eTable 1. Studies showing a relationship between athlete body composition and performance in sport. Studies are sorted 1) by the most prevalent sport category by taxonomy (49); and 2) by year of publication. Values are mean (SD) if not otherwise stated. See search term combination, inclusion- and exclusion criteria in supplementary material.

Sport taxonomy (50)	Study \& year	Aim	Population, Sex \& Design	Age	BC assessment method, \& standardisation	Baseline BF (\%) or SSK	Baseline MM	Outcome
Endurance sport	Effect of heavy strength training on thigh muscle cross-sectional area, performance determinants, and performance in well-trained cyclists (61). 2009	Investigate the effect of heavy resistance training on BC and performance in cyclists. Endurance + RT versus endurance only	Cycling, Highly trained. T3. Male $(\mathrm{n}=18) \&$ female ($\mathrm{n}=2$) Interventional	28.5y (2)	MRI S.P.: Diet, physical activity, technical details on positioning	Not described	Not described	Endurance + RT increased strength and CSA in thigh muscle by 4.6% (0.5), without change in BM, and increased PO in Wingate 30s by 9.4% (2.9).
	Skin-fold thickness and training volume in ultratriathletes (51). 2009	Investigate which of anthropometry or training was of more importance for a successful finish in a Triple Iron triathlon	Triathlon, recreational. T2. Male ($\mathrm{n}=29$) Prospective, observation	42.1 y (8.1)	Skinfold ${ }^{4}$ S.P.: Not described	$\begin{gathered} 81.8 \mathrm{~mm}(23) \\ 15.3 \%(3.2) \end{gathered}$	Not described	33% of total race time was explained by SSK (positively associated), with no effect from weekly training volume. SSK was not associated with swim- or cycle time; only run time.
	In-season strength maintenance training increases well-	Investigate the effect of strength maintenance training on CSA, strength, and performance.	Cycling, Highly trained. T3. Male	30y (3)	MRI S.P.: Diet, physical activity,	Not described	Not described	Increased strength (23\% (3)) and CSA (4.4\% (0.6)) were maintained,

Sport taxonomy (50)	Study \& year	Aim	Population, Sex \& Design	Age	BC assessment method, \& standardisation ${ }^{\text {® }}$	Baseline BF (\%) or SSK	Baseline MM	Outcome
	trained cyclists' performance (60). 2010	Endurance + RT versus endurance only	$\begin{gathered} (\mathrm{n}=12) \& \text { female } \\ (\mathrm{n}=1) \\ \text { Interventional } \end{gathered}$		technical details on positioning			without change in BM, and with improvement in 40-min PPO (6\% (2)), and $\mathrm{W}_{\text {max }}$ (8% (1)) during competition period.
	Differential correlations between anthropometry, training volume, and performance in male and female Ironman triathletes (52). 2010	Identify predictors of triathlon performance in nonprofessional athletes	Triathlon, Recreational T2. Male ($\mathrm{n}=27$) \& female ($\mathrm{n}=16$) Prospective observation	$\begin{gathered} 30.3 y \\ \text { (male) \& } \\ 36.5 y \\ \text { (female) } \end{gathered}$	Skinfold ${ }^{3}$ S.P.: Time of day, intratester reliability.	$70,6 \mathrm{~mm}$ (male) \& 87 mm (female) 13.7% (male) $\& 23,6 \%$ (female) 2	$\begin{gathered} 41.0 \mathrm{~kg}(4.7) \\ (\text { male }) \& \\ 28.0 \mathrm{~kg}(2.4) \\ (\text { female })^{2} \end{gathered}$	47% of race time in females was explained by average weekly training volume (negatively associated). 55\% of males' race time was explained by BF (\%) (positively associated).
	Personal best marathon time and longest training run, not anthropometry, predict performance in recreational 24hour ultrarunners (53). 2011	Identify predictors of ultramarathon race time performance	Ultrarunning, Recreational. T2. $\begin{gathered} \text { Male } \\ (\mathrm{n}=63) \end{gathered}$ Prospective observation	46.9y (10.3)	Skinfold ${ }^{5}$ S.P.: Inter- and intratester reliability	$\begin{gathered} 89.9 \mathrm{~mm} \\ (31.1) \\ 16.1 \%(4.1)^{3} \end{gathered}$	Not described	Previous race performance and longest training session (both negatively associated), rather than anthropometric characteristics, were significant predictors of race success (total model explained

