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Several prediction equations developed to convert body movement measured by accelerometry into 
energy expenditure have been published. The study aim was to examine the degree of agreement between 
three different prediction equations, when applied to data on physical activity in a large sample of 
children. We examined 1321 children (663 boys, 658 girls; mean age 9.6  0.4 y.) from four different 
countries. Physical activity was measured by the MTI accelerometer (model 7164). One equation, derived 
from doubly-labelled water (DLW) measurements was compared to one treadmill-based and one room 
calorimeter-based equation (mixture of activities). Predicted physical activity energy expenditure (PAEE) 
was the main outcome variable. In comparison with DLW-predicted PAEE, the laboratory-significantly (p 
< 0.001) overestimated PAEE by 17% and 83% respectively when based on a 24-hour prediction, while 
significantly (p < 0.001) underestimated PAEE by 46% and 3% respectively, when based on awake time 
only. Predicted PAEE differ substantially between equations, also depending on time frame assumptions. 
These equations can not be used interchangeably and interpretations of average levels of PAEE in 
children from available equations should be made with caution. Further development of equations 
applicable to free-living scenarios is needed. 
 
 
The prevalence of overweight in children has been 
reported to have increased in many western countries 
(Lobstein et al., 2003; Troiano & Flegal, 1998; 
Willms et al., 2003), which has raised scientific 
interest in the potential relationship between 
components of total energy expenditure (TEE) and the 
development of overweight and obesity in childhood 
(DeLany, 1998; Salbe et al., 2002) and other features 
of the metabolic syndrome (Andersen et al, 2006). 
Physical activity energy expenditure (PAEE) is the 
most variable component of TEE and therefore key 
for the regulation of TEE and of specific interest to 
measure accurately in epidemiological studies. 
However, the direct assessment of daily PAEE is 
problematic since the methods with the highest degree 
of validity are either expensive (doubly labelled 
water) or impractical in field settings (respiratory gas 
analysis) (Schutz et al., 2002). Therefore, assessing 
physical activity with other objective methods, such 
as accelerometry, is an approach that has been 
successfully used in large-scale epidemiological 
studies in children (Riddoch et al., 2004; Ekelund et 
al., 2004).  
The outcome from accelerometry (i.e. activity counts) 
can be transformed to predict PAEE by regression 
analysis. This relationship may also be used when 
interpreting children’s physical activity behavior. For 
example, when analyzing time spent at different 
intensity levels of physical activity (e.g. low, 

moderate, high) or when examining proportions of 
children who reach recommended levels of physical 
activity, the relationship between activity counts and 
EE is used to establish intensity thresholds.  
One of the most widely used accelerometers, the MTI 
accelerometer is valid for assessing the total amount 
of physical activity on a group level (Ekelund et al., 
2001), and provides detailed information of activity at 
different levels of intensity (Nilsson et al., 2002; Trost 
et al., 2002; Puyau et al., 2002; Freedson et al., 1998; 
Hendelman et al., 2000; Swartz et al., 2000). 
However, activity counts from accelerometry do not 
provide direct information on TEE and its sub-
components. A number of prediction equations have 
been developed to convert activity counts to 
components of TEE (Ekelund et al., 2001; Trost et al., 
2002; Puyau et al., 2002; Freedson et al., 1998; 
Hendelman et al., 2000; Swartz et al., 2000). Almost 
all prediction equations have been developed during 
laboratory-restricted activities using respiratory gas 
analysis as the criterion measure (Trost et al., 2002; 
Puyau et al., 2002; Freedson et al., 1998; Swartz et al., 
2000), and these equations can also be used to create 
specific cut-off limits using activity counts 
corresponding to certain intensity levels. To 
determine appropriate intensity levels from 
calorimetry measurements, the Metabolic Energy 
Turnover (MET) classification system is often used, 
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by dividing the energy cost of activity by either 
measured or estimated resting metabolic rate (RMR).  
When calibrating activity counts against EE, walking 
or running are frequently used (Trost et al., 2002; 
Puyau et al., 2002; Freedson et al., 1998; Swartz et al., 
2000). However, since children’s habitual physical 
activity behavior is likely to be more complex, 
additional activities (e.g. household tasks, rope jump, 
martial arts) have sometimes been included (Puyau et 
al., 2002, Hendelman et al., 2000; Swartz et al., 
2000). Two prediction equations developed for use in 
children and adolescents (Trost et al., 2002; Puyau et 
al., 2002) have been applied in several studies to 
examine the amount and proportion of time spent at 
different intensity levels derived from activity counts 
(Reilly et al., 2004; Montgomery et al., 2004; Pate et 
al., 2002). Since the cut-off limits from activity counts 
proposed to correspond to a certain intensity level 
differ substantially between these equations, the 
amount of time spent at different intensities of 
physical activity will differ, depending on the 
equation applied to the data. Prediction equations 
producing large differences may affect comparability 
between studies and it could be argued that a 
prediction equation applied to free-living conditions 
should be based on free-living measurements of 
activity by accelerometry, using the DLW method as 
the criterion measure. Furthermore, the comparability 
of different laboratory-derived equations for the 
prediction of TEE and PAEE during free-living 
conditions is unclear.  
Therefore, the aim of this study was to examine the 
degree of agreement between three different EE 
prediction equations; two derived during laboratory 
conditions (Trost et al., 2002; Puyau et al., 2002) and 
one derived during free-living using DLW (Ekelund 
et al., 2001), when applied to a large, randomly 
selected population based sample of children. 
 
