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Glycogen is the storage form of carbohydrates in mammals. In humans the majority of
glycogen is stored in skeletal muscles (∼500 g) and the liver (∼100 g). Food is supplied
in larger meals, but the blood glucose concentration has to be kept within narrow lim-
its to survive and stay healthy. Therefore, the body has to cope with periods of excess
carbohydrates and periods without supplementation. Healthy persons remove blood glu-
cose rapidly when glucose is in excess, but insulin-stimulated glucose disposal is reduced
in insulin resistant and type 2 diabetic subjects. During a hyperinsulinemic euglycemic
clamp, 70–90% of glucose disposal will be stored as muscle glycogen in healthy subjects.
The glycogen stores in skeletal muscles are limited because an efficient feedback-mediated
inhibition of glycogen synthase prevents accumulation. De novo lipid synthesis can con-
tribute to glucose disposal when glycogen stores are filled. Exercise physiologists normally
consider glycogen’s main function as energy substrate. Glycogen is the main energy sub-
strate during exercise intensity above 70% of maximal oxygen uptake (VO2max ) and fatigue
develops when the glycogen stores are depleted in the active muscles. After exercise,
the rate of glycogen synthesis is increased to replete glycogen stores, and blood glucose
is the substrate. Indeed insulin-stimulated glucose uptake and glycogen synthesis is ele-
vated after exercise, which, from an evolutional point of view, will favor glycogen repletion
and preparation for new “fight or flight” events. In the modern society, the reduced glyco-
gen stores in skeletal muscles after exercise allows carbohydrates to be stored as muscle
glycogen and prevents that glucose is channeled to de novo lipid synthesis, which over
time will causes ectopic fat accumulation and insulin resistance. The reduction of skeletal
muscle glycogen after exercise allows a healthy storage of carbohydrates after meals and
prevents development of type 2 diabetes.

Keywords: glycogen phosphorylase, glycogen synthase, exercise, type 2 diabetes, insulin resistance, exercise, de
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INTRODUCTION
Exercise is considered a cornerstone in prevention and treatment
of type 2 diabetes and several mechanisms may contribute to the
benefits of exercise. Acutely, exercise improves insulin sensitiv-
ity in both healthy subjects and insulin resistant people (Heath
et al., 1983; Mikines et al., 1988). The improved insulin sensitivity
after a single bout of exercise is short-lived but repeated bouts of
endurance training improve insulin sensitivity beyond the acute
effect of the last training session, and insulin sensitivity correlates
with oxidative capacity in skeletal muscles (Koivisto et al., 1986;
Bruce et al., 2003). Importantly, the risk for development of type
2 diabetes is reduced by yearlong training (Knowler et al., 2002).

Skeletal muscles are the tissue that transforms chemical energy
to mechanical work and therefore uses the majority of energy dur-
ing exercise; glycogen is the main substrate during high intensity
exercise (Hermansen et al., 1967; Romijn et al., 1993). Skeletal
muscles are, however, also the major tissue where insulin stimu-
lates glucose uptake to remove glucose from the blood, and the

glucose taken up is incorporated into glycogen (DeFronzo et al.,
1981b; Shulman et al., 1990). The logic link between glycogen
content and insulin sensitivity is also supported experimentally
(Jensen et al., 1997).

The flux by which glucose is removed from the blood into
skeletal muscle glycogen is the major determinant of insulin
sensitivity (Højlund and Beck-Nielsen, 2006). Insulin stimulates
glucose uptake via translocation of GLUT4 (Etgen et al., 1996;
Larance et al., 2008). Endurance training increases expression
of GLUT4 and other proteins involved in insulin signaling and
glucose metabolism (Houmard et al., 1993), but the mechanism
determining insulin sensitivity remains poorly understood. Nev-
ertheless, the major defect in insulin resistant people is that the
non-oxidative glucose disposal (glycogen synthesis) is reduced
(Højlund and Beck-Nielsen, 2006). Several reviews have discussed
the effect of endurance training on insulin sensitivity from a mol-
ecular point of view (Wojtaszewski et al., 2002; Maarbjerg et al.,
2011).
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Exercise physiologists have performed numerous studies on
glycogen utilization during exercise and studied the effects of
nutritional supply for optimal glycogen repletion after exercise
(Ivy, 2001; Betts and Williams, 2010). Rapid glycogen repletion
requires that high rates of blood glucose must be taken up by
skeletal muscles, and insulin sensitivity is high after exercise. Dia-
betes is defined by elevated blood glucose and a major defect is
that insulin-stimulated glucose uptake and glycogen synthesis is
impaired in skeletal muscle (Shulman et al., 1990). A common
point at issue for both diabetologists and exercise physiologists is:
How can blood glucose rapidly be converted into skeletal muscle
glycogen? In the present review we have taken the view of exer-
cise physiologists to discuss the role of skeletal muscle glycogen in
regulation of insulin sensitivity.

GLYCOGEN
Glycogen is the molecular form of carbohydrates stored in humans
and other mammals. A glycogen particles in skeletal muscles can
contain as much as 50,000 glucose moieties linked with α(1 → 4)
bonds and branched by α(1 → 6) bonds (Meléndez et al., 1999).
In humans, ∼80% of the glycogen is stored in skeletal muscles,
simply because skeletal muscles account for ∼40–50% of body
weight in healthy young men and the glycogen concentration is
80–150 mmol kg ww−1 (Ivy et al., 1988; Hawley et al., 1997; Jensen
et al., 2011). The liver has a higher glycogen concentration, but
as the liver is much smaller (∼1.5 kg) and the total amount of
liver glycogen is ∼100 g (Taylor et al., 1996). Other tissue, like the
heart and brain contains minor glycogen stores with important
physiological function.