Sport taxonomy (50)	Study \& year	Aim	Population, Sex \& Design	Age	BC assessment method, \& standardisation ${ }^{\text {® }}$	Baseline BF (\%) or SSK	Baseline MM	Outcome
								47% of variance in race time).
	Personal best time, not anthropometry or training volume, is associated with total race time in a triple iron triathlon (58). 2011	Identify predictors for race time in triple triathlon finishers, comparing to nonfinishers	Triathlon, Recreational. T2. $\begin{aligned} & \text { Male } \\ & (\mathrm{n}=81) \end{aligned}$ Prospective observation	$\begin{gathered} 39.0 \mathrm{y}(35.3- \\ 46.3)^{\$} \end{gathered}$	Skinfold ${ }^{4}$ S.P.: Inter- and intratester reliability	72.3 mm (finishers) versus 80.8 mm (non- finishers) 13.7% (finishers) versus 15.1% (non- finishers)	40.3 kg (finishers) versus 41.1 kg (nonfinishers)	$\begin{gathered} \text { BF (\%) and SSK } \\ \text { were positively } \\ \text { associated with } \\ \text { run-time and total } \\ \text { race time in } \\ \text { finishers. In the } \\ \text { model explaining } \\ 87 \% \text { of total race } \\ \text { time, only } \\ \text { previous personal } \\ \text { best time was } \\ \text { significant } \\ \text { (positively } \\ \text { associated). } \\ \hline \end{gathered}$
	Similarities and differences in anthropometry and training between recreational male $100-\mathrm{km}$ ultramarathoners and marathoners (54). 2012	Investigate whether 100-km ultramarathoners \& marathoners were similar in anthropometry and training	Running, recreational. T2. Male (ultramarathoners, $\mathrm{n}=166$ \& marathoners, $\mathrm{n}=126$) Prospective observation	Ultramarathoners 45.8 (9.5) \& marathoners 42.8 (10.8)	Skinfold ${ }^{3}$ S.P.: Inter- and intratester reliability Not ISAK.	$\begin{gathered} 86.6 \mathrm{~mm} \\ (32.4)^{4} \text { (ultra- } \\ \text { marathoners) } \\ \text { versus } \\ 87.4 \mathrm{~mm} \\ (27.2)^{4} \\ \text { (marathoners) } \\ \\ 16.2 \%(4.3)^{3} \\ \text { versus } 16.2 \% \\ (3.7)^{3} \end{gathered}$	$\begin{gathered} 38.9 \mathrm{~kg}(3.9) \\ (\text { ultra- } \\ \text { marathoners) } \\ \text { versus } 38.1 \mathrm{~kg} \\ (3.9) \\ \text { (marathoners) } \end{gathered}$	No difference in anthropometry between groups. BM, BF (\%), age (all positively associated) \& weekly running km (negatively associated) predicted race time by 40% in ultramarathoners. BF (\%) (positively associated) and speed of running in training (negatively