Research Methods and Procedures 
Subjects 
Participants in this study were 9-10 year-old children 
participating in the European Youth Heart Study 
(EYHS). The study aims, design, sampling 
procedures, and methods have been described in detail 
previously (Riddoch et al., 2005). Briefly, the study 
population is based on a random selection of children 
from four European countries (Denmark, Portugal, 
Estonia and Norway). All children with complete data 
on objectively measured physical activity, height and 
weight were included in the current analyses. In total, 
1321 children (663 boys, 658 girls) with mean age 9.6 
 0.4 years were included. Mean height and weight 
for boys were 139  6.6 cm and 33.2  6.4 kg, and 
corresponding values for girls were 138  6.7 cm and 
32.9  6.9 kg (height: p = 0.08, weight: p = 0.48). 
Mean body mass index was 17.2  2.4 and 17.2  2.7 
kg·m-2 for boys and girls, respectively (p = 0.95). 
 

Assessment of physical activity 
Physical activity was assessed using the MTI 
accelerometer, model 7164 (Manufacturing 
Technology Inc., Fort Walton Beach, FL). The MTI 
accelerometer is a lightweight electronic motion 
sensor, which measures the vertical accelerations of 
body movement. The validity and reliability of this 
instrument for measuring physical activity has been 
tested during a variety of conditions (Ekelund et al., 
2001; Hendelman et al., 2000; Metcalf et al., 2002; 
Nichols et al., 2000). The children wore the 
accelerometer attached on the hip during all waking 
hours for four consecutive days, including two 
weekdays and two weekend-days. For the purpose of 
this study, the total sum of counts was divided by 
registered time (cntsmin-1) and applied to the data 
using the different energy expenditure prediction 
equations (see below). Detailed descriptions of the 
physical activity measurement protocol and data 
reduction procedures have been described previously 
(Riddoch et al., 2004).   
 
Predictions of energy expenditure estimates 
Based on the simultaneous measurement of 
accelerometer counts, expressed as cntsmin-1, and 
PAEE (kcal·day-1) by the DLW method a PAEE 
prediction equation has recently been developed 
(Ekelund et al., 2001). The original equation (Ekelund 
et al., 2001), was based on a random sample of 18 of 
26 children 9-to-10 years of age, and subsequently 
cross-validated in the remaining eight children. For 
the current study, we used a slightly modified 
equation based on all 26 children, which essentially 
left the predictive power unchanged and with 
normally distributed residuals. Activity counts and 
gender explained 44% of the variation in PAEE with a 
standard error of 150 kcal·day-1. This equation was 
then compared with two laboratory-based equations 
developed for use in children (Trost et al., 2002; 
Puyau et al., 2002). All three equations are shown in 
Table 1.  
The equation by Trost et al. (2002) was developed 
during treadmill locomotion in 6-17 year old children 
and adolescents (n=80). Oxygen uptake and 
accelerometer counts were simultaneously measured 
during the test and data on oxygen uptake were 
subsequently transformed to MET values. 
We predicted TEE from the Trost et al. (2002) 
equation by recalculating 1 MET defined as 
3.5mlO2·kg-1·min-1 to EE (kcal.day-1) by assuming a 
conversion factor of 4.825 kcal per litre of oxygen 
consumed, and a resting respiratory quotient 
equivalent to 0.82 (Weir, 1949). This value was then 
multiplied with the predicted MET value to express 
TEE. Predicted REE according to Schofield et al. 
(1985) was subtracted from TEE to predict PAEE. 
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Table 1. The three equations used for predicting TEE 
and its components from accelerometer measurement. 
___________________________________________ 

