0.0000342 89% 0.0001143
MI - PMM 0.00002024 6.7% 0.0000202 100% 0.0000975
Regression Imputation 0.00003498 11.7% 0.0000350 67% 0.0000841

Abbreviations: AW, Average Width of 95% confidence intervals; GPS, Global Positioning System; PB, Absolute Percent Bias; sRPE, Session Rating of Perceived Exertion;
RB, Absolute Raw Bias; RMSE, Root-Mean-Squared-Error

“Monte Carlo standard error < 0.0001

®Monte Carlo standard error = 0.5

and MAR (supplemental file Il Figures S3-S6). Complete Logistic regression performed on the dataset without any
Case Analysis had the highest average width of 95% con- missing data had a bias of 1.4% for sRPE and 4% for total
fidence intervals for all scenarios of missing data (Table 4). distance (Table 4).
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Figure 4. Performance of five different methods of imputing or deleting missing observations in the session rating of perceived exertion. performance is measured by
the mean absolute percent bias (% Bias). Varying levels of missing data under the assumption of Missing Completely at Random (MCAR) are displayed along the X-axis.
The best methods are closest to 0, and the light blue line indicates the maximum range of acceptable bias (0% to 5%). No method stayed consistently within acceptable
bias after 50% missing. Regression imputation reached 49% bias at 80% missing and 136% bias at 90% missing, and therefore was off the chart. Logistic regression
performed on the data without missing had a bias of 1.4%. Based on 1 900 simulations with monte carlo standard error < 0.00001.
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Figure 5. Performance of five different methods of imputing or deleting missing observations in the session rating of perceived exertion. performance is measured by
the mean absolute percent bias (% Bias). Levels of missing data were added under the assumption of Missing at Random (MAR): Light MAR (=25% missing); Medium
MAR (=50% missing); Strong MAR (=80% missing). Under MAR, the probability of missing is dependent on other variables. The best methods are closest to 0, and the
light blue line indicates the maximum range of acceptable bias (0% to 5%). Multiple Imputation (MI) using Predicted Mean Matching was the only method with
consistently acceptable bias through Medium MAR. Regression imputation reached off the chart with =85% under strong MAR. Logistic regression performed on the
data without missing had a bias of 1.4%. Based on 1 900 simulations with monte carlo standard error < 0.00001.

Handling missing data in session rating of perceived

Exertion
In the comparison of different orders of imputing sRPE as
a derived variable, the method ‘Impute, then transform’ had
the lowest bias (1.4%), and highest certainty compared to other
methods (supplemental file Il Table S2). Thus, in the main
simulation, missing data was imputed for RPE and duration,
and sRPE was calculated afterwards.

Complete Case Analysis and Multiple Imputation using
Predicted Mean Matching were the only methods within accep-
table bias (< |5%|) consistently up to 20% missing sRPE obser-

vations under MCAR (Figure 4). Predicted Mean Matching was
subsequently within acceptable bias up to 50% missing and
had the lowest bias on average (6% vs. = 10% [all other meth-
ods], Table 4) and an adequate coverage of 95% (Table 4).
Under MAR, Multiple Imputation using Predicted Mean
Matching was within acceptable bias up to and including =50%
missing (3% bias at =25% missing, 2.4% at =50% missing,
Figure 5) with good coverage (100%, Table 4). Adding the player’s
playing position to the imputation model improved performance
under MCAR but not under MAR (supplemental file Il Figure S7).
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Figure 6. Performance of five different methods of imputing or deleting missing observations in training load measured by Global Positioning Systems (GPS) variables.
Performance is measured by the Mean Percent Bias (% Bias). Varying levels of missing data under the assumption of Missing Completely at Random (MCAR) are
displayed along the X-axis. For (a—c), missing is introduced to all four GPS variables; (d—f) missing is only introduced to the total distance variable. In addition, for (a, d)
there were no extra variables in the imputation model, (b, e) the player position was in the imputation model, and (c, f) the session Rating of Perceived Exertion (sRPE)
and the player position was in the imputation model. The best methods are closest to 0, and the light blue line indicates the maximum range of acceptable bias (0% to
5%). MI = Multiple Imputation. Methods off the chart had > 30% bias. Logistic regression performed on the data without missing had a bias of 4%. Based on 1 900

simulations with monte carlo standard error < 0.00001.

Handling missing data in total distance
When missing data was in the total distance variable, only — not in
other GPS variables — Complete Case Analysis and Multiple
Imputation using Predicted Mean Matching had acceptable bias
for less than 50% missing under MCAR (Figure 6(d-f)). Predicted
Mean Matching was the only method of acceptable bias for
amounts of missing data from 50%, up to 90% (mean bias 3.3%,
100% coverage, Table 4). However, when all GPS variables were
missing — high-speed running distance, sprint distance, and player
load - it had almost the poorest performance, and adding the
player’s playing position and sRPE to the imputation model did
not improve performance of the logistic regression model to an
acceptable level (Figure 6(a—c)). Under these conditions, Complete
Case Analysis had the least bias (Figure 6(a—c)): 8% on average,
and it was the only method with 100% coverage (Table 4).
Under MAR, Predicted Mean Matching was the only method
with consistently acceptable bias, up to and including =50%
missing data, when the total distance variable was the only
variable missing (Figure 7(d-f)), and up to and including =25%
missing when other GPS-variables were also missing and sRPE
was in the imputation model (Figure 7(c)). Without sRPE, and
with missing in all GPS variables, Predicted Mean Matching was
not within acceptable bias (Figure 7(a,b)). The Mean Per Week
was within acceptable bias in some cases (Figure 7(d-f)), but
not in other cases (Figure 7(a-c)).

Discussion

This is the first systematic review of the training load and
injury risk research field mapping the current practices of
reporting and handling missing data. Only 34% of the 108
included studies reported whether the training load vari-
able had any missing observations, 23% of the studies
reported how the missing observations were handled,
and 17% reported the amount of missing data.

Also, this study is the first attempt to determine the
accuracy of discovering a relationship between training
load and injury risk after handling missing data using
different methods. All methods had acceptable accuracy
when sRPE was missing < 10% observations under the
assumption of Missing Completely at Random (MCAR).
However, only Multiple Imputation with Predicted Mean
Matching accurately (< 3% bias) estimated the relationship
through 50% missing, also under the assumption of
Missing at Random (MAR). Being athlete reported data,
sRPE is more likely to be MAR (Barnett et al. 2017).

For the GPS variable total distance, Multiple Imputation
with Predicted Mean Matching was accurate up to and
including 90% missing under MCAR and =50% under
MAR, given that the other GPS variables were not miss-
ing too.
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Figure 7. Performance of five different methods of imputing or deleting missing observations in training load measured by Global Positioning Systems (GPS) variables.
Performance is measured by the Mean Percent Bias (% Bias). Varying levels of missing data under the assumption of Missing at Random (MAR) are displayed along the
X-axis. Under MAR, the probability of missing is dependent on other variables. For (a—c), missing is introduced to all four GPS variables; (d—f) Missing is only introduced
to the total distance variable. In addition, for (a, d) there were no extra variables in the imputation model, (b, e) the player position was in the imputation model, and (c,
f) the session Rating of Perceived Exertion (sRPE) and the player position was in the imputation model. The best methods are closest to 0, and the light blue line
indicates the maximum range of acceptable bias (0% to 5%). Ml = Multiple imputation. Regression imputation and complete case analysis reached off the chart at >
90% bias in a-c. Logistic regression performed on the data without missing had a bias of 4%. Based on 1 900 simulations with monte carlo standard error < 0.00001.

Insufficient reporting of missing data in the training load
and injury literature

In a recent review of articles on football topics, or involving
football players, 11% of studies reported whether they had
missing data (Borg et al. 2021). In our review of the training
load and injury risk field, reporting practices were better (34%).
Missing data were more thoroughly reported in clinical RCTs
(72% Diaz-Ordaz et al. 2014) and in developmental psychology
(57%, Jelici¢ et al. 2009), underlining that there is room for
improvement in football research. Despite concerns raised by
recent reviews (Windt et al. 2018; Griffin et al. 2020; Wang et al.
2021), our findings show no improvement in reporting missing
data, varying between 30% and 50% in the last five years.

In a recent methodological review, 32% (N = 34) of studies
reported how missing data was handled (Windt et al. 2018), and in
a review on relative training load and injury (Andrade et al. 2020),
25% (N = 20) of studies reported it. Our findings suggest that
reporting practices have not improved since these reviews were
published. Many common methods of measuring relative training
load (i.e. Acute:Chronic Workload Ratio) cannot be calculated in
the presence of missing observations (Moussa et al. 2019), and
therefore it is crucial to know how the missing data were handled.

Furthermore, without knowing the amount of missing data,
it is impossible to deduce how they may have impacted the
results. Only 17% of the studies reported both whether they

had missing data and the amount of missing data, indicating
severe reporting bias. Given that the mean amount of missing
data reported by these studies was so low (7%, SD = 6) we
suspect they represent a selection bias towards lower amounts
of missing. In clinical cohort studies, where the amount of
missing data was more certain (83% reported), it varied vastly,
from 2% to 65% (Karahalios et al. 2012). This implies that
underreporting of missing data is quite common in the field
of training load and injury research.

Handling missing data in training load measures

Complete Case Analysis (also known as listwise deletion)
retained the distribution of the observed sRPE and total distance
covered data (supplementary file Il Figures S3-S6). Despite this, it
had high bias when attempting to detect a relationship between
training load and injury risk. This shows that when imputed or
complete case data appear to be like the observed data, it does
not necessarily mean the method is valid.

In general, Mean Imputation had acceptable bias for < 10%
missing sRPE and < 30% total distance covered under MCAR. How
the mean was calculated for sRPE, player mean or weekly mean,
was irrelevant; it did not alter the results in any meaningful way. For
total distance covered, the two methods of calculation varied in
performance when data were Missing at Random, and under this
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condition, the performance of Mean Imputation was rather
unstable. We think Mean Imputation is only an acceptable
approach when missing data amounts are small and,
in situations where few variables associated with training load
are available in the data.

Regression Imputation was outclassed by Multiple
Imputation using Predicted Mean Matching (PMM). For sRPE,
PMM had acceptable bias up to and including 50% under MCAR
and MAR. For total distance covered, it reached unacceptable
bias beyond 90% missing data and was the only method viable
under MAR. These results reflect those in other simulations
studies (Janssen et al. 2010; Knol et al. 2010). It had very poor
performance, however, when the other GPS variables were
missing. The accuracy did not improve with the player’s playing
position in the imputation model, although with the sRPE, it
improved to a sufficient degree for < 25% missing under both
MCAR and MAR. This finding highlights the importance of
session-context information for GPS-measures, compared to
player-context information. Also, this confirms the need for
informative explanatory variables in the imputation model.

Multiple Imputation of PMM had lower bias than Single
Imputation, but a higher standard error. This is caused by
the between-imputation variation incorporated into the
standard error as a surrogate measure of the uncertainty
caused by the missing data itself (Sterne et al. 2009; Van
Buuren 2018). The standard error, while higher, is, how-
ever, more representative of the true uncertainty.

Recommendations

We recommend future studies on training load and injury risk
to report (1) whether they had missing data in training load, (2)
the amount of missing data, and (3) how missing data were
dealt with in the analyses.

Reporting the amount of missing data should include data
that were consciously deleted, such as deletion of relative
training load values in periods where athletes return from holi-
days (e.g. Hulin et al. 2016). We recommend using the checklist
for the methods and results sections outlined by Borg et al.
(2021) when reporting missing data.

The amount of missing data should be calculated as the
number of missing observations divided by the number of
potential observations. For sRPE, this is the number of miss-
ing RPE responses divided by the overall number of RPE
prompts/questionnaires sent. For GPS measures, this is typi-
cally the number of missing daily GPS observations divided
by the number of player days with an attached GPS device.
We have provided an example of reporting this in the results
section of this study (Page 5, line 315). In our study we were
not able to calculate the amount of missing GPS data accu-
rately, and we acknowledge that this may be the case for
other studies as well. Therefore, we encourage transparency
in how missing data is calculated.

To our knowledge, no other study has tested the order of
events in imputing sRPE. In our analyses, imputing RPE and dura-
tion at the session level first, and then calculating sRPE, had the
lowest bias (1.4%) and highest certainty. We recommend this
approach in future studies.

Complete Case Analysis had the highest average confi-
dence interval width in all scenarios, demonstrating loss of
statistical power. In our systematic review, the median num-
ber of injuries was 85. We believe that study sample size and
consequently statistical power can be improved by using
imputation rather than applying deletion methods for miss-
ing data.

While Multiple Imputation is ideal under MAR, it does not
solve the issue of Missing Not at Random (MNAR). Under
MNAR, the probability of missing depends on information
that is not available. Imagine a scenario where players with
high training load are too busy to reply to the sRPE prompt.
The sample will then be skewed towards lower sRPE values
than the true population. Selection bias is inherent under
MNAR and we advise caution in performing analyses on data
where MNAR is assumed.

Multiple imputation methods can be used under MCAR
and MAR. Other, more simpler methods, however, are appro-
priate under certain conditions only. We provide a guide for
handling missing data of sRPE and GPS measures, respec-
tively (Box 2).

Box 2. Recommended methods for handling missing data in training load.

Session rating of perceived exertion (sRPE)

sRPE is likely to be Missing at Random (MAR, Benson et al. 2021). However, this
can be tested using Little’s Missing Completely at Random (MCAR) test (Little
1988) and explored with visualizations (Borg et al. 2021).

® |f low amounts of data are missing (approximately < 20%) under the
assumption of MCAR, perform the following:
o Complete Case Analysis if the remaining number of injuries will be of
sufficient statistical power
o Perform Mean Imputation if the number of injuries will not be of
sufficient statistical power when using Complete Case Analysis
® |f data are missing under the assumption of MAR, perform multiple
imputation with Predicted Mean Matching

Global positioning systems
GPS data are more likely to be MCAR than sRPE, but the mechanism should be
checked (Borg et al. 2021).

® |f missing observations are intermittent in the GPS-variables, regardless of
whether the data is assumed to be MCAR or MAR, perform multiple
imputation with Predicted Mean Matching (PMM)

® |f missing is consistent across all GPS-variables under the assumption of
MCAR or MAR, and missing amount is low (approximately < 30%), Mean
Imputation can be performed

A guide on how to perform Multiple Imputation with PMM, including pitfalls
and solutions, is available at the primary author’s GitHub site (reference link
unavailable in anonymous version of thismanuscript).

Limitations

The systematic review was a limited search of the training
load and injury risk field carried out by one author only. It
was initially performed to provide a basis for methodolo-
gical choices in the simulations, but the concerning results
warranted an emphasis on how missing data should be
reported. It may not accurately represent the entirety of
the field of training load and injury risk research; endur-
ance sports studies were especially underrepresented.



Due to anonymisation laws, the player’s position on the
team was not available in the uploaded dataset. We prior-
itized mimicking a realistic study scenario, and included this
variable in multiple analyses, which are consequently
irreproducible.

For the scope of this paper, we had to limit the number
of methods compared. Specifically, k-nearest neighbour
imputation and multiple imputation by random forest,
which have shown successful performance in other simula-
tion studies (Hasler and Tillé 2016; Chhabra et al. 2017),
could be of interest in future studies. We also had to limit
the number of conditions under which they were run. For
instance, more levels of noise and sample sizes could be
explored, as well the presence of non-linearity in the impu-
tation model. PMM using a linear model may not be
appropriate under such conditions (Morris et al. 2014;
Bache-Mathiesen et al. 2021). Choosing to focus on only
one GPS variable is also a limitation, and future studies
should consider exploring high speed and sprint running
distances, and more complex multivariate missing mechan-
isms between them (Schouten et al. 2018).

Finally, our simulations were based on a single dataset, and
we had a limited number of explanatory variables available for
use in our imputation models. Most notably, we think e.g. activ-
ity type, age, sex, and rehabilitation status would improve impu-
tation models on training load and injury risk in future studies.

Conclusion

Our systematic review showed that in the field of training load
and injury risk, reporting of missing data is insufficient. Future
studies should report how missing data were handled in ana-
lyses. Multiple imputation with Predicted Mean Matching
should be used to impute sRPE as well as GPS-variables and
can be used in cases with large amounts of missing data,
provided that the remaining data is representative of the popu-
lation studied. We propose a guide for handling missing data in
certain scenarios.
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Supplementary Methods

Ethics

The study was approved by the Ethical Review Board of the Norwegian School of Sport
Sciences, and the Norwegian Centre for Research Data (722773). Ethical principles were
followed in accordance with the Declaration of Helsinki (Malik & Foster, 2016), with the
exception that the study was not registered in a publicly accessible database before
recruitment of the first subject (a violation of principle number 35). All participants provided
informed written consent. Data were anonymised according to guidelines outlined by The
Norwegian Data Protection Authority (Datatilsynet, 2017). The datasets cannot be joined.

Training load definition
Session Rating of Perceived Exertion

In 17 of 4 725 (0.4%) instances where players reported participating in training, but with a
duration of 0 minutes, RPE was assumed to be 0 (no participation). In 73 (2%) instances
where players reported participating in training with a duration above 0 minutes, yet RPE
was reported at 0 (meaning no participation), RPE was assumed to be 1.

Global positioning systems

GPS data were attained per second and transferred to a database with an automatic
cleaning procedure, altogether 14 611 560 total distance values (Theron, 2020). Errors were
handled as follows:

e Total distance > 30 meters per second were removed (79 observations).

e Total distance > 15 meters & <= 30 meters per second were considered
overestimated outliers and set to 15, following guidelines in Harrell Jr (2017) (348
observations).

Daily total distance was calculated. Of 2 984 daily total distance values, 92 were less than
100 meters per day and considered missing.

Simulations

Comparison of Imputation Methods

All missing was removed from all variables in the datasets. The final datasets had 4 725 sRPE
values and 2 292 total distance values of Gaussian distributions (supplemental file Il Figure
S1). Simulated injuries were added to the sRPE dataset with a predefined, relationship with
sRPE, using a logistic regression function:

1

logistic(x) = HTP(—X)

Prob(Injury) = logistic(—2 + 0.003 * SRPE)



Likewise, for total distance:
Prob(Injury) = logistic(—2 + 0.0003 * Total Distance)

Logistic regression was run with injury as the response variable and training load as the
explanatory variable to determine base performance when no data were missing.

Imputation strategy for a derived variable

It is unknown how a derived variable such as sRPE should be imputed (Benson et al., 2021;
Van Buuren, 2018). Simulations were performed to compare four strategies of imputing
sRPE:

e Impute duration and RPE without sRPE in the dataset, and calculate sRPE after
imputation (Impute, then transform, Von Hippel, 2009). In this method, the product
(sRPE) is not available to inform the imputation model. However, it may reduce
collinearity issues.

e Calculate sRPE, and impute duration, RPE and sRPE as regular variables (Transform,
then impute, Von Hippel, 2009; White et al., 2011). Here, sRPE is present to inform
the imputation model.

e Calculate sRPE and impute, but add the relationship between RPE, duration and sRPE
in the imputation model, thereby transforming on-the-fly within the imputation
algorithm (Passive imputation, Van Buuren, 2018). This may be an improvement over
using them merely as explanatory variables.

e We hypothesized that other variables, such as whether the activity is a match, may
be enough information to impute sRPE. Therefore, we also tried removing duration
and RPE from the dataset and relying only on other variables for information when
imputing sRPE (Impute product without factors). Under this scenario, no issues
stemming from the strong correlation between intensity, duration and sRPE are
present, but intensity and duration are not available to inform the imputation
model. This may be reasonable for studies which only have access to the product,
sRPE.

Fake injuries were added to the dataset with a predefined relationship with sRPE:

Prob(Injury) = logistic(—2 + 0.003 * SRPE)

We tested the ability of a logistic regression model to discover this relationship in a dataset
with 25% missing RPE and duration values. For each of the four methods listed above, the
missing observations were imputed with predicted mean matching with 1 900
permutations. The most accurate method determined in these simulations were used in
Step 2 below.



Step 1 Add missing

We hypothesized that missing observations in total distance and other GPS variables are
likely to be Missing Completely at Random (MCAR). Under MCAR, all observations have an
equal probability of missing — the probability is not dependent on other factors. For
instance, we can imagine that technical errors in a GPS device can happen at random, and
are not dependent on the characteristics of the athlete or the performed activity.

From the sRPE dataset and total distance dataset, eleven datasets were created with
amounts of missing sampled at random under the assumption of MCAR: 5%, 10%, 20%, 30%,
40%, 50%, 60%, 70%, 80%, and 90%. This follows recommendations to cover a range of
percentages of missing data as opposed to a select few (Vink, 2016).

For RPE — an athlete-reported parameter — we theorized that it is more likely that the
probability of missing data depends on characteristics of the player and also of the day of
activity, which was the case in Benson et al. (2021). This assumption is known as Missing at
Random (MAR, Janssen et al., 2010). As a hypothetical example, players may be busier on
match days and forget to report RPE. In such a scenario, whether a day is a match can
predict the probability of missing RPE data. Missing GPS data may also be MAR if, for
instance, the devices were worn in different locations and environmental obstruction was
present in some locations and not in others (Malone et al., 2017).

Simulation studies have shown that weak correlations under a MAR mechanism may mimic
MCAR to such a degree that methods which typically underperform under MAR, may
perform to a sufficient degree (Schouten & Vink, 2018). To ensure we can identify this
phenomenon, three datasets were created from the sRPE dataset and total distance dataset
with different levels of missing under the assumption of MAR, with increasingly stronger
correlations between variables and the probability of missing in training load. Fake ages
were drawn at random from 18 to 30 years and added to the dataset. Fake sex was
randomly sampled from female 0 and male 1. A recovery day was defined as the day after a
match or two days after a match (M+1 or M+2), and coded as 1 for recovery day, 0 for
training day. Match was coded as 1 for match, 0 for no match. Missing was then added with
the following probability functions:

Light MAR (=25% missing):

Prob(Missing) = logistic(—2 + 0.03 x Age + 0.02 * Sex + 0.3 * Recovery day)

Medium MAR (=50% missing):

Prob(Missing) = logistic(—2 + 0.08 * Age + 0.04 * Sex + 0.8 * Recovery day)

Strong MAR (=80% missing):

Prob(Missing) =

logistic(—2 + 0.13 * Age + 0.1 x Sex + 1.8 * Recovery day + 1.8 * Match)
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Thus, for the two datasets, sRPE and total distance, 11 MCAR datasets and 3 MAR datasets
were generated.

Step 2 Impute or delete missing

The missing observations in the 14 sRPE and 14 total distance datasets created in Step 1
were imputed or deleted with five different methods, respectively.

Complete Case Analysis

The simplest form of handling missing data is to delete the rows with missing observations.
The analyses are then run only on the complete cases. The statistical software packages
SPSS, R and Stata use Complete Case Analysis (listwise deletion) as the default method if
nothing else is specified (IBM, 2020; Kabacoff, 2011; UCLA, 2021). Besides its simplicity,
Complete Case Analysis also has the advantage that it cannot introduce unrealistic or
impossible values. However, it reduces the sample size and may introduce selection bias
(White & Carlin, 2010).

Mean Imputation

Replacing the missing value with the mean of the parameter is known as Mean Imputation
(Barzi & Woodward, 2004). This was the most popular imputation method in the collected
training load studies (31%, Table 1). However, there was a wide discrepancy in how the
articles calculated the mean (Colby et al., 2014; O'Keeffe et al., 2019; Sampson et al., 2019;
Windt et al., 2017), a concern raised in Wang et al. (2021). Benson et al. (2021) defined two
overarching categories of means: individual context means and session context means. We
compared two methods of Mean Imputation: the player mean, representing an individual
context, and the weekly mean, representing a session context.

Table 1. The methods used to handle missing observations in
the training load variable as reported by 36! studies in the field
of training load and injury risk research.

Missing Data Method N studies % of studies
Unclear? 12 33%
Mean Imputation 11 31%
Complete Case Analysis 8 22%
Median Imputation 2 6%
Multiple Imputation 2 6%
Regression Imputation 1 3%

1 Of 108 eligible studies, 37 (34%) reported whether they had
missing data in the training load variable. One of the 37 studies
had no missing data and was removed from this analysis.

2 Methods considered “Unclear” were cases where authors
reported having missing data, but the method used could not
be determined.



Mean Imputation has the advantage of simplicity; it is easy to understand and implement
(Benson et al., 2021). The downside of Mean Imputation is that it may reduce the variability
of the dataset, and skew distributions (Barzi & Woodward, 2004). In addition, its
performance depends on how the means are calculated. One potential pitfall is using means
that may not be representative of the true observation (Bowen et al., 2020).

Multiple Imputation with Predicted Mean Matching

In Multiple Imputation, other variables in the dataset are used to predict the imputations
for the missing observations (Van Buuren, 2018). Each missing observation is predicted
multiple times, creating m number of imputed datasets. The regression model of interest is
then run on each of the m datasets. The estimates from each model are averaged using
Rubin’s rules, which calculate standard errors that account for between-imputation
variation and the level of uncertainty that stems from the missing data (Sterne et al., 2009;
Van Buuren, 2018). See Figure 1 for an illustration of the Multiple Imputation process.

The observations used to impute the missing observations may be predicted with different
methods. We chose Predicted Mean Matching (PMM). In PMM, all values for the target
variable (training load), whether they are missing or not, are predicted using the other
variables in the dataset. In this study, a linear regression model was used (Van Buuren,
2018). PMM forms a set of candidate donors from all complete cases with predicted values
closest to the predicted value for the missing observation. From these candidates, one
donor is randomly drawn. The observed value of that donor is used to impute the missing
observation. Here, the number of candidate donors to draw from was 5 (Van Buuren, 2018).

PMM has the advantage that imputations outside the observed data range cannot occur
(such as negative training loads), and it is less vulnerable to model misspecification than
other methods (Little & Rubin, 2019). A disadvantage is that it may use the same donor
multiple times, and in small sample sizes, cause superficially low variability (Van Buuren,
2018).

We ran Multiple Imputation with five imputed datasets (Van Buuren, 2018). A separate
analysis was performed to compare multiple and single imputation of PMM.
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Figure 1. Illustration of the modeling process in the framework of multiple imputation. In the first step, the
variables available in the dataset are used to predict m number of potential imputations for the missing
observations. A dataset is created for each of the m sets of predictions. The number of imputed datasets, five,
is recommended in most cases (Van Buuren, 2018, section 2.8). The main model of interest is then run on each
of the 5 datasets. The estimates from each model are averaged using Rubin’s rules, which calculate standard
errors that account for between-imputation variation and the level of uncertainty that stems from the missing
data (Sterne et al., 2009; Van Buuren, 2018).

Regression Imputation

One training load and injury study reported using Regression Imputation (Table 1, Esmaeili
et al., 2018). In Regression Imputation, the missing observation is replaced with the
predicted value from a linear regression model. An advantage of Regression Imputation is
that the true variability in the data may be more preserved than using Mean Imputation
methods. However, the linear regression model cannot predict outliers, which may cause
the distribution of imputed values to become unrealistically smooth.

Imputation model

We performed Predicted Mean Matching and Regression Imputation with the default
imputation model from the R package mice (Buuren, 2011). It conditions the predictions on
all other variables available in the dataset. These were: player ID (anonymised); date of
activity; match (yes/no); micro-cycle-day (M, M-1, M-2, M-3, M-4, M+2, M+1). The
simulated response variable, injury, was also used to predict imputed values (Moons et al.,
2006; Sterne et al., 2009). If missing is under the assumption of MAR, variables that predict
missing should not be included in the imputation model (Van Buuren, 2018). We therefore
did not include the simulated sex and age, nor recovery day. In the total distance dataset,
the other GPS variables were also in the imputation model: high-speed running distance,
sprint distance, and player load.



Step 3 Fitting models on imputed data

Logistic regression models were run with training load as the independent variable, and the
simulated injuries as the outcome variable, on each of the 14 sRPE and 14 total distance
datasets imputed in Step 2. For Multiple Imputation, a logistic regression model was fit on
each of the 5 generated datasets, and the results were pooled using Ruben’s rules (Van
Buuren, 2018).

