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Abstract 27 

Movement variability has become an important field of research and has been studied to gain a 28 

better understanding of the stability or the neuro-muscular control of human movements. In 29 

addition to studies investigating “amplitude variability” there are a growing number of studies 30 

assessing the “temporal variability” in movements by applying non-linear analysis techniques. 31 

One limitation of the studies available to date is that they quantify variability features in specific, 32 

pre-selected biomechanical or physiological variables. In many cases it remains unclear if and 33 

to what degree these pre-selected variables quantify characteristics of the whole body 34 

movement. This technical note proposes to combine two analysis techniques that have already 35 

been applied for gait analysis in order to quantify variability features in walking with variables 36 

whose significance for the whole movements are known. Gait patterns were recorded using a 37 

full-body marker set on the subjects whose movements were captured with a standard motion 38 

tracing system. For each time frame the coordinates of all markers were interpreted as a high-39 

dimensional “posture vector”. A principal component analysis (PCA) conducted on these 40 

posture vectors identified the main one-dimensional movement components of walking. 41 

Temporal variability of gait was then quantified by calculating the maximum Lyapunov Exponent 42 

(LyE) of these main movement components. The effectiveness of this approach was 43 

demonstrated by determining differences in temporal variability between walking in unstable 44 

shoes and walking in a normal athletic-type control shoe. Several additional conceptual and 45 

practical advantages of this combination of analysis methods were discussed.  46 

47 
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Introduction 48 

Analysis of movement variability has become an important field in motor-control and 49 

biomechanical research. Bernstein pointed out that for any given motor task there are an infinite 50 

number of possible solutions (Bernstein, 1967). He attributed this observation to the fact that the 51 

multitude of joints and muscles in the human body create redundant degrees of freedom. 52 

Variability in movements is therefore not only caused by external perturbations, but also needs 53 

to be considered as an inherent property of the system itself. Changes in movement variability 54 

might be a sign of injury (Cavanaugh, Guskiewicz, & Stergiou, 2005; Stergiou, Harbourne, & 55 

Cavanaugh, 2006; Harbourne & Stergiou, 2009), disorder (Hausdorff, Cudkowicz, Firtion, Wei, 56 

& Goldberger, 1998; Moraiti, Stergiou, Ristanis, & Georgoulis, 2007; Stolze et al., 2001; 57 

Ebersbach et al., 1999; Rosengren et al., 2009; Webster, Merory, & Wittwer, 2006; Dingwell & 58 

Cusumano, 2000) or aging of the neuro-muscular system (Kang & Dingwell, 2008; Verrel, 59 

Lövdén, & Lindenberger, 2012; Verrel, Lövdén, Schellenbach, Schaefer, & Lindenberger, 2009; 60 

Buzzi, Stergiou, Kurz, Hageman, & Heidel, 2003; Callisaya, Blizzard, Schmidt, McGinley, & 61 

Srikanth, 2010; Brach, Studenski, Perera, VanSwearingen, & Newman, 2007).  62 

The term “variability” is used with different meaning in different contexts. It is therefore important 63 

to specify what features of variability are analyzed. In general, this manuscript studies aspects 64 

of the intra-subject motion variability. Inter-subject variability, while related to the topic of this 65 

study, will not be discussed further. In most fields of sciences the term “variability” refers to any 66 

kind of variations in an observed variable, however, in the field of motor-control “variability” is 67 

often used in a very specific meaning as a quantification of the variability in the amplitude of a 68 

time series. If a time series is stationary, “amplitude variability” can be quantified by descriptive 69 

statistical measures such as standard deviation (Dingwell, Cusumano, Cavanagh, & Sternad, 70 

2001). Aspects of temporal variations in gait variables have been quantified by different non-71 

linear analysis methods such as the maximum Lyapunov Exponent (LyE) (Jordan, Challis, 72 
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Cusumano, & Newell, 2009; Terrier & Deriaz, 2011; England & Granata, 2007; Dingwell & 73 

Marin, 2006; Dingwell & Cusumano, 2000; Bruijn et al., 2009), approximate entropy (ApEn) 74 

(Goldberger, Peng, & Lipsitz, 2002; Georgoulis, Moraiti, Ristanis, & Stergiou, 2006), or Poincare 75 

analyses (Granata & Lockhart, 2008; Dingwell, Robb, Troy, & Grabiner, 2008; Dingwell & Kang, 76 