 
                        Prediction Equation                                   
___________________________________________ 
 
Ekelund et al. 
(2001) 

 
PAEE (kcal/day) = 66.847 +  
(cnts/min · 0.953) – (176.91· 
Gender) 
 

Puyau et al. 
(2002) 

PAEE (kcal/kg/min) = 0.0183  
+ (cnts/min· 0.00001) 
 

Trost et al.          METs = 2.757+(cnts/min · 0.0015) 
(2002)                 – (0.08957·Age) – (0.000038 · 
                           cnts/min·Age) 
__________________________________________ 
Gender: boys = 0, girls = 1. Age in years. 

 
 
 
The equation by Puyau et al. (2002) is based on 26 
children with an age range of 6-16 years. PAEE was 
measured by indirect calorimetry during different 
structured activities (e.g. treadmill walking, tossing 
ball, rope jump) in a metabolic chamber. TEE was 
calculated from this equation by summing PAEE and 
predicted REE estimated according to Schofield et al. 
(1985). 
When calculating TEE from PAEE and REE (or vice 
versa), the diet induced thermogenesis was assumed 
to account for 10% of TEE (Maffeis et al., 1993). We 
calculated mean EE estimates per day in two ways 
from the laboratory-derived equations (Trost et al., 
2002; Puyau et al., 2002).  
The first approach was calculated by multiplying the 
predicted outcome per minute by 1440 (24 hours). 
The second approach was calculated by multiplying 
the predicted outcome per minute by measured 
accelerometer time, assumed to correspond to awake 
time. The remaining time of the day was assumed as 
sleep, and EE was defined as REE according to 
Schofield et al. (1985).  
 
Statistics 
Mean and standard deviation (± SD) were used to 
describe physical characteristics, energy expenditure 
estimates (TEE, PAEE, and REE) and the physical 
activity level (PAL = TEE / REE). The degrees of 
agreement between EE variables derived from the 
three different equations are presented as Bland and 
Altman plots (mean difference  2 SD) (Bland & 
Altman, 1986). Estimation differences were tested by 
paired t-test. Systematic differences were calculated 
as the correlation coefficients between the difference 
of the methods and the mean of the methods in the 
Bland-Altman plots. One-way analysis of variance 
(ANOVA) was used to test for gender differences 

between anthropometric variables and the different 
components of EE. All assumptions for normal 
distribution among tested variables were fulfilled. All 
data were analysed by SPSS (Statistical Package for 
the Social Sciences for Windows, 11.0, 2001, SPSS 
Inc., Chicago. IL) and alpha was set at 0.05. 
 
Results 
The total time of physical activity measurements 
averaged 3066 ± 788 min, which corresponds to an 
average of 12.8 ± 3.3 hours per day. The average 
intensity of physical activity (cntsmin-1) was 784 ± 
271 cntsmin-1 for boys compared to 652 ± 204 
cntsmin-1 for girls (p < 0.001). Predicted REE 
averaged 1208 ± 129 kcal·day-1 and 1153 ± 124 
kcal·day-1 for boys and girls, respectively (p < 0.001). 
No significant differences between genders were 
observed for any of the anthropometric variables. 
Predicted TEE, PAEE, and PAL from the three 
different prediction equations are shown in Table 2. 
Two sets of daily EE estimates are shown for the 
laboratory-derived equations. The first is based on 24 
hours and the second is based on measured time. 
Regardless of the time factor used, gender differences 
were observed for all variables of EE (p < 0.05), 
except when PAL was predicted from the equation by 
Puyau et al. (2002) and the time factor was based on 
measured time.   
The equation by Trost et al. (2002) overestimated 
PAEE by 17% (p < 0.001) when based on 24 hours 
compared with DLW-predicted PAEE. In contrast, 
when based on measured time it underestimated 
PAEE by 46% (p < 0.001). Similarly, the equation by 
Puyau et al. (2002) overestimated PAEE by 83% (p < 
0.001) when based on 24 hours, and underestimated 
PAEE by 3% (p < 0.05) when based on measured 
time, compared with free-living predicted PAEE. 
Agreement between predicted PAEE from the 
equation by Trost et al. (2002) and the DLW-based 
equation (Ekelund et al., 2001) is shown in Figure 
1A-B. When predicted PAEE was based on 24 hours, 
a significant inverse correlation was observed 
between the difference of the methods and the mean 
of the methods (Figure 1A; r = -0.17; p < 0.001). 
When predicted PAEE was based on measured time, a 
significant and positive correlation was observed 
(Figure 1B; r = 0.26; p < 0.001), indicating a 
systematic bias for this equation regardless of the time 
factor used. Agreement between predicted PAEE 
from the equation by Puyau et al. (2002) and the 
DLW-based equation (Ekelund et al., 2001) is shown 
in Figure 2A-B. When predicted PAEE was based on 
24 hours, the observed error variance in PAEE was 
randomly distributed (Figure 2A;r = 0.04; p = 0.12). 
In contrast, a systematic bias was indicated when 
PAEE was based on measured time (Figure 2B;r = 
0.20; p = 0.001). 