In summary, the three steps of the simulations were:

1 Add missing drawn under MCAR and MAR from the original dataset
Impute or delete missing data using 5 different methods

3 Fit logistic regression models with injury as the outcome and training load as the
explanatory variable on the imputed or missing-omitted data

Performance Measures

The following performance measures are recommended in Van Buuren (2018) and were
used to compare the performance of the different imputation methods:

e The Raw Bias (RB) was the absolute difference between the estimated coefficient
and the observed coefficient (8 — 0). Let A denote the estimated coefficient from
running a logistic regression model on imputed data. The formula for raw bias in this
study was for sRPE, 6 — 0.003, and for total distance, § — 0.0003.

e Percent bias (PB). The upper limit for acceptable performance was +5% (Demirtas et
al., 2008).

e Root-Mean-Squared Error (RMSE). A compromise between bias and variance that
evaluates the estimated coefficient 8 on both accuracy and precision. If all methods
have acceptable bias, they may be distinguished by RMSE.

e Coverage: the proportion of 95% confidence intervals that contained the true value.

e Average width (AW) of the 95% confidence intervals, which is an indicator of
statistical efficiency. If all methods have a coverage > 95%, they may be distinguished
by average width.

Using formulas listen in Morris et al. (2019), accepting a Monte Carlo Standard Error of no
more than 0.5, the number of permutations needed for an accurate determination of
coverage was:

_ E(Coverage)(1 — E(Coverage)  95%*5

= = =1900
ficoverage (Monte Carlo SE,¢q)? 0.52

The number of permutations needed for an accurate estimate of bias was calculated by:

52

Nsim = 0.52

Where 52 is the sample variance (Morris et al., 2019). For an estimation of variance, a pilot
of 100 permutations were run. The variance of the bias was < 0.00001; the number of
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permutations needed to achieve the target MCSE was < 100. Since coverage required more
permutations to achieve target MCSE, simulation steps 1-3 outlined above were repeated
1900 times. The mean of each performance measure was calculated across the 1 900

simulations.

The percent bias per method was visualized for each scenario of missing. In addition, a
visualization of imputed vs. observed data was created for 50% missing under MCAR and
=80% missing under MAR, to see if imputation methods managed to retain the properties of

the observed data.

Imputation with extra variables available

The simulations were repeated to test whether the results changed with the inclusion or
exclusion of the player’s playing position in the imputation model.

In addition, for the total distance analyses, we considered that some studies collect daily
SRPE alongside GPS measures. Further, we considered that in many cases, if the total
distance GPS measure is missing, it is likely that the other GPS measures are also missing.
Following recommendations to include multivariate missing, and consider more realistic
scenarios (Schouten et al., 2018), we performed the simulations outlined previously (steps 1
to 3) under six scenarios for total distance:

1. Missing was added to total distance only, and no extra variables were in the dataset.

2. Missing was added to total distance only, and the player’s playing position was among
the variables in the dataset.

3. Missing was added to total distance only, and both the player’s playing position and the
SRPE was among the variables in the dataset.

4. Missing was added to all the GPS variables, and no extra variables were in the dataset.

5. Missing was added to all the GPS variables, and the player’s playing position was among
the variables in the dataset.

6. Missing was added to all the GPS variables, and both the player’s playing position and
the sRPE was among the variables in the dataset.

Data tools

All statistical analyses and simulations were performed using R version 4.1.0 (R Core Team,
2021) with RStudio version 1.4.1717. The MICE package was used for Multiple Imputation
(Buuren, 2011), the visdat package for visualizing missing data (Tierney, 2017), and chron for
manipulating time data (James, 2020). The simulations were run on a computer with an
Intel(R) Core(TM) i6-8265U 1.6GHz CPU, and with 8 GB RAM. A GitHub repository is
available with all R code and the data used in the simulations (Bache-Mathiesen, 2021).
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Supplementary Results
Tables

Table S1. A comparison of Multiple (MI) and Single Imputation (SI) of
missing observations in total distance using Predicted Mean Matching.

Standard Error

% Bias

mi Sl
Mean 35 4.1
Missing % 5% 4 3.2

10% 36 46
20% 56 44
30% 18 13
40% 21 0.6
50% 57 6.1
60% 31 57
70% 35 3.2
80% 27 3.9
90% 3.2 8

Ml
0.0000218
0.0000205
0.0000207
0.0000208
0.0000209
0.0000209
0.0000211
0.0000231
0.0000232
0.0000241
0.0000229

Sl
0.0000206
0.0000204
0.0000207
0.0000206
0.0000203
0.0000201
0.0000208
0.0000209
0.0000209
0.0000200
0.0000209

Table S2. The absolute raw and percent bias, root-mean-squared-error, coverage and average width of 95% confidence
intervals, for four methods of imputing sRPE before running logistic regression modelling a predefined, known relationship
between sRPE and injury probability. Number of simulations = 1 900.

Imputation Method Raw Bias % Bias RMSE MCSE for RMSE CR  MCSE for CR AW
Impute, then transform 0.0000427 1.4% 0.0000124 <0.0001 100% 0.5 0.000745
Transform, then impute 0.0000791 2.6%  0.0001100 <0.0001 100% 0.5 0.000943
Passive imputation 0.0000759 2.5% 0.0000894 <0.0001 100% 0.5 0.000713
Impute product without factors 0.0000525 1.8%  0.0000599 <0.0001 100% 0.5 0.000895

Abbreviations: AW, Average width; CR, coverage; MCSE, Monte Carlo Standard Error; sRPE, session Rating of Perceived

Exertion; RMSE, Root-Mean-Squared-Error
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Figure S1. Distribution of training load variables in a male Norwegian Premier League
football dataset. The variables were used in a simulation to compare the performance of
imputing missing data in training load. For (A) session Rating of Perceived Exertion (sRPE)
measured in Arbitrary Units (AU), and (B) total distance measured in meters (m), based on
4 725 sRPE values and 2 292 total distance values of 39 male professional football players.
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Figure S2. Distribution of missing observations in the Norwegian Premier League football
dataset. The data is arranged from the beginning of the study period (top) to the end of the
study (bottom). Variables were micro-cycle-day (mc_day), date of activity (training_date),
player identifier (p_id), study week number (week_nr), session rating of perceived exertion
(srpe), total distance covered (gps_td), high-speed running distance (gps_v4), sprint speed
distance (gps_v5) and player load (gps_pl).
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Figure S3. Distribution of session Rating of Perceived Exertion (sSRPE) measured in Arbitrary
Units (AU) after handling missing observations with five different methods. Blue lines are
imputed values, yellow lines are the real data. The amount of missing data was set to 50%
under the assumption of missing completely at random, meaning there was no systematic
pattern in the missing data. Complete Case Analysis and Multiple Imputation (Ml) using
predicted mean matching were the only methods that managed to accurately retain the
original distribution.
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Figure S4. Distribution of session Rating of Perceived Exertion (sRPE) measured in Arbitrary
Units (AU) after handling missing observations with five different methods. Blue lines are
imputed values, yellow lines are the real data. Missing were introduced through a
probability function under missing at random, meaning the probability of missing was
dependent on other variables in the dataset. Around 80% missing was introduced under a
strong relationship between the missing probability and the other variables. Complete Case
Analysis and Multiple Imputation (Ml) using predicted mean matching were the only
methods that managed to accurately retain the original distribution.
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Figure S5. Distribution of total distance measured in meters (M) after handling missing total
distance observations with five different methods. Blue lines are imputed values, yellow
lines are the real data. The amount of missing data was set to 50% under the assumption of
missing completely at random, meaning there was no systematic pattern in the missing
data. In this case, if total distance was missing, all other GPS variables were also missing,
and the player’s position was among the variables in the imputation model. Complete Case
Analysis and Multiple Imputation (M) using predicted mean matching were the only
methods that managed to accurately retain the original distribution.
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Figure S6. Distribution of total distance measured in meters (M) after handling missing total
distance values with five different methods. Blue lines are imputed values, yellow lines are
the real data. Missing were introduced through a probability function under missing at
random, meaning the probability of missing was dependent on other variables in the
dataset. Around 80% missing was introduced under a strong relationship between the
missing probability and the other variables. In this case, if total distance was missing, all
other GPS variables were also missing, and the player’s position was among the variables in
the imputation model. Complete Case Analysis and Multiple Imputation (MI) using predicted
mean matching were the only methods that came close to retaining the original distribution.
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Figure S7. The performance of different methods of handling missing data in session Rating of
Perceived Exertion when player position is among the variables in the dataset, and when it is not.
Shown for (A) varying levels of missing data under the assumption of Missing Completely at Random
(MCAR) and (B) varying levels of missing data under the assumption of Missing at Random (MAR).
Regression imputation reaches off the chart to between 34% and 136% bias under MCAR and 85%
under MAR.
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Not straightforward: modelling non-
linearity in training load and

injury research

Lena Kristin Bache-Mathiesen
Torstein Dalen-Lorentsen

ABSTRACT

Objectives To determine whether the relationship
between training load and injury risk is non-linear and
investigate ways of handling non-linearity.

Methods We analysed daily training load and injury
data from three cohorts: Norwegian elite U-19 football
(n=81, 55% male, mean age 17 years (SD 1)), Norwegian
Premier League football (n=36, 100% male, mean age 26
years (SD 4)) and elite youth handball (n=205, 36% male,
mean age 17 years (SD 1)). The relationship between
session rating of perceived exertion (SRPE) and probability
of injury was estimated with restricted cubic splines in
mixed-effects logistic regression models. Simulations were
carried out to compare the ability of seven methods to
model non-linear relationships, using visualisations, root-
mean-squared error and coverage of prediction intervals
as performance metrics.

Results No relationships were identified in the football
cohorts; however, a J-shaped relationship was found
between sRPE and the probability of injury on the same
day for elite youth handball players (p<0.001). In the
simulations, the only methods capable of non-linear
modelling relationships were the quadratic model,
fractional polynomials and restricted cubic splines.
Conclusion The relationship between training load and
injury risk should be assumed to be non-linear. Future
research should apply appropriate methods to account for
non-linearity, such as fractional polynomials or restricted
cubic splines. We propose a guide for which method(s) to
use in a range of different situations.

INTRODUCTION

Injuries can hamper athlete and team perfor-
mance in a variety of sporting disciplines.'
Overuse injuries, in particular, are consid-
ered preventable, and in the last decade,
researchers have investigated how training
load affects injury risk in different football
codes and other sports.? Results have been
conflicting; some studies have found an
increased risk with increased training loads,
some have found that lower loads increase
injury risk and some have found no associa-
tion at all.>* Hence, the relationship between
training load and injury remains uncertain.

,! Thor Einar Andersen,’
,' Benjamin Clarsen, ' Morten Wang Fagerland'*
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Key messages

What is already known?

» Hypotheses suggest that the relationship between
training load and injury risk is non-linear.

» Methods used in previous training load and injury
research often assume linearity.

» Categorisation has been proven a suboptimal alter-
native for handling non-linearity.

What are the new findings?

» A non-linear relationship (p<0.001) between ses-
sion rating of perceived exertion and the probability
of injury in elite youth handball players would not
have been discovered if linearity had been assumed
(p=0.24).

» Acceptable Brier scores and C-statistics from a lin-
ear model do not mean that the relationship is linear.

» Categorising training load by quartiles could not
model a linear relationship under skewed data
conditions.

» Fractional polynomials and restricted cubic splines
were the only methods capable of exploring non-
linear shapes.

How might it impact clinical practice?

» Clinical researchers will have the tools available to
perform causal and predictive research on training
load and injury risk more accurately.

» More consistent methodology between training load
and injury risk studies will improve comparability,
reproducibility and facilitate meta-analyses.

In 2013, Gamble theorised a U-shaped rela-
tionship between training load and injury
risk. Too little and too much load increases
risk,” with the middle section of the spec-
trum representing the lowest risk point. This
hypothesis was revisited in 2016 by Blanch
and Gabbett® who, based on three training
load-injury datasets in different sports, postu-
lated a workload—injury relationship that
closely resembled a J-shaped curve; however,
the statistical methodology in that paper has
been questioned.” Gabbett® theorised a non-
linear relationship between training load and
injury risk with the rationale that training
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load may increase the risk of injury and build beneficial
physiological adaptations such as aerobic capacity and
strength, factors associated with decreased injury risk.
The hypotheses of both Gamble and Gabbett suggest a
non-linear relationship between different measures of
training load and injury risk, prompting recent calls for
better handling of non-linearity in the field.’ "’

Despite these hypotheses and calls, methods that assume
a linear relationship between training load and injury
risk, such as Pearson correlations and logistic regression,
are commonly used in the field."" If the training load
and injury relationship is non-linear, such methods are
expected to produce conflicting, irreproducible—and
sometimes simply wrong—results. Nevertheless, no study
has so far determined alternative methods for handling
non-linearity.

The ideal method to handle non-linearity should be
able to: (1) explore non-linear shapes and thus may
confirm or reject previously outlined hypotheses; (2)
model the non-linear relationship accurately; and (3)
offer interpretable results.

The overall aim of this study was to identify the best
methods for handling non-linearity in training load and
injury research. First, we ascertained the relationship in
three sports populations to reveal any potential evidence
of non-linearity, to illustrate the problems and to present
solutions. Second, we compared different methods in
their ability to explore and accurately model potential
non-linear shapes. Finally, we used the comparisons to
develop a guide for which method(s) to use in different
situations.

MATERIALS AND METHODS
Participants
We obtained training load and injury data collected from
three cohorts: Norwegian elite U-19 football players
(n=81, 55% male, mean age: 17 years, SD: lyear),12 one
male football team from the Norwegian Premier League
(n=36, mean age: 26 years (SD: 4))'* and elite youth
handball players recruited from Norwegian sports high
schools (n=205, 36% male, mean age: 17 years (SD: 1)).1
These cohorts were followed for 104, 323 and 237 days,
respectively, during the competitive season.

All participants provided informed consent. Ethical
principles were followed in accordance with the Declara-
tion of Helsinki.

Training load definition

In all three cohorts, players reported the number of
training sessions and matches daily. They also reported
the duration of each activity and their rating of perceived
exertion (RPE)'® on the modified Borg CR10 scale.'® To
derive the session RPE (sRPE),'® we multiplied the RPE
by the activity duration in minutes.

Missing sRPE values are reported in online supple-
mental table S1 and were 24% for elite U-19 football,
41% for Premier League football and 64% for elite
youth handball. The missing values were imputed using

A Daily ACWR 7:21-period Day 0

Chronic Load Acute Load

:
:
:
:
:
:
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>
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Figure 1 lllustration of time periods for calculating (A) daily
ACWR 7:21-period and (B) micro-cycle ACWR 1:3-period.
The first day that ACWR is calculated from is denoted day
0. The space between two tick marks represent 1day (24
hours). For B, a microcycle period consists of all activity
before a new match (M). That is, recovery days after the
previous match as well as the training days before the next
match. Days denoted with negative numbers are training
days before the next match (M-1: being the day before the
match; M-2: 2days before a match and so on). Days with
positive numbers are recovery and training days after a
match (M+1: being the day after a match, M+2: 2days after a
match). The number of days between matches varies by the
match schedule. How a team plan their training and recovery
activities varies and is dependent on the teams’ philosophy.
For A, injury on the same day is defined as an injury on day
0, and future injury is defined as an injury occurring during
the next 4 days excluding day 0. For B, future injury was
defined as an injury occurring during the next microcycle
excluding day 0. ACWR, acute:chronic workload ratio.

multiple imputation (online supplemental figure SI1), a
method that also performs well in cases of high amounts
of missing (80%),"” and the imputed values were deemed
valid (online supplemental figure S2).

All load measures were based on players’ daily
ratings of perceived exertion (sRPE). We calculated an
acute:chronic workload ratio (ACWR) in two different
ways:

Daily ACWR 7:21-period

The mean sRPE across 7days divided by the exponen-
tially weighted moving average (EWMA) of the previous
21 days, uncoupled (figure 1)."® The calculation was
performed on a sliding window moving 1day at a time
from and including the 28th day."” The last day in the
acute load is considered day 0 (figure 1).

Microcycle ACWR 1:3-period

The mean sRPE for each microcycle divided by the
EWMA of the previous three microcycles uncoupled
(figure 1). A microcycle was defined as all recovery days
after the previous match and the training days before
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the next match. The next microcycle started on the first
training day after the match and so on. For an illustra-
tion of a microcycle, see figure 1. The ACWR calculation
was performed in the same manner as described for daily
ACWR, on a sliding window moving one microcycle at
a time from and including the fourth microcycle. The
last day of the fourth microcycle was considered day 0
(figure 1).

When computing a ratio, one assumes that there is no
relationship between the ratio and the denominator after
controlling for the denominator; a ratio is only effective
when the relationship between the numerator and the
denominator is a straight line that intersects the origin.?’
Tests of this assumption are reported in online supple-
mental figure S3.

Injury definition

The same online questionnaire was used to collect daily
health status and training information from all three
sports cohorts. The elite U-19 football data and elite youth
handball data were collected via the Briteback AB online
survey platform, while the Norwegian Premier League
football data were collected with Athlete Monitoring,
Moncton. The players daily reported whether they had
experienced ‘no health problem’, ‘a new health problem’
or ‘an exacerbation of an existing health problem’. In
the youth elite handball study, if players reported any
new health problems, they were immediately prompted
to specify whether it was an injury or illness in the ques-
tionnaire. In the football studies, if players reported any
new health problems, a clinician contacted them by tele-
phone the following day for a structured interview and
classified the health problem as an injury or illness with
the UEFA guidelines.”’ Players were asked to report all
physical complaints, irrespective of their consequences
on sg;)rts participation or the need to seek medical atten-
ton.

Statistical analyses
To estimate the relationship between training load and
injury risk, mixed effects logistic regression was used.'' **

We considered two outcomes: (1) occurrence of an
injury on the same day as the observed training load
(day 0) and (2) occurrence of injury in the future, where
the current observation day (day 0) was not included.
For unmodified training load values and daily ACWR
7:21-period, the future injury was defined as an injury
occurring during the next 4days excluding day 0. For
microcycle ACWR 1:3-period, the future injury was any
injury occurring during the next microcycle excluding
day O (see figure 1 for an illustration of injury time
periods and online supplemental table S2 for a list of the
different models).

We adjusted for player age in all analyses. In addi-
tion, we adjusted for sex in the U-19 elite football and
the elite youth handball models. In all models, the rela-
tionship between sRPE and injury risk was modelled
with restricted cubic splines (RCSs).%* The models were

repeated without splines to simulate the relationship we
would have discovered if we had assumed linearity. When
using RCS, the estimated regression coefficients do not
have a clinically meaningful interpretation, and only
their p values are numerically interpretable.” The main
result is, therefore, a visualisation of the model predic-
tions (with uncertainty) to determine the shape of the
relationship between training load and injury risk.

More details about data preparation and calculations
are available in a supplementary file in .pdf format
(online supplemental file 2). Our analyses served to
illustrate whether there is any evidence for non-linearity
in training load and injury research and should not be
interpreted as causal inference.

Simulations

In addition to analysing real data, we performed
(stochastic) simulations to compare different methods for
ascertaining non-linear and linear relationships between
training load and injury risk. The simulations were based
on the elite U-19 football dataset since it had the least
missing data (24%). The methodology here is focused on
a causal research setting; however, the methods may also
be applied in predictive research.”> A detailed descrip-
tion of the simulation process and equations, as well as
justifications for our methodological choices, is available
as supplementary material (online supplemental file 2).

Two datasets were created. The first kept the original
8495 sRPE and 6308 ACWR values. In the second, sRPE
and ACWR were sampled with replacement to generate
22 500 training load values.

Artificial injuries were simulated under different
assumed scenarios for the relationship between training
load and injury risk:

1. A U shape.
2. A ] shape.
3. Alinear shape.

A U shape between training load and injury risk indi-
cates that the injury risk at lower levels of training load
is equal to the injury risk at higher levels of training
load. In contrast, moderate levels of training load have
the lowest risk. In a J shape, moderate levels of training
load have the lowest injury risk, followed by low levels of
training load having intermediate risk. Finally, high levels
of training load have the highest injury risk. For the U
and linear relationship shapes, the simulated probability
of an injury was based on the sRPE, while for the J shape,
it was based on the ACWR. Any reference to the ‘true’
probability refers to the simulated probability we have
created for a given scenario and which we aim to model.

We used mixed effects logistic regression models to
estimate the relationship between training load and
predefined injury risk, and we compared seven different
methods to model the relationship:

» Linear model.

» Categorising by quartiles (data driven).

» Categorising by subjective cut-offs (subjective).
» Quadratic model.
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» Fractional polynomials.
» RCSs with automated knots (data driven).
» RCSs with subjectively placed knots (subjective).

The root-mean-squared error (RMSE), coverage of
prediction intervals, Brier score for model fit and C-statis-
tics for predictive ability were calculated as performance
measures. RMSE is a combined measure of accuracy and
precision, where the lower the RMSE, the better the
method. RMSE is only interpretable by comparing values
in the same analysis — the values are meaningless in isola-
tion.”

In summary, the four steps of the simulations were:

1. Sample training load values from the elite U-19 foot-
ball data.

2. Simulate injuries with three different shapes for the
relationship between injury risk and training load.

3. Fit seven different models with injury as the outcome
and training load as the explanatory variable.

4. Calculate performance measures.

Steps 1-4 were repeated 1900 times.

For the U-shaped relationship, predicted values were
visualised alongside the predefined shape to determine
each method’s ability to capture the true relationship.
RMSE was also visually compared for the non-linear
shapes.

All statistical analyses and simulations were performed
using R V.4.0.2.77 A GitHub repository is available with R
code and data files.”

RESULTS

Evidence of non-linearity in training load and injury risk
relationship research

A strong J-shaped relationship was found between sRPE
and the probability of injury on the same day for elite
youth handball players (p<0.001, figure 2A, online
supplemental table S3). The linear model did not find
this relationship (OR=1.0, 95% CI 0.99 to 1.00, p=0.24,
figure 2B, online supplemental table S4). Additionally,
for the handball cohort, an uncertain N-shaped relation-
ship was present between sRPE and probability of injury
in the next 4days (p=0.06, figure 2B). These results also
conflicted with the linear model showing no relationship
(OR=1.0, 95%CI 0.99 to 1.00, p=0.35, figure 2B). For
microcycle ACWR, the assumption that the relationship
between the numerator and the denominator is a straight
line intersecting the origin was supported, while for daily
ACWR, the assumption was violated (online supple-
mental figure S3). No other relationships had significant
p values or practically notable effect sizes (online supple-
mental table S3, figure S5 and S6).

Simulations

The quadratic model, fractional polynomials (FPs) and
RCSs with subjectively placed knots were the only methods
capable of modelling the non-linear U-shaped relation-
ship (figure 3). FPs and RCS with subjectively placed
knots (RCS subjectively) had the lowest RMSE and were,
therefore, the best methods for the U shape (figure 4A).

A Same Day (472 Injuries)

1.00+
0.751
0.50 1
0.254
)
2
£ 0.001 : : :
G 0 2000 4000 6000
>
% B Next 4 Days (1 136 Injuries)
S 1.001
<]
* 0.75]
0.50+
0.251 A
0.00{_ , , ,
0 2000 4000 6000
sRPE (AU)

Figure 2 Probability of injury in elite youth handball on

(A) the sameday and (B) the next 4 days, for each level of
session rating of perceived exertion (SRPE) measured in
arbitrary units (AU), as predicted by mixed effects logistic
regression models with restricted cubic splines. The
predictions pertain to a 17-year-old female. The yellow
area represents 95% cluster-robust Cls around predicted
values. The straight line shows the same predictions from
an equivalent model without splines (ie, assuming linearity).
For figure part B, modelling the response of injury in the next
4 days, multiple injuries on the same day were considered
one event and an injury event would pertain to four load
values and are therefore included four times.

The linear model had—by far—the highest RMSE and
the data-driven RCS the second highest (figure 4A).
In contrast, RCS (subjectively) had among the highest
RMSE (figure 4B) regarding the J-shaped relationship.
For the J shape, FPs and the quadratic model were the
best methods (figure 4B). FPs had second-to-lowest
RMSE for non-linear relationships (figure 4) and consis-
tently had the best coverage (table 1).

All methods had a similar degree of error, predictive
ability and model fit for the linear relationship (table 1).

The categorisation methods had the lowest coverage
for the U and linear shapes, and categorising by quar-
tiles had particularly poor coverage for the linear shape
(25% vs >99% for other methods, table 1). For the J
shape, the linear model performed worse than categori-
sation with 55% (vs 79% and 89%) for n=6308 (table 1).
Predictions from the linear model could not form the U
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Figure 3 Probability of injury for each level of session rating
of perceived exertion (sRPE) as predicted by seven different
methods of modelling load. The yellow line represents the
ability of the method to capture the U-shaped relationship
(shown by the black line). The yellow area corresponds to
the prediction interval. The predictions are based on 8494
sRPE values sampled from a highly skewed distribution in a
Norwegian elite U-19 football dataset.

shape (figure 3) and had the highest degree of error for
both non-linear shapes (highest RMSE; table 1, figure 4)
but showed high predictive ability for the U shape (C-sta-
tistic >0.8) and moderate to poor predictive ability of the
J shape (C-statistic=0.77 for n=6308, C-statistic=0.62 for
n=22 500) in line with the other methods (table 1).

The differences in evaluation metrics between the two
different sample sizes, n=22 500 and n=8494 for sRPE,
and n=22 500and n=6308 for ACWR, were negligible
(table 1). Model fit determined by Brier score also failed
to notably differentiate methods (table 1).

DISCUSSION
This is the first study exploring the potential for non-
linearity in the relationship between training load and
injury risk for football and handball. We found a J-shaped
relationship between training load measured as the sSRPE
and probability of an injury on the same day in an elite
youth handball cohort (figure 2A).

We also found that three methods were able to model
the non-linear relationships between training load and

Open access

A U-shaped Relationship

Linear Model L

Restricted Cubic Splines °
(Data-Driven)

Categorized (Subjectively)
Categorized (Quartiles)
Quadratic Model

Fractional Polynomials

Restricted Cubic Splines
(Subjectively)

1.0 1.5 2.0 2.5 3.0
Root-Mean-Square Error

B J-shaped Relationship

Linear Model L]

Restricted Cubic Splines °
(Subjectively)

Categorized (Quartiles)

Restricted Cubic Splines °
(Data-Driven)
Categorized (Subjectively) [ J
Fractional Polynomials [ ]

Quadratic Model | ®

0.915 0.920 0.925 0.930 0.935 0.940
Root-Mean-Square Error

Figure 4 The mean root-mean-squared error (RMSE) of
1900 permutations for seven different methods modelling a
non-linear (A) U-shaped relationship between session rating
of perceived exertion (sRPE) and probability of injury, and

(B) J-shaped relationship between acute:chronic workload
ratio (ACWR) and probability of injury. The methods are
arranged from top-to-bottom by the method with highest
RMSE (most error) to the method with lowest RMSE. Thus,
the best methods (those with lowest RMSE) are arranged
towards the bottom. For figure part A, fractional polynomials
and restricted cubic splines (subjectively) were the best
methods, while for figure part B, fractional polynomials and
the quadratic model were the best methods. The calculations
are based on a Norwegian elite U-19 football dataset with
8494 sRPE values for (A) U shape and 6308 ACWR values
for (B) J shape. RMSE cannot be compared between the two
shapes, only within each shape.?

injury explored in this paper: the quadratic model, FPs
and RCSs, which managed to accurately recreate all simu-
lated risk shapes (figure 4).

Evidence of non-linearity in training load and injury risk
relationship research
All modelled relationships between training load and
injury risk were either flat (no relationship) or non-
linear. The results showed that the strength and direction
of the relationship varied between training load—and
injury—definitions in the handball population, while no
relationships were found in the two football populations.
If we had assumed linearity and modelled the data
accordingly, we would not have discovered these rela-
tionships. More grievously, we would have concluded
there was no relationship between training load and
injury risk for elite youth handball players for injury on
the same day (linear model, p=0.24, type II error), when
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Relationship Sample size Method RMSE Brier score C-statistic Coverage (%)

J shape 22 500 Linear model 1.044  0.063 0.618 77.694
Categorised (quartiles) 0.993 0.064 0.689 88.652

Categorised (subjectively) 0.993  0.063 0.690 96.404

Quadratic model 0.984 0.061 0.732 99.997

Fractional polynomials 0.986  0.061 0.740 100.000

Restricted cubic splines (data driven) 0.992 0.061 0.735 99.999

Restricted cubic splines (subjectively) 0.993 0.061 0.721 99.869

6308 Linear model 0.942  0.060 0.774 54.493
Categorised (quartiles) 0.919  0.060 0.791 79.120

Categorised (subjectively) 0.917  0.059 0.795 89.393

Quadratic model 0.912  0.057 0.817 93.272

Fractional polynomials 0.915 0.057 0.821 95.517

Restricted cubic splines (data driven) 0.918 0.057 0.818 94.281

Restricted cubic splines (subjectively) 0.919 0.057 0.812 89.959

RMSE, root-mean-squared error.
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it was, in fact, a strong U-shaped parabola (RCS model,
p<0.001, figure 2A). This may happen when a rela-
tionship is not only non-linear but non-monotonic. In
monotonic relationships, the response variable Y (injury
probability) moves only in one direction as X (training
load) increases, while in non-monotonic relationships,
Y sometimes increases and sometimes decreases when X
increases.’