2007). In this study the maximum Lyapunov Exponent (LyE) was used. LyE quantifies how fast 77 

the waveform of a time series changes from step cycle to step cycle. Thus, in a sense, LyE 78 

quantifies the “predicatability” of the time series. A common interpretation is also that LyE is a 79 

measure of the “dynamic stability” of the process that produced the analysed time series 80 

(Dingwell et al., 2001; Segal, Orendurff, Czerniecki, Shofer, & Klute, 2008).  81 

Studies employing nonlinear approaches to study temporal variability features in gait 82 

have so far been conducted on specific pre-selected variables, for example, joint angles (ankle, 83 

knee, hip) or trunk movements (Dingwell & Cusumano, 2000; Buzzi et al., 2003; Dingwell & 84 

Kang, 2007; Park, Son, Kim, & Seo, 2008; Segal et al., 2008; Nessler, De Leone, & Gilliland, 85 

2009; Son, Park, & Park, 2009; Myers, Stergiou, Pipinos, & Johanning, 2010). However, in 86 

many cases it remains unclear if and to what degree the temporal variation of such pre-selected 87 

variables might be representative for the movement characteristics of the whole body. Pre-88 

selection of variables also carries a certain risk of investigator bias influencing the study and it is 89 

possible that other important variability features, which would be visible in variables not selected 90 

for analysis, might be missed.  91 

The purpose of this technical note was the introduction of a method to study aspects of the 92 

variability in the movement of the whole loco-motor system that does not require the pre-93 

selection of specific variables. The underlying idea of the approach presented here was to first 94 

capture the subjects’ multi-segment gait movements with a full-body marker set tracked by a 95 

standard motion capture system. These multi-segment movement patterns were decomposed 96 

into one-dimensional movement components using a principle component analysis (PCA) 97 
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according to a method described by Troje (2002), Daffertshofer and colleagues (2004), or Verrel 98 

and colleagues (2009). The temporal variability features of gait were then quantified by 99 

calculating the LyE for these principal movement components. It is demonstrated in this paper 100 

that the proposed method is able to distinguish temporal variability characteristics when walking 101 

in two types of footwear.  102 

Methods 103 

Data collection 104 

Twenty healthy subjects volunteered for this study (6 female, 14 male; age 24 ± 2; 105 

weight 71 ± 11 kg; height 1.77 ± 0.04 m [mean ± SD]). All participants gave informed written 106 

consent, and the study was approved by the appropriate Institutional Review Board. None of the 107 

subjects had any known orthopedic or neurological conditions that would affect their gait.  108 

All subjects walked on a treadmill at a pre-determined self-selected speed. To select the 109 

speed, subjects were first instructed that they should choose a pace as if they were late for an 110 

appointment, but at which they could walk for 20 minutes. Then they walked on a treadmill while 111 

the speed was stepwise increased by the experimenter until the subject indicated that the speed 112 

was too high. From this point the speed was successively reduced until the subject felt confident 113 

that he or she could maintain this pace for 20 min. This procedure was followed by 5-minute 114 

warm-up walking at the selected speed. If the subject felt it was necessary, small adjustments of 115 

the speed were allowed during the first 2 minutes. The final walking speed was on average 3.8 116 

± 0.1 m/s.  117 

For this technical note two walking trials were analyzed, one with subjects walking in an 118 

athletic-type casual shoe (“Ekiden 100” manufactured by Kalenji®, Decathlon SA., France) and 119 

one with subjects walking in an unstable shoe (“Mwalk” manufactured by Masai Barefoot 120 

Technology Inc. (MBTTM), Switzerland). Each trial consisted of an acclimatization period of 30 121 



7 
 

seconds, then a measurement of 100 seconds was collected. Subjects were informed of the 122 

beginning and the end of the data collection period and were asked to focus their gaze on a 123 

target in front of them, however, for safety reasons and to allow the subjects to verify their 124 

position on the treadmill it had no consequences if a subject looked away from the target.  125 

The subjects’ individual walking patterns were recorded using a full-body marker set 126 

consisting of 28 markers placed on bony landmarks on all body segments (Figure 1). 127 