 
Table 2. Mean values ( SD) of PAEE, TEE and PAL based upon different prediction equations when applied on  
accelerometer data. 
__________________________________________________________________________________________ 

                                                                   Boys                                    Girls                                      All 

                                                                 n = 663                                 n = 658                                n = 1321 

__________________________________________________________________________________________ 

PAEE (kcald-1) 
 
Ekelund et al. (2001)                             814  258*                            511  194                            663  274 
 
aTrost et al. (2002)                                 376  216†                           339  215                            357  216§ 

bTrost et al. (2002)                                 805  330*                                          740  302                            773  318§ 
 
aPuyau et al. (2002)                                669  221*                           623  230                            646  227†† 
bPuyau et al. (2002)                              1247  266*                                      1175  257                          1211  264§ 
 
TEE (kcal·d-1) 
 
Ekelund et al. (2001)                           2247  317*                                         1849  251                          2049  348 

  
aTrost et al. (2002)                               1760  341*                                         1657  345                         1709  347§ 

bTrost et al. (2002)                               2237  480*                                        2103  457                         2170  473§ 
 
aPuyau et al. (2002)                             2085  419*                                          1972  366                         2029  356†† 
bPuyau et al. (2002)                             2728  426*                             2586  417                         2657  427§ 
 
PAL (TEE/REE) 
 
Ekelund et al. (2001)                           1.87  0.25*                                          1.61  0.20                          1.74  0.26 
 
aTrost et al. (2002)                               1.45  0.18‡                          1.43  0.17                          1.44  0.17§ 

bTrost et al. (2002)                               1.84  0.24‡                                        1.80  0.22                          1.82  0.23§ 
 
aPuyau et al. (2002)                             1.72  0.17                               1.70  0.18                          1.71  0.17** 
bPuyau et al. (2002)                             2.25  0.15‡                          2.23  0.14                          2.24  0.14§ 
 
__________________________________________________________________________________________ 
aBased on assumption that average counts per registered minute reflect measured  
time only, whereas remaining time is assumed to be sleep. 
bBased on assumption that average counts per registered minute reflect all minutes  
of the day (24 hours).    
* gender difference (p < 0.001) 
† gender difference (p < 0.01) 
‡ gender difference (p < 0.05) 
§ significantly different from Ekelund et al. (2001) equation estimate (p < 0.001) 
** significantly different from Ekelund et al. (2001) equation estimate (p < 0.01) 
††significantly different from Ekelund et al. (2001) equation estimate (p < 0.05) 
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The observed differences in predicted PAEE between 
equations remained similar when the equations were 
used to estimate TEE and PAL (Table 2). In 
comparison to the DLW-based equation, both 
laboratory-derived equations significantly 
overestimated TEE and PAL when based on 24-hour 
measurement, and significantly underestimated TEE 
and PAL when based on measured time.   
We finally reanalysed all data by normalising PAEE 
by body weight (i.e. expressing the outcome from all 
equations as PAEE per kg). After normalising for 
body weight, the equation by Trost et al. (2002) 
overestimated PAEE by 19% (p < 0.001) (no 
systematic bias: r = -0.05; p = 0.087) and 
underestimated by 45% (p < 0.001) (systematic bias: 
r = 0.48; p < 0.001) when based on 24 hours and 
awake time, respectively. The equation by Puyau et 
al. (2002) overestimated by 86% (p < 0.001) 
(systematic bias: r = 0.29; p < 0.001) when based on 
24 hours. In contrast, no significant difference was 
observed between predictions when based on awake 
time (mean error 0.6%; p = 0.61), although a 
systematic bias was evident (r = 0.39; p < 0.001).  
 