In 2013, Gamble® theorised a U-shaped relationship
between training load and risk of injury. Data presented
by Blanch and Gabbett® suggested a J-shaped relationship
between ACWR and injury, although the methodology
and interpretation of this finding have recently been
questioned.7 Here, we reproduced a ] shape between
SRPE and injury occurring on the same day for elite
youth handballers but not for the relative training load
described by the ACWR in the same cohort. In Lathlean et
al®® a U shape was discovered between training load and
the risk of future injury in an Australian football cohort.
These findings might suggest that the training load and
injury relationship is different for different sports and
populations. Since non-linearity is possible in a training
load and injury context, we recommend assuming the
data have an unknown, non-linear relationship when
conducting statistical analyses.

Methods for addressing non-linear relationships
As expected, standard logistic regression could not model
the U and | shapes, as it assumes linearity. For the U shape,
the RMSE was threefold higher for the linear model than
all other models (RMSE=2.9vs RMSE=0.95, figure 4A),
showing that violation of the linearity assumption causes
major bias and can substantially alter conclusions based
on the results. Misleadingly, the linear model had a great
Grstatistic score (>0.8) and comparable Brier scores. This
happened because the sRPE values were highly skewed
(online supplemental figure S4). Over 90% of the data
points were congested in the left-hand side of the U shape
(figure 3, online supplemental figure S4). The linear
model, which only managed to model the left-hand side
of the U shape, therefore predicted most of the values
well, causing the impressive C-statistic. However, it could
not predict the right-hand side of the U shape at all and
therefore had high RMSE. Consequently, a researcher
who measures model fit by predictive ability alone may be
falsely assured that the linearity assumption holds true.
Categorisation has previously been explored thor-
oughly in Carey et af’” and proven a poor method for
modelling non-linear relationships. The results were
reproduced in our study using a football population,
where the RMSE and coverage for categorisation were
consistently outperformed by other methods (table 1). In
addition, our results showed that categorising by quartiles
was suboptimal for modelling non-linear relationships
and also suboptimal when the relationship between
training load and injury risk was linear (coverage of 25%
vs >99% for all other methods).

Recently, some studies have added a quadratic term to
the training load and injury model to test for linearity:
if the term was non-significant, it was discarded for a
linear model; if significant, they categorised the training
load variable to handle non-linearity.” = If the quadratic
term is significant, the researchers correctly choose other
options over a linear model. However, the quadratic
term only tests for a parabolic shape—not non-linearity
in general. A significant quadratic term does not mean
the relationship is quadratic (parabolic). It means that
a quadratic shape fits better than a linear shape. If the
quadratic term is not significant, it does not necessarily
mean the underlying relationship is linear, either, only
that a quadratic shape fits poorly. Furthermore, testing
non-linearity with a quadratic term has been shown to
inflate type I error rates by 50%."*

Blanch and Gabbett® and Carey et al'® used quadratic
regression assuming a parabolic relationship between
training load and injury risk. In our study, quadratic
regression modelled the U-shaped risk profiles with low
degrees of error (figures 3 and 4A) and had the best
performance for the J-shaped relationship (figure 4B).
This is expected, as the J shape was initially constructed
from a quadratic model in Blanch and Gabbett.’
Contrary to a real-life setting, however, we knew the risk
profiles before analysing our data. Quadratic regression
does not explore shapes but constrains the model to
follow a specific pathway. We think it is only appropriate
when strong evidence from previous studies support a
parabolic relationship. We recommend assuming non-
linearity of unknown shapes and using methods not to
test for linearity but to explore and model non-linearity
to discover the relationship. Based on our findings and
previous research in other fields such as medical statis-
tics,” FPs and RCSs appear to be the best methods for
doing this.

FPs modelled all risk shapes accurately (figure 4,
table 1). FP has recently been used in a training load and
injury risk study.” This method requires minor subjec-
tive influence, and the results are intuitive, especially
for users familiar with quadratic regression. Although it
appears the superior choice at first glance, the method
has a disadvantage: FPs are defined only for positive
values, which means that an FP model is unable to model
negative values and the value 0. In the context of training
load and injury risk research, training load is (tradition-
ally) never measured on a negative scale.” If it can be
justified, adding a small constant (such as 0.001, or what-
ever is considered small in the context of the measuring
scale) to all training load values can solve the problem
with 0 and allow the use of FPs.

RCSs performance depended on how knot locations
(the points where the polynomials that make up cubic
splines are joined, see online supplemental file 2 for
details) were chosen. In the data-driven method, where
knots were automatically placed by the default setting,
RCS failed to model the U-shaped scenario (figure 3).
When knot position was chosen based on the range of
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Box 1

Recommended methods to model non-linear relationships between training load and injury risk

To model non-linear relationships, either Fractional Polynomials (FP) or Restricted Cubic Splines (RCS) can be used.
Fractional polynomials are easier to interpret. We recommend FP under the following conditions:
» When the main objective is causal research, FP is preferred. When the training load measure does not include negative numbers or 0. This includes:
— Studies that use the Acute-Chronic Workload Ratio or other metrics that cannot be the value 0 or a negative value.
— Studies that model the relationship between training load and injury risk on the same day, or other scenarios where the researchers may wish to
remove the days where the athletes were not exposed to any training load from the dataset.
— Studies that can justify applying a small constant (such as 0.001, or whatever is considered small in the context of the measuring scale) to all

training load values.
We recommend restricted cubic splines under the following conditions:
» When the main objective is predictive research, RCS is preferred.

» When the training load measures must have the value 0. This includes studies that wish to capture a change in the effect, regardless how small,

going from no training load at all to any amount of training load.

» When training load is included in the study merely to adjust for it as a potential confounder and is not the main variable of interest.
We do not recommend changing the study aims or the chosen measure to use FP, nor do we recommend using FP under certain conditions and RCS

for other conditions in the same study.

A step-by-step guide to performing FP and RCS in R can be accessed on the primary author’s GitHub page.

the training load variable, RCS modelled the U accurately
(figure 3). However, the results were the opposite for the
J-shaped relationship where the data-driven method was
among those of lowest error, and the subjectively located
knots had the highest amount of error (figure 4B). The
default placement algorithm was by quartiles, and in the
highly skewed distribution of the sRPE values used in
the U-shaped relationship (online supplemental figure
S4), it caused the knots to be placed tightly together
(figure 3). Therefore, it could not model the shape,
while the subjective version was created with the range
of the values in mind. The ACWR values used in the ]
shape had a Gaussian distribution (online supplemental
figure S4), and using quartiles was a feasible choice. This
shows the importance of careful model calibration using
clinical knowledge and knowledge of the data.

RCS produces effect sizes that are difficult to use in
a practical setting, and results can only be interpreted
in the form of p values and visualisation (such as in
figure 2). RCS is less ideal than FP in causal research.
Still, its disadvantages are not as relevant in predictive
research where interpretability is of minor concern.” We
propose a guide for when FP is recommended and when
RCS is recommended (box 1).

Limitations
A limitation of this study was the sample size, the number
of injuries and consequently statistical power. Neither of
the two football cohorts satisfied the recommendation
of >200 injuries to detect a small to moderate effect.””
The elite youth handball data, despite having a sufficient
number of injuries, had high amounts of missing sRPE
values (64%), and this may have caused selection bias.
We emphasise that the exploration of non-linearity in
these data were for illustrative purposes and not to show
causal inference.

We used statistical methods commonly used and recom-
mended in the field to demonstrate how non-linear
relationships can be ascertained with existing methods.

3940

We were consequently limited in the choice of methods.
The ACWR model is under debate, and the pros and cons
of the method have been explored extensively in recent
publications.'? "% The purpose of this paper was not to
provide additional insight into that discussion but rather
to demonstrate how a continuous training load variable
should be modelled to account for non-linearity. For this
reason, we opted to use ACWR, as it is currently the most
used training load method in the field of training load
and injury risk research.’

CONCLUSION

Exploratory analyses showed evidence of a non-linear
relationship between training load and risk of injury
in a sports population. Researchers should assume that
the relationship between training load and injury risk
is non-linear and use appropriate methods that explore
relationships rather than constrain them. Linear methods
should only be used when the relationship is first proven
to be linear. We promote FPs or RCSs to model non-linear
relationships, depending on the scenario.
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Table S1. Data quality comparison of sports cohorts: the Norwegian elite U-19 football data (55% male, age; mean *
standard deviation (SD) = 17 + 1 years), Norwegian Premier League football data (all male, age 26 + 4 years) and elite
youth handball data (36% male, age 17 + 0.9 years).

Football U-19 Football Elite Handball

Sample Size Number of athletes 81 36 205
Number of sRPE values before imputation 6424 6061 17 268

Number of sRPE values after imputation 8 495 10232 47 651

Number of injuries 81 38 472

Number of injuries per athlete, mean (SD) 1(1.2) 1(1.5) 2.3(2.9)

Missing data ~ Missing load values, n (%) 2071 (24%) 4171 (41%) 30383 (64%)
Missing load values per athlete, mean (SD) 26 (32) 116 (62) 148 (71)

Timelines Mean (SD) answering time, days 0.3 (0.7) 0.01(0.2) 0.7 (1.6)
Percentage of forms answered the same day 72% 99% 53%

Max answering time, days 9 4 119

Abbreviations: Football Elite, Norwegian Premier League; sRPE, session Rating of Perceived Exertion
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Table S2. Overview of injury definition and models run on each sport population, with the number of load values
and the number of injuries used in each model.

Population Injury Definition® Load Definition? Load Values (n)® Injuries (n)®
Football U-19 (n=81)  Same day sRPE 8495 81
Daily ACWR 7:21-period 6308 43

Next 4 days SRPE 8495 210

Daily ACWR 7:21-period 6308 129

Next micro-cycle Micro-cycle ACWR 1:3-period 793 26

Football Elite (n=36)  Same day sRPE 10232 38
Daily ACWR 7:21-period 9260 32

Next 4 days sRPE 10232 44

Daily ACWR 7:21-period 9260 34

Next micro-cycle Micro-cycle ACWR 1:3-period 553 26

Handball (n = 205) Same day sRPE 47 651 472
Daily ACWR 7:21-period 42 116 320

Next 4 days SRPE 47 651 1136

Daily ACWR 7:21-period 42116 714

Next micro-cycle Micro-cycle ACWR 1:3-period 1897 242

Abbreviations: ACWR, Acute: Chronic Workload Ratio; Football Elite, Norwegian Premier League; sRPE = daily
session Rating of Perceived Exertion; TL, Training Load.

1Same day was injury same day as the measured load value; Next 4 days was one or more injuries during the four
days after the measured load value; Next micro-cycle was one or more injuries during the micro-cycle after the
micro-cycle of the measured load values.

2Daily ACWR 7:21-period was the 7-day acute sRPE divided by previous 21-day chronic sRPE per day; Micro-cycle
ACWR 1:3-period was the 1-micro-cycle acute sRPE divided by previous 3-micro-cycle chronic sRPE per micro-
cycle. A micro-cycle was defined as all recovery days after the previous match as well as the training days before
the next match.

3Due to aggregations, ACWR calculations and injury time-windows, the number of load values and injury events
varied between models.

Bache-Mathiesen LK, et al. BMJ Open Sp Ex Med 2021; 7:¢001119. doi: 10.1136/bmjsem-2021-001119



611100~ 1207-Waslwq/9¢ 1 1°01 10 6T 11009:L *120T P2I XA dS uadQ fN "1V 12 ST USIIYIRIN-OydRg

a8ed 1xau ay3 uo sanunuo)

1990 0IT 8€E°0 997°C ¥65°0 09T'T (s1ea,) 28y

1690 8T€C L190 €8T’V 18€0 8LTT 3[BIN X3S

- - - - - - (Jo4) 3jewa4 xas

1000> S9ST  SvL°0 6€T°0 £00°0 T€0°0 \peot

1200 86v  1£9°0 €6L1T et S8T'Y peot

8vT'0  ¥0T 6419 195°'ST 100°0> 100°0> BLERIER] shep N

965’0 TETT  18T0 ¥6S'T S8L°0 8IT'T (s1eap) a8y

Oobv'0  76SC  S9E0 9TLC 8v9°0 9TeT 3[BIN X3S

- - - - - - (404) ajewa4 xas

68T°0 89ZT LT8O £S0°ST 9850 0L6'C \peo

6850 968T S9t°0 9€6'T €TE0 8LL°0 peot

€500 880T €£€T€ €L0'T 100°0> 2000 1daousy| Aep awes pouad-1z:£ YMIV Altea
v/80 19T SLT0 ELET 689°0 €460 (s1ea,) 28y

S¥9'0 LTV T9EO 00v'C 7850 18T'T 3[BIN X3S

- - - - - - (4o4) ajeWa4 X35

7050 98€E€ 1000 100'T 8660 6660 \peo

6LT°'0 €SZ¥ 1000 200'T 000'T 100'T peol

9C0  €LT  ¥60E YT9'€T 100°0> 1€0°0 1daauay| shep N

650 126 LST0 6L7'T 0080 8380°'T (s1eap) @8y

1€9°'0 98Z¢ ¥IE0 [ 4 8790 €9T'T 3[BIN X3S

- - - - - - (49Y) ojewad xas

9v/'0 LEEE  TOO0 ¥00'T 1660 100'T \peol

L€8°0 TEEE  TOO0 €00'T 16670 000'T peot

(Y00 Tv6  808C 6€6°0 100°0> ¥00°0 1daouau| Aep awes 3dds  6T-N |leqio0d
d P as %S°L6 1D %S 1D 0 a|qerep  uoniuyaqg Ainfuj ;uoniuyaq peol uone|ndod

*saul|ds 21qNd Pa3o1ISAL YUM S|9pOW 339442 paxiw Suisn ysu Aanful
pue peo| Sujuies) usamiaq diysuolie|al ay3 Sulj|9pow WoJj sanjeA-d pue WopaaJ) O s93J53p ‘10JJD PIBPUE]S ‘S|BAIDIUI SDUPUOD %S6 YIIM Ol1el SPPO €S d|qeL

pop x4 dS uado NG

(s)1opne ayy £q parddns uaaq sey yorym [erajew [eyuawajddns sy uo paserd
Qouer[al Aue woly Juiste Afiqisuodsar pue AI[Iqei] [[e SWIe[dsip :.Emw i

paywi| dnoio surystand (NG

[euew pyudwRddng



611100~ 1207-Waslwq/9¢ 1 1°01 10 6T 11009:L *120T P2I XA dS uadQ fN "1V 12 ST USIIYIRIN-OydRg

v
93ed 1xau ay3 uo sanuUO)

0190 TIT EITC e S00°0 ovE0 \peoq

99%'0  9¥ wLe €2€°188T 0€0°0 €2S'L peol

1200 9Lt 9¥0°0 61CT 910'T €IT'T (s1ea,) 28y

6000 79 T¥8'C 9€T'0 100°0> 100°0> 1daosau]  3pAd-0UdIW IXAN pouad-€:T YMDIV 3]2A2-0.01IN

120  6C 4744 €85°S 100°0 9500 \peot

6€€0 0T 8v6'T LT'06€ 911’0 TE€L9 peo]

1800 6VET  SOT'O LLY'T 8L6°0 07T (s1eap) @8y

7000 00€ a8Y'E ST00 100°0> 100°0> 1daauay| shep ¥ 1xaN

7900 799T 1600 8Tyl 1660 98T'T (s1eap) @8y

¥90'0 €€8€  €S0°0 97Tt ¥66°0 vOT'T (s1eap) @8y

9790 ¥t 102°C €19°T€ %000 LEEO peo

LS50 Tt 6TTC 98C°€LT w00 68€°'€ peol

1000 SS °] 4 7200 100°0> 100°0> BLERIER] Aep aweg pouad-1z:£ YMOV Allea

600 66 €000 10T 1660 ¥00'T peo

1050 89T 7000 €00'T ¥66°0 8660 peo]

1000 €6ST 18SC 2200 100°0> 100°0> 1daousy| shep ¥ 1xaN

9500 08v¥ 8¥0°0 v0T'T 166°0 960'T (s1ea,) 28y

V80 Siby  ¥00°0 800'T ¥66°0 100'T peot

168°0 6Lby €000 S00'T S66°0 000'T peo

000> 08vv LEV'T 1100 100°0> 100°0 BLERIER] Aep aweg 3d¥s a3 ||eqiood
97L'0  8SE €6T°0 €951 TELO 0L0'T (s4eap) @8y

T80 TH9 LT70 €95°C 8L1°0 LOT'T 3[BIN X35

- - - - - - (49Y) ajewa4 xas

8€6'0 967  970°'ST  07+ITS’E 100°0> wv10 wPeo]

G50 9S€ LS89 LEO9ETY 100°0> GES'8 peot

8/7°0 795 6EV'T 9€S€E 7100 0120 peo

79€0  96€ 70S°€ 980°0% 100°0> 100 1doosaul  3P2Ad-0.01W IXaN pouad-€:T YMDV 3|2A2-000IN 6T-N ||eg1004
d P as %0S'L61D %0STID 0 ajqeep  uoniuyaa Ainfu 1ulyaq peot uonejndod

pop x4 dS uado NG

(s)1opne ayy £q parddns uaaq sey yorym [erajew [eyuawajddns sy uo paserd
Qouer[al Aue woly Juiste Afiqisuodsar pue AI[Iqei] [[e SWIe[dsip :.Emw i

[euew pyudwRddng

paywi| dnoio surystand (NG



611100~ 1207-Waslwq/9¢ 1 1°01 10 6T 11009:L *120T P2I XA dS uadQ fN "1V 12 ST USIIYIRIN-OydRg

93ed 1xau ay3 uo sanunUO)

L6V'0  9T¥T  6LT0 LSTT ¥29°0 988°0 (s1eap) a8y

G8€'0  06¥L LIEO 67T 80L°0 91€'T 3[BIN X3S

- - - - - - (404) ajewa4 xas

€000 OL S6€°0 €90 €ET0 2620 \peo

8700 86 8Y€0 2007 900°T 900'C peot

8€9'0 CT0C 880°€ 6TL'66 1000 v€T0 1dsousy| shep ¥ 1xaN

976’0 LSEE  ¥TTO 6SCT 910 6860 (s1eap) @8y

1650 LEL8 TTTO LT 62L°0 LTT'T 3[BIN X3S

- - - - - - (4o4) ajeWa4 X35

7970 ¥6E  Svr0 [45% £89°0 8v9'T \peot

LTF'0  TOET  99€°0 €251 29¢€°0 €VL°0 peol

OVT'0  TLEE LSTT €€8'C 1000 100 BLERIER] Aep awes pouad-1z:2 YMOV Allea
¥62°0 9YIT  €€T°0 6CT'T £9°0 L8°0 (s1eap) @8y

L€8°0 TTSTT STO 6TLT S¥9°0 €S0'T 3[BIN X3S

- - - - - - (404) ajewa4 xas

EVT0 1T 1000> 000°'T 6660 6660 \peo

€900 6€ 000> TO0'T 000'T 000'T peot

[T8°0 0LTT  L6TT 168'7S £00°0 909°0 1daousy| shep ¥ 1xaN

TIL0 Ov.T  20T0 LLT'T £8L°0 €96°0 (s1ea,) 28y

9S5'0  £98TT 18T°0 98S'T 08L°0 (48" 3[BIN X3S

- - - - - - (Jo¥) 9jewa4 xas

100°0> €09¢ 1000 €00'T 100'T 00T peot

1000> Svv6 TO0'0> 6660 8660 6660 peo

9T'0  TEIT  LLLT T1L¢ €000 €80°0 BLERIER] Aep aweg 3dys llegpueH
d p as %0S°L61D %0STID 0 ajqeep  uoniuyaa Ainfu 1uyyaq peo1 uonejndod

pop x4 dS uado NG

(s)1opne ayy £q parddns uaaq sey yorym [erajew [eyuawajddns sy uo paserd
Qouer[al Aue woly Juiste Afiqisuodsar pue AI[Iqei] [[e SWIe[dsip :.Emw i

paywi| dnoio surystand (NG

[euew pyudwRddng



611100~ 1207-Waslwq/9¢ 1 1°01 10 6T 11009:L *120T P2I XA dS uadQ fN "1V 12 ST USIIYIRIN-OydRg

*J915weJed siy) Joj 5|qe1a4dIs1ulun S| ‘oney SPPO ‘9z1S-199443 Y1 ‘sauljds 2IgNd Y1m Pa1llj SeM Peo| s
*S9N|BA PEO| PRJNSE3W Y3 JO 3|IAI-0401W 3y} J934E 3|9A2-040|W 3y} SulNp saNful S10W J0 3UO sem 3[9Ad
-0J21W 1X3N ‘SNjeA PEO| PaNseaw ay) Ja1je SAep Inoj ay3 SulnNp sa1INUl 910w 10 U0 Sem sAep ¢ IXSN ‘anjeA peo| painseaw 3y se Aep swes Ainfu sem Aep swes,

‘y23ew IXau 3y} 34043 shep

SululeJsy ays se ||am se ydlew snolraad sy Jo1ye sAep Alanodal ||e se paulap sem 319A2-04d1W Y *319A2-0401W 4ad FJYS 21U0IYD 3|2AI-04d1W-€ SnoIARJd AQ PIPIAIP IdYS

a1nde 3|2A2-0101W-T 3Y3 sem polad-¢:T YMIY 3|2A2-0101|A ‘Aep 4ad 3dYs d1uoayd Aep-Tz snoiaaid Ag papialp 3dYs @inde Aep-£ ay3 sem pouad-Tz:Z YMOV Ajteq;
'UOI1IDX] PAAIDIIRJ JO Sulley uoISSas Ajlep ‘3dys (10443 paepuels ‘IS ‘oney
SPPO ‘4O ‘@nSea Jalwald ueISamIoN ‘9|3 ||eqI00H ‘WOpPad.4 JO $33IT9Q ‘4P ‘S|BAIDIU| DIUBPIIUOD %SG6 ‘ID ‘Ol3eY PROYIOMN J1UOIYD :9INJY ‘YADY :SUONIRIARIGQY

9/6'0 €IET  6IT0 19TT S6L°0 ¥00'T (s1ea,) 28y
¥S9'0 TSST  SITO v8€'T 9650 806°0 BN X3S
- - - - - - (19Y) ajewa4 xas
6/V'0 696 800 9L6'C 6650 GEET \peoq
LVL'0 SS6  ¥OV'O 6€6'T L6€°0 8/8°0 peoy
7860 0SPT  790°T STr6 €000 S9T°0 1daosau]  3pAd-0sdIW IXAN pouad-€:T YMDIV 3]2A2-0.01IN llegpueH
d P as %0S°L61D %0STID 0 ajqeep  uoniuyaa Ainfu ;uoniuyaq peol uonejndod

pop x4 dS uado NG

(s)1opne ayy £q parddns uaaq sey yorym [erajew [eyuawajddns sy uo paserd
Qouer[al Aue woly Juiste Afiqisuodsar pue AI[Iqei] [[e SWIe[dsip :.Emw i

paywi| dnoio surystand (NG

[euew pyudwRddng



611100~ 1207-Waslwq/9¢ 1 1°01 10 6T 11009:L *120T P2I XA dS uadQ fN "1V 12 ST USIIYIRIN-OydRg

98ed 1xau ay3 Uo sanuUO)

S98°0 80T 86C°0 668'T €850 ZS80'T (s4edp) 28y

GES'0  VIST 1SS0 LvTY 8LV'0 807'T CILAREN

- - - - - - (IEN)ET[VERPEIN

S9v'0  ww/L1 CLEO0  TTLT €€9°0 cIet peoq

99¢'0 80T €TE€'S  966'86 T00°0> €000 1d32433u] shep ¢ 1xaN

€V’'0 68¢T I8T0 S¢91 86L°0 6ET'T (s1eap) a8y

ovv'0  T09¢ 89€'0  LEL'C S¥9°0 6CE'T CILAREN

- - - - - - (49Y) sjewa4 xas

v6T'0  C6V 8¢C0  LOT'C 6580 IE'T peot

SC0'0 TveET TI8T'E  SOVO T00°0> T00'0 1d32433u] Aep swes pouad-Tz:£ YMIV Altea
980 95¢ SLT0  69€1 9890 696°0 (s4eaj) a8y

9€9'0 6SL¥  T9€0  90v'C S85°0 98T'T CILAREN

- - - - - - (40Y) sjewa4 xas

£90°'0 STOE TOO'0> TOO'T 000°'T 000'T peot

SLT0  €9C 660'€  9¥0'ST T00°0> €00 1daosaul shep ¢ 1xaN

1650 C¢6 9ST'0  8LYV'T 0080 880'T (s4ea,) a8y

£T9°0 [8TE VIE0  9ST'C 6¢9°0 S9T'T CILTAREN

- - - - - - (40Y) ojewa4 xas

GSL'0 8g€E  TO0'0> TOO'T 666'0 000°'T peot

T¥0'0 ¢v6 18L'C S6L°0 T00°0> €000 1dadsau Aep swes 3d¥s  6T-N(leqiood
d P 3s %S°L61D  %S'TID 4o a|qerepn  uomuyaqg Anfuj fuoljuyaq peoq uone|ndod

*Alueaul| wnsse yaiym sjppow uoissaSad 2135180| 199449 paxiw uisn ysi1 Ainful pue peo)
Sujuresy usamiaq diysuoire|as ay3 Suljjapow wouy sanjeA-d pue Wopaaly JO S92J33p ‘40JID PIePUR)S ‘S|BAIDIUI BDUPIUOD %56 YUM O11RI SPPO “bS d|qel

pop x4 dS uado NG

(s)1opne ayy £q parddns uaaq sey yorym [erajew [eyuawajddns sy uo paserd
Qouer[al Aue woly Juiste Afiqisuodsar pue AI[Iqei] [[e SWIe[dsip :.Emw i

paywi| dnoio surystand (NG

[euew pyudwRddng



611100~ 1207-Waslwq/9¢ 1 1°01 10 6T 11009:L *120T P2I XA dS uadQ fN "1V 12 ST USIIYIRIN-OydRg

93ed 1xau ay1 Uo sanuiuUO)

8€9°0 6ELT €0T0 99T'T 6410 €560 (s4ea4) 98y

6150 698TT T8T'0 +09'T 88L°0 1 Z4%" d[BIN X3S

- - - - - - (Joy) djewad xas

0vZ0 T¥EL 0000 000'T 000'T 000'T peo?