Sport taxonomy (50)	Study \& year	Aim	Population, Sex \& Design	Age	BC assessment method, \& standardisation ${ }^{\text {B }}$	Baseline BF (\%) or SSK	Baseline MM	Outcome
								associated) predicted race time by 44% in marathoners.
	A Comparison of anthropometric and training characteristics among recreational male ironman triathletes and ultra-endurance cyclists (73). 2012	Investigate if race performance was related to anthropometric characteristics, training characteristics or both.	Triathlon \& Ultraendurance cycling, Recreational level. T2. Male triathletes ($\mathrm{n}=83$) \& Male ultracyclists ($\mathrm{n}=84$) Prospective observation	Triathletes 41.5y (8.9) \& ultracyclists 43.8y (7.5)	Skinfold ${ }^{3}$ S.P.: Intra-tester reliability	$\begin{gathered} 15.7 \%(4.6) \\ \text { (triathletes) \& } \\ 15.7 \%(4.3) \\ \text { (ultra- } \\ \text { cyclists) } \end{gathered}$	$\begin{aligned} & 38.6 \mathrm{~kg}(4.2) \\ & \text { (triathletes) \& } \\ & 40.3 \mathrm{~kg}(3.5) \\ & \text { (ultra- } \\ & \text { cyclists) } \end{aligned}$	46% of variance in race time in triathletes was explained by indices of FM (positively associated), while 44% of variance in split cycling time was explained by inducers of FM (positively correlated) and cycling speed in training (negatively associated). In cyclists 29% of variance in race time was explained in a model with only BF (\%) significant.
	Effect of heavy strength training on muscle thickness,	Investigate the effect of supplemental heavy strength training on muscle thickness and	Nordic Combined, well-trained. T3.	19.5y (2.5)	Ultrasound S.P.:	Not described	Not described	Strength training increased muscle mass by 7.4% (2.7), with no

$\begin{gathered} \text { Sport } \\ \text { taxonomy } \\ (50) \end{gathered}$	Study \& year	Aim	Population, Sex \& Design	Age	 standardisation	Baseline BF (\%) or SSK	Baseline MM	Outcome
	strength, jump performance, and endurance performance in well-trained Nordic Combined athletes (62). 2012	determinants of performance in welltrained Nordic Combined athletes. Endurance + strength versus endurance only	Male ($\mathrm{n}=17$) Interventional		Time of day, rested.			change in BM. Upper- and lower body 1RM increased by 12% (2.0) and 23.0\% (5.0), respectively. Vertical jump height increased by 8.8% (1.7). No change in $\mathrm{VO}_{2 \text { max }}$ or TT in neither group.
	Comparison of training and anthropometric characteristic between recreational male halfmarathoners and marathoners (56). 2013	Investigate relationship between anthropometrics and race time in halfmarathoners and marathoners, respectively	Running, Recreational. T2. Male ($\mathrm{n}=147$ halfmarathoners and 126 marathoners) Prospective observation	41.5y (10.5)	Skinfold ${ }^{4}$ S.P.: Inter- and intratester reliability	99.9mm (35.6) (half- marathon) versus 88.3 mm (26.2) (marathon) 17.5% (4.6) (half- marathon) versus 16.3% (3.6) (marathon)	$\begin{aligned} & 39.1 \mathrm{~kg}(3.1) \\ & \text { (half- } \\ & \text { marathon) } \\ & \text { versus } 38.3 \mathrm{~kg} \\ & \text { (3.3) } \\ & \text { (marathon) } \end{aligned}$	Marathoners had lower BF than half-marathoners. BF (\%) (positively associated) and running speed during training (negatively associated) predicted race time by 43-45\% in both groups.
	Characteristics, changes, and influence of BC during a 4486 km transcontinental ultramarathon:	Investigate changes in BC measured by MRI and effect on performance	Ultramarathon, Recreational. T2. Male ($\mathrm{n}=22$)	49.1y (11.5)	MRI S.P.: Time of day, technical equipment standardisation	13.36 litre	37.32 litre	Baseline levels of VAT were negatively correlated with training volume and intensity over the year prior to