Discussion 
Our results suggest that estimated EE values from 
accelerometer counts differ substantially depending 
on the equation used and which integration period is 
chosen for laboratory-based equations, designed to 
predict instantaneous intensity. Overall, individual 
differences were quite substantial, with standard 
deviations around ± 290 kcal·day-1, when comparing 
the laboratory-based equations with the DLW 
derived equation. Moreover, systematic differences 
were also indicated when estimating PAEE from the 
laboratory based equations.  
The choice of activities when calibrating activity 
counts against EE likely affects the ability of a 
prediction equation to accurately estimate PAEE 
during free-living conditions. The equation by Trost 
et al. (2002) is based on the relationship between EE 
and accelerometer counts during walking and 
running on a treadmill. In comparison, the equation 
developed by Puyau et al. (2002) included a more 
extensive calibration, where EE during a scheduled 
set of activities was measured in a room calorimeter 
simultaneously with measurements of body 
movement by accelerometry. Activities such 
skipping and jumping are likely to be overestimated 
while high intensity running, biking, climbing stairs 
and crawling are likely to be underestimated. The 
chosen mixture of activities during calibration will 
affect the slope and intercept of the regression line 
for the relationship between activity counts and 
energy expenditure. It is therefore unlikely 
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Figure 1A-B. Limits of agreement (± 2 SD) of 
predicted PAEE (kcal·day-1) where the mean from 
equations by Trost et al. (2002) and Ekelund et al. 
(2001) is plotted against the difference between 
them. The solid lines represent mean difference  2 
SD (A): Predicted PAEE based on 24 hours. Mean 
difference was –109 kcal·day-1 (limits of agreement: -
683 – 465), p < 0.001. Correlation between the mean 
of methods and the difference of methods was r = -
0.17; p < 0.001. (B): Predicted PAEE based on 
measured time only. Mean difference was +306 
kcal·day-1 (limits of agreement: -234 – 846), p < 
0.001. Correlation between the mean of methods and 
the difference of methods was r = 0.26; p < 0.001.
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that prediction equations developed using specific 
activities in a laboratory are valid throughout the  
range of free-living activities, which will affect 
predicted daily PAEE from these equations. The 
equation by Trost et al. (2002) was developed to 
predict MET values. In order to convert MET values 
to PAEE information on REE is necessary. MET 
values should be multiples of REE and 1 MET (i.e. 
the EE during rest) has been defined as 3.5ml O2·kg-

1·min-1 (Ainsworth et al., 1993). However, defining 1 
MET as 3.5ml O2·kg-1·min-1 in children may be 
biased. Harrell et al. (2005) recently presented data 
on energy costs during different activities in children 
and compared measured MET values based on 
measured REE against MET values based on 
estimated REE, (i.e. equivalent to the adult value of 
3.5ml O2·kg-1·min-1). These authors showed that 
estimated MET values were significantly higher than 
the measured MET values, due to the significantly 
higher REE in children when expressed in relation to 
body weight (ml O2·kg-1·min-1) and concluded that 
the difference in energy expenditure during rest must 
be adjusted for when converting MET values into 
caloric cost in children. We chose not to present data 
on PAEE based on age-adjusted REE when using the 
equation by Trost et al. (2002) since we believe that 
the METs predicted by the equation reflect oxygen 
uptake in relation to 3.5ml O2·kg-1·min-1. It should be 
emphasized that, if adjustment for children’s higher 
metabolic rate when expressed per body mass are 
made, the equation would substantially overestimate 
PAEE compared to the DLW-based equation. This is 
likely explained by the assumption that 1 MET was 
defined as 3.5ml O2·kg-1·min-1 (i.e. the adult value) 
when the equation was developed. Since data on 
measured TEE and its derivatives are not available in 
this population it is important to compare the 
estimated energy expenditures predicted from the 
three equations to those previously published. Hoos 
et al. (2003) recently published data on TEE and its 
derivatives using the DLW method. These data are 
based on a compilation of studies conducted in 
different settings and including varying numbers of 
children. Nonetheless, average gender-combined 
values on TEE and PAEE were approximately 2000 
kcal.d-1 and 650 kcal.d-1, respectively, in 9-10 year-
old children. In comparison, predicted TEE and 
PAEE from the DLW-derived equation (Ekelund et 
al., 2001), were 2049 kcal.d-1 and 663 kcal.d-1, 
respectively. Theoretically, predicted PAEE based on 
awake is likely to provide the best prediction, since 
no PAEE per definition occurs during sleep. If this 
assumption holds true, predicted PAEE from the 
equation by Puyau et al. (2002) were similar to the 
DLW-derived equation (Ekelund et al., 2001) and 
also in good agreement with measured PAEE 
reported elsewhere (Hoos et al., 2003). However, 
even if this equation produces a similar mean value 
of PAEE as the DLW-based equation, a systematic 
trend of the differences was evident which may still  
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Figure 2A-B. Limits of agreement (± 2 SD) of 
predicted PAEE (kcal·day-1) where the mean from 
equations by Puyau et al. (2002) and Ekelund et al. 
(2001) is plotted against the difference between 
them. The solid lines represent mean difference  2 
SD (A): Predicted PAEE based on 24 hours. Mean 
difference was –548 kcal·day-1 (limits of agreement: -
1134 – 38), p < 0.001. Correlation between the mean 
of methods and the difference of methods was r = 
0.04; p = 0.12. (B): Predicted PAEE based on 
measured time only. Mean difference was +17 
kcal·day-1 (limits of agreement: -603 – 637), p < 
0.05. Correlation between the mean of methods and 
the difference of methods was r = 0.20; p < 0.001. 
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limit to the comparability between equations to 
predict PAEE in free-living children.   
The equation by Trost et al. (2002) clearly 
underestimated PAEE when based on awake time. 
The underestimation in predicted PAEE is also 
reflected in the predicted PAL value of 1.44 from this 
equation, which is considerably lower than 
previously reported (Hoos et al., 2003). The equation 
by Trost et al. (2002) estimated EE within the normal 
range when based on 24 hour time factor. However, 
these values were estimated assuming that 1 MET is 
equal to 3.5 ml O2