TCT'0  €49T ¢8L'T T80C 2000 €900 1dauau Aep awes 1dys |leqpueH
6100 9LY 90’0  TCCT 8T0'T SIT'T (s1edp) 98y

96€°0 LY 0160 ST9€T 0S€°0 €81°C peol

1000> 98T S99'T 900 100°0> 1000 ydaousul  3pAd-osIW IXBN pouad-g:T YMDV 3|2A2-0101IN

6800 9SET  TOT'0  TSY'T v46°0 68T'T (s1eap) 28y

LLS0  OL 6650 S9T'C €520 6€L°0 peol

7000 88CT CS6T  TYOO 100°0> 100°0> 1da2uay] shep ¢ 1xaN

¥90'0 L¥8E TSO'0  TITT ¥66°0 01T (sieap) a8y

8G90 ¢SS TISO  lTvE 6570 SSTT peot

100°0> 9/S€ SSS'T 8000 100°0> 100°0> 1daoua3u Aep awes pouad-1z:£ YMIV Allea

8500 ¢99T 1600 CTv'l ¥66°0 68T'T (s4ea,) 98y

¥87°0 ST 1000 €00T 8660 100'T peo

1000> ¢IVT  2/ST  ¥10°0 100°0> 100°0> 1dauau shep v 1xaN

G500 I8yy 8Y00  ¥OTT 8660 960'T (s1eap) 28y

£98°0 18vF TO00 TOO'T 6660 000'T peol

1000> 187y ¥YET 8000 100°0> 1000 1da2uau Aep awes 3dds @3 ||eqiood
¥69'0  66C €6T°0 LLST 8€L°0 6L0°T (s1eap) @8y

w80 Sv9  TTwro  T6h'T SL¥0 830'T 3[BIN X3S

- - - - - - (Jo4) ajewa4 xas

W0 ¥ES  T6V'0  TETT [Z430) 0S80 peol

66T°0 TEE  96€€  6S0°0T 100°0> €100 1daosaul  3pAd-omIW XN pouad-€:T YMDV 3]2A2-010IN 6T-N |eg1004
d p as %S°L61D  %STID ¥o d|qeriep  uontuyaqg Ainfug [uoniuyaqg peol uonejndod

pop x4 dS uado NG

Qouer[al Aue woxy Jusue Afiqisuodsar pue AI[Iqei] [[e sturepdsip (NG

(s)1oyne oy £q parjddns us9q sey YoIyMm [eLIDIRW _EzoEowna:m s1y) uo paserd

paywi| dnoio surystand (NG

[euew pyudwRddng



611100~ 1207-Waslwq/9¢ 1 1°01 10 6T 11009:L *120T P2I XA dS uadQ fN "1V 12 ST USIIYIRIN-OydRg

'SaN|eA Peo| PaJNSeaw 3y} JO 30A2-0401W Y3 Jal4e 3]9A2-0401W 3y} Sulnp salunful 910w JO 3UO Sem 3|9Ad-0101W
1X3N ‘en|eA peo| painseaw a3y} Jayje sAep 1noj syl Sulnp salinful 310w 10 3UO sem sAep H 1XaN ‘Bn|eA peo| painsesw ay3 se Aep awes Ainful sem Aep swes,
‘yolew Ixau ayl 24043q sAep Sujuiey ayj se
||I9M se yajew snolnaid sy Jayje shep A1an0d3al ||e se paulyap sem 3]9A2-0101w 7 *9|9A2-0401W Jad J4YS d1U0IYd 3]9A2-0401W-€ Snolnaid Ag papIAIp 3dYS 93nde

3]2A2-0.01W-T 3y} sem pouad-€:T YMIV 2]2Ad-0.011A ‘Aep Jad 3dYs d1uoayd Aep-Tz snoiraid Aq papiAIp 3dYs 91nde Aep-/ syl sem pouad-Tz:/ YMIV Ajleq,
‘UO0I}I9X] PAAIDIIR{ 4O Sulley UoISSas Ajlep ‘Idys 10143 piepuels ‘IS ‘o1ley SppO ‘YO
‘ang8ea Jalwalid uelSamIoN ‘931|3 ||BgI004 ‘WOopPaaU4 0 S33189Q ‘P ‘S|BAIDIU| BDUBPIIUOD %SG6 ‘ID ‘O11eY PEOJYIOAN JIUOIYD :9INY “YMDIV :SUOIIBIASIGQY

986'0 YOYT €ET'0  O00E'T €L1°0 200°T (s4ea,) 98y

989°0 ¢SST  OvT0  €SV'T £95°0 806°0 d[eIN X3S

- - - - - - (409Y) sjewa4 xas

6090 TLL 0€T0  69L°T 91,0 STTT peoq

€6€°0 8YYT €6TCT /9T 7000 wi'0 wdaoudiul  3Ad-0udIW IXBN pouad-€:T YMOV 3|2A2-0.101A
S0 96L 6LT°0 EVTT ST9°0 ¥.8°0 (s4ea,) a8y

I8€'0 ¢8SL 9TE0  ISPT 0TL°0 6TET d[eIN X3S

- - - - - - (409Y) ojewa4 xas

£85°0 8IT €020 8EET 6650 S68°0 peo]

0v8'0 668 860'€ SO8'€EEC  TOOO GESO 1dadsaul shep ¢ 1xaN

126'0 €LE€  vZT'0  09CT SLL0 886'0 (s4ea,) 98y

G850 8EL8 €TCO 8YLT 0€L°0 6CTT dleIN X3S

- - - - - - (40Y) ojewa4 xas

6570  ¥0T 9€T'0  StY'l 980 90T'T peo]

SOT'0 €L€T 6ST'T 180T 100°0> 0€0°0 1dadsaul Aep swes pouad-Tz:Z YMIV Ajted
0TE0 0TYT  PET'0  SET'T 1490 €/8°0 (s1eap) @8y

6580 #CSTT 0ST0  SOL'T 190 SH0'T dJeIN X3S

- - - - - - (49Y) ojewa4 xas

8V€0 %9 100°0> 000°T 000'T 000'T peo]

T80 L9€T  LI€T  €6L9S 900°0 €090 1dadsau) shep ¢ 1xaN 1dYs llegpuey
d p as %S°L61D  %STID ¥o d|qeriep  uontuyaqg Ainfug [uoniuyaqg peol uonejndod

pop x4 dS uado NG

Qouer[al Aue woxy Jusue Afiqisuodsar pue AI[Iqei] [[e sturepdsip (NG

(s)1oyne oy £q parjddns us9q sey YoIyMm [eLIDIRW _EzoEowna:m s1y) uo paserd

paywi| dnoio surystand (NG

[euew pyudwRddng



BMJ Publishing Group Limited (BMJ) disclaims all liability and responsibility arising from any reliance
Supplemental material placed on this supplemental material which has been supplied by the author(s) BMJ Open Sp Ex Med

Figures

Imputation Mixed Model Predict
Imputed Dataset 1 Fitted model 1
Imputation Mixed Model Predict
Imputed Dataset 2 Fitted model 2
Imputation Mixed Model Predict
Original Data Imputed Dataset 3 Fitted model 3

Imputation Mixed Model Predict
Imputed Dataset 4 Fitted model 4

Imputation Mixed Model Predict
Imputed Dataset 5 Fitted model 5

Figure S1. lllustration of the modelling process in the framework of multiple imputation.
Following the recommendations in “Flexible Imputation of Missing Data, Second Edition” by
Stef van Buuren,* which is also available online.? Missing load and age values were predicted
and imputed using predictive mean matching.? All non-derived variables were used to
predict imputed values, including age, sex, player position, training activity type among
others. The response variable, injury, was also used to predict imputed values,* but was not
itself imputed before analysis (guides in Van Buuren ! 6.3.2, 6.4.1).° The number of imputed
datasets, five, is recommended in most cases (Van Buuren section 2.8).! A mixed logistic
regression model was run on each dataset, returning five fitted models. Each model was
used to make predictions, and the mean of the predicted probabilities was used in final
visualization, then the model parameters were pooled using Rubin’s rules.®

Pooled Results
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Figure S2. Distribution of real data values (blue) compared to imputed values from five
imputed datasets (yellow) for the session Rating of Perceived Exertion (SRPE) measured in
arbitrary units, and Age (years) in the Norwegian elite U-19 football dataset (Football U-19),
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the Norwegian Premier League dataset (Football Elite), and the Norwegian elite youth
handball dataset. The Norwegian Premier League dataset had no missing age values.
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Figure S3. Scatterplot of Acute:Chronic Workload Ratio (ACWR) value vs. corresponding
chronic load value (the denominator) in the Norwegian Premier League football dataset
(Football Elite), the Norwegian elite U-19 football dataset (Football U-19), and Norwegian
elite youth handball dataset (Handball). When computing a ratio, one assumes that there is
no relationship between the ratio and the denominator after controlling for the
denominator; a ratio is only effective when the relationship between the numerator and the
denominator is a straight line that intersects the origin.” For micro-cycle ACWR, the
assumption is upheld, while for daily ACWR, the assumption is violated.
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Figure S4. Distribution of the session Rating of Perceived Exertion (sRPE) reported in

arbitrary units (AU), and distribution of the 7-day Acute Workload divided by 21-Chronic

Workload (ACWR 7:21), from the Norwegian elite U-19 football data used as basis for
simulations.
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Figure S5. Probability of injury on the same day for each level of session Rating of Perceived
Exertion (sRPE) and level of daily Acute:Chronic Workload Ratio (ACWR), in Norwegian
Premier League (Football Elite), Norwegian elite U-19 football (Football U-19), and
Norwegian elite youth handball (Handball). Probabilities are predicted by mixed-effects
logistic regression models with restricted cubic splines. The yellow area represents 95%
confidence intervals around predicted values. The straight line shows the same predictions
from an equivalent model without splines (i.e. assuming linearity).
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Figure S6. Probability of injury in the future for each level of daily Acute:Chronic Workload
Ratio (ACWR), level of Micro-cycle ACWR, and level of session Rating of Perceived Exertion
(sRPE), in Norwegian Premier League (Football Elite), Norwegian elite U-19 football (Football
U-19), and Norwegian elite youth handball (Handball). Future injury was defined as any
injury occurring during the next 4 days for all models except micro-cycle models, where
future injury was defined as any injury occurring during the next micro-cycle. Probabilities
are predicted by mixed-effects logistic regression models with restricted cubic splines. The
yellow area represents 95% confidence intervals around predicted values. The straight line
shows the same predictions from an equivalent model without splines (i.e. assuming

linearity).
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SUPPLEMENTARY MATERIALS AND METHODS

Participants

To find out whether the relationship between training load and injury risk may be non-
linear, and whether the shape may vary between different populations, access was gained
to data from different sports: football (soccer) and handball, and different populations
within the same sport: Norwegian elite U-19 football data and a Norwegian Premier League
football team.

The Norwegian elite U-19 data was used in Dalen-Lorentsen, et al. *. It was a cohort of six
Norwegian elite U-19 football teams (3 female and 3 male) with 81 players (55% male, mean
age: 17 years, standard deviation (SD): 1 year) followed from July to October 2017 for 104
days.

The second football cohort was a professional male football team from the Norwegian
Premier League surveyed from January to December 2019 for 323 days (n = 36, mean age:
26 years (SD: 4)).2

The handball data was a cohort of 205 elite youth handball players from five different sport
high schools in Norway (36% male, mean age: 17 years (SD: 1)) followed through a season
from September 2018 to April 2019 for 237 days.?

Training load definition

In all three cohorts, players reported the number of training sessions and matches daily.
They also reported the duration of each activity and their Rating of Perceived Exertion
(RPE)* on the modified Borg CR10 scale.® To derive the session RPE (sRPE),> we multiplied
the RPE by the activity duration in minutes. To summarize daily loads, sRPE was calculated
for each session and subsequently summed.

Missing sRPE values are reported in Table S1 (Supplementary 1) and were 24% for elite U-19
football, 41% for Premier League football, and 64% for elite youth handball. The values were
imputed using multiple imputation, a method that also performs well in cases of high
amounts of missing (80%) if the data are Missing at Random,® which is most common in
clinical research.” For more detailed information on the imputation process, see
Supplementary | Figure S1. The observed distribution was maintained in the imputed values;
therefore the imputation was deemed valid (Figure S2).

All load measures were based on players’ daily ratings of perceived exertion (sRPE). We
calculated an Acute-Chronic Workload Ratio (ACWR) in two different ways:

Daily ACWR 7:21

The mean sRPE across 7 days divided by the exponentially-weighted-moving average
(EWMA) of the previous 21 days (Figure 1). EWMA accounts for the assumption that load
values closer in time to the event are more associated with the event than measures further
back in time.? The calculation was uncoupled, meaning that the 7 days of acute load for the
numerator were not included in the 21 days of the denominator.®
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The calculation was performed on a sliding window moving one day at a time from and
including the 28 day.'° The last day in the acute load is considered Day 0 (Figure 1).

One limitation with the ACWR is that it bloats cases where the athlete has had little to no
chronic load and returns to regular exercise. In previous studies, these cases have
traditionally been deleted.!! Here, these cases were set to have an ACWR of 3, a very high
ACWR value, in line with recommendations in Harrell 2 for treatment of overly influential
values. Likewise, if the EWMA chronic load was equal to zero and ACWR could not be
calculated, the ACWR was set to 3.

Micro-cycle ACWR 1:3

The mean sRPE for each micro-cycle divided by the EWMA of the previous 3 micro-cycles,
uncoupled (Figure 1). A micro-cycle was defined as all recovery days after the previous
match and the training days before the next match. The next micro-cycle started on the first
training day after the match, and so on. For an illustration of a micro-cycle, see Figure 1. The
calculation was performed in the same manner as described for daily ACWR, on a sliding
window moving one micro-cycle at a time from and including the 4t micro-cycle. The last
day of the 4t micro-cycle was considered Day O (Figure 1).

When computing a ratio, one assumes that there is no relationship between the ratio and
the denominator after controlling for the denominator; a ratio is only effective when the
relationship between the numerator and the denominator is a straight line that intersects
the origin.? Tests of this assumption are reported in Supplementary | Figure S3.

Injury definition

The same online questionnaire was used to collect daily health status and training
information from all three sports cohorts. The elite U-19 football data and elite youth
handball data were collected via the Briteback AB online survey platform, while the
Norwegian Premier League football data were collected with Athlete Monitoring, Moncton,
Canada.

”n o

The players daily reported whether they had experienced “no health problem”, “a new
health problem”, or an “exacerbation of an existing health problem”. In the youth elite
handball study, if players reported any new health problems, they were immediately
prompted to specify whether it was an injury or illness in the questionnaire. In the football
studies, if players reported any new health problems, a clinician contacted them by
telephone the following day for a structured interview and classified the health problem as
an injury or illness with the Union of European Football Associations guidelines.'* Players
were asked to report all physical complaints, irrespective of their consequences on sports
participation or the need to seek medical attention.*®
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(A) Daily ACWR 7:21-period Day 0
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Figure 1. Illustration of time-periods for calculating (A) Daily ACWR 7:21-period and (B) Micro-cycle
ACWR 1:3-period. The first day that ACWR is calculated from is denoted Day 0. The space between
two tick marks represent one day (24 hours). For (B), a micro-cycle period consists of all activity
before a new match (M). That is, recovery days after the previous match as well as the training days
before the next match. Days denoted with negative numbers are training days before the next
match (M-1; being the day before the match, M-2; two days before a match, and so on). Days with
positive numbers are recovery and training days after a match (M+1; being the day after a match,
M+2; two days after a match). The number of days between matches varies by the match schedule.
How a team plan their training and recovery activities varies, and is dependent on the teams’
philosophy. For (A), injury on the same day is defined as an injury on Day 0, and future injury is
defined as an injury occurring during the next 4 days excluding Day 0. For (B) future injury was
defined as an injury occurring during the next micro-cycle excluding Day 0.

EBia sl

Ethical Considerations

Data collection for all three studies were approved by the Ethical Review Board of the
Norwegian School of Sport Sciences. They were also approved by the Norwegian Centre for
Research Data: Norwegian elite U-19 football (5487); Norwegian Premier League football
(722773); Norwegian elite youth handball (407930). The Norwegian elite U-19 football study
was also approved by the South-Eastern Norway Regional Committee for Medical and
Health Research Ethics (2017/1015). Ethical principles were followed in accordance with the
Declaration of Helsinki.'® All participants provided informed consent. All participants were
above the age of 15 and parental consent was not required. Participants were assured their
responses would only be available to the research team, participation was voluntary, and
consent could be withdrawn at any time.
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Legality of using the data in this study was dependent on the “purposes of the processing for
which the personal data were intended” as written in the consent forms.%” The consent
forms for the football studies were general enough that use in this study were within the
posted aims. For the elite youth handball data, the Norwegian Centre for Research Data
deemed the aims described in the consent forms invalid for use in this study, and the data
had to be anonymised. Anonymisation was performed under guidelines outlined by The
Norwegian Data Protection Authority.'8

Statistical analyses

To estimate the relationship between training load and injury risk, mixed-effects logistic
regression was used. Logistic regression is the most frequent regression analysis in the field
of training load and injury.*® Mixed models have been recommended to account for within-
player dependencies?® and are robust to missing data in the outcome variable.?*

All injuries were considered an event in the response variable. llinesses and explicit replies
of “no health problem” were considered non-events. Non-responses were recorded as
missing. Independence between subsequent injuries within the same player was assumed.

We considered two outcomes: (1) occurrence of an injury on the same day as the observed
training load (Day 0); (2) occurrence of injury in the future, where the current observation
day (Day 0) was not included. For unmodified training load values and daily ACWR 7:21-
period, future injury was defined as an injury occurring during the next four days excluding
Day 0. For micro-cycle ACWR 1:3-period, the future injury was any injury occurring during
the next micro-cycle excluding Day 0. See Figure 1 for an illustration of injury time periods
and Table S2 (Supplementary 1) for a list of the different models.

For models where the injury definition was set to the future, any number of injuries
sustained during the time window were aggregated to 1 event. Furthermore, injuries
sustained before the first calculated ACWR value had to be discarded. Consequentially, the
number of injuries included in the different models varied (Table S2).

We adjusted for player age in all analyses. In addition, we adjusted for sex in the U-19 elite
football and the elite youth handball models. Akaike’s Information Criterion (AIC) was used
to determine the model fit between including a random intercept only vs. including a
random intercept & random slope for training load per player, where the best fit was
chosen for the final model. Overly influential observations — extreme outliers which affect
analyses — were checked using dfbeta.!?

In all models, the relationship between sRPE and injury risk was modelled with Restricted
Cubic Splines (RCS).22 The number of knots was decided using AIC. The models were
repeated without splines to simulate the relationship we would have discovered if we had
assumed linearity. When using RCS, the estimated regression coefficients do not have a
clinically meaningful interpretation, and only their p-values are numerically interpretable.!?
The main result is therefore a visualization of the model predictions (with 95% cluster-
robust confidence intervals) to determine the shape of the relationship between training
load and injury risk. To limit the number of figures to the most relevant, only predictions
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from models that showed a tendency towards a relationship or stronger are included in the
article itself, but figures for all relationships are shown in Supplementary | Figure S5-S6. For
each model, predicted values were estimated on each imputed dataset, and then pooled
before visualization (Figure S1).23

Our analyses served to illustrate whether there is any evidence for non-linearity in training
load and injury research and should not be interpreted as causal inference.

Simulation

Step 1 Preparing data

In addition to analysing real data, we performed (stochastic) simulations to compare
different methods for ascertaining non-linear and linear relationships between training load
and injury risk. The methodology here is focused on a causal research setting; however, the
methods may also be applied in predictive research.?® The simulations were based on the
elite U-19 football dataset since it had the least missing data (24%). An imputed dataset was
chosen from the 5 datasets previously imputed with multiple imputation.

Two datasets were created. The first kept the original 8 495 sRPE and 6 308 ACWR values.

In the second, sRPE and ACWR were sampled with replacement to generate a scenario of 3
football teams (75 players) followed meticulously for a season (300 days), altogether 22 500
training load values. The distribution of the real data was retained during sampling; highly
skewed for sRPE and Gaussian for ACWR (Figure S4).

Step 2 Generating predetermined relationships
Artificial injuries were simulated and added to each dataset under different relationship
scenarios with training load. The risk models were based on the logistic function:

. 1
logistic(x) = H—Tp(—x)
U shape
A symmetrical U parabola coinciding with the theory in Gamble 2013.2* Using the logistic
function above, the U shape function was:

Prob{Y = 1|sRPE = logistic(—1+ 0.0000002 * (sRPE — 1500)?)
Where Y is an indicator variable for injury.

J shape
The J shape was chosen to reproduce findings in Carey, et al. 2> with the risk function:

—3.4+2-(1—-ACWR)?,, ACWR<1
Prob{Y = 1|ACWR} = logistic(y{ —3.4+ (1—ACWR)?, 1<ACWR<1.7)
1.5-ACWR —54,  ACWR =17
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Linear shape
A linear shape to determine whether a method optimal for non-linear modeling can also
model a linear shape. The function was then:

Prob{Y = 1|sRPE} = logistic(—0.5 + 0.001 * SRPE)

For the U shape and linear shape, the simulated probability of an injury was based on the
SRPE, while for the J shape, it was based on the ACWR.

We assumed a longitudinal design for the simulation, and an autoregressive correlation
structure was implemented to ensure that values closer in time were more highly correlated
than values further apart.® Any reference to the “true” probability refers to the simulated
probability we have created for a given scenario, and which we aim to model.

While shown to be valid and reliable, the sSRPE may still have some measurement error.26
Before analyses, noise was added to load values to simulate this. The amount was set to the
default jitter value, which was:

max(load) — min(load)
50

Step 3 Running models on all combinations of datasets and relationship shapes

In the same manner as in the analysis of the real data, a logistic regression model with
random effects (mixed model) was used to determine the relationship between training
load and predefined injury risk. Different methods of modifying training load were
compared.

Linear Model

A standard logistic regression served as an example of a method which assumes linearity
and illustrated the degree of error should the linearity assumption be ignored in cases
where the relationship is non-linear. The purpose was to determine whether more
complicated or time-consuming methods were worth the effort.

A logistic regression model describes the relationship between the probability of an event in
the response variable Y (injury), given the status of the explanatory variables X =

{x1, %3, ..., X, } as the additive contribution of the intercept f, and linear slopes 1, B, ..., Bn
of said variables.?” In a logistic regression with a single explanatory variable (covariate) x4,
representing the load variable, the formula is as follows:

exp (Bo + Bix1 +7)
1+ exp (Bo+ Brx1+7v)

Where y is the random effect term.

Prob{Y = 1|X} = = logistic(Bo + B1x1 +7)

Categorization

Although categorizing the load variable into groups before performing the intended analysis
has previously been shown to be a poor method for modelling non-linear relationships,? we
chose nevertheless to include it in our comparison of methods. For one, the method has
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been recommended since.?®?° For another, as the authors requested, we attempted to
reproduce the results in another sport population under different conditions. Here, the sRPE
data are highly skewed. We also increased the number of permutations for more accurate
results.

To show how results may differ depending on how variables are categorized, we categorized
the training load variable in two ways, before including them in two separate logistic
regression models. The first was a categorization by quartiles to exemplify a data-driven
approach, a chosen method in numerous studies in the past.3%32 The second was
subjectively chosen cut-offs based on the range of the data. For sRPE, four categories were
made: <= 499, 500-1 499, 1 500-2 499 and >= 2 500. For ACWR, three categories were
made: < 1, 1-1.74 and >= 1.75, which are the same used in Carey, et al. 2.

Quadratic model

Quadratic regression has seen some use in recent years.33 In some studies, a quadratic term
was added to the regression model to test for linearity.3* 3> Where as in others, the
researchers hypothesized a parabolic shape and used quadratic regression to model the
training load and injury relationship accordingly.'°3¢ In a quadratic model, a polynomial to
the second power is added to the standard regression model. For the logistic regression, it is
denoted thus:

Prob{Y = 1|X} = logistic(By + B1x1 + ﬁ2x12 +7v)

The model will then fit a parabolic shape between the probability of an eventin Y (injury)
and the explanatory variable x; (training load). A polynomial term can be added regardless
of whether it is a linear, logistic or Poisson regression model. Although easy-to-use and
intuitive, the main disadvantage of quadratic regression is that it can only model a parabola;
for instance, it cannot uncover a sigmoidal shape.

Fractional polynomials

Quadratic regression is a sub-method of the more flexible Fractional Polynomials (FP), which
has been used in one single training load and injury risk study.?” Fractional polynomials,
simply put, uses polynomial transformations to estimate the association between the
covariate and the outcome.3® FPs can model multiple shapes, not just the parabola.
Fractional polynomials add either a single polynomial term to the pth power to the
regression model (known as an FP1 model), or two polynomial terms to the pth power to
the model (FP2 model).3® The FP2 model has been shown to be the optimal choice in most
cases and was chosen for all models in this study.3° The logistic regression model with FP2 is
as follows:

Prob{Y = 1|1X} = logistic(By + Pix1 + BaxiP* + Bax,P2 +7)

Where p1 and p2 are exponents selected from {-2, -1, -0.5, 0, 0.5, 1, 2, 3}. A form of
backward elimination was used to determine the polynomial powers with the best fit, see
Ambler and Benner “° for more details. A step-by-step guide to perform FP in R can be
accessed on the primary author’s GitHub.*!

Bache-Mathiesen LK, et al. BMJ Open Sp Ex Med 2021; 7:¢001119. doi: 10.1136/bmjsem-2021-001119



BMIJ Publishing Group Limited (BMJ) disclaims all liability and responsibility arising from any reliance

Supplemental material placed on this supplemental material which has been supplied by the author(s) BMJ Open Sp Ex Med

Restricted cubic splines

Another possible approach to model non-linear relationships is to use Restricted Cubic
Splines (RCS). This approach as well as FP, performed better than categorization in the study
by Carey, et al. 2%, who found no distinct differences between RCS and FP. In cubic splines,
the X-axis is divided into intervals by a number of endpoints (knots). At these knots,
different cubic polynomials are joined and forced to have a consistent function, slope and
acceleration (second derivative) until the next knot. At the knot, the rate change of
acceleration (third derivative) may change. For three knots a, b and c, our logistic regression
formula becomes:

Prob{Y = 1|X} =

logistic[Bo + i + Boxs” + Bsxs® + Ba(rty — @)% + Bs (%1 — b)® + Bs (1 — €)% + 7]

In restricted cubic splines, the function is restricted to behave linearly in the tails.??

RCS has the advantage of flexibility, but the effect sizes are difficult to interpret, and the
number and location of knots must be chosen, either by a data-driven or approach or as a
choice of the user. As 3-5 knots are appropriate for most datasets,'? 3 knots were used in all
simulation models. We compared two different ways of choosing knot location. In the first,
the knot locations were chosen by the default approach in the statistical software (data-
driven), and in the other, knot locations were cut-off subjectively at sRPE = 500, 1 500 and 2
500, and likewise at ACWR = 1, 1.75 and 2, to cover the range of the load metrics.

A step-by-step guide to perform RCS in R can be accessed on the primary author’s GitHub.*?

Step 4 Calculating performance metrics

The Root-Mean-Squared Error (RMSE) was calculated to numerically evaluate the accuracy
of the methods. RMSE is a combined measure of accuracy and precision, where the lower
the RMSE, the better the method. RMSE was calculated as the square root of the mean
difference between the true risk and predicted risk for each observation. The scale of the
RMSE depends on the analysis in question, and it is therefore only interpretable by
comparing values in the same analysis — the values cannot be interpreted in isolation.*

To supplement RMSE, the proportion of prediction intervals that included the true
coefficient was calculated (coverage). Brier score for model fit and C-statistics (also known
as the concordance, or as the area under the receiving operating characteristic curve) was
calculated for predictive ability, since they are commonly used in training load and injury
risk studies.4+47

Final analyses
In summary, the four steps of the simulation were:

1 Sample training load values from the elite U-19 football data
2 Simulate injuries with three different shapes for the relationship between injury risk
and training load
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3 Fit seven different models with injury as the outcome and training load as the
explanatory variable
4 Calculate performance measures

Using formulas listen in Morris, et al. %3, accepting a Monte Carlo Standard Error of no more
than 0.5, the number of permutations needed for an accurate determination of coverage
was:

_ E(Coverage)(1 — E(Coverage)  95+*5
Mcoverage = (Monte Carlo SEyqq)? T 0.52

=1900

Steps 1-4 were therefore repeated 1 900 times for all relationship scenarios.

For the U-shaped relationship, predicted values were visualized alongside the predefined
shape to determine each method’s ability to capture the true relationship. Only one
permutation was used for the visualization to avoid cluttering of lines.

The mean RMSE, coverage, C-statistics and Brier score were calculated for each combination
of model-method and dataset sizes for the U-, J- and linear-shaped relationships. As mean
RMSE was the most relevant metric for determining model accuracy, it was visually
compared for the non-linear shapes.

All statistical analyses and simulations were performed using R version 4.0.2*% with RStudio
version 1.3.1056. Packages were used for specific purposes: multiple imputation with
MICE,*® mixed models with Ime4, predictions with ggeffects,>! confidence intervals with
clubSandwich,>? predictions with prediction intervals using merTools,>? and splines with the
rms package.>* The simulations were run on a computer with an Intel(R) Core(TM) i7-6700K
4.00GHz CPU, and with 16 GB RAM. A GitHub repository is available with all R code and the
data used in the simulations.>>
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ABSTRACT

Objectives Determine how to assess the cumulative
effect of training load on the risk of injury or health
problems in team sports.

Methods First, we performed a simulation based on

a Norwegian Premier League male football dataset (n
players=36). Training load was sampled from daily session
rating of perceived exertion (SRPE). Different scenarios of
the effect of SRPE on injury risk and the effect of relative
SRPE on injury risk were simulated. These scenarios
assumed that the probability of injury was the result of
training load exposures over the previous 4 weeks. We
compared seven different methods of modelling training
load in their ability to model the simulated relationship. We
then used the most accurate method, the distributed lag
non-linear model (DLNM), to analyse data from Norwegian
youth elite handball players (no. of players=205, no. of
health problems=471) to illustrate how assessing the
cumulative effect of training load can be done in practice.
Results DLNM was the only method that accurately
modelled the simulated relationships between training
load and injury risk. In the handball example, DLNM could
show the cumulative effect of training load and how much
training load affected health problem risk depending on the
distance in time since the training load exposure.
Conclusion DLNM can be used to assess the cumulative
effect of training load on injury risk.