Sport taxonomy (50)	Study \& year	Aim	Population, Sex \& Design	Age	BC assessment method, \& standardisation ${ }^{\text {® }}$	Baseline BF (\%) or SSK	Baseline MM	Outcome
	results from the TransEurope FootRace mobile wholebody MRIproject (74). 2013		Prospective observation					the race. Change in VAT during race was the most sensible parameter to distinguish finishers from non-finishers.
	Strength training improves cycling performance, fractional utilization of VO2max and cycling economy in female cyclists (63). 2016	Investigate the effect of adding RT to cyclists' normal endurance training on cycling performance. Endurance + RT versus endurance only	Cycling, well trained. T2. Female ($\mathrm{n}=19$) Interventional	33.2 y (7.8)	MRI S.P.: Diet, physical activity, technical MRI procedure	Not described	Not described	$\begin{gathered} \text { RT increase } 1 \mathrm{RM} \\ \text { in leg press } \\ (38.6 \pm 19.0 \%) \\ \text { and thigh-muscle } \\ \text { CSA (} 7.4 \pm 5.3 \% \text {) } \\ \text { (BM did not } \\ \text { change) and leads } \\ \text { to improvements } \\ \text { in cycling } \\ \text { performance } \\ \text { (6.4 } \pm 7.9 \% \text { in } \\ \text { MPO during } 40 \\ \text { min all-out-test) } \\ \text { and cycling } \\ \text { economy } \\ (.3 .5 \pm 3.1 \% \\ \text { decrease in } \mathrm{VO} \\ \text { at a PO of } \\ 150 \mathrm{~W}) . \\ \hline \end{gathered}$
	Heavy strength training improves running and cycling performance following	Investigate the effects of adding RT to female duathletes' normal endurance training on both cycling and running performance.	Duathlon, well trained. T2. Female ($\mathrm{n}=19$)	Not given	DXA S.P.: Diet, physical activity.	Not described	Not described	RT increased leg lean mass (3.1 \pm 4.0%) and 1 RM half-squat ($45 \pm$ 22%), and improved 5 min all-out

Sport taxonomy (50)	Study \& year	Aim	Population, Sex \& Design	Age	BC assessment method, \& standardisation ${ }^{\text {B }}$	Baseline BF (\%) or SSK	Baseline MM	Outcome
	prolonged submaximal work in welltrained female athletes (64). 2017	Endurance + RT versus endurance only	Interventional					performance immediately after prolonged submaximal work in both running distance $(4.7 \pm$ $6.0 \%)$ and MPO in cycling ($7.0 \pm$ 4.5%)
	Effect of two different intensity distribution training programmes on aerobic and BC variables in ultra-endurance runners (75). 2019	Investigate the effects of two different intensity distribution training programs on aerobic performance, strength and BC in ultraendurance runners. Polarized (POL) versus Threshold (THR)	Ultra-endurance running. T2. Male ($\mathrm{n}=20$) Interventional	38.7 (9.5)	DXA S.P.: Calibration of machine	POL: 18.4% (6.0) \& THR: 14.9\% (5.3)	POL: 56.6 kg (6.8) \& THR: 60.6 kg (7.2)	THR reduced FM (-2.3kg) \& BM (1.6 kg), hence BF (\%) (-18.8\%). POL reduced FM (-1.6kg), hence BF (\%) (-11.2\%). POL increased TTE ($+2.4 \%$) and RE at $10 \mathrm{~km} / \mathrm{h}(-$ 5.4%) and $12 \mathrm{~km} / \mathrm{h}(-4.5 \%)$. Overall, no differences between groups.
	Anthropometric, physiological, and performance developments in cross-country skiers (57). 2021	Investigate whether changes in competitive performance (FISpoints) could be predicted by changes in laboratory-assessed qualities (incl. anthropometry) and training volumes	Cross Country skiing. Highly trained. T3. Male ($\mathrm{n}=16$) \& female ($\mathrm{n}=14$) Longitudinal, prospective	20.5y (2.0)	DXA S.P.: Time of day, fasting.	Not described (Male: 9.7 kg (1.5) \& Female: 13.2 kg (3.3)	Male: 63.0 kg (5.8) \& Female: 47.1 kg (2.9)	FIS distance points were predicted by BM, FM, LBM, $\mathrm{VO}_{2 \text { peak }}$ and speed in females, but no prediction of sprint points was significant. None of the