Specifically, the markers were placed on the left and right lateral malleolus, lateral epicondyle of 128 

the knee, anterior and posterior superior iliac spine, acromio-clavicular joint, lateral epicondyle 129 

of the elbow joint, both sides of the wrist joint, on the sternum, claviculum, 7th cervical 130 

vertebrae, and four markers were attached to a head band. Additional markers were placed on 131 

the shoe surfaces as close as possible to the calcaneous and on the second metatarsal head. 132 

The other markers were not changed between conditions. The three-dimensional marker 133 

trajectories were acquired at a sampling rate of 240 Hz using a standard eight camera motion 134 

capture system (Motion Analysis Corporation, Santa Rosa CA, USA). EVa Real-Time Software 135 

(EVaRT, Motion Analysis Corporation, Santa Rosa CA, USA) was used for real-time motion 136 

capture and for post-processing of the marker trajectories. The recorded spatial coordinates 137 

were not filtered during post-processing to retain an accurate representation of the variability 138 

within the locomotor system.  139 

Outline of the data analysis steps 140 

The data analysis consisted of the following main steps. 1) Detection of gait cycles from 141 

the vertical position of the heel marker and selection of 65 consecutive cycles for further 142 

analysis; 2) Principal component analysis (PCA) on posture vectors defined with all marker data 143 

to identify the main movement patterns of walking (“principal movements”); 3) Transformation of 144 

the posture vectors onto the first five principal component vectors, which contained >95% of the 145 
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entire postural variability; 4) Analysis of the temporal variability by analyzing the time series 146 

formed by the principal component scores.   147 

Principal movement components of walking  148 

PCA is a statistical technique frequently used to reduce the number of variables 149 

necessary to explain a process (e.g. locomotion) while retaining most of the variation present in 150 

the original data set (Jolliffe, 2002). PCA is based on an eigenvalue decomposition of the 151 

covariance matrix of the data set into eigenvectors called principal component vectors (PCs). 152 

These components are arranged in decreasing order of their sample variance. Typically the 153 

majority of variation is contained in the first few PCs. Omitting higher order principal 154 

components allows to reduce the number of variables that describe the system while retaining 155 

of most of the variability, i.e. information.  156 

In this study, the PCA was applied for the analysis of gait patterns similarly to the 157 

method described in detail by Troje (2002), Daffertshofer et al. (2004) or Verrel et al.(2009). 158 

Specifically, each trial returned a matrix of 84 spatial coordinates (28 3D marker positions) in 159 

24000 time frames (100 seconds collected at 240Hz) of which the time frames corresponding to 160 

65 consecutive steps were selected. Each row of the matrix was interpreted as an 84-161 

dimensional “posture vector” representing all available information about the subject’s posture in 162 

the given time frame. The mean posture vector calculated over all 65 steps was subtracted from 163 

each row of this matrix but no other normalization was performed.  164 

Performing a PCA on this matrix yielded a) orthogonal principal component vectors, PCk, 165 

in the direction of the largest variances in posture vectors (Figure 2 A,B,C and video files 1 to 3); 166 

b) eigen values, EVk, which quantified the amount of variance explained by the corresponding 167 

PCk; c) coefficients ck(t) (in some publications also called scores) obtained by projecting each 168 

posture vector onto the PKk (Figure 2 D,E,F). Applying the PCA to walking decomposes this 169 

complex multi-segment movement into one-dimensional movement components that originate 170 
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from a mean posture, i.e. from a mean marker configuration. The 84-dimensional PCk-vectors 171 

determine for each movement component k in what direction the markers move. The 172 

coefficients ck(t) quantify for each time point t how far the momentary posture (=momentary 173 

marker configuration) deviates from the mean posture in the direction of the associated PCk. 174 

The EVk quantify how much deviations from the mean posture in the direction of the associated 175 

PCk were observed during the whole trial. The EVk were expressed as percentage of the sum of 176 

all 84 EVks. Thus they quantify how much of the total variance in posture vectors observed 177 

during the trial occurred in the associated PCk (Troje, 2002; Verrel et al., 2009; Daffertshofer et 178 

al., 2004). For simplicity we refer to these one-dimensional movement components as “principal 179 

movements (PMk)”. The PCA calculations conducted in this study were implemented in Matlab 180 