INTRODUCTION

In recent years, researchers have attempted
to determine the effect of training load on
the risk of sports injuries and other sports-
related health problems.! Training load is
the physical exertion that the athlete has
been exposed to and is a combination of the
exposure itself (external load) and the phys-
iological and psychological stressors applied
to the athlete in response to the exposure
(internal load).? Relationships between risk
factors and sports injuries are often complex,”
as the effect of risk factors may depend on the
presence or absence of other risk factors,’ the
current state of the athlete,' and they may
also act non-linearly on the risk of injury."

,! Thor Einar Andersen,?
,2% Benjamin Clarsen,?* Morten Wang Fagerland®®

WHAT IS ALREADY KNOWN ON THIS TOPIC

= Training load seems to affect the risk of injury in
team sports.

= Time since exposure to training load may determine
the strength and the direction of training load’s ef-
fect on injury risk.

= The ability of current methodology to assess above-
mentioned effects is limited.

WHAT THIS STUDY ADDS

= Distributed lag non-linear models (DLNMs) were su-
perior to all methods compared and could determine
the cumulative effect of past training load.

= The exponentially weighted moving average (EWMA)
performed better than the rolling average and robust
exponential decreasing index.

= The difference between the acute:chronic workload
ratio and week-to-week percentage change was
negligible.

HOW THIS STUDY MIGHT AFFECT RESEARCH,
PRACTICE AND/OR POLICY

= Researchers can estimate the effects of training
load on the risk of injury in team sports using DLNM.

= More consistent methodology in training load and
injury risk studies will improve comparability and
reproducibility.

Assessing training load poses additional
challenges.” ® Tt is a multidimensional
construct that can be measured in multiple
ways.” Hypotheses suggest that not only the
amount of training load, but also the rela-
tive change in training load affect injury
risk.” Balanced training load exposure
may both cause and protect against injury
through building fitness and fatigue.” A
central concern is that training load is a time-
varying exposure with special properties.” ?
The training load exposure on the current
day affects injury risk directly—an athlete
cannot sustain a sports injury without partic-
ipating in a sporting activity.” Training load
may, however, also be a so-called time-lagged
effect."’ The training load on the previous
day may contribute to the injury risk on the
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current day. To further add complexity, training load is
likely to have a protracted time-lagged effect.'’ The injury
risk at any given time is the result of multiple training
load exposure events of different intensities sustained in
the past.'® In summary, no single training load exposure
event is thought to affect injury risk in isolation, rather it
is the long-term exposure to training load leading up to
the event collectively that is assumed to influence injury
occurrence.

To meet these assumptions, previous research has
addressed some of the complexities of modelling training
load statistically.” '? A statistical model is a generalisation
that is unlikely to tailor the prognostic course of an indi-
vidual accurately," but it may inform researchers and
clinicians about causation and patterns of injury risk.
Among others, statistical solutions have been proposed
to handle the time-varying effects,” the potential for non-
linear effects,”® the cumulative effect,’ '® and the effect
of relative training load'” in the risk of injury. While statis-
tical models and approaches have been recommended to
handle these challenges in isolation, it is still unknown
how to explore all the raised challenges in symphony.
That is, accounting for time-varying effects, non-linear
effects and cumulative effects simultaneously.

We aimed to determine how to model training load
when assessing its cumulative effect on the risk of injury
or health problems in a longitudinal team sports study.

MATERIALS AND METHODS

First, we ran a simulation study based on football data
with internal training load measures to compare the
performance of different statistical approaches. Then,
we implemented the best performing approach on a
handball dataset with training load and injury measures
to demonstrate how it can be used in practice.

Football data simulation

To compare the performance of different statistical
approaches, it is common to run stochastic simulations.'®
We constructed different relationships between training
load and injury based on a dataset of Norwegian Premier
League male football players followed for 323 days (n=36,
mean age 26 years (min: 16, max: 34)).19 We used seven
methods to model the relationship between training
load and injury risk. To compare the performance of the
seven methods, we calculated the deviation between the

Box1 Summary of the foothall data simulation

1. Sample session rating of perceived exertion values from observed
training load data in football.

2. Simulate time-to-event relationships between training load and in-
jury with seven different scenarios of time-dependent effects.

3. Use four different methods on the absolute training load and three
different methods on the relative training load to model the relation-
ship between training load and simulated injuries.

4. Calculate performance measures.

relationship estimated by each method and the ‘true’
simulated relationship (box 1, online supplemental file
1, online supplemental figure S1). More details about all
methods are available in online supplemental file 2.
Analyses and simulations were performed using R
4.1.2.2"* Code and data are available online.”

Step 1: preparing data

Internal training load was measured with the daily session
rating of perceived exertion (SRPE)*": the duration of
the activity in minutes multiplied by the player’s reported
perceived intensity of the activity on a scale from 0 to
10. We simulated a training load study by sampling sRPE
values from the observed football dataset. The relative
training load from 1day to the next was calculated with
the symmetrized percentage change (%AsRPE).” A
larger study was simulated: 250 participants (10 football
teams), followed for one full season (300 days).

Step 2: simulating time-to-event data

We simulated injuries under different relationship

scenarios with the sampled training load. The risk of injury

atany given time was predetermined with a time-to-event

Cox regression model. Only one injury was simulated per

individual. We use the term injury to describe the simu-

lated events. However, the events can also be considered
occurrences of pain or other health problems.

The relationship between absolute training load and
injury risk was simulated to be J-shaped (online supple-
mental file 1 figure S2A)."> Under this assumption, the
lowest point of risk was intermediate levels of training
load. The highest point of risk was set at high levels of
training load.

For relative training load, we simulated a linear rela-
tionship with injury risk (online supplemental figure
S2C). Higher loads on the current day compared with
load on the previous day increased risk, while lower
loads on the current day compared with the previous day
reduced risk.”®

In addition, we simulated the following time-dependent
scenarios for both the absolute training load and the rela-
tive training load (online supplemental file S3):

» Constant. Across 4 weeks (28 days), the effect of
training load has a constant effect each day.

» Decay. Across 4 weeks (28 days), the effect of training
load gradually decays for each day." This was hypoth-
esised as a likely scenario if past training load has a
direct effect on injury risk.

» Exponential decay. On the current day (day 0),
training load has the highest risk of injury. The effect
of training load drops exponentially the past 4 weeks
(28 days). This was hypothesised as a likely scenario if
past training load has an indirect effect on injury risk.

» Direct, then inverse. Training load values on the
current week (acute) increases risk of injury, while the
training load values 3weeks before the current week
(chronic) decreases risk of injury (results in supple-
mentary).'” This scenario represents a hypothesis that
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A Constant B Decay

C Exponential Decay

Figure 1 The four simulated relationships between
absolute training load and injury risk. The relationships are
a combination of the J-shaped function on the absolute
training load exposure (figure 2A) and the different functions
on the time since training load was sustained (online
supplemental figure S3). Training load is measured with the
session rating of perceived exertion (SRPE), shown on the
x-axis. The time since the current day (day 0) is shown on
the y-axis, where 0 is the current day and 27 is the 27th day
before the current day. On the z-axis, the risk of injury is
measured with the Hazard Ratio (HR), where HR >1 indicates
an increased risk, and HR <1 indicates a decreased risk.
The four risk shapes are: (A) constant, where the J-shaped
risk of training load is constant over time; (B) decay, where
the effect size of the J-shaped effect of training load is at its
highest on the current day (day 0) and is reduced linearly for
each lag day back in time; (C) exponential decay, where the
J-shaped risk of training load is at its highest on the current
day (day 0) and is reduced exponentially for each lag day
back in time; (D) direct, then inverse; where training load
linearly increases injury risk during the current week (day
0-6), but linearly decreases injury risk thereafter. This was the
shape simulated with a linear model on the absolute training
load (online supplemental figure S2B). Training load had no
effect after the 27th lag day (4 weeks) in all four scenarios
(not shown).

chronic load is a measure of fitness and absolute acute
load is a measure of fatigue.'” High loads relative to
the previous time period are thought to increase risk,
while low loads relative to the previous time period
decrease risk: a linear relationship. Therefore, for
this time-lag scenario, we simulated a linear relation-
ship with the absolute training load, and the relative
training load was not considered (online supple-
mental figure S2B).

Open access

A Constant B Decay

Figure 2 The three simulated relationships between

relative training load and injury risk. The relationships are a
combination of the linear function on the relative training load
exposure (figure 2C) and the different functions on the time
since training load was sustained (online supplemental figure
S3). Relative training load is measured with the symmetrised
percentage change (%4) in session rating of perceived
exertion (sRPE), shown on the x-axis. The time since the
current day (day 0) is shown on the y-axis, where 0 is the
current day and 27 is the 27th day before the current day.

On the z-axis, the risk of injury is measured with the Hazard
Ratio (HR), where HR >1 indicates an increased risk, and

HR <1 indicates a decreased risk. The four risk shapes are:
(A) constant, where the linear risk of relative training load is
constant over time; (B) decay, where the effect size of the
linear effect of relative training load is at its highest on the
current day (day 0) and is reduced linearly for each lag day
back in time; (C) exponential decay, where the linear risk of
training load is at its highest on the current day (day 0) and is
reduced exponentially for each lag day back in time. Training
load had no effect after the 27th lag day (4 weeks) in all three
scenarios (not shown).

In summary, seven different relationships between
training load and injury risk were simulated (figures 1-2).

Step 3: modelling the time-dependent effect of training load on
injury risk

Different methods of modelling training load were
compared in their ability to uncover the seven predeter-
mined relationships between training load and injury
risk. We chose the most frequently used methods in
training load and injury research,”?’ methods proposed
as potential alternatives' '° and a method developed to
handle similar challenges in epidemiology.'’ Cox regres-
sion was used to estimate the relative risk of injury, where
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internal training load, sRPE or %AsRPE was modified or
modelled with different methods.
For absolute training load, we modelled the following
methods with a quadratic term:
» Rolling average (RA).28
» Exponentially weighted moving average (EWMA
» Robust exponential decreasing index (REDI).'®
» Distributed lag non-linear model (DLNM)." 12
For relative load, we modelled the following methods
with a linear term:
» Week-to-week percentage change.”
» Acute:chronic workload ratio
coupled RA.*
» DLNM.

).13

(ACWR),'"  7:28

Step 4: calculating performance measures to compare methods
We visualised the predicted cumulative risk versus the
true cumulative risk in line graphs. The root-mean-
squared-error (RMSE), a combined measure of accuracy
and precision, was calculated between the predicted and
true cumulative hazard. The lower the RMSE, the better
the method. We also calculated RMSE on the predicted
injury value versus the observed value (the model resid-
uals).

The Akaike’s Information Criterion (AIC) for model
fit, coverage of 95% CI, average width of CI and the
percentage of simulations where the methods had the
lowest RMSE and lowest AIC were also calculated.

Implementation in a handball dataset

The model that performed best in our preliminary anal-
yses of simulated data, the DLNM, was implemented on
an actual data set from another team sport, to illustrate
how it can be used in practice. To explore the potential
for a time-dependent, cumulative effect of training load
on health problem risk, we chose a Norwegian elite youth
handball cohort (n=205, 36% male, mean age: 17 years
(SD: 1), followed 237 days). Although the high amount
of missing data (64% of sRPE values) renders it unsuit-
able for a study of causal inference, it had a sufficient
number of health problems for the current methodology
study (n=471 health problems).

RPE and duration were collected from the players
after each training and match, from which daily sRPE
was determined.”’ The handball players reported daily
whether they had ‘no health problem’ or ‘a new health
problem’. Any response of ‘a new health problem’ was
considered an event in the current study. Players were
encouraged to report all physical complaints, irrespective
of their consequences on sports participation or the need
to seek medical attention.”

Missing sRPE data were imputed with multiple impu-
tation.” Cox regression was run with health problem
(yes/no) as the outcome and the DLNM of sRPE as
the exposure.” We adjusted for sex and age as potential
confounders and included a frailty term to account for
recurrent events.”® DLNM combines a function on the
magnitude of sRPE and a function of the distance since

day 0 up to lag 27 (4 weeks). The sRPE was modelled
with restricted cubic splines'® and the lag function with
a linear model. The model predictions were visualised to
assess the ability of DLNM to explore effects.

RESULTS

Football data simulation

Absolute training load

TheDLNM was the only method that discovered the
simulated J-shaped relationship between absolute
training load and cumulative risk of injury under all the
main time-dependent effects (figure 3). It had, by far, the
lowest mean external RMSE (online supplemental file 1
figure S4A-C), the lowest internal RMSE (table 1) and the
lowest AIC (online supplemental figure S4D-F). Despite
consistently having the narrowest average CI width (=2
vs >3 (all other methods)), it also had the second-to-
highest coverage of 95% CIs under the constant scenario
and the highest under the decay scenario (table 1).
Except for the exponential decay scenario, all methods
had poor coverage overall (<=35%, table 1).

The EWMA was able to detect the exponential decay
scenario (figure 3]) and had better accuracy than the
rolling average and the robust exponential decreasing
index for the decay scenario (figure 3E-G). It had the
lowest mean external RMSE and AIC of all three scenarios
and methods (table 1, online supplemental figure S4),
although, under the constant scenario, the Cls reached
negative values (figure 3B).

The rolling average was able to model the constant
scenario (figure 3A) and had a mean internal RMSE of
0.113547, slightly lower than EWMA at 0.113548. Under
this condition, it had the second best (rank 2) external
RMSE in 31% of simulations and third best (rank 3) in
52% of simulations, with similar results for AIC (31%
rank 2, 58% rank 3; online supplemental table S1). Here,
EWMA was most frequently ranked second best for RMSE
and AIC (45% and 39%, respectively (online supple-
mental table S1).

REDI had consistently the highest mean external
RMSE and AIC (online supplemental figure S4, table 1).
It was most frequently rank 4 for external RMSE under
the constant and decay scenarios and for AIC under all
scenarios (online supplemental table S1). Furthermore,
REDI consistently had the lowest coverage of 95% CIs
(table 1). Instead of discovering that high levels of abso-
lute training load increases injury risk, REDI estimated
that high absolute training load decreases injury risk
under the exponential decay scenario (figure 3K).

No method was able to accurately model the direct,
then inverse scenario (coverage=0%, online supple-
mental figure S5, online supplemental table S2).

Relative training load

The Distributed Lag Non-Linear Model (DLNM) was also
capable of discovering the cumulative hazard of injury for
relative training load (figure 4C, F, I). It had the lowest
mean internal RMSE and AIC for the Constant and Decay
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Figure 3 The relationship between absolute training load measured by the session rating of perceived exertion (sRPE) in
arbitrary units (AUs) and the risk of injury on the current day (day 0) estimated by four different methods (yellow line), compared
with the simulated, true relationship (black line). The y-axis denotes the cumulative hazard — the sum of all instantaneous risks
of injury from the past up until the current day. Relationships were simulated under different scenarios, (A-D) constant: the risk
of absolute training load is constant over time; (E-H) decay: the effect of absolute training load was at its highest on the current
day (day 0) and reduced linearly for each lag day back in time; (I-L) exponential decay: the risk of absolute training load was at
its highest on the current day (day 0) and reduced exponentially for each lag day back in time. Methods used to detect these
effects were the rolling average, the exponential weighted moving average (EWMA), the robust exponential decreasing index
(REDI), and the distributed lag non-linear model (DLNM). Yellow bands are 95% Cls. The figure shows one random simulation

of 1900 performed.

scenarios (online supplemental figure S6), but for the
Exponential Decay scenario, it had the lowest mean AIC
and highest internal RMSE (table 1, online supplemental
figure S6). Under all scenarios, DLNM had the lowest
AIC in nearly 100% of simulations (online supplemental
table S3). Although it was most frequently rank 1 internal
RMSE for the Constant (52% of simulations) and Decay
scenarios (57% of simulations), the rankings varied, and
the Acute:Chronic Workload Ratio and Week-to-week %A
were rank 1 ~23% of the time each (online supplemental
table S3).

The Acute:Chronic Workload Ratio (ACWR) and week-
to-week %A failed to discover a relationship between
training load and injury under the Constant scenario
(figure 4A, B). ACWR did not find a relationship under
the Exponential Decay scenario, either (figure 4G).
Both methods had wide confidence intervals, and ACWR

fanned to higher uncertainty under higher levels of acute
training load relative to chronic training load (figure 4).
ACWR had marginally lower internal RMSE and lower
AIC than week-to-week %A (table 1), and was rank 2
slightly more frequently than rank 3 (online supple-
mental table S3), except under the Exponential Decay
scenario where the opposite was the case.

Handball example data analysis

The Distributed Lag Non-linear Model indicated, with
high uncertainty, an increased risk of a health problem
on the current day (HR (HR)>=1.2) for players with high
internal load (sRPE above 4 000, figure 5A). This tapered
to no effect if the training load was performed around a
week ago (6days before the current day, figure 5D), to a
decreased risk of health problems the further in the past
high training loads were sustained, to a HR of 0.75 on the
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Table 1 Mean performance of methods used to estimate the effect of training load on injury risk (n simulations=1900).
Coverage
Relationship Method External RMSE* Internal RMSE  AIC Coverage (%) AW MCSE
Absolute training load
Constant Rolling average 4.85 0.113547 1422.92 34.7 5.17478 0.90
EWMA 4.77 0.113548 1423.42 36.3 5.17179 0.91
REDI 5.53 0.113557 142410 20.3 3.40114 0.74
DLNM 1.44 0.112434 1317.15 34.8 2.05600 0.95
Decay Rolling average 5.38 0.113590 1421.80 30.2 5.16930 0.87
EWMA 5.17 0.113587 1421.85 31.8 5.12554 0.88
REDI 6.21 0.113605 1423.80 18.7 3.42154 0.71
DLNM 1.55 0.112245 1295.30 32.4 2.07977 0.93
Exponential decay = Rolling average 2.13 0.113599 1424.65 85.0 5.54695 0.58
EWMA 1.88 0.113588 1423.86 85.1 5.37141 0.61
REDI 1.97 0.113603 1425.00 74.2 3.69208 0.64
DLNM 0.76 0.113368 1407.08 81.6 2.02633 0.65
Relative training load (%A)t
Constant ACWR 0.113643 1426.16
Week-to-week %A 0.113646 1426.40
DLNM %A 0.113627 1389.28
Decay ACWR 0.113615 1424.73
Week-to-week %A 0.113617 1425.12
DLNM %A 0.113553 1383.52
Exponential decay = ACWR 0.113565 1423.33
Week-to-week %A 0.113566 1423.27
DLNM %A 0.113700 1401.39

*Monte Carlo SE for RMSE was <0.001 for all simulations. The scale of the RMSE depends on the scale of the coefficients, and it is
therefore only interpretable by comparing values in the same analysis — the values cannot be interpreted in isolation.
tDue to differences in scale between methods and simulation for relative training load, external RMSE, coverage, and AW could not be

calculated in a comparable manner.

ACWR, acute:chronic workload ratio; AIC, Akaike’s information criterion; AW, average width of 95% Cls; Coverage, coverage of 95%
Cls; DLNM, distributed lag non-linear mode; EWMA, exponentially weighted moving average; MCSE, Monte Carlo Standard Error; REDI,

robust exponential decreasing index; RMSE, root-mean-squared error.

27" day before the current day (figure 5B). The cumu-
lative risk was increased if an individual performed no
training in the past and had high internal training load
on the current day (figure 5C). None of the effects were
significant (p>=0.8) and confidence intervals were broad
(online supplemental table S4).

DISCUSSION

This is the first simulation study to explore methods for
assessing the cumulative effect of long-term training
load on injury or health problem risk in team sports.
The Distributed Lag Non-linear Model (DLNM) had the
highest combined accuracy and precision, the highest
certainty, and the best model fit for almost all studied
scenarios. It was the only method capable of exploring
both the effects of the magnitude of training load and
the time-dependent effects of past training load expo-
sure.

In the application of DLNM on a handball cohort,
we were hampered by poor data quality. Also, due
to anonymization, few covariates were available for
confounder adjustment. The effects may have been
spurious. We have included the analysis only as an illus-
tration of how to use the DLNM in practice.

Modelling methods for absolute training load

For determining the cumulative effect of the absolute
training load, the Rolling Average was outclassed by
the Exponentially Weighted Moving Average (EWMA).
When the effect of absolute training load was simulated
to be the same regardless of the distance in time since
the current day — the scenario in which Rolling Average
was thought to be appropriate — Rolling Average was only
marginally better than the EWMA. EWMA had a better
fit under the more realistic scenarios where the effects
of training load decayed based on distance in time,
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Relative change in sRPE (AU) on Day 0

Figure 4 The relationship between relative training load measured in the daily percentage change of session rating of
perceived exertion (sRPE) in arbitrary units (AUs) and the risk of injury on the current day (day 0) is estimated by three different
methods (yellow line). The y-axis denotes the cumulative hazard — the sum of all instantaneous risks of injury from the past

up until the current day. Relationships were simulated under different scenarios, (A-C) constant: the risk of relative training
load was constant over time; (D-F) decay: the effect of relative training load was at its highest on the current day (day 0) and
reduced linearly for each lag day back in time; (G-I) exponential decay: the risk of relative training load was at its highest on
the current day (day 0) and reduced exponentially for each lag day back in time. Methods used to detect these effects were
the acute:chronic workload ratio (ACWR), the week-to-week percentage change (%A) and the distributed lag non-linear
model (DLNM) on daily percentage change A%. The DLNM, being on the same scale as the simulation, is also compared

with the true, simulated relationship (black line). Yellow bands are 95% Cls. The figure shows one random simulation of 1900

performed.

both linearly and exponentially. This is in line with the
concerns raised by Menaspa,” that the rolling average
fails to take into account that training load performed
in the past contributes less to injury risk than recent
training load

The Robust Exponential Decreasing Index (REDI)
was also outperformed by EWMA, under both scenarios
where the training load effect decayed based on distance
in time. Across the board, REDI had the highest RMSE,
highest AIC, and lowest coverage of 95% confidence
intervals. Although it had better RMSE under the
Exponential Decay scenario than the rolling average, it
erroneously estimated that higher internal training loads
decreased injury risk (inverse relationship), when it was
actually the opposite (ie, higher training load increased
injury risk). REDI has previously been compared on
observed training load values where the true relation-
ship between training load and injury was unknown,”
and it was recommended for its ability to handle missing
data.'® We believe that using imputation methods is more
suitable for longitudinal data,”® and in such cases, the
advantage of specifying weights on missing observations
is no longer applicable. REDI was among the methods
that do not require a full time period (ie, 28 days) before

the first calculation, but for comparability, we had to run
it with the same limitation as the other methods. Argu-
ably, it may therefore have performed better in a real
study. On the other hand, this would also have been the
case for the Distributed Lag Non-Linear Model (DLNM),
which was vastly superior to all other methods analysed,
even with this constraint.

DILNM had the lowest mean RMSE, AIC, and narrowest
95% CI width compared with the other three methods
for all scenarios. The DLNM was the only method that
did not require subjective aggregation. Aggregation
distillates the information available in the data to a
summary, and these summaries are all the Cox regression
model must work with. This increases the uncertainty of
the estimates. In contrast, DLNM uses all the information
available in the data.'” Furthermore, no subjective deter-
mination of time-lag weights is required. Using splines
or fractional polynomials, it can explore non-linearity
in both the magnitude of the effect of absolute training
load and in the time-dependent effects.'”

While it performed best compared with other methods,
DINM was unable to model the “Direct, then inverse”
scenario. This scenario was built on the theory that
training load exposure the current week increase risk
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Figure 5 Explorations of the relationship between training
load and the risk of suffering a health problem in a Norwegian
elite youth handball cohort. Training load is measured by
the session rating of perceived exertion (sSRPE) in arbitrary
units (AUs), shown on all x-axes. The health problem risk

is measured by the Hazard Ratio (HR). HR >1 indicates an
increased instantaneous health problem risk compared
with an individual who had no training load (sSRPE=0), <1a
decreased risk. Figure part A shows the risk of a health
problem on the y-axis for each level of sSRPE on the x-axis,
given that the sRPE is sustained on the current day (day 0).
Figure part B shows the same figure, given that the sRPE

is sustained on the 27th lag day (4 weeks prior). Figure part
C shows the cumulative HR — the collective risk of a health
problem on the current day given the sRPE sustained in all
the days prior to the current day. Finally, figure part D shows
the risk relationship between absolute training load (sRPE)
on the x-axis and the time since the training was sustained
(lag) on the y-axis, where 0 is the current day and 27 is 4
weeks in the past. Risk in HR is on the z-axis. Yellow bands
in (A-C) are the 95% Cls surrounding the estimates. The
predictions pertain to a 17-year-old female. Based on 471
health problems from 205 handball players.

while those sustained the previous 3weeks reduce risk.®
Higher sample sizes than those in the current simulation
may be needed to discover such a complex shape, if it
were to exist. The splines may have required more than
three knots, and linear splines may have been a better
option than cubic splines to discover the sudden change
in direction of effect.

Modelling methods for relative training load

Studying the relative training load proved challenging,
as all methods compared were on different scales.
According to the AIC, the most comparable metric,'?
DLNM had the best model fit under all scenarios. Given
that we simulated an effect on the risk of injury based
on the symmetrized percentage change from 1day to
the next, this was to be expected. The week-to-week

3

percentage change and ACWR assume that day-to-day
differences are of little to no importance. Currently,
the time-period of relative training load that is relevant
towards injury risk is debatable®; a calendar week may
be arbitrary for many sports. We argue thatif DLNM can
detect the effect of day-to-day relative change, it should
be flexible enough to detect less granular effects. In
particular, team sports such as football often operate in
micro-cycles of days since the previous match up to and
including the next match." However, it would still be
up to the researcher to calculate percentage changes
on time periods of their choosing before running
DLNM, with the inherent difficulties of ratios.?

Even with the symmetrized percentage change, the
percentage change cannot be calculated if the numer-
ator or denominator is zero. Recovery days are an
important aspect of training load history and must be
evaluated to fully understand the effects of training
load. This is a challenge that remains unsolved.

An application of distributed lag non-linear models in
handball

The Distributed Lag Non-linear Model was able to
explore non-linear time-dependent effects in the
observed Norwegian youth elite handball data. The
results had a high degree of uncertainty (p>=0.8), and
we caution against considering them as evidence of a
causal or associative relationship. They nevertheless
illustrate how DLNM can be used in practice. DLNM
can show how different levels of training load affects
risk, and also how the effects changes with the distance
in time since the training load exposure. It can also
show the combined effect of these two dimensions and
estimate the cumulative effect. However, performing
DLNM and the corresponding visualisations in a
training load and injury or health problem risk study
may require collaboration with a statistician.”” In addi-
tion, large sample sizes and good data quality may be
needed to meet the complexity of the training load
and injury risk relationship. In the handball data, 471
health problems occurred in 205 participants. As this
was insufficient, future research may require even more
participants for an accurate measure of effect.

Limitations

To feasibly analyse all results in a single article, we
had to limit the number of methods compared in the
simulations. This meant that two recently-proposed
methods of relative training load were not among the
compared methods.”® ** Additionally, different variants
of the ACWR were not considered, as these have been
explored extensively in other studies.”® *

All methods in the simulation were run with the same
specification for all scenarios to ensure consistency and
comparability. In a real study, clinical rationale and
hypothesis, as well as sensitivity analyses of model fit,
would aid in determining the number and location of
knots in splines for DLNM, the lambda value for EWMA
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and REDI, and the time-periods for RA, EWMA, REDI
and ACWR. Therefore, the flexibility of methods was
not fully explored. In addition, for the relative training
load, the simulation assumed that daily differences
had an effect, an assumption that favoured DLNM,
which has superior flexibility compared with the other
methods. This advantage may be less prominent if
stricter assumptions (ie, differences at the micro-cycle
level) can be made'®; however, we believe that the flex-
ibility of the DLNM is one of its greatest strengths,
rendering it useful in a wide range of situations.

CONCLUSION

The Distributed Lag Non-Linear Model is ideal for
exploring the cumulative effect of the absolute training
load and relative training load on injury risk, while
accounting for time-dependent effects. For causal
studies where training load is not the exposure of
interest, but a confounder in need of adjustment, using
the Exponentially Weighted Moving Average for the
absolute training load is an alternative.