Sport taxonomy (50)	Study \& year	Aim	Population, Sex \& Design	Age	BC assessment method, \& standardisation ${ }^{\text {® }}$	Baseline BF (\%) or SSK	Baseline MM	Outcome
								performance indicators could be predicted in males. Improvement in BC and aerobic capacity seems more beneficial for females than males.
	Fitness testing and career progression in AFL football (71). 2005	Investigate relationships between anthropometric \& fitness tests, and subsequent career progression Drafted players versus not-drafted.	Australian Football, Talented players. T2. Male ($\mathrm{n}=205$ drafted; 78 not-drafted) Longitudinal, prospective cohort	18y	Skinfold ${ }^{3}$ S.P.: ISAK level I trained.	56mm (13.0)	Not described	Fitness tests (20 min sprint time, running vertical jump, and agilityand shuttle run test), rather than anthropometry (not included in model), predict success of football career.
	Relationship between BC, leg strength, anaerobic power, and onice skating performance in division I men's hockey athletes (76). 2010	Investigate relationships between the off-ice laboratory testing of BC and leg strength and power, and on-ice skating speed.	Ice hockey, trained. T2. Male ($\mathrm{n}=21$) Prospective observation	20.7y (1.6)	ADP S.P.: Diet, clothing, procedure according to manufacturer's instruction.	$\begin{gathered} 11.9 \%(4.6) \\ (10.8 \mathrm{~kg} ; 4.7) \end{gathered}$	78.1 kg (6.6)	19% of variance in fastest skating speed of short distances (54 m) were explained by \%fatigue (positively associated) from Wingate test. Variance in average skating speed of short and longer

Sport taxonomy (50)	Study \& year	Aim	Population, Sex \& Design	Age	BC assessment method, \& standardisation	Baseline BF (\%) or SSK	Baseline MM	Outcome
								distances (54-89 m) were explained by BF (\%) by $25 \%-29 \%$ (positively associated).
	Development of dribbling in talented youth soccer players aged 12-19 years: a longitudinal study (59). 2010	Identify predictors of dribbling and sprinting performance	Soccer, Talented youth players. T2. Male ($\mathrm{n}=267$) Longitudinal, prospective cohort	12-19y	BIA S.P.: Not reported	7.43-9.59\%	$\begin{gathered} 35.1 \mathrm{~kg}(5.9)- \\ 66.4 \mathrm{~kg}(5.6) \end{gathered}$	LBM ($\times 0.01$) had a small effect on shuttle dribbling time; but age $(\times 0.10)$ and training hours ($\times 0.02$) had stronger impact (all negatively associated)
	Increases in intracellular water explain strength and power improvement over a season (77). 2014	Investigate effect of changes in BC over a season on performance (leg strength and jump performance)	Team ball sports, Top national level. T3. Male $(\mathrm{n}=40) \&$ female ($\mathrm{n}=23$) Longitudinal, prospective cohort	20.0y (5.2)	DXA (and deuterium and bromide dilution) S.P.: Hydration status	$\begin{gathered} 15,6 \% \text { (4.0) } \\ \text { (male) \& } \\ 25,9 \% \text { (4.9) } \\ \text { (female) } \end{gathered}$	$\begin{gathered} 69.8 \mathrm{~kg}(8.3) \\ \text { (male) \& } \\ 47.4 \mathrm{~kg}(6.5) \\ \text { (female) } \end{gathered}$	Performance, FFM, TBW and ECW significantly increased, and \%FM decreased. ICW was unchanged and was identified as the only predictor of performance (positively associated).
	The relationship between physical characteristic and match	Investigate whether anthropometric and physical abilities explained variance in match collision	Rugby, Elite union. T4. Female	25.0 y (4.0)	Skinfold ${ }^{4}$ S.P.:	Not described	Not described	Physical characteristics explain $\sim 19 \%$ 54% of the