(MathWorks Inc., Natic, MA, USA). 181 

Assessment of temporal variability using the maximum Lyapunov exponent (LyE) 182 

The temporal characteristics of the whole body movement patterns of walking were then 183 

analyzed by assessing the temporal variability characteristics of the time series ck(t). The LyE 184 

was determined by first constructing a state space representation of the time series. Thereto, 185 

the time delay  was determined by an algorithm finding the first minimum of the average mutual 186 

information (AMI) as described by Fraser and Swinney (Fraser & Swinney, 1986). The 187 

appropriate embedding dimension was determined using a false nearest neighbor algorithm 188 

(Kantz & Schreiber, 1997). An embedding dimension of n=5 minimized the number of false 189 

nearest neighbors in most time series and was therefore used for the analysis of all principal 190 

movements in all trials. Following reconstruction of the state space (Figure 2 G,H,I), mean 191 

divergence curves and LyE values were calculated for the time series based on Kantz’s 192 

algorithm (Hegger & Kantz, 1999; Kantz, 1994). Kantz’s algorithm is conceptually equal to the 193 

algorithm proposed by Rosenstein et al. (Rosenstein, Collins, & De Luca, 1993) and is 194 
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implemented in the software package TISEAN (version 3.0.1) (Hegger & Kantz, 1999) which 195 

was combined with the Matlab codes used for the calculating the PMs.  196 

Results 197 

The variance in posture vectors represented in each of the first five PMs is listed in 198 

Table 1 for both types of test shoes. No statistical differences between the two test shoes were 199 

found. For all subjects, the first three principal components represented the same type of 200 

movement in both test shoe conditions (Figure 2 and video files 1 to 3 give a graphic 201 

visualization). PM1 represented the posture variation due to anterior-posterior arm and leg 202 

swing. PM2 quantified a synchronous flexion-extension of both knees with an in-phase vertical 203 

movement of the upper body. PM3 quantified an asynchronous flexion of the knee with an in-204 

phase medial shift of the upper body (and thus the body weight) onto the stance leg. Higher 205 

order movement components represented adjustments of these basic movement components. 206 

For example, PC4 and PC5 portrayed small additional ankle, knee and elbow flexion-extension 207 

movements in most subjects. However, the movement components represented by the PMs 208 

became increasingly subject specific with increasing PM order.  209 

 210 

 211 

 212 

 213 

 214 

 215 
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Table 1   Eigen value spectrum of the first five principal movement components of 216 

walking when wearing a normal athletic shoe or an unstable shoe.  217 

Principal movement EV normal shoe 

Mean (SD) 

EV unstable shoe 

Mean (SD) 

paired T-test 

p-value 

PM1 84.2% (4.3%) 84.2% (3.6%) 0.98 

PM2 6.6% (3.7%) 6.3% (3.2%) 0.80 

PM3 3.2% (0.3%) 3.2% (0.4%) 0.52 

PM4 2.3% (0.8%) 2.4% (0.7%) 0.41 

PM5 1.3% (0.5%) 1.3% (0.4%) 0.58 

 218 

   The LyE values characterizing the temporal variability of the first five PMs are listed in 219 

Table 2 for both types of footwear. The difference between walking in a normal shoe and 220 

walking in an unstable shoe was significant in PM1 and PM2. In higher movement components 221 

no significant differences were found.   222 

Table 2   Maximum Lyapunov Exponent (LyE) determined for the first three principal 223 

movement components of walking in different test shoes.  224 

Principal movement EV normal shoe 

Mean (SD) 

EV unstable shoe 

Mean (SD) 

paired T-test 

p-value 

PM1 0.063 (0.007) 0.138 (0.045)   <0.001 *  

PM2 0.095 (0.018) 0.122 (0.038)    0.020 * 

PM3 0.095 (0.012) 0.093 (0.015) 0.633 

PM4 0.099 (0.021) 0.097 (0.022) 0.866 

PM5 0.105 (0.029) 0.115 (0.030) 0.235 

* indicates significance at the  = 0.05 level 225 
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Discussion 226 