Twitter Lena Kristin Bache-Mathiesen @lena_kbm and Torstein Dalen-Lorentsen
@torsteindalen
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Figure S1. Summary of the simulation workflow. In Step 1, training load exposure measured
by session Rating of Perceived Exertion (sRPE) was extracted from the Norwegian Premier
League dataset and used to simulate training load exposure for 250 participants across 300
days. In Step 2, injury probabilities were calculated based on the cumulative training load
observed the last 28 days; a combination of effect from both the magnitude of the training
load (level of sRPE or %AsRPE) and the time since the training load occurred. Injuries were
simulated based on these probabilities to generate time-to-event data. In Step 3, the
absolute and relative training load exposures were modified and modelled in seven
different Cox regression models. Finally, in Step 4, performance measures were calculated,
and the accuracy of the different Cox models to detect the simulated relationship was
assessed. Steps 1-4 were repeated 1 900 times for each of seven different simulated
relationships (four for SRPE and three for %AsRPE) and each of seven methods.
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Figure S2. The simulated relationships between training load and injury risk, independent of
the time since the training load exposure. Injury risk is measured by the Hazard Ratio (HR),
where values > 1 (above the yellow line) indicates an increased risk and values < 1 (below
the yellow line) indicates a decreased risk. Shown for (A-B) the absolute training load
measured by the session Rating of Perceived Exertion (sRPE) measured in Arbitrary Units

(AU),

and (C) the relative training load compared to the previous day measured by the

symmetrized percentage difference (%A) in sSRPE. The absolute training load exposure was
simulated with two different relationships, one J-shaped (A), and one linear (B).
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Figure S3. The simulated relationships between the time since current day (Day 0) that the
training load exposure was sustained, and injury risk. Injury risk is measured by the Hazard
Ratio (HR), where values > 1 (above the yellow line) indicates an increased risk and values <
1 (below the yellow line) indicates a decreased risk. The four risk shapes were (A) Constant,
where the risk of training load is constant over time; (B) Decay, where the effect-size of the
effect of training load is at its highest on the current day (Day 0) and is reduced for each lag
day back in time; (C) Exponential Decay, where the risk of training load is at its highest on
the current day (Day 0) and is reduced exponentially for each lag day back in time; (D)
Direct, then inverse; where training load increases injury risk during the current week (Day
0-Day 6), but decreases injury risk thereafter. Training load had no effect after the 27t lag
day (4 weeks) in all four scenarios (not shown).
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Figure S5. The relationship between absolute training load measured by the session Rating
of Percieved Exertion (sRPE) in arbitrary units (AU) and the risk of injury on the current day
(Day 0) estimated by four different methods (yellow line), compared with the simulated,
true relationship (black line). The relationship scenario was “Direct, then inverse”, where
training load increases injury risk during the current week (Day 0—Day 6), but decreases
injury risk thereafter (Day 7-Day 27). The Y axis denotes the cumulative hazard — the sum of
all instantaneous risks of injury from the past up until the current day. Methods used to
detect these effects were (A) the Rolling Average, (B) the Exponential Weighted Moving
Average (EWMA), (C) The Robust Exponential Decreasing Index (REDI), and (D) the
Distributed Lag Non-Linear Model (DLNM). Yellow bands are 95% confidence intervals. The
figure shows 1 random simulation of 1 900 performed.
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TABLES

Table S1. The percentage of 1 900 simulations where methods of absolute training load had the
lowest RMSE and AIC (Rank 1), had the 2" lowest RMSE and AIC (Rank 2), and so on.

Metric Lag scenario Rank Rolling Average (%) EWMA (%) REDI(%) DLNM (%)
RMSE Constant 1 2 1 0 97
2 31 45 22 2

3 52 27 21 1

4 15 27 58 0

Decay 1 1 1 0 98
2 29 48 21 2

3 54 26 19 0

4 15 25 60 0

Exponential Decay 1 11 13 13 63
2 19 28 26 27

3 36 27 29 8

4 34 31 32 3

Direct, then inverse 1 0 0 1 99
2 0 0 99 1

3 100 0 0 0

4 0 100 0 0

AIC Constant 1 0 0 0 100
2 31 39 31 0

3 58 24 18 0

4 11 38 51 0

Decay 1 0 0 0 100
2 31 45 24 0

3 59 24 17 0

4 10 31 59 0

Exponential Decay 1 1 1 1 97
2 19 52 28 2

3 55 22 23 0

4 26 25 48 1

Direct, then inverse 1 0 0 0 100
2 0 0 100 0

3 100 0 0 0

4 0 100 0 0

Abbreviations: AIC = Akaike’s Information Criterion; EWMA = Exponentially Weighted Moving
Average; DLNM = Distributed Lag Non-Linear Model; REDI = Robust Exponential Decreasing Index;
RMSE = Root-Mean-Squared Error
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Table S2. Mean performance of methods used to estimate the effect
of absolute training load on injury risk under the “Direct, then
inverse” scenario.

Rolling Average EWMA REDI DLNM

External RMSE?! 21.1 22.6 20.9 20.8
Internal RMSE 0.111 0.113 0.106  0.101
AIC 1116 1373 910 790
Coverage! 0% 0% 0% 0%
AW 1.48 1.25 1.56 1.94

Abbreviations: AIC = Akaike’s Information Criterion; AW = Average
Width of 95% confidence intervals; Coverage = Coverage of 95%
confidence intervals; EWMA = Exponentially Weighted Moving
Average; DLNM = Distributed Lag Non-Linear Model; REDI = Robust
Exponential Decreasing Index; RMSE = Root-Mean-Squared Error

1 Monte Carlo Standard Error was < 0.001 for RMSE, and 0.5 for
coverage of 95% confidence intervals for all methods.

Table S3. The percentage of 1 900 simulations where methods of relative training load had the

lowest RMSE and AIC (Rank 1), had the 2" lowest RMSE and AIC (Rank 2), and so on.

Metric Lag scenario Rank ACWR (%) Week-to-week %A (%) DLNM %A (%)
RMSE Constant 1 25 23 52
2 49 49 2

3 26 29 46

Decay 1 23 21 57

2 50 48 2

3 28 31 41

Exponential Decay 1 31 29 41

2 48 50 2

3 22 21 57

AIC Constant 1 0 0 100
2 56 44 0

3 44 56 0

Decay 1 0 0 100

2 59 41 0

3 41 59 0

Exponential Decay 1 1 1 99

2 49 51 0.5

3 52 49 0.9

Abbreviations: ACWR = Acute:Chronic Workload Ratio; AIC = Akaike’s Information Criterion;
DLNM = Distributed Lag Non-Linear Model; RMSE = Root-Mean-Squared Error
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Table S4. The model coefficients from a Cox regression estimating the relationship between
training load and risk of injury in a handball cohort (n players = 205, n injuries = 472).

Term™ HR 95% Cl Lower-Upper SE DF  p-value
SRPE 1 0.80 0.11-5.70 0.897 11.758 0.81
SRPE 2 0.99 0.87-1.13 0.059 11.909 0.88
SRPE 3 0.77 0.01-99.10 2.259 13.435 0.91
sRPE 4 0.96 0.70-1.33 0.150 13.445 0.81
Age 0.97 0.79-1.21 0.109 456.684 0.80
Sex

Female (Reference) - - - - -

Male 1.13 0.781-1.641 0.189  462.46 0.51

Abbreviations: Cl = Confidence Interval; df = Degrees of Freedom; HR = Hazard Ratio; SE =

Standard Error; sRPE = session Rating of Perceived Exertion

The frailty term for within-individual variance was significant at p < 0.00001

2The sRPE terms are the four intervals demarcated by 3 knots in the restricted cubic splines
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Supplementary II: Methods
FOOTBALL DATA SIMULATION

As recommended in O'Kelly, et al. %, a study protocol was developed before initiation of
simulations and analyses. Our methodology was focused on a causal research setting;
however, the methods may also be applied in predictive research.? Simulation steps 1-4
detailed below are illustrated in online supplemental file 1 figure S1.

Step 1 Preparing data

We constructed different relationships between training load and injury based on a dataset
of Norwegian Premier League male football players followed for 323 days (n = 36, mean age
26 years [Standard Deviation 4]). Training load was measured daily with the session Rating
of Perceived Exertion (sRPE)3: the duration of the activity in minutes multiplied by the
player’s perceived intensity of the activity on a scale from 0 to 10. The players reported
intensity and duration after completion of each training session or match,* using a mobile
application (Athlete Monitoring, Moncton, Canada). The mean answering time was 0.01
days (SD = 0.2); 99% of prompts were answered within the same day, and the longest
answering time was 4 days. Of 4 871 prompts, 650 (13%) Rating of Perceived Exertion
observations were missing.> The relative training load from one day to the next was
calculated with the symmetrized percentage change (%AsRPE).

The most common study design in training load and injury risk studies is one team of
athletes followed for one season.” By rough estimate, a football team suffers on average 40
injuries per team per season, not counting recurrent injuries.® The association between
training load and injury is likely to be small to moderate,® therefore, one team followed for
one season is unlikely of sufficient power to detect a relationship accurately,® and in most
cases, studies will focus on a particular injury type, i.e. hamstring injury. We therefore
simulated a medium-to-large-sized study: 250 participants (10 football teams), followed for
a season (300 days).

Step 2 Simulating time-to-event data

We simulated injuries under different relationship scenarios with the sampled training load.
For simplicity, only one injury was simulated per individual. This scenario may be unrealistic,
as sports injuries may be sustained multiple times.!! The methods for modelling training
load considered in this study can, however, also be used with more complex statistical
models for recurrent events.'? The risk of injury at any given time was predetermined with a
time-to-event Cox regression model with one covariate:

h(t) = hy(t) * exp(Bx) Eq. 1

Where hy, is the baseline hazard, and h(t) is the hazard at timepoint t. The timepoint at
which an individual could be censored was drawn at random from a uniform distribution
ranging from 0 to 600. Here, x represents the absolute training load, but it can be replaced
with the relative training load, %Ax. The coefficient f was the result of a bidimensional
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function on both the magnitude of the training load x, and the distance in time, the time lag
[, from the timepoint t. We can write this more accurately:

h(t) = ho(t) * exp(S(xg, o) Xy ever Xp—1)) Eq.2

Here, the function s describes the relationship between training load x and the hazard of
injury, measured over the lag interval [ = 0, ..., L where L is the maximum lag. We denoted
[ = 0 to be the current day (Day 0), and the max lag was set at L = 27. This corresponds to
28 days (4 weeks).

The s function, s(xy, ..., X,_1), can be defined in multiple ways.!* We simulated s to be the
cumulative sum of both a function on the magnitude of training load, the variable function
f (%), and a function on the distance in time from the current day, the lag function w(l).
This can be represented by:

L
$Ctey s %) = ) F)w(D)
=0

The shape of the relationship between the absolute training load and injury risk was
simulated to be J-shaped (online supplemental file 1 figure S2A).1* Under this assumption,
the lowest point of risk was intermediate levels of training load. The highest was under high
levels of training load. The variable function f(x) was:

_ ((600 — x)/200)"1.5/10, x < 600
F® = {(Gx - 600/20083/30), % = 600

Where x was measured with the sRPE. For the relative training load, we simulated a linear
relationship with injury risk (figure S2C). Higher loads on the current day compared to load
on the previous day increases risk, whilst lower loads on the current day compared with the
previous day reduces risk!>:

f(%Ax) = 0.009 * %Ax

Here, %Ax was the symmetrized percent change from the previous day, ranging from -100%
to 100%.

To compare methods ability to discover different time-dependent effects, the lag function
w(l) was defined in four different scenarios.

Constant. Across 4 weeks, the effect of training load has a constant effect each day (online
supplemental file 1 figure S3A). Thereafter, training load has no effect. This was an overly
simplistic base scenario.

w(l) =038
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Decay. Across 4 weeks, the effect of training load gradually decays for each day (figure
S3B).'6 Thereafter, training load has no effect. This was hypothesized as a likely scenario if
past training load has a direct effect on injury risk.

l
w(l) =exp (———=
() = exp (~ 755
Exponential decay. On the current day, training load has the highest risk of injury. The effect
of training load drops exponentially the past 4 weeks (figure S3C). Thereafter, training load
has no effect. This was hypothesized as a likely scenario if past training load has an indirect
effect on injury risk.

2

w(l) = exp (—%)

Direct, then inverse. Training load values on the current week (acute) increases risk of
injury, whilst the training load values three weeks before the current week (chronic)
decreases risk of injury (figure S3D)'” Thereafter, training load has no effect. This hypothesis
has recently been challenged.'®'® Nevertheless, to ensure that modelling methods can
uncover this relationship should it be true, we opted to include it regardless. The theory
depends on chronic load amount as a surrogate measure for fitness, and acute load amount
a surrogate measure for fatigue.'® High loads relative to the previous time period are
thought to increase risk, while low loads relative to the previous time period decrease risk: a
linear relationship.> 202! Therefore, for this time-lag scenario, we simulated a linear
relationship with the absolute training load, and the relative load was not considered,

I\2
exp(—l—o) , <6

w(D) = )
k—exp (S_IO) , l>6

The relationships constant, decay and exponential decay were used both for the absolute
training load and for the relative training load. The “Direct, then inverse” relationship was
only simulated for the absolute training load exposure. For this time-lag scenario, and for
this time-lag scenario only, we simulated a linear relationship with the absolute training load
(online supplemental file 1 figure S2B):

f(x) =0.0009 * x

In summary, seven different relationships between training load and injury risk were
simulated (figure 1-2). In a pilot of 100 simulations for each of the seven scenarios, the mean
number of simulated injuries for 25 participants (a football team) was 18.7 per season;
reasonably realistic of a small-to-moderate effect between training load and a specific injury
type (i.e. a study on hamstring injury).
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A Constant B Decay

C Exponential Decay

Figure 1. The four simulated relationships between absolute training load and injury risk. The relationships are
a combination of the J-shaped function on the absolute training load exposure (online supplemental file 1
figure S2A) and the different functions on the time since training load was sustained (figure S3). Training load
is measured with the session Rating of Perceived Exertion (sRPE), shown on the X-axis. The time since the
current day (Day 0) is shown on the Y-axis, where 0 is the current day and 27 is the 27" day before the current
day. On the Z-axis, the risk of injury is measured with the Hazard Ratio (HR), where HR > 1 indicates an
increased risk, and HR < 1 indicates a decreased risk. The four risk shapes are (A) Constant, where the J-shaped
risk of training load is constant over time; (B) Decay, where the effect-size of the J-shaped effect of training
load is at its highest on the current day (Day 0) and is reduced linearly for each lag day back in time; (C)
Exponential Decay, where the J-shaped risk of training load is at its highest on the current day (Day 0) and is
reduced exponentially for each lag day back in time; (D) Direct, then inverse; where training load linearly
increases injury risk during the current week (Day 0-Day 6), but linearly decreases injury risk thereafter. This
was the shape simulated with a linear model on the absolute training load (figure S2B). Training load had no
effect after the 27" lag day (4 weeks) in all four scenarios (not shown).
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A Constant B Decay

C Exponential Decay

Figure 2. The three simulated relationships between relative training load and injury risk. The relationships are
a combination of the linear function on the relative training load exposure (online supplemental file 1 figure
S2C) and the different functions on the time since training load was sustained (figure S3). Relative training load
is measured with the symmetrized percentage change (%A) in session Rating of Perceived Exertion (sRPE),
shown on the X-axis. The time since the current day (Day 0), the number of lag days is shown on the Y-axis,
where 0 is the current day and 27 is the 27t day before the current day. On the Z-axis, the risk of injury is
measured with the Hazard Ratio (HR), where HR > 1 indicates an increased risk, and HR < 1 indicates a
decreased risk. The four risk shapes are (A) Constant, where the linear risk of relative training load is constant
over time; (B) Decay, where the effect size of the linear effect of relative training load is at its highest on the
current day (Day 0) and is reduced linearly for each lag day back in time; (C) Exponential Decay, where the
linear risk of training load is at its highest on the current day (Day 0) and is reduced exponentially for each lag
day back in time. Training load had no effect after the 27t lag day (4 weeks) in all three scenarios (not shown).
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Step 3 Modelling the time-dependent effect of training load on injury risk

Different methods of modelling training load were compared in their ability to uncover the
seven predetermined relationships between training load and injury risk. A Cox regression
model (Eq. 1) was used to estimate the relative risk of injury, where training load, x or %Ax,
was modified or modelled in three different ways for the absolute training load, and three
different ways for the relative training load.

We chose the most frequently used methods in training load and injury research,?2-24
methods proposed as potential alternatives,'® 2> and a method developed to handle similar
challenges in epidemiology.26?’

In the Cox regression model, regardless of method used to modify the absolute training
load, the training load was modelled with a quadratic term under all time-lag scenarios
except for the “Direct, then inverse”, where a linear term was used. This was done to ensure
methods were compared under the same conditions. Here, we assumed that a given
researcher would have performed a sensitivity analysis before-hand to determine the need
for a linear vs. non-linear shape.

A linear relationship was assumed between relative training load and injury risk, regardless
of method used to modify the training load.

Absolute training load

Rolling average

Despite past critiques,?® the rolling average (RA)?° was the most frequently used method to
account for the cumulative effects of training load in recent reviews.?*3° Training load and
injury risk studies that employ more advocated methods?® still calculate the RA alongside
the other calculations.3:3* We therefore included this method in our comparison. For
training load denoted x, the moving average RA is defined by:

_ Xg—nt1 T Xgpep Tt X
n

RA

Where n is the size of the time-lag window, in this study, 28 days. k denotes the last value in
the time-lag window for an individual. For the first window, k = 28, for the second window,
k = 29, and so on, up until the final window, k = 300. For each window, the first value is
removed from the calculation, and the next value is added. For example, the first rolling
average calculation is:

X+ x4+ xpg
28

RA]_ =

The second rolling average calculation is:
Xy + X3 + "'+x29
28

RA, =
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This sliding window of calculation can thus be generalized to:

1
RAtoday = RAyesterday + E (k41 — Xk—p41)

The method is intuitive and simple to calculate. An advantage is that it can be calculated on
incomplete time-windows, given that n is defined as the number of training load values in
the time sequence so far. For comparability with other methods, however, we calculated RA
only from the 28t value and so on. The disadvantage is that rolling averages assume that
training loads further back in time, and more recent training loads, contribute equally to
injury risk.1® The method provides no flexibility in the size or direction of effect for different
time-lags.?®

Exponentially weighted moving average

The exponentially weighted moving average (EWMA) is an extension of the rolling average.
It accounts for the assumption that training load values further back in time contribute less
to injury risk than training loads closer in time to the current day.® It has been
recommended as an improvement over the rolling average, 43¢ and has been used in
training load and injury risk studies since.?3°33 For training load denoted x, EWMA is:

EWMAtoday = xtoday + A+ ((1 - }\) + EWMAyesterday)

Where A represents the decrease in effect depending on distance in time, by number of
days n, up to a maximum of n = 28:

_ 2
Tn+1

This choice of lambda is the same as in Williams, et al. 1® and Moussa, et al. °.

A disadvantage of the EWMA is that a full window (28 days) must be completed before the
calculation of the first EWMA. Any injuries sustained in this period are therefore not
included in the analysis of injury risk. In addition, EWMA is constrained to an exponential
weight only, and it cannot be calculated in the presence of missing values.?

Robust exponential decreasing index

The Robust Exponential Decreasing Index (REDI) has recently been proposed as an
alternative over the EWMA,?5 and had improved performance in a training load and injury
risk study.3” For the lag interval [ = 0, ..., L where [ = 0 is the current day, and L is the
maximum lag 27, we can determine a vector of coefficients for each lag. Then, multiply the
coefficients with the training load at each lag and sum these weighted training load values.

L
Weighted x = Z ol * x

=0

The coefficient, ocf‘ is determined as follows:
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A { 0 if x is missing
! exp(—A 1) if x is not missing

The A weight has to be specified by the user, same as the EWMA method. The weighted
training load values are then divided by the sum of the weights:

Weighted x

L A
1=0 1

REDI =

The lower the lambda (1 = 0), the greater the impact from past training load values. We
chose lambda = 0.1 as it was the highest lambda value where training load on the 27t" lag
day still contributed to the cumulative effect.?> Coincidentally, it was the same as used in
Moussa, et al. 2%, and is closest in behavior to the EWMA.

REDI is robust to missing data in training load, and like the rolling average, it can be
calculated on incomplete time-windows. In addition, it may be more flexible than the
EWMA in that the choice of lambda can fine-tune the weights to a specific sport or setting.?

Distributed lag non-linear model

In environmental epidemiology, modelling long-term effects — such as pollution or radon-
exposure — is a common challenge. Although not entirely applicable to the challenges with
training load, they do share the complexities of being long-term, weak-to-moderate
protracted time-varying effects.

To recap, the relative risk of injury is considered to be the combined result of 1) the
magnitude of exposure to training load, known as the exposure-response relationship, and
2) the distance in time from the current day (Day 0), the lag-response relationship.

To handle such effects, Bhaskaran, et al. 26 suggested using a so-called distributed lag model,
a method initially developed in econometrics® and later applied to epidemiology.3®

With Eq. 2, we explained how the -coefficient for training load can be a result of the s
function, s(x;, ..., x¢_.). In a distributed lag model, the effects from the lag-response
relationship is modelled with the lag-response function w(l):

L
$Cher s Xe ) = ) xew(D
1=0
When w(l) is a constant function, this is equivalent to the rolling average.*® Distributed lag
models has been implemented in environmental epidemiology to handle cumulative, time-

dependent effects.?¢4° The downside is the data-driven exploration of cut-offs,3> and the
assumption of a linear relationship between exposure, lag and response.?®

To account for these issues, Bhaskaran, et al. 2® recommended using polynomial or splines
to explore the long-term pattern in so-called Distributed Lag Non-linear Models (DLNM).
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This has been applied to time-to-event data in medicine.** > DLNMs allow non-linear
modelling of the combined effect of the exposure-response and the lag-response
relationships: the exposure-lag-response relationship.?” The function s can be defined by
crossing the variable function f(x) and the lag function w(x, ) and thus produce a bi-
dimensional exposure-lag-response function f (x) - w(x, [):

L
sCpy s Xp_y) = Z FGO - wlxe_p, 1)
=0

The exposure-response function f(x), the function on the absolute training load, must be
specified by the user. In the Cox regression model, f (x) was modelled with a quadratic
term, except for the “Direct, then inverse” time-lag scenario, where a linear term was used
instead; same as for the other methods. The lag-response function w(x, [) is the function
for the time-dependent effect, and must also be specified by the user. Here, it was modelled
with restricted cubic splines using 3 knots under all scenarios, since splines can explore non-
linear shapes.! For a gentle introduction to DLNMs, see Gasparrini 13. For more extensive
mathematical exploration, see Gasparrini 27.

DLNM is a method which models, rather than modifies, training load. Therefore, no
discarding of data, choice of time-blocks, or aggregation of training load values is necessary,
and so, all information in the raw data is retained. Another advantage is that DLNM is
flexible in the modelling of the exposure-response and the lag-response functions, both of
which may be modelled with polynomials or splines at the user’s discretion. This allows the
exploration of non-linear and complex time-lag effects. On the other hand, modelling
complex time-lag effects may require larger sample sizes, and model specification requires
subjective choice.’

Relative training load

Week-to-week percentage change

In training load studies, it is common to divide the data into blocks of time.**%* The weekly
sRPE is calculated by summing the daily sRPEs.3* The percentage difference can then be
calculated on the difference in sRPE between the current week and the previous week.* ¢
We included this method in the comparison as the most basic method of calculating relative
training load. The percentage difference has a few disadvantages,® one being that it cannot
be calculated when the denominator is zero. We therefore opted for the symmetrized
percentage change, which has improved mathematical properties.® This calculation can be
represented by:

Wi — Wiy

HAW = — <=1
% W, + Wi_1

* 100
Where k is the current week. In the same manner as the moving average, the week-to-week
percentage change calculation moves iteratively from one week to the next.

The week-to-week percentage change is simple to calculate. Any injuries suffered in the first
six days must be discarded before calculation of the first percentage difference. However,

Bache-Mathiesen LK, et al. BMJ Open Sp Ex Med 2022; 8:e001342. doi: 10.1136/bmjsem-2022-001342



BMIJ Publishing Group Limited (BMJ) disclaims all liability and responsibility arising from any reliance
Supplemental material placed on this supplemental material which has been supplied by the author(s) BMJ Open Sp Ex Med

this is a small amount of data compared to some of the other methods compared. The main
disadvantage is that it does not consider training load values further back in time than the
previous week, and the time-block of a week may be unreasonable for many sports.*’

Acute: Chronic Workload Ratio

In 2016, Blanch and Gabbett ¥’ introduced the Acute: Chronic Workload Ratio (ACWR),
which is the most frequently used method of modifying training load before analysing the
effect of training load on injury risk.22 %8 The training load on the current week (Day 6 up to
Day 0) is considered the “acute” training load. The “chronic” training load is typically defined
as the rolling average of the current week and the previous three weeks (Day 27 up to Day
0), known as the or 7:28 ACWR. As shown in,*° the basic ACWR calculation is:

Acute Week Wy,

ACWR = =
Chronic Weeks * 0.25 ~ (Wy_3 + Wy_, + Wy_;, + Wy,) % 0.25

Where k is the current week. In the same manner as the rolling average, the traditional
ACWR calculation moves iteratively from one week to the next. We calculated ACWR from
one day to the next, a calculation less wasteful of data.*’

ACWR can be calculated in many different ways.??23 The time windows for the acute and
chronic periods are at the user’s discretion.??4” The acute load is typically the sum of
training load exposures on the current week, but the chronic load can by calculated by
either the rolling average or the EWMA.233650 Finally, in the traditional ACWR, the acute
load is included in the denominator. This is known as the “coupled” ACWR. The “uncoupled”
ACWR — where the acute load is not included in the denominator — has been recommended
as a more concrete measure of the change in training load.'®2! For this simulation study, we
chose the coupled 1-week absolute sum: 4 week rolling average ACWR, the most common
form of calculation.?

The advantage of the ACWR is addressing the potential effect of the relative training load,
while also accounting for past exposure. The properties of the ACWR has been explored
extensively, with multiple critiques.'812222351 | jke EWMA, ACWR needs a completed time
window before the first calculation.

Distributed lag non-linear model

The ability of the distributed lag non-linear model (DLNM) to uncover the effect of relative
training load was also assessed. The exposure-response function f (%Ax) was assumed to
be linear, the same assumption as for the ACWR and week-to-week percentage change. The
lag-response function w(x, [) was modelled with restricted cubic splines using 3 knots under
all scenarios.

Step 4 Calculating performance measures
Metrics for comparing the model fit, accuracy and certainty of the models were calculated
in the final step.

Root-Mean-Squared Error
For a measure of accuracy, we calculated the difference between the predicted cumulative
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hazard @ and the true cumulative hazard 6 used to simulate the survival data for a range of
training load values, the absolute bias. The main performance measure was the Root-Mean-
Squared Error (RMSE), calculated by:

RMSE = ’mean((@ - 9)2) = /mean(bias?)

RMSE is a combined measure of accuracy and precision, where the lower the RMSE, the
better the method.!? The scale of the RMSE depends on the scale of the coefficients in
question, and it is therefore only interpretable by comparing values in the same analysis —
the values cannot be interpreted in isolation.>?

For the relative training load, the ACWR and the week-to-week percentage change methods
modified the training load values to a different scale than the one used to simulate the data.
The RMSE for the predicted vs. true cumulative hazard, a measure of external validation,
could therefore not be calculated for each level of percentage change in training load.
Therefore, we also calculated RMSE on the predicted injury value vs. the observed value
(the model residuals), as an internal validation:

RMSE miernai = / mean(residuals?)

Model fit

Model fit was measured by Akaike’s Information Criterion (AIC) which has shown to be more
appropriate than BIC for comparison of time-lag models.?” The AIC can be used to compare
non-nested models,>*>° but the AIC is not comparable if models are run on different sample
sizes.>® Since some methods — EWMA, ACWR — required the completion of a full time period
before first calculation, the first 27 rows were removed from the dataset for all methods
before fitting the Cox regression model to ensure comparability of the AIC.

Coverage

Coverage was calculated as the proportion of 95% confidence intervals that contained the
true value. Average width (AW) of the 95% confidence intervals was also calculated, as a
measure of statistical efficiency.

Number of simulations
Using formulas listen in Morris, et al. °2, accepting a Monte Carlo Standard Error of no more
than 0.5, the number of simulations needed for an accurate determination of coverage was:
E(Coverage)(1 — E(Coverage) 95%*5
n = =
Coverage (Monte Carlo SEyeq)? 0.52

=1900

The number of simulations needed for an accurate estimate of bias was calculated by:

SZ

Ngim = 0.52

Where s is the sample variance of bias.>? For an estimation of variance, a pilot of 200
simulations were run for each constructed relationship. The highest variance in bias was
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6.63, and the number of simulations needed to achieve the target MCSE was 176. Since
coverage required more simulations to achieve target MCSE, simulation steps 1-4 outlined
above were repeated 1 900 times. The mean of each performance measure was calculated
across the 1 900 simulations.