Sport taxonomy (50)	Study \& year	Aim	Population, Sex \& Design	Age	BC assessment method, \& standardisation ${ }^{\text {® }}$	Baseline BF (\%) or SSK	Baseline MM	Outcome
	collision performance among elite international female rugby union players (78). 2022	performance among rugby union players	$(\mathrm{n}=51)$ Longitudinal, prospective cohort		Time of day, fasted, ISAK level III trained.			variance in performance. High BM and BF $(\%)$ had positive influence by coefficients of $0.09-0.16$, while power and strength coefficients were $0.08-0.25$.
H000000000000	Preparation of former heavyweight oarsmen to compete as lightweight rowers over 16 weeks: three case studies (66). 2006	Evaluate health and performance effects of BM-reduction in 3 lean athletes switching to lightweight category	Rowing, National level. T3. Male ($\mathrm{n}=3$) Interventional	18-23y	Skinfold ${ }^{4}$ S.P.: ISAK level III trained, intratester reliability.	$\begin{gathered} 39.7-81.3 \mathrm{~mm} \\ \sim 5.0-9.0 \mathrm{~kg}^{£} \end{gathered}$	$\sim 37.0-39.5 \mathrm{~kg}^{£}$	While small loss of BM $(2 \mathrm{~kg})$ was accommodated without loss of performance, athlete with largest loss of BM $(8 \mathrm{~kg},-$ $0.84 \mathrm{~kg} / \mathrm{wk}))$ showed absolute performance decrement $(+6 \mathrm{sec}$ 2000 m row $).$
	Combination of gradual and rapid weight loss: effects on physical performance and psychological state of elite	Investigate the effects of a gradual and rapid BM loss on the physical performance and psychological state of elite judo athletes. Weight loss versus control	Judo, national/international level. T3/T4. Male ($\mathrm{n}=10$) \& Female ($\mathrm{n}=10$) Interventional	17.0y (1.0)	Skinfold ${ }^{1}$ S.P.: Not described	$\begin{gathered} 11.8 \% \text { (2.8) } \\ \text { (male-weight } \\ \text { loss) \& } 22.5 \% \\ \text { (7.5) (female- } \\ \text { weight loss) } \\ \text { versus } \\ 13.7 \% \text { (5.4) } \\ \text { (male-control) } \\ \text { \& } \end{gathered}$	Not described	Weight-loss group lost 3.9% BM and 10% BF (\%) in 4 weeks, both significantly more than control. Weight-loss impaired longduration

Sport taxonomy (50)	Study \& year	Aim	Population, Sex \& Design	Age	BC assessment method, \& standardisation ${ }^{\text {D }}$	Baseline BF (\%) or SSK	Baseline MM	Outcome
	judo athletes (69). 2009					$\begin{gathered} 23.6 \%(6.6) \\ \text { (female- } \\ \text { control) } \end{gathered}$		$\begin{aligned} & \text { performance (>30 } \\ & \text { sec) by } 4.5 \% \text {, } \\ & \text { while tension and } \\ & \text { confusion } \\ & \text { increased, and } \\ & \text { vigour decreased. } \end{aligned}$
	Long-term effect of weight loss on BC and performance in elite athletes (67). 2011	Investigate effect of rate of BM- reduction on long-term changes in BC and performance. Slow-rate (-0.7\% of BM/wk) versus fast-rate (-1.4\% of BM/wk).	Mixed sports, Elite level. T4. Male ($\mathrm{n}=9$) \& female ($\mathrm{n}=14$) Interventional	22.5y (3.7)	DXA S.P: Fasting, time of day, calibration, intratester reliability.	$\begin{gathered} 16.5 \%(6.7) \\ \text { (male) \& } \\ 29.0 \%(6.0) \\ \text { (female) } \end{gathered}$	$\begin{gathered} 63.9 \mathrm{~kg}(8.9) \\ \text { (male) \& } \\ 45.6 \mathrm{~kg}(4.5) \\ \text { (female) } \end{gathered}$	Similar total loss of BM (-5.8\% of BM) in both groups. Slow-rate BM-loss resulted in higher loss of FM (31% versus 23%) and a slight increase in LBM ($+2.0 \%$) compared to no change in LBM in fast-rate BMloss. No difference between groups at 12 month follow up (both regained BM). Overall: LBM and performance well preserved during BMreduction.
	The Psychological and Physiological	Investigate the effects of LEA on health and performance indices associated with the	Taekwondo, highly trained. T4.	19y	$\begin{aligned} & \text { DXA } \\ & \text { S.P.: } \end{aligned}$	$\begin{gathered} 16.7 \% \\ (11.4 \mathrm{~kg}) \end{gathered}$	54.5 kg	8-week BW loss resulted in -9.8 kg BM and -4.9 kg FM. Only last