.kg-1.min-1, which do not reflect 
multiples of true REE in children.  
The equation by Ekelund et al. (2001), based on 
DLW measurements over several days, is likely to 
more accurately estimate daily PAEE compared to 
laboratory-based equations which are limited to a 
few specific activities. It showed no mean bias 
against measured PAEE and seems to reflect average 
daily PAEE with reasonable validity on group level. 
However, the equation cannot be expected to be valid 
on an individual level. More important, no systematic 
bias was indicated against measured PAEE, which 
clearly indicate the unbiased ability of the equation to 
predict average values on PAEE in 9 to 10 year old 
children. We believe this to be more important when 
comparing group mean values than any large 
individual variation per se. It can also be noted that 
this equation was derived from a relatively small 
sample of children which is likely to limit its external 
validity. Therefore, future work aimed at developing 
prediction equations based on more heterogeneous 
samples of children is needed. Finally, it should be 
emphazised that free-living derived equations based 
on daily PAEE can not be used to define cut off 
thresholds for specific intensity levels of physical 
activity. For this purpose, prediction equations based 
on specific activities in the laboratory are still 
needed.  
In conclusion, laboratory-derived prediction 
equations based on the relationship between energy 
expenditure and accelerometry counts produced 
significantly different predictions of PAEE compared 
to a DLW derived equation. These equations can not 
be used interchangeably and interpretations of 
average levels of PAEE in children from available 
equations should be made with caution. Further 
development of equations applicable to free-living 
scenarios is needed. 
 
Perspectives 
The outcome from accelerometry (i.e. activity 
counts) can be transformed to predict physical 
activity energy expenditure (PAEE) by regression 
analysis. Accurate predictions of PAEE may 
contribute to our understanding about the 
associations between PAEE and health outcomes 
such as the development of obesity in childhood. 
Further, the ability to accurately predict components 
of energy expenditure from accelerometer output is 

of interest when analyzing time spent at different 
intensity levels of physical activity or when 
examining proportions of children who reach 
recommended levels of physical activity. Currently, 
the accuracy of different equations for the prediction 
of energy expenditure is unclear. Our results show 
that laboratory-derived equations evaluated in this 
study produced significantly different predictions of 
PAEE compared to the doubly labelled water derived 
equation. Since predicted values on PAEE vary 
substantially between equations, interpretations of 
average levels of daily PAEE in children from 
currently available prediction equations should be 
made with caution. Further development of EE 
equations is needed. Such work should be based on 
larger and more heterogeneous samples and assessed 
during diverse activity scenarios, including free-
living. 
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