IMPLEMENTATION IN A HANDBALL COHORT

The distributed lag non-linear model (DLNM) was implemented on an observed handball
cohort to illustrate how it can be used in practice. To explore the potential for a time-
dependent, cumulative effect of training load on injury risk, we chose the Norwegian elite
youth handball data. The data was a cohort of 205 elite youth handball players from five
different sport high schools in Norway (36% male, mean age: 17 years [SD: 1]) followed
through a season from September 2018 to April 2019 for 237 days.>®

RPE and duration was collected from the players after each training and match, from which
daily sRPE was determined.*® Timeliness was relatively poor; 53% of activity prompts were
answered on the same day, and the mean number of days from prompt to reply was 0.7 (SD
=1.6). Of 47 651 activity prompts, 64% were missing, likely under the missing at random or
missing not at random mechanism.>” Missing sRPE data had previously been imputed with
multiple imputation using predicted mean matching,® before the data were anonymized.'*
All non-derived variables were used to predict imputed values, including age, sex, player
position, training activity type among others. The response variable, injury, was also used to
predict imputed values,®® but was not itself imputed before analysis.>® The duration and RPE
variables, the factors from which sRPE is derived, were not included in the imputation
model for predicting sRPE.> The number of imputed datasets, five, is recommended in most
cases.®" The observed distribution was maintained in the imputed values; therefore the
imputation was deemed valid.'* Although the poor data quality rendered the handball data
unsuitable for a study of causal inference, it had a sufficient number of injuries for the
current methodology study (n = 472), and previously showed a potential non-linear
relationship between training load and injury risk.1

” u

The handball players reported whether they had “no health problem”, “a new health
problem”, or “an exacerbation of an existing health problem” each day. Any response of “a
new health problem” was considered an injury event in the current study. Players were
encouraged to report all physical complaints, irrespective of their consequences on sports
participation or the need to seek medical attention.®!

A Cox regression model was run with injury (yes/no) as the outcome and the DLNM of sRPE
as the exposure of interest.®2 DLNM combines a dose-function on the magnitude of sRPE,
and a lag-function on the distance since Day 0, up to lag 27 (4 weeks). The dose-function
was modelled with a restricted cubic splines with 3 knots.!* Based on AIC, a linear model
was chosen for the lag-function. The Cox model was adjusted for sex and age as potential
confounders. A frailty term with a gamma distribution was used to account for recurrent
events.!? The model predictions were visualized to assess the ability of DLNM to explore
effects. Predictions from each of the imputed datasets were averaged, then visualized.%?
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DATA TOOLS

The simulations were run on an Intel(R) Core(TM) i7-6700K 4.00GHz CPU, 16 GB RAM
computer. All statistical analyses and simulations were performed using R 4.1.254 with
RStudio version 1.4.1717. A GitHub repository is available with R code and data used in the
simulations.®> PermAlgo was used to simulate survival data.*?%¢ The slider package was used
for calculations on sliding windows,®” using zoo®® for rolling averages and TTR® for EWMA.
Handling time-lag data and performing distributed lag non-linear models was done with
DLNM.”®

ETHICS

Data collection for both studies were approved by the Ethical Review Board of the
Norwegian School of Sport Sciences. They were also approved by the Norwegian Centre for
Research Data: Norwegian Premier League football (722773); Norwegian elite youth
handball (407930). All participants provided informed written consent. They were all above
the age of 15 and parental consent was not required. Ethical principles were followed in
accordance with the Declaration of Helsinki,”* with the exception that the study was not
registered in a publicly accessible database before recruitment of the first subject (a
violation of principle number 35). Data were anonymised according to guidelines outlined
by The Norwegian Data Protection Authority.”? The datasets cannot be joined.
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Abstract

The relationship between recent (acute) training load relative to long-term (chronic) training load
may be associated with sports injury risk. We explored the potential for modelling acute and
chronic loads separately to address current methodological limitations. We also determined
whether there was any evidence of an interaction in the relationship between acute and chronic
training loads and injury risk in football.

A men’s Qatar Stars League football cohort (1 465 players, 1 977 injuries), where training load
was defined as the number of minutes of activity, and a Norwegian elite U-19 football cohort (81
players, 60 injuries), where the session rating of perceived exertion (SRPE) was used. Logistic
regression was run with training load on the current day (acute load) and cumulative past training
load estimated by distributed lag non-linear models (chronic load) as independent variables.
Injury was the outcome. An interaction between acute and chronic training load was modelled.

In both football populations, we observed that the risk of injury on the current day for different
values of acute training load was highest for players with low chronic load, followed by high and
then medium chronic load. The slopes varied substantially between different levels of chronic
training load, indicating an interaction.

Modelling acute and chronic loads separately in regression models is a suitable statistical
approach for analysing the relationship between relative training load and injury risk. Sports
scientists should consider exploring interactions between acute and chronic load to improve
injury prevention research.

Keywords training monitoring, load monitoring, soccer, ACWR



Introduction

Researchers attempt to identify risk factors for sports injuries to protect the athletes” health and
improve sport performance (Bahr & Krosshaug, 2005). One potential, modifiable risk factor is
training load. Training load is the mechanical, physiological and psychological load resultant of
multiple episodes of physical activity performed by an athlete (Soligard et al., 2016). Hypotheses
suggest that not only high or low training load levels may affect injury risk, but also rapid
increases in recent training load relative to training load incutred in the past (Gabbett, 20106); i.c.
a peak in the relative training load (Drew & Finch, 2016).

Hulin et al. (2014) introduced the Acute:Chronic Workload Ratio (ACWR) to estimate the effect
of relative training load on the risk of sports injury (Blanch & Gabbett, 2016; Gabbett, 2016). In
their model, the most recent training load, the acute load, is divided by the past, or chronic load.
In theory, the higher the ratio — the higher the acute load relative to the chronic — the higher the
risk of injury (Gabbett, 2016). In addition, a low ACWR was also proposed to increase injury
risk; in other words, the suggested relationship between ACWR and injury risk was U-
shaped.(Blanch & Gabbett, 2016; Gabbett, 2016) After ACWR became popular, concerns were
raised on its theoretical and methodological foundations (Impellizzeri et al., 2020). Among
others: the number of subjective choices involved increased risk of p-hacking (Dalen-Lorentsen
et al,, 2021), the time lengths for the acute and chronic periods were arbitrary (West et al., 2021),
and it could not handle an acute or chronic load of 0 (Impellizzeri et al., 2020).

A core principle in the theory underlying the ACWR is that the effect of the acute load depends
on the amount of chronic load. If acute load is high, it may not necessarily increase injury risk if
the chronic load is also high. The aim of the ACWR was therefore to adjust the acute load to the
chronic load, estimating the effect of acute load properly. This adjustment is not always
successful when calculating a ratio (Impellizzeri et al., 2020). Instead, Wang et al. (2020)
suggested modelling the acute load and the chronic load separately. This eliminates the risk that
acute load will not be properly adjusted to the chronic load. At the time of Wang et al.’s
proposal, several other challenges remained unsolved, including how to estimate the cumulative
effect of past training load, the chronic load. Recent research suggests this may be solved by
applying the distributed lag non-linear model (DLNM) (Bache-Mathiesen et al., 2022).

The theory that the effect of acute load on injury risk depends on the level of chronic load
suggests an interaction between acute and chronic loads. Previous descriptive research has
studied the association of ACWR with injury for different chronic loads (Bowen et al., 2020;
Stares et al., 2018), but none have so far modelled an interaction between acute and chronic
loads outside of the ACWR framework. Whether an interaction can be assessed while chronic
load is modelled by DLNM is also unknown. DLNM can explore time-dependent effects, but it
cannot determine what time period is considered “recent” and “past” in the context of relative
training load (Bache-Mathiesen et al., 2022).

We hypothesized that training stimuli on the current day does not contribute to injury risk on
that day, while the accumulated stimuli (fitness) built on past activity days does contribute to
injury risk on the current day. In addition, if the athlete does not participate in activity on the
current day, the athlete is not at risk on that day (Windt & Gabbett, 2017). We argue that the
current day of activity is therefore markedly different from past activity days, and it may thus be
possible to consider the cutrent day only as the acute load, and all past observations as chronic
load. Investigating whether there is evidence of such an interaction between acute and chronic



loads association with injury risk may elucidate whether such interactions are worth considering
in future research, and whether they are possible to model using DLNM.

When assessing the causal effect of relative training load on injury risk, one key element is the
statistical description of the relationship between load and injury. The primary aim of this
statistical methodology study was to investigate whether modelling acute and chronic training
loads separately can be used to describe this relationship. A secondary aim was to find out
whether acute and chronic loads interact in their association with injury risk in football.

Materials and methods

Participants

We analysed eight competitive seasons (2015—-2022) from the men’s Qatar Stars League (QSL)
injury surveillance registry in football (1 465 players, 1 977 injuries, see Supplemental Table S1),
and one season from a Norwegian elite U-19 football cohort (81 players [45% female], 81
injuries) described in Dalen-Lorentsen et al. (2021).

Training load definition
In the QSL data, training load was defined as the daily number of minutes in training and/or
match (1 136 223 obsetrvations, 12% missing data).

In the Norwegian elite U-19 data, training load was defined as the daily number of minutes of
football (training and/ot match), multiplied by the playet’s rating of petrceived exertion on a scale
from 0O to 10, deriving the session Rating of Perceived Exertion (sRPE, 8 494 observations, 24%
missing data) (Foster et al., 2001).

Missing data were imputed using multiple imputation (see Supplemental Figure S1-S2)(Bache-
Mathiesen, Andersen, Clarsen, et al., 2021; Buuren, 2011).

Injury definition

Injuries in QSL players were recorded prospectively using the Sport Medicine Diagnostic Coding
System classification (Bahr et al., 2020; Orchard et al., 2020). We recorded all injuries resulting in
a player being unable to fully participate in training or match play (time-loss injuries). The player
was considered injured until the team medical staff allowed full participation in training and
availability for match selection. We did not record injuries that occurred outside football
activities. Several steps of quality control were performed to ensure injury validity (see
Supplemental file). Injuries were classified as either sudden or gradual onset.

The Norwegian elite U-19 players reported daily whether they had experienced a new health
problem, with Briteback AB online survey platform, Norrkoping, Sweden. If they had, a clinician
contacted them for a structured interview and classified the health problem as being an injury or
an illness according to the Union of European Football Associations guidelines (Hdgglund et al.,
2005). Only injuries were analysed in this study.

Injury definitions in both populations followed the 2006 consensus statement on epidemiological
studies in football (Fuller et al., 20006).



Statistical analysis
To estimate the effect of relative training load on the risk of injury, a logistic regression model
was tun, with injury yes/no as the binary outcome vatiable.

The current day of training (Day 0) was considered the acute load and modelled as an
independent variable. The relationship between the current day of training and injury risk might
be non-linear (Magnusson et al., 2010), and therefore we applied restricted cubic splines (RCS)
with 3 knots (Bache-Mathiesen, Andersen, Dalen-Lorentsen, et al., 2021). Due to skewed
training load distributions, the knot locations were subjectively chosen based on the range of the
training load observations in the QSL data (QSL model) and the Norwegian elite U-19 data
(Norwegian model), respectively (Bache-Mathiesen, Andersen, Dalen-Lorentsen, et al., 2021).

The chronic load was the training performed during the previous 27 days (excluding day 0). We
assumed that training load values closer to the current day may contribute more to injury risk
than those distant in time (Williams et al., 2017), and that the direction of effect may also change
with distance in time (Gabbett, 20106). Therefore, the cumulative effect of chronic load was
modelled with a distributed lag non-linear model (DLNM)(Bache-Mathiesen et al., 2022). RCS
was chosen to model the effect of the magnitude of training load (3 knots), and also the effect of
the time-lag (the number of days since the training was performed, 4 knots).

An interaction term was added between the acute load (Day 0) and the DLNM-estimated
chronic load (Day -1 to day -27). The main result was a visualization of the predicted
probabilities of injury for acute load given different levels of chronic training load. Reference
levels of chronic load was chosen by finding examples of low, medium and high chronic load in
the original data (Supplemental Table S2).

Since players are only at risk of injury if they participate in an activity, days in which they did not
participate in any training or match were removed from the analysis. These observations were
still included in the DLNM estimation of chronic load.

The models were repeated with a random intercept term at the player level to account for the
possibility that some players are more likely to suffer injuries than others (Nielsen et al., 2020).
To see if a simpler approach than DLNM can be suitable, the models were also repeated using
the exponentially weighted moving average (EWMA) on chronic load, same as in Williams et al.
(2017).

Additional analyses were performed on the QSL data. First, the interaction model with acute and
chronic minutes in activity was performed on sudden- and gradual-onset injuries, separately
(Bahr et al., 2020). Second, we explored the risk of injury for various levels of minutes in activity
sustained in the past, using DLNM.

Statistical analyses were performed in R version 4.2.1 with DLNM (Gasparrini, 2011), mice
(Buuren, 2011), Ime4 (Bates et al., 2015), and slider (Vaughan, 2021). R code is available online
(Bache-Mathiesen, 2022).



Results

The QSL model showed decreased probability of injury for each minute in activity on the
current day (Figure 1) with statistical significance (p < 0.001, Table 1) — a typical pattern when
players end activity early due to injury. Players who had not participated in an activity in the last
27 days were at highest risk of injury, followed by those who spent a low number of minutes in
activity (Figure 1A). Players who spent a high number of minutes in activity were at higher risk
than those with medium (Figure 1A). The slopes varied considerably between different levels of
minutes of activity in the past, suggesting an interaction between number of minutes in activity
on the current day and cumulative number of minutes in activity the previous 27 days (Figure
1A). Of 12 interaction terms, all had narrow confidence intervals, and 4 were significant (Table

1.

A similar pattern was displayed in the Norwegian model: low chronic SRPE increased risk of
injury, followed by high, with the lowest risk at medium levels of chronic sRPE (Figure 1B).
Also, like the QSL model, the Norwegian elite U-19 model exhibited major changes in the slopes
between the different levels of cumulative chronic sRPE, indicating an interaction (Figure 1B).
However, the model failed to estimate coefficients and Cls for certain spline intervals on the
chronic load (Table S3).

The relationship shape between the training load variables did not change with the addition of
random effects (Figure S3), and some of the coefficients were inestimable in the mixed model.
Therefore, random effects were not included in the final models.
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Figure 1. Probability of injury on the current day (Day 0) for each level of training load variables used in (A) Qatar
Stars League model (420 329 exposure values, 1977 injuries) and (B) Norwegian elite U-19 model (4 719
exposure values, 60 injuries). The probability is shown for zero, low, medium and high cumulative chronic
training load levels. For the Qatar Stars League model: zero = 27-day sum of 0 minutes, low = 180 minutes,
medium = 1435 minutes, high = 1900 minutes. For the Norwegian elite u-19 model, low = 27-day sum of 80 sSRPE
(near zero), medium = 7 163, high = 8 800. The exact profiles used are shown in Supplemental Table S1. The
probabilities were predicted by logistic regression with an interaction term between the acute load and the
cumulative chronic load. Only days in which the players were at risk were analysed (acute load # 0). Arb. u =
arbitrary units.



The EWMA models failed to discover an effect of chronic training load on injury risk, neither in
the QSL model, nor in the Norwegian model, and did not display signs of an interaction (Figure
S4). The relationship shape between acute load and injury risk was different from the DLNM
models, showing a peak around 60 minutes for QSL (Figure S4A), and an exponential increase in
risk for the Norwegian model.

Table 1. QSL model coefficients for a logistic regression with injury as the outcome and minutes in activity on
the current day (acute), and past minutes in activity (chronic) as independent variables.

Term??? OR SE Lower Cl UpperCl P
Intercept 0.067 0.329 0.034 0.131 <0.001
Acute minutes in activity 1 0.950 0.007 0.936 0.964 <0.001
Acute minutes in activity 2 1.144 0.017 1.105 1.185 <0.001
Chronic minutes in activity W1 F1 2.166 0.252 1.282 3.659 0.006
Chronic minutes in activity W1 F2 0.455 0.129 0.348 0.595 <0.001
Chronic minutes in activity W1 F3 1.285 0.11 1.030 1.602 0.027
Chronic minutes in activity W2 F1 0.156 0.374 0.075 0.324 <0.001
Chronic minutes in activity W2 F2 6.112 0.191 4.207 8.881 <0.001
Chronic minutes in activity W2 F3 0.841 0.181 0.590 1.200 0.340
Chronic minutes in activity W3 F1 3.252 0.623 0.952 11.109 0.060
Chronic minutes in activity W3 F2 0.578 0.363 0.279 1.198 0.137
Chronic minutes in activity W3 F3 0.673 0.281 0.388 1.168 0.159
Chronic minutes in activity W4 F1 6.432 1.228 0.578 71.55 0.130
Chronic minutes in activity W4 F2 0.319 0.642 0.090 1.126 0.076
Chronic minutes in activity W4 F3 0.404 0.573 0.130 1.256 0.116
Interaction (Acute*Chronic minutes W1 F1) 0.998 0.003 0.991 1.006 0.642
Interaction (Acute*Chronic minutes W1 F2) 1.002 0.002 0.998 1.006 0.429
Interaction (Acute*Chronic minutes W1 F3) 1.000 0.001 0.998 1.003 0.844
Interaction (Acute*Chronic minutes W2 F1) 1.020 0.004 1.012 1.028 <0.001
Interaction (Acute*Chronic minutes W2 F2) 0.978 0.002 0.974 0.982 <0.001
Interaction (Acute*Chronic minutes W2 F3) 1.004 0.002 1.001 1.008 0.020
Interaction (Acute*Chronic minutes W3 F1) 0.993 0.006 0.982 1.005 0.243
Interaction (Acute*Chronic minutes W3 F2) 1.010 0.003 1.003 1.017 0.009
Interaction (Acute*Chronic minutes W3 F3) 1.003 0.003 0.997 1.009 0.340
Interaction (Acute*Chronic minutes W4 F1) 0.996 0.009 0.978 1.015 0.678
Interaction (Acute*Chronic minutes W4 F2) 1.005 0.005 0.995 1.015 0.311
Interaction (Acute*Chronic minutes W4 F3) 1.007 0.005 0.997 1.016 0.154

Abbreviations: Cl = 95% Confidence Interval, OR = Odds Ratio, QSL = Qatar Stars League, SE = Standard Error
1All variables were modelled with splines (420 329 exposure values, 1 977 injuries), and terms represent one of
multiple intervals demarcated by knots

2The DLNM models a cross-product of the number of minutes in activity (the F-function) and the lag time in
which the activity was performed (the W-function). Since F was modelled with 3 knots, and W with 4, the result
is a 3*4 permutation of intervals



QSL players were at higher risk of a sudden onset than a gradual onset injury (Figure S5). Signs
of an interaction between minutes in activity on the current day and cumulative minutes in
activity in the past were present in both acute and overuse injuries (Figure S5).

In the QSL population, activities performed on the day before the current day contributed most
to the risk of injury on the current day (OR = 1.1 for 60 minutes of activity, 95% confidence
interval (CI) = 1.05-1.18, Figure 2). The risk declined exponentially the more distant in time the
activity was performed, ending at approximately OR = 1.02 (CI = 1.01-1.04) for 60 minutes of
activity performed 19 to 22 days prior to the current day. At 27 days prior to the current day, the
CI overlapped with 1 (OR = 1.02, 0.98-1.07). A low number of minutes in activity (10—-40
minutes) on a day in the past substantially increased risk of injury for the current day, a high
number (90-120 minutes) moderately increased risk, and a medium number (40—-80 minutes)
slightly increased risk, regardless of whether the activity was performed 1 day prior to the current

day, 10 days prior, or 27 days prior (Figure 2B-D).
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Figure 2. Risk profiles of chronic load, measured by the minutes of activity performed by Qatar Stars League
players (1 136 223 exposure values, 1 977 injuries). Figure A shows the risk of 60 minutes of activity for each day
in the past. -1 is the risk of injury if 60 minutes of activity occurred the day prior to the current day, and -27 is
the risk if 60 minutes of activity occurred 27 days before the current day. Figures B, C, and D shows how the risk
of injury changes for each level of minutes in activity if the activity occurred (B) 1 day prior to the current day,
(C) 10 days prior to the current day, (D) 27 days prior to the current day. Note, that Y-axes for B-D are not on
the same scale, to better show the relationship shape. Coefficients with 95% confidence intervals (yellow bands)
were estimated by a logistic regression model with injury as the outcome and a distributed lag non-linear model
of the chronic minutes in activity as the independent variable. No other terms were included.
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Discussion

This is the first study to explore the potential of modelling acute and chronic training loads
separately to estimate the effect of relative training load on injury risk in sport. The method
successfully discovered a relationship between the minutes in activity on the current day and the
probability of injury in a Qatar Stars League football (soccer) population, and propetly adjusted
for the cumulative effect of minutes in activity the previous 27 days. Signs of a relationship
between internal training load (sRPE) on the current day and injury risk could also be gleaned in
a Norwegian elite U-19 football population, although with high uncertainty due to a much
smaller sample size. In future observational studies of causal inference, this statistical approach
can be used to determine whether relative training load affects injury risk, given that
confounding and other considerations for causal inference have been properly addressed.

This study also investigated, for the first time, whether there was an interaction between acute
and chronic training loads, where “acute” was defined as the current day of activity. Clear
evidence of an interaction was found, as in both the QSL model and the Norwegian model, the
relationship slopes for acute training load varied considerably for different levels of chronic
training load. This demonstrates that interactions between time periods can be modelled with the
DLNM approach.

Modelling acute and chronic loads separately

The QSL model indicated decreased injury risk for each minute spent in activity on the current
day (p < 0.001). The Norwegian model displayed a similar trend, although non-significant (p >
0.05), and injury risk increased if chronic internal load (cumulative past sRPE) was low. We
suspect that players who ended activity due to injury skewed the models toward decreased risk
with increased exposure. This effect was amplified in the QSL population, which only included
time-loss injuries and time in exposure — no measure of the training intensity. This is a general
and — yet — unsolved challenge for studies that aim to estimate the effect of training load on
injury risk.

Both the QSL and the Norwegian models displayed variation in injury risk given different levels
of cumulative chronic load. Low chronic training load had highest risk, followed by high chronic
load, then the medium load with the lowest risk. In summary, modelling the acute and chronic
load separately successfully estimated the effect of acute load adjusted for the effect of chronic
load. In addition, having zero chronic load the last four weeks (a month without football)
showed the highest risk of injury in the QSL model. This could not have been discovered if we
had used any form of ratio, as the denominator would be 0 (Curran-Everett, 2013). Lastly, while
using the ACWR would require choosing among multiple ways of calculation (Drew et al., 2017;
Gabbett et al., 2019; Williams et al., 2017), the current approach required few such choices, and
reduced the risk of multiple testing issues.

The EWMA model failed to discover a relationship between chronic load and injury risk and
could not separate the effects of different chronic training load levels. Given the large sample
size of 1 136 223 observations and 1 977 injuries of the QSL population, we speculate whether
EWMA could estimate the effects at all, even in a larger study.

Interaction between acute and chronic loads in football

Interestingly, the slopes of the effect of chronic load on injury risk varied considerably in the two
football populations. High and medium chronic load slowly declined in risk for each level of
acute load, while low chronic load declined rapidly (Figure 1A). In the Norwegian model, low
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chronic load both increased and decreased risk at different levels of acute load (Figure 1B). In
the QSL population, the interaction was also present when stratified on acute and overuse
injuties. We recommend that future training load and injury risk studies consider and explicitly
model these interactions, to improve injury prevention research.

Choosing time periods for acute and chronic load

A consistent challenge with traditional methods of estimating relative training load’s effect on
injury risk, whether it be the acute:chronic workload ratio or other methods, is choosing the time
periods for acute and chronic load (Coyne et al., 2022; West et al., 2021). If recent days of
training increase risk, and past days of training reduce risk, at what point in time does this change
happen? Subjectively deducing the cut-off may be arbitrary (Coyne et al., 2022), cut-offs based
on previous research may not be sport-specific (Impellizzeri et al., 2020), and data-driven
approaches risk multiple testing issues and reduced comparability (Carey et al., 2017).

Modelling the effects of chronic load using DLNM allowed exploration of the time-lag structure.
In the QSL population, the risk of injury declined exponentially the further distant in time the
activity was performed: OR = 1.10 (CI = 1.05-1.18) for 60 minutes of activity performed the
day prior to the current day, OR = 1.06 (CI = 1.05-1.08) for the same amount performed 6 days
prior to the current day, ending at OR = 1.02 (CI = 1.01-1.04) for 60 minutes of activity
performed 21 days prior to the current day. Furthermore, a low number (10-40) or a high
number (90-120) of minutes in activity on a day in the past both increased risk of injury on the
current day, while a medium number (40—80 minutes) decreased risk in comparison. This
reflected the pattern seen in Figure 1, and it fits the hypotheses that both too much and too little
training may increase risk of injury (Gamble, 2013). The DLLNM approach can explore at what
point in time in the past the effect of chronic load changes (if it changes).

We hypothesized that the current day (Day 0) has special properties compared to past days of
training load exposure, which allows it to be modelled separately without the concern that it may
be too similar to concurrent days.

On the current day, injury risk increases with sheer exposure to the physical activity itself. Players
cannot sustain an injury if they do not participate in an activity (Gabbett, 2016). On the other
hand, if players did not participate in an activity on certain days in the past, those days would still
contribute to the cumulative effect of past training load. Thus, the effect of a training load value
of 0 changes drastically if it is on the current day versus past training load days.

Hypotheses suggest that both high and low levels of training load may increase injury-risk
(Gamble, 2013). Too little training will not build enough fitness for the tissue to tolerate
upcoming training load levels. Too much training may potentially damage the tissue, and the
tissue may not be able to regenerate in time for the next training or match-play exposure. These
hypotheses pertain mostly to past training load. On the current day, the player enters with fitness
and fatigue resultant of the past. The adaptations built during the current day of activity will not
likely come into play until later (that day or during the successive days). The fatigue, will,
however affect the current activity and day. Hence, the shape of the relationship between
training load and injury risk (linear, or various non-linear), may depend on whether the event was
in the past, or on the current day.

In a real-time setting, the current and future days of training or match-play load are the most
modifiable. One cannot change training load that happened in the past. Coaching staff, medical
staff and players (athletes) are interested in the risk of injuty on the current day and future days —
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given the training that was done in the past. Studies interested in causal inference and developing
load management programs should take this into consideration when choosing time periods for
acute and chronic loads.

Future perspectives

We showed the potential of modelling acute and chronic training loads separately. DLNM is a
flexible approach to handling the complexity of chronic load; moreover, the DLNM R-package
is free and available online. The R-package was, however, developed for epidemiological
questions, and not yet adapted to interactions or stratified analysis. Consequently, its prediction
functionalities could not be used, which barred us from exploring effects in the time-lag
structure of the interaction model. Furthermore, predictions for different levels of chronic load
could not be set to a desired level and therefore, examples were selected from the original data.
Future research is needed in implementation of DLNM for the niche of training load.

While this study focused on football, we believe the proposed method is flexible enough to
handle sport-specific circumstances, such as tapering (Murach & Bagley, 2015), and can be used
in both individual and team sports, warranting interesting studies.

Limitations

Limitations of this study were: (i) the QSL data only had minutes of activity, and no other
training load variables or variable describing the intensity of the activity; (ii) the Norwegian elite
U-19 data had only sRPE — the player’s psychological perception of the training exertion and the
duration of the activity. The sRPE has recently been critiqued (Passfield et al., 2022), and
different groups of players can perceive the same physiological stimuli differently (Impellizzeri et
al.,, 2004); the Norwegian elite U-19 sRPE responses were above other football populations
(Chamari et al., 2012; Rabbani et al., 2019). In this regard, training load is a multidimensional
construct, and ideally, both internal and external training loads should be used (Bourdon et al.,
2017).

We considered only the current day to be the acute load. We therefore could not uncover
whether the effects of relative training load existed more distant in the past; for instance, if the
training performed three days ago relative to the training performed six days ago (or other time
variations) had an association with injury risk. In addition, due to multicollinearity, confidence
intervals around predictions in Figure 1 could not be estimated.