Sport taxonomy (50)	Study \& year	Aim	Population, Sex \& Design	Age	BC assessment method, $\&$ standardisation	Baseline BF (\%) or SSK	Baseline MM	Outcome
	Consequences of Low Energy Availability in a Male Combat Sport Athlete (68). 2021	MAT and RED-S models.	$\text { Male }(\mathrm{n}=1)$ Interventional		Following published best practice protocol (79).			week with large energy deficit resulted in health markers impairment. Performance was preserved, athlete won BUC.
	Longitudinal development of young talented speed skaters: physiological and anthropometric aspects (72). 1985	Identify the performancedetermining factors for a successful speed skating career. Successful skaters compared to unsuccessful skaters.	Speed skating, national junior level. T2/T3. Female ($\mathrm{n}=12$) \& male ($\mathrm{n}=12$) Longitudinal prospective cohort	16-17y	Skinfold ${ }^{1}$ S.P.: Not reported	$\begin{gathered} \hline \text { Female: } \\ 20.4 \%(3.6) \\ \text { (successful) } \\ \text { versus } 22.0 \% \\ \text { (1.5) } \\ \text { (unsuccessful) } \\ \text { Male: } \\ 10.1 \%(1.0) \\ \text { (successful) } \\ \text { versus } 9.9 \% \\ \text { (1.4) } \\ \text { (unsuccessful) } \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Female: } \\ 48.7 \mathrm{~kg}(2.6) \\ \text { (successful) } \\ \text { versus } 45.2 \mathrm{~kg} \\ \text { (4.9) } \\ \text { (unsuccessful) } \\ \text { Male: } \\ 70.1 \mathrm{~kg}(5.6) \\ \text { (successful) } \\ \text { versus } 66.2 \mathrm{~kg} \\ \text { (6.5) } \\ \text { (unsuccessful) } \\ \hline \end{gathered}$	BC did not differ between successful or unsuccessful skaters. Success was characterised by high PO.
	BC and power performance improved after weight reduction in male athletes without hampering hormonal balance (70). 2015	Investigate the effects of 4-week BW reduction with high protein and reduced carbohydrate intake on BC, performance, hormones, and acid-base balance.	Track and field jump and sprint. T3/T4. Male ($\mathrm{n}=15$) High energy restriction (-750 $\mathrm{kcal} / \mathrm{d})$ versus low energy restriction ($350 \mathrm{kcal} / \mathrm{d}$) Interventional	20-35y	DXA S.P.: Not reported	High energy restr: 8.5% (2.3) \& low energy restr: 10.6\% (4.5)	High energy restr: 64.4 kg (5.6) \& low energy restr: 67.9 kg (4.2)	Only high energy restriction achieved BM ($2.2 \pm 1.0 \mathrm{~kg}$) and FM reduction ($1.7 \pm 1.6 \mathrm{~kg}$), and performance improvement in countermovement jump $(+2.6 \pm 2.5$ cm) and in 20 m sprint $(+0.04 \pm$ 0.04 sec), but no

Sport taxonomy (50)	Study \& year	Aim	Population, Sex \& Design	Age	BC assessment method, \& standardisation ${ }^{\text {® }}$	Baseline BF (\%) or SSK	Baseline MM	Outcome
								difference between groups. No changes in hormones. While BF (\%) correlated negatively with jump performance, persons with baseline BF $<10 \%$ were more likely to lose FFM and to have less improvement in performance.
$\begin{aligned} & \text { Middle distance / Power } \\ & \text { sport } \end{aligned}$	Anthropometric and metabolic determinants of 6,000-m rowing ergometer performance in international competitive rowers (80). 2009	Investigate the anthropometric and metabolic determinants of performance of $6,000 \mathrm{~m}$ rowing	Rowing, Elite. T4. Male ($\mathrm{n}=25$) Prospective observation	22.2 y (4.8)	Skinfold ${ }^{5}$ S.P.: Following ISAK protocol.	13.2\% (2.3)	79.6 kg (4.4)	PO at VT and forced vital capacity were best at predicting performance (by 77%) in 6000 m rowing. LBM (r $=-0.77$) and PO at VT $(\mathrm{r}=-0.74)$ werethe strongest single correlate of performance.