The combination of a PCA decomposition of the main movement patterns of gait with non-linear 227 

analysis methods to analyze temporal variability characteristics was able to identify differences 228 

in the temporal variability characteristics when walking in an unstable shoe as compared to 229 

walking in a normal athletic-type control shoe. The analysis approach developed in this study 230 

has, in the opinion of the authors, several important advantages as compared to previously 231 

employed analysis methods. First, the contribution of each principal movement component to 232 

the entire postural variability in walking is known since it is directly quantified by the normalized 233 

eigenvalues (Table 1). Quantifying the temporal variability of these movement components 234 

rather than that of selected variables such as joint angles or selected marker positions therefore 235 

has the advantage that the significance of these variables for the behavior of the whole system 236 

is known. Moreover, the first three PMs quantified similar movements in all subjects and the 237 

functional implications of these PMs for the whole motion can directly be assessed. PM1 was 238 

the main contributor to forward propagation, PM2 quantified a vertical motion, and PM3 a lateral 239 

weight shift during gait (video files 1 to 3). Considering these functional implications it will 240 

become easier in future studies to develop directional hypotheses for how external factors, such 241 

as unstable shoes, might influence the variability characteristics of the gait.  242 

Secondly, PCA is an unbiased, data-driven method to identify correlations in the multiple 243 

movement variables that can be observed in gait (Daffertshofer et al., 2004). Quantifying 244 

variability characteristics in the PMs rather than investigating variability in selected variables is 245 

therefore also conceptually a better approach when studying motor control questions.  246 

Finally, non-linear analysis methods are known to be sensitive to noise (Argyris, Andreadis, 247 

Pavlos, & Athanasiou, 1998). However, random noise will affect different marker coordinates in 248 

an uncorrelated manner. Applying a PCA to the dataset containing all marker positions has 249 

therefore also the advantage that random noise will have a small effect on principal components 250 
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with large eigenvalues (Romero, 2010). The first few PMs, which are of particular interest for the 251 

analysis of the system’s behavior, are therefore less affected by noise than the original marker 252 

coordinates or than any variable that is calculated from only a few markers. Assessing temporal 253 

variability features in human movement in the principal movements therefore also has the 254 

practical advantage of being less affected by measurement noise and therefore more sensitive 255 

for differences due to the test conditions.  256 

Limitations and other considerations 257 

One limitation of the approach outlined in this study is that PCA decomposes the movements 258 

into linear movement components while the actual segment movements are typically rotations 259 

and thus non-linear. One consequence of the linear movement decomposition is that at least 260 

two linear variables (PMs) are needed to quantify a rotational motion. The decomposition 261 

provided by the PCA will therefore not yield functionally independent movement components 262 

and an appropriate non-linear decomposition method might be able to reduce the number of 263 

PMs that are necessary to accurately describe the entire movement.  264 

The chosen marker set and the normalization procedures will influence the resultant PMs and 265 

the relative postural variability that each PM explains. While PM1 represented the same 266 

movement component of walking in all studies that we are aware of, the movements 267 

represented by PM2 and higher PMs observed in this study differed from those reported by 268 

Verrel and colleagues (2009), who performed an additional normalization step in which the 269 

subject’s position on the treadmill was removed before entering the analysis. We abstained from 270 

additional normalization steps, such as the removal of relative movements on the treadmill 271 

(Verrel et al, 2009) or the normalization to equal variance (Daffertshofer et al., 2004), because 272 

they distort the actual variability observed in the marker positions and would thus also affect the 273 

assessment of the temporal variability in the gait patterns. However, the EV observed in this 274 

study can be directly compared to the results of Troje (2002) who also did not normalize the 275 
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marker positions before applying the PCA. We found that EV1 agreed very well with Troje’s 276 

results, however, the higher order EV differed between the two studies. We speculate that 277 

differences in the marker sets might be responsible for these discrepancies.  278 

Conclusions 279 

For the analysis of temporal variability characteristics of the whole neuro-muscular system we 280 

combined a common non-linear analysis method (calculating LyE) with the PCA decomposition 281 

of gait patterns proposed by Troje (2002) or Daffertshofer (2004). This approach was effective in 282 

identifying differences between unstable shoes and normal shoes. The combination of these 283 

analysis methods has several conceptual and practical advantages as compared to the analysis 284 

of temporal variability in pre-selected variables such as individual marker positions of joint 285 

angles.  286 
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 396 

 397 

Figure 1. Positions of twenty-eight reflective markers for the quantification of the whole-body 398 

kinematics.  399 
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 400 

Figure 2.  (A), (B) and (C) illustrate the main movement patterns corresponding to the  first three 401 

principal components calculated from the marker trajectories recorded from a representative 402 

subject during walking. (D), (E), and (F) represent the time series obtained from the projection of 403 

all posture vectors onto the first three principle components. (G), (H), (I) show a three 404 

dimensional representation of the state space trajectories of the first three principal movements. 405 
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