Conclusion

To assess the effect of recent (acute) training load relative to past (chronic) training load on
injury risk, a ratio has traditionally been calculated. Ratios have a number of challenges, including
how to handle chronic loads of 0. Modelling the acute and the chronic load separately is intuitive
and potentially a simple solution to this problem. When using this method, the acute load adjusts
for the level of chronic load without calculating a ratio. Furthermore, signs of an interaction
between acute and chronic training load were present in both football populations studied.
Scientists in the field of training load and injury risk should consider and model these
interactions to improve injury prevention research.
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Supplementary

Injury validation in Qatar Stars League registry

The team physician in each club was in charge of collecting the data, using standardized tools.
We distributed a study manual outlining the details of data collection to the contact person
before the team’s enrollment into the study. We also organized demonstration sessions every
time a new team physician joined the program. We recorded data using a custom-made
Microsoft Office Excel® file (Microsoft Corporation, Readmon, WA, USA) for quick data entry,
using pull-down menus to classify each injury based on the Sport Medicine Diagnostic Coding
System. Injury cards were also provided in Microsoft Office Word® (Microsoft Corporation,
Readmon, WA, USA) to assist clinicians in taking notes during daily clinical activity, prior to
entry into the master data file. We asked the clubs to submit their data every month by email.

Data quality control was done on a monthly basis to validate the data.

Tables

Table S1. Characteristics of 1 465 Qatar Stars
League players for the 3 365 studied player’
seasons.

Characteristic* Mean (SD)
Age (n =564) 25 (5)
Height (n = 535) 174 (21)
Weight (n = 548) 71(16)
Player position (n = 725)2 N (%)
Defenders 231 (32%)
Goal Keepers 81 (11%)
Midfielders 316 (44%)
Strikers 97 (13%)

variables had missing data, and descriptives are
calculated on observed values (n).

2One player could change positions across
multiple seasons, and therefore be included
multiple times in the calculation
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Table S2. Chronic load profiles used as reference values in Figure 1 (main article), Figure S3 and

Figure S5, from the day before the current day (-1) to 27 days prior to the current day (-27).

Qatar Stars League! Norwegian elite U-192

Day Zero Low Medium®  High* Low Medium? High*
-1 0 60 90 45 80 480 720
-2 0 60 27 45 0 0 630
-3 0 60 79 90 0 720 540
-4 0 0 60 80 0 588 1260
-5 0 0 30 80 0 120 0
-6 0 0 63 80 0 0 560
-7 0 0 30 90 0 450 0
-8 0 0 63 140 0 30 0
-9 0 0 60 105 0 0 1230

-10 0 0 11 70 0 540 0
-11 0 0 78 40 0 900 810
-12 0 0 15 15 0 390 0
-13 0 0 77 45 0 90 0
-14 0 0 13 45 0 240 0
-15 0 0 78 90 0 370 320
-16 0 0 75 90 0 30 0
-17 0 0 0 90 0 360 0
-18 0 0 0 90 0 60 0
-19 0 0 70 90 0 0 0
-20 0 0 70 90 0 540 0
-21 0 0 70 45 0 55 630
-22 0 0 26 90 0 0 360
-23 0 0 70 30 0 0 0
-24 0 0 70 45 0 0 960
-25 0 0 70 45 0 30 360
-26 0 0 70 90 0 540 0
-27 0 0 70 45 0 630 420
Total 0 180 1435 1900 80 7163 8800

IMeasured in minutes in activity

2Measured in session Rating of Perceived Exertion (sRPE) in arbitrary units
3The total sum was the median in the corresponding dataset

“The total sum was the 75% quantile in the corresponding dataset



Table S3. Model coefficients for a logistic regression with injury as the outcome and sRPE on the

current day (acute), and past sRPE (chronic) as independent variables in the Norwegian elite U-19 data.

123

Term OR SE  LowerCl UpperCl p
Intercept 0.035 1.110 0.004 0.308 0.003
Acute sRPE 1.001 0.003 0.996 1.006 0.656
Acute sRPE 0.997 0.002 0.992 1.001 0.177
Chronic sRPE W1 F1 0.111 1.055 0.014 0.883 0.038
Chronic sRPE W1 F2 0.972 0.660 0.266 3.544 0.965
Chronic sSRPE W1 F3 2.661 0.638 0.758 9.343 0.126
Chronic sRPE W2 F1 369558.600 4,787 30.843 4.43E+09 0.007
Chronic sRPE W2 F2 0.122 2.538 0.001 17.66 0.407
Chronic sSRPE W2 F3 0.230 2.724 0.001 48.581 0.589
Chronic sSRPE W3 F1 0.000 15.939 0.000 390.613 0.108
Chronic sRPE W3 F2 13.162 6.383 0.000 3647113 0.686
Chronic sRPE W3 F3 4.529 6.798 0.000 2924533 0.824
Chronic sRPE W4 F1 0.000 33.76 0.000 0.324 0.046
Chronic sRPE W4 F2 22218.120 13.56 0.000 8.02E+15 0.461
Chronic sRPE W4 F3 92.306 15.116 0.000 8.11E+14 0.765
Interaction (Acute*Chronic SRPE W1 F1) 1.005 0.002 1.001 1.009 0.016
Interaction (Acute*Chronic sRPE W1 F2) 1.000 0.001 0.997 1.002 0.866
Interaction (Acute*Chronic sSRPE W1 F3) 0.999 0.001 0.996 1.001 0.259
Interaction (Acute*Chronic SRPE W2 F1) 0.971 0.009 0.954 0.988 0.001
Interaction (Acute*Chronic SRPE W2 F2) 1.005 0.005 0.996 1.014 0.310
Interaction (Acute*Chronic SRPE W2 F3) 0.999 0.005 0.990 1.009 0.900
Interaction (Acute*Chronic sSRPE W3 F1) 1.056 0.026 1.003 1.111 0.038
Interaction (Acute*Chronic SRPE W3 F2) 0.989 0.014 0.962 1.016 0.418
Interaction (Acute*Chronic SRPE W3 F3) 1.008 0.012 0.984 1.033 0.500
Interaction (Acute*Chronic SRPE W4 F1) 1.161 0.057 1.039 1.298 0.009
Interaction (Acute*Chronic sSRPE W4 F2) 0.967 0.030 0.912 1.025 0.262
Interaction (Acute*Chronic sSRPE W4 F3) 1.017 0.027 0.964 1.074 0.535

Abbreviations: Cl = 95% Confidence Interval, OR = Odds Ratio, SE = Standard Error, sRPE = session

Rating of Perceived Exertion in arbitrary units
IAll variables were modelled with splines, and terms represent one of multiple intervals demarcated by

knots

2The DLNM models a crossproduct of the number of minutes in activity (the F-function) and the lag
time in which the activity was performed (the W-function). Since F was modelled with 3 knots, and W
with 4, the result is a 3*4 permutation of intervals
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Figure S1. Illustration of the modelling process in the framework of multiple imputation. The
imputation was performed in accordance with recommendations in “Flexible Imputation of
Missing Data, Second Edition” by Stef van Buuren (Van Buuren, 2018a), also available online
(Van Buuren, 2018b). Missing time in activity in minutes, and sRPE values, were predicted and
imputed using predictive mean matching (Barzi & Woodward, 2004), which has previously
been shown to be a valid approach for count data (Van Buuren, 2018a). For the minutes in
activity, a poisson regression imputation was compared with the PMM with validation plots,
before choosing PMM. All non-derived variables were used to predict imputed values,
including age, sex, player position, type of training activity, among others. The response
variable, injury, was also used to predict imputed values (Moons et al., 2006), but was not
itself imputed before analysis (Peters et al., 2012). The number of imputed datasets was five,
which is recommended in most cases (Van Buuren section 2.8). The imputation was validated
by comparing the distribution of the imputed versus the original data (see Figure S2). Five
models were fitted and pooled using Ruben’s Rules for the final models (results in Table 1 and
Table 2, main article).
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Figure S2. Distribution of original data values (blue) compared to imputed values from five
imputed datasets (yellow) for (A) daily minutes in activity in a Qatar Stars League football
population, and (B) daily session Rating of Perceived Exertion (sRPE) measured in arbitrary
units in a Norwegian elite U-19 football cohort. The mismatch between the distribution of
imputed data and original data in (A) is expected. Although 12% of the Qatar Stars League
exposure observations were missing, on days that players suffered an injury, the missing rate
was 36%. The missing mechanism was therefore missing at random, and missing probability
increased if injury = yes. Since players are unlikely to be injured on days with no activity
(exposure = 0), one would expect the imputed distribution to skew less towards 0 than the
original data.
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Figure S3. Probability of injury on the current day (Day 0) predicted by logistic regression
models with random effects. Shown for each level of training load variables used in (A) Qatar
Stars League model (420 329 exposure values, 1 977 injuries) and (B) Norwegian elite U-19
model (4 719 exposure values, 60 injuries). The probability is shown for zero, low, medium
and high cumulative chronic training load levels. For the Qatar Stars League model, the sums
chosen were: zero = 27-day sum of 0 minutes, low = 180 minutes, medium = 1 435 minutes,
high = 1 900 minutes. For the Norwegian elite u-19 model, low = 80, medium = 7 163, high =
8 800. The exact profiles used are shown in Table S1. Arb. u = arbitrary units.
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Figure S4. Probability of injury on the current day (Day 0, acute load) predicted by logistic
regression models, using EWMA to calculate cumulative chronic load. Shown for each level of
training load variables used in (A) Qatar Stars League model (420 329 exposure values, 1 977
injuries) and (B) Norwegian elite U-19 model (4 719 exposure values, 60 injuries). The
probability is shown for zero, low, medium and high EWMA levels. Arb. u = arbitrary units,
EWMA = Exponentially Weighed Moving Average.
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Figure S5. Probability of injury on the current day (Day O, acute load) for each minute in
activity in the Qatar Stars League population (420 329 exposure values), stratified by (A)
sudden onset injuries (n = 1 625) and (B) gradual onset injuries (n = 320). The probability is
shown for zero, low, medium and high cumulative chronic minutes in activity. The sums
chosen were: zero = 27-day sum of 0 minutes, low = 180 minutes, medium = 1 435 minutes,
high = 1 900 minutes. The exact profiles used are shown in Table S1. The probabilities were
predicted by logistic regression with an interaction term between the acute number of
minutes in activity (Day 0) and the cumulative chronic number of days in activity
(Day -1 to -27).
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Appendices

Appendix Il: Norwegian handball documentation
Norwegian Centre for Research Data Approval (in Norwegian)

Consent form (in Norwegian)



Notges idrettshogskole
Att: Christian Thue-Bjorndal
christian.bjorndal@NiH.no

Vér dato: 29.8.2018 Vér ref: 60750/PEG/LR Deres dato: Deres ref:

VURDERING AV BEHANDLING AV SARSKILTE KATEGORIER PERSONOPPLYSNINGER |
PROSJEKTET: EN LONGITUDINELL STUDIE AV SPILLERUTVIKLING | NORSK HANDBALL

NSD - Norsk sentet for forskningsdata AS viser til meldeskjema innsendt 11.05.2018. Meldingen
gjelder behandling av personopplysninger til forskningsformal.

Etter avtale med den behandlingsansvatlige, Norges idrettshagskole (heretter NiH), har NSD
foretatt en vutdeting av om den planlagte behandlingen er 1 samsvar med
petsonvernlovgivningen.

Resultat av NSDs vurdering:

NSD vutderet at det vil bli behandlet sztskilte kategotier petsonopplysninger om helse frem til
31.12.2018.

NSDs vurdering et at behandlingen vil vate i samsvar med petsonvernlovgivingen, og at lovlig
grunnlag for behandlingen er samtykke.

Var vurdeting forutsetter at prosjektansvatlig behandler petsonopplysninger 1 trad med:
- opplysninger gitt 1 meldeskjema og ovrig dokumentasjon
- dialog med NSD, og vir vurdering (se under)
- NiH sine retningslinjer for datasikkethet, herunder regler om hvilke tekniske hjelpemidler
det er tillatt 4 bruke

Narmere begrunnelse for NSDs vurdering:
1. Beskrivelse av den planlagte behandlingen av personopplysninger

Formilet med prosjektet er 4 undersoke utviklingsfotlop som leder til ulike utfall med hensyn til
frafall eller fortsatt idrettsdeltagelse blant unge notske hindballspillere i alderen 13-19 ar. Studien
fokuserer spesielt pia sammenhengen mellom hvordan (a) uteverens treningshverdag og
treningsbelastning, (b) risiko for idrettsskader og (c) motivasjon og trivsel, utvikler seg gjennom
ungdomsiatene, samt relasjoner mellom trener og utover.

NSD — Norsk senter for forskningsdata AS Harald Harfagres gate 29 Tel: +47-55 58 2117 nsd@nsd.no  Org.nr. 985 321 884
NSD — Norwegian Centre for Research Data  NO-5007 Bergen, NORWAY Faks: +47-55 58 96 50 www.nsd.no
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Utvalget bestar av hindballspiller i alderen 16-19 ér, samt deres trenere. Det samlede antallet er
250 respondentet. Utvalget rekrutteres via spillerutviklingstiltak i regi av Norges handballforbund
og via klubbesok der muntlig og skriftlig informasjon blir gitt. Det samles inn data fra spillerne
ved hjelp av elektronisk spotreskjema, og senete petrsonlig intervju. For trenerne samles det inn
data ved fokusgruppeintervju. Det fremgitr av meldeskjema at det vil behandles sensitive
opplysninger om helsefothold om spilletne, bide i form av fysiologiske opplysninger, samt
opplysninger om psykososiale forhold.

Datamaterialet oppbevates pa NiH (nzrmere om dette under punkt 5).

Prosjektslutt er, ifolge meldeskjema, 31.12.2020. Det fremgir av meldeskjema at du vil lagre
datamaterialet med petrsonopplysninger 31.12.2028 for oppfolgingsstudier/ny forskning. Se mer
om dette under punkt 6.

2. Personvemprinsipper

NSDs vurdering et at behandlingen folger personvernprinsippene, ved at personopplysninger;

- skal behandles pa en lovlig, rettferdig og dpen mite med hensyn til den registrerte (se
punkt 3 og 4)

- skal samles inn for spesifikke, uttrykkelig angitte og berettigede formil og der
petsonopplysningene ikke viderebehandles pa en miéte som er uforenelig med formalet (se
punkt 1 og 3)

- vil vere adekvate, relevante og begrenset til det som er nedvendig for formilet de
behandles for (se punkt 6)

- skal lagres slik mate at det ikke er mulig 4 identifisere de registrerte lengre enn det som er
nedvendig for formilet (se punkt 5 og 6)

3. Lovlig grunnlag for 4 behandle szrskilte kategorier personopplysninger

Szrskilte kategorier - Samtykke ((art. 6.1. a), art. 9.2 a), § 10)
Det fremgir av meldeskjema vi har fitt tilsendt at det vil bli innhentet samtykke fra de registrerte.
NSD vurderer at den planlagte behandlingen av personopplysninger er lovlig fordi:

e det skal innhentes uttrykkelig samtykke fra de registrerte og

e forsker har oppfylt den sztskilte plikten til 4 ridfere seg med en personvernridgiver

Ifolge prosjektmeldingen skal ungdommer over 16 ar samtykke selv til 4 delta i prosjektet.
Hovedregelen nar det tegistreres sensitive opplysninger til forskningstormal om ungdom under
18 4r, er at det ma innhentes samtykke fra foreldrene. I dette prosjektet vurderer NSD imidlertid
at ungdommer over 16 ar kan samtykke til deltakelse pa selvstendig grunnlag. Dette ut fra en
helhetsvurdering av opplysningenes art og omfang. Vi viser til at ungdom i denne alderen hat
selvbestemmelse pa en rekke omrader, de kan bl.a. selv velge utdanning, samtykke til helsehjelp,
de er over den scksuelle lavalder, og de kan selv melde seg inn/ut av foreninger. Det et
personvernombudets vurdering at ungdommene pid 16 ir og eldre i dette prosjektet har
forutsetninger for 4 forstd hva deltagelse inneberer.

Samtykket innhentes og dokumenteres via skriftlige samtykkeskjemaer.
4. De registrertes rettigheter

NSD vurderer at den registrerte har krav pa 4 benytte seg av folgende rettigheter: Informasjon,
innsyn, retting og sletting av personopplysninget, dataportabilitet begrensning.
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Samtykket kan trekkes tilbake ved 4 henvende seg til prosjektleder Christian Bjotndal, evt. ved 4
henvende seg til Seksjon for personverntjenester ved NSD.

NSD finner at informasjonsskrivet vil gi de registrerte god informasjon om hva behandlingen
innebzrer og om hvilke rettigheter de har. Vi har imidlettid folgende kommentat:

- Saksbehandlers navn skal fjetnes fra informasjonsskrivet. Det er NSD som i dette tilfellet
er personvernridgiver for NiH, ikke saksbehandleten personlig.

- At eventuell videre lagting for forskningsformil (jf. meldeskjema) kun kan skje med
deltakernes eksplisitte samtykke

5. Informasjonssikkerhet

I folge meldingen skal det behandles bide indirekte og direkte personopplysningene behandles
ved hjelp av elektroniske spatreskjemadata, herunder demografiske opplysninger og opplysninget
om helseforhold hos hindballspillerne, samt personlige intetviju og fokusgtuppeintetvjuer
m/lydopptak. Det skal opprette koblingsnekkel/navneliste.

Datamaterialet overfores i sin helhet til en ekstern harddisk innelast pd et kontor pa NiH.
Harddisken er ikke tilknyttet et nettverk. Navneliste/koblingsnekkel oppbevates p# stasjonar PC
kontoret til en prosjektmedarbeider, i enn annen avdeling av NiH enn der harddisken
oppbevares.

NSD forutsettet at personopplysningene behandles i trid med petsonvernforordningens krav og
institusjonens retningslinjer for informasjonssikkerhet.

6. Varighet

Ifolge meldeskjema skal petsonopplysninger behandles frem til  31.12.2020. Ifelge
informasjonsskrivet skal opplysninger som kan knyttes til en enkeltpetson da
slettes/anonymiseres. Ifolge meldeskjema skal imidlertid personopplysninger oppbevates for
oppfelgingsforskning frem til 2028. NSD vil, ved prosjektslutt, be om en oppdatering pi om
fortsatt lagring er aktuelt, og minner om at dette i sd fall mi komme tydelig frem i
informasjonsskrivet for at samtykket skal anses 4 dekke slik lagring.

Nar det gjelder anonymisering, ma NiH kunne dokumentere at datamaterialet et anonymisett.
Anonymisering innebarer 4 bearbeide datamaterialet slik at ingen enkeltpersoner kan bli
identifisert. Det gjores ved 4: (ta vekk det som ikke passer, presiser gjerne)
- Slette navn, adresse, telefonnummet, epostadresse, IP-adresse og andre nettidentifikatorer
- Slette eller grovkategorisete alder, bosted, arbeidssted, institusjon, diagnose,
lokaliseringsdata og andre bakgrunnsopplysninger
- Slette eller sladde lydopptak.

Meld fra om endringer

Detsom behandlingen av personopplysninger endrer seg, kan det vere nodvending 4 melde dette
til NSD via Min side. P4 vére nettsider informerer vi om hvilke endtinger som ma meldes. Vent
pé svar for endringen gjennomfoeres.

Informasjon om behandlingen publiseres pa Min side, Meldingsarkivet og nettsider

Alle relevante saksopplysninger og dokumenter er tilgjengelig:
- via Min side for forskere, veiledere og studenter
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- via Meldingsarkivet for ansatte med internkontrolloppgaver ved NiH

NSD tar kontakt om status for behandling av personopplysninger
Etter avtale med NiH vil NSD felge opp behandlingen av personopplysninger underveis og ved

planlagt avslutning.

Vi sender da en skriftlig henvendelse til prosjektansvarlig og bet om skriftlig svar pi status for
behandling av personopplysninger.

Se vire neusider elier ta konrakt ved sporsmil. Vi vusker lykke ul med behandlingen av
petsonopplysninger.

Med vennlig hilsen

seksjonsleder
Pernille Ekorntud Grendal
radgiver

Lovhenvisninger
NSDs vutdering et at den planlagte behandlingen av personopplysninger:
e er regulert av personopplysningsloven, jf. § 2.
e oppfyller prinsippene i personvernforordningen om:
o lovlighet, rettferdighet og apenhet jf. art. 5.1 a)
o formilsbegrensning jf. art. 5.1 b)
o dataminimering jf. art. 5.1 ¢)
o lagringsbegrensning jf. art. 5.1 ¢).
e kan finne sted med hjemmel i petsonvernforordningen art. 6.1 a), art. 9.2 a)

e gjennomfores pi en mite som ivaretar de registrertes rettigheter petsonvernforordningen
art. 11-22

NSD legger til grunn at institusjonen ogsi setger for at behandlingen gjennomferes i samsvar
med petsonvernforordningen:

e art. 5.1 d) ogart. 5.1. ) og art. 32 om sikkerhet



Vil du delta i forskningsprosjektet

”Spillerutvikling i norsk handball”?

Dette er et sparsmal til deg om a delta i et forskningsprosjekt hvor formélet er & undersgke ulike
utviklingsforlgp gjennom ungdomshandballen, frafall og klubbene og idrettsskolene sin rolle i
spillerutvikling i norsk handball. | dette skrivet gir vi deg informasjon om malene for prosjektet og hva

deltakelse vil innebare for deg.

Formal

Vi er spesielt interessert i hvordan du som spiller opplever forholdet mellom trenings- og
konkurransehverdagen, motivasjon og trivsel, og handballrelaterte helseplager. Vi er ogsa interessert i
treneres opplevelse av god spillerutvikling. Derfor gnsker vi & rekruttere handballspillere i alderen 13-
19 ar som vi kan fglge gjennom ungdomshandballen, og trenere med erfaring fra samme aldersgruppe.
Forskningsprosjektet gjennomfares i sin helhet i regi av Norges Idrettshagskole.

Hvem er ansvarlig for forskningsprosjektet?
Prosjektleder for studien er Christian Thue Bjgrndal. Dersom du gnsker & delta eller har spgrsmal til
studien, ta kontakt med ham pa telefon 408 98 766.

Hvorfor far du spgrsmal om a delta?
Du far spgrsmal om & delta i studien fordi du er mellom 13-19 4r og spiller handball i klubb og/eller

gar pa skole med handballtilbud.

Hva inneberer det for deg a delta?

Hvis du velger & delta i studien sa innebzrer det at du vil fa tilsendt en link til en nettbasert
sparreundersgkelse en gang i aret. Det vil ta mellom ca. 15 og 30 minutter. Noen vil ogsa bli forespurt
om & svare pa en ukentlig eller daglig undersakelse over en kortere tidsperiode. Det vil ta deg ca. 5-10
minutter. Spgrsmalene vil omhandle din opplevelse av trenings- og konkurransehverdagen, motivasjon

og trivsel, og handballrelaterte helseplager. Dine svar fra sparreskjemaet vil bli registrert elektronisk.



I tillegg vil du kunne bli kontaktet med forespgrsel om & stille til intervju alene eller sammen med
andre spillere. Vi tar lydopptak og notater fra intervjuene. Foreldre kan pa foresparsel fa tilsendt

sparreskjema og intervjuguide i forkant.

Det er frivillig & delta

Det er frivillig & delta i prosjektet. Hvis du velger a delta, kan du nar som helst trekke samtykke tiloake
uten & oppgi noen grunn. Alle opplysninger om deg vil da bli anonymisert. Det vil ikke ha noen
negative konsekvenser for deg hvis du ikke vil delta eller senere velger a trekke deg. Svarene dine vil

ikke fa noen konsekvenser for handballspillingen din eller forholdet ditt til treneren e.l.

Ditt personvern — hvordan vi oppbevarer og bruker dine opplysninger

Vi vil bare bruke opplysningene om deg til formalene vi har fortalt om i dette skrivet. Vi behandler
opplysningene konfidensielt og i samsvar med personvernregelverket. Det er kun prosjektgruppen ved
Norges Idrettshggskole som vil ha tilgang til personopplysninger. Navnet og kontaktopplysningene
dine vil vi erstatte med en kode som lagres pa egen navneliste adskilt fra gvrige data. Alle data
anonymiseres ved publisering og du vil ikke kunne gjenkjennes.

Hva skjer med opplysningene dine nar vi avslutter forskningsprosjektet?
Prosjektet skal etter planen avsluttes 31.12.2020, men du kan ogsa bli forespurt om & veere med i en

viderefgring av studien. Etter prosjektslutt anonymiseres alle data og intervjuopptak.

Dine rettigheter
Sé lenge du kan identifiseres i datamaterialet, har du rett til:
- innsyn i hvilke personopplysninger som er registrert om deg,
- & farettet personopplysninger om deg,
- faslettet personopplysninger om deg,
- fautlevert en kopi av dine personopplysninger (dataportabilitet), og
- &sende klage til personvernombudet eller Datatilsynet om behandlingen av dine

personopplysninger.

Hva gir oss rett til & behandle personopplysninger om deg?
Vi behandler opplysninger om deg basert pa ditt samtykke.



P4 oppdrag fra Norges ldrettshagskole har NSD — Norsk senter for forskningsdata AS vurdert at

behandlingen av personopplysninger i dette prosjektet er i samsvar med personvernregelverket.

Hvor kan jeg finne ut mer?
Hvis du har spgrsmal til studien, eller gnsker & benytte deg av dine rettigheter, ta kontakt med:
o Norges Idrettshggskole ved Christian Thue Bjgrndal pa e-post christian.bjorndal@nih.no eller
pé telefon 408 98 766.
e NSD — Norsk senter for forskningsdata AS, pa epost (personvernombudet@nsd.no) eller
telefon: 55 58 21 17.

Med vennlig hilsen
Christian Thue Bjerndal
Prosjektansvarlig


mailto:christian.bjorndal@nih.no
mailto:personvernombudet@nsd.no

Samtykkeerklaring

Jeg har mottatt og forstatt informasjon om prosjektet ‘Spillerutvikling i norsk handball’, og har fatt

anledning til & stille spgrsmal. Jeg samtykker til:

O 4&delta i sparreskjema
O adeltai intervju

[0 at mine personopplysninger lagres etter prosjektslutt, til bruk i oppfalgingsstudier

For ungdom og voksne over 15 ar. Jeg samtykker til at mine opplysninger behandles frem til prosjektet
er avsluttet, ca. 31.12.2020

(Signert av prosjektdeltaker, dato)

P& vegne av ungdommen under 15 ar, sa samtykker jeg som forelder/verge pa at vi har mottatt

informasjon om studien, og er villig til & delta

Navn pa ungdommen:

Navn pé forelder:

(Signert av forelder/verge, dato)
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[ Date 17" Oct, 2017
}“g:gsfirgl;glrpal Karim Chamari, Aspetar
Co-PI Yorck Olaf, Mokhtar Chaabane, Montassar Tabben, Ramadan Daoud, Raouf Nader Rekik, Roald
Bahr, Souhail Chebbi
IRB Application # | E2017000252
Site/s Aspetar
Funding Entity Aspetar
Protocol Title Injury and Illness epidemiology in professional soccer players in Qatar: A 10-year
longitudinal study
Submission Type Initial Submission
Review Type Expedited
Approval Period 17" Oct, 2017 — 16" Oct, 2018

The Anti-Doping Lab Qatar Institutional Review Board has reviewed and approved the above referenced
protocol. As the Principal Investigator of this research project, you are responsible for:
e Ethical compliance and protection of the rights, safety and welfare of human subjects involved in this
research project.
e To follow the policies and procedures as set by ADLQ-IRB in any matters related to the project,
following the ADLQ-IRB approval which includes:-
Obtaining prior approval of any modifications to the approved protocol including the change of
research team members.
Reporting deviations and unanticipated events; major deviations within 24 hours.
Renewing Ethics annually or every six months if IRB requires it.
Submission of progress reports annually
Informing the ADLQ-RO of the date of commencement of the research.
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Investigator
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IRB Application # E2017000252
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Protocol Title

Injury and lliness epidemiology in professional soccer players in Qatar: A 10-year
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IRB Review Type

Expedited Review

Submission Type

Data sharing request

Approval Period

Valid until the expiry of ethics approval ] 29 September 2023

The AZF IRB has reviewed and approved the above referenced protocol.
As the Principal Investigator of this research project, you are responsible for:

Dr. Yorck Olaf Schumacher

Ethical compliance and protection of the rights, safety and welfare of human subjects involved in this
research project.

Adhering to policies and procedures as set by AZF IRB in any matters related to the project, following
the AZF IRB approval which includes: -

Obtaining prior approval of any modifications to the approved protocol including the change of
research team members.

Reporting deviations and unanticipated events; major deviations within 24 hours.

Informing the IRB Office of the date of commencement of the research.

LPI may use the content of the approved Informed Consent form in their own organizational letter
head, if it deems fit for the nature of the project.

Research records must be retained for at least 3 years after completion of the research.

Renewing Ethics annually or every six months if IRB requires it.

Submission of progress reports annually.

Failure to renew ethics prior to the expiry date will lead to a cessation notice. Continuing human
Subject procedures after the expiry date is a violation.
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