$\begin{gathered} \text { Sport } \\ \text { taxonomy } \\ (50) \end{gathered}$	Study \& year	Aim	Population, Sex \& Design	Age	BC assessment method, \& standardisation ${ }^{\text {® }}$	Baseline BF (\%) or SSK	Baseline MM	Outcome
	Case Study: BC Periodization in an Olympic- Level Female Middle- Distance Runner Over a 9-Year Career (11). 2018	Describe results from a science-based approach for BC periodization throughout a 9-year international career.	Middle distance running. Elite level. T5. Female ($\mathrm{n}=1$) Longitudinal observation.	27-35y	Skinfold ${ }^{4}$ S.P.: ISAK level I trained, intratester reliability.	$\begin{gathered} 61.6 \mathrm{~mm}(9.7) \\ 12.9 \%(1.4) \\ 6.2 \mathrm{~kg}(0.8) \end{gathered}$	42.1 kg (0.7)	SSK and BF (\%) varied by 13.0% and 17.8%,and MM by 0.9%, between noncompetition and competition phases, SSK decreased by years, and the variation correlated positively with race time.

Sport taxonomy (50)	Study \& year	Aim	Population, Sex \& Design	Age	BC assessment method, \& standardisation	Baseline BF (\%) or SSK	Baseline MM	Outcome
	Physiological changes with periodized resistance training in women tennis players (65). 2003	Investigate physiological and performance adaptations to periodised or nonperiodised RT or control condition	Tennis, Collegiate level. T2. Female ($\mathrm{n}=30$) Interventional	19.0y (1.0)	Skinfold ${ }^{2}$ S.P: Diet, physical activity, \& time of day	$\begin{gathered} 22.9 \% \text { (3.9) } \\ \text { (periodised) } \\ \text { versus } 23.7 \% \\ \text { (4.9) (non- } \\ \text { periodised) } \\ \text { versus } 22.6 \% \\ \text { (5.7) (control) } \end{gathered}$	46.5 kg (4.9) (periodised) versus 46.1 kg (4.0) (nonperiodised) versus 44.6 kg (3.3) (control)	```Although both programs induced changes in BC (reduced BF (\%); increased FFM), periodised RT achieved superior improvements in FFM (change by \(3.3 \pm 1.7 \mathrm{~kg}\) versus \(1.6 \pm 2.4\) kg) \& sport performance (increase in jump height by \(50 \%\) versus \(37 \%\); and in ball velocities in three strokes by (mean value) \(\sim 29 \%\) versus ~ \(16 \%\)).```

NOTE: 1RM, one repetition maximum (muscle strength); BF (\%), percent body fat; ADP, Air Displacement Plethysmography; BC, body composition; BF, body fat; BIA, bioelectrical impedance; BM, body mass; BMI, body mass index; BUC, British University Championships; ctrl, control participants; CSA, cross sectional area; DXA, dual Xray absorptiometry; FFM, fat free mass; FM, fat mass; \%FM, percent fat mass; ECW, extracellular water; ICW, intracellular water; LBM, lean body mass; MAT, male athlete triad; MM, muscle mass (measured/reported as LBM, FFM or MM in different studies); MPO, mean power output; MRI, magnetic resonance imaging; PO, power output; POL, Polarized training; PPO, peak power output; RE, running economy; RT, resistance training; SBE 100 , season's best equivalent for $100 m$ sprint; SSK, sum of skinfolds; S.P., standardisation procedure (for anthropometric measurement); TBW, total body water; T1-T5, THR, Threshold training, Tier 1-5 performance level of athletes(49); TT, time trial; TTE, time to exhaustion; VAT, visceral adipose tissue; VT, ventilatory threshold; WL, weight loss; $W_{m a x}$, mean power output in Watts; y, year; ${ }^{1}$ SSK 4 sites ${ }^{; 2}$ SSK 3 sites; ${ }^{3}$ SSK 7 sites; ${ }^{4}$ SSK 8 sites; ${ }^{5}$ SSK 6 sites; ${ }^{6}$ SSK 9 sites; ${ }^{ \pm}$captured from graphic illustration; ${ }^{\$}$ numbers are median (interquartile range); ${ }^{\square}$ standardisation includes one or more of the following: measurement performed according to best practice/guidelines, calibration of equipment, training of measurer, evaluation of hydration status, standardisation of assessment protocol (i.e., time of day, diet and physical activity).