A main function of glycogen is to maintain a physiologi-
cal blood glucose concentration, but only liver glycogen directly
contributes to release of glucose into the blood. Skeletal mus-
cles are unable to release glucose (because muscles lack glucose
6-phosphatase) and muscles glycogen is mainly a local energy
substrate for exercise, rather than an energy source to maintain
blood glucose concentration during fasting. Indeed, muscle glyco-
gen can be broken down to lactate, which can be transported to
the liver and via gluconeogenesis in the liver contribute to main-
taining euglycemia (Cori cycle). However, humans do not show
major decrease in muscle glycogen content during fasting (Nie-
man et al., 1987; Vendelbo et al., 2011). In contrast, the liver
glycogen content decreases rapidly during fasting and the liver
glycogen content has decreased by ∼65% after 24 h fasting (Mag-
nusson et al., 1992). So, why is the majority of glycogen stored in
muscles?

We believe that the main function of skeletal muscle glyco-
gen, from an evolutional point of view, is to serve as an energy
store in “fight or flight” situations. In the heart and the brain,
glycogen is also the energy substrate that can generate anaero-
bic energy during short-term oxygen deficiency contributing to
survival (Prebil et al., 2011). Indeed, reduced glycogen content in
skeletal muscles increases insulin sensitivity (Jensen et al., 1997),
but the increased insulin sensitivity can again be related to the
importance to restore glycogen content rapidly for new challenges.
Glycogen stored intracellularly is immediately available for energy
production, and the rate of energy production far exceeds the flux
of glucose into skeletal muscles. Therefore, muscle glycogen may

have been important for survival during acute emergencies as sub-
strate for “fight or flight” reactions, whereas accumulated fat has
its importance for survival during starvation.

The glycogen content increases slightly by acute intake of large
amount of carbohydrates (Hawley et al., 1997). However, an acute
bout of glycogen depleting exercise can double glycogen content in
skeletal muscles if high amount of carbohydrates are ingested for
3 days (Bergström and Hultman, 1966); this phenomenon is called
super compensation. The glycogen content is higher in endurance
trained subjects compared to untrained subjects (Hickner et al.,
1997), and glycogen content increases in muscles after endurance
training (Burgomaster et al., 2005). In contrast, prolonged intake
of high amount of carbohydrates does not increase glycogen con-
tent in skeletal muscles, and the excess carbohydrate ingested is
converted to lipid (Acheson et al., 1988; Jensen, 2009). Therefore,
the glycogen content in skeletal muscles from obese and type 2
diabetes subjects is comparable to lean subjects or may even be
reduced (Shulman et al., 1990; He and Kelley, 2004). Since exer-
cise increases the glycogen storage capacity in skeletal muscles, it
is likely that inactivity will reduce storage capacity. Interestingly,
the ratio between glycogen content and oxidative capacity was
increased in muscles from obese subjects (He and Kelley, 2004).
Is this indicating increased glycogen content relative to the stor-
age capacity in muscles from obese subjects? A reduced glycogen
storage capacity in muscles from insulin resistant subjects will
cause a stronger feedback inhibition of glycogen synthase at sim-
ilar glycogen content and deteriorate glucose regulation, and the
glycogen content relative to glycogen storage capacity may regulate
insulin sensitivity. Indeed, it has been reported that hyperglycemia
compensate for impaired insulin-mediated activation of glycogen
synthase and glycogen storage in type 2 diabetic subjects (Kelley
and Mandarino, 1990; Vaag et al., 1992; Mevorach et al., 1998),
but these data also show a defect in regulation of glycogen storage
as a higher glucose concentration is required to uphold glycogen
synthesis. Such forced glycogen synthesis may increase metabolic
stress.

In rats, glycogen content is increased the day after exercise when
fed normal chow (Hespel and Richter, 1990; Kawanaka et al., 2000)
and increased even more when rats have free access to chow and
given drink containing glucose (Hespel and Richter, 1990; Derave
et al., 2000). Glycogen content is also increased in epitrochlearis
muscles when 24 h fasted rats are fed chow for another 24 h; the
glycogen content is twice as high in epitrochlearis muscles from
fasted–refed rats compared to rats with free access to chow contin-
uously (Jensen et al., 1997, 2006; Lai et al., 2007). Both exercise and
fasting decrease glycogen in the muscle where supercompensation
occurs (Hespel and Richter, 1990; Jensen et al., 1997, 2006), but is
not understood why glycogen content is increased after glycogen
depletion.

INSULIN-STIMULATED GLUCOSE UPTAKE
Insulin regulates many biological functions in skeletal muscle
and stimulation of skeletal muscle glucose uptake is one of the
most important processes regulated by insulin (Taniguchi et al.,
2006). Skeletal muscle has been reported to account for 70–75%
of insulin-stimulated glucose disposal during hyperinsulinemic
clamps and, therefore, represents a principle tissue mediating
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whole body glucose homeostasis (DeFronzo et al., 1981a; Shulman
et al., 1990). After an oral glucose tolerance test, skeletal muscles
also dispose a substantial part of the glucose. It has been reported
that 30–40% of the glucose is immediately oxidized after an oral
glucose tolerance test, and ∼15% of the ingested glucose is stored
as muscle glycogen (Kelley et al., 1988). However, after glycogen
depleting exercise, more 40% of the ingested glucose can be stored
as skeletal muscles glycogen of trained subjects (Hickner et al.,
1997; Greiwe et al., 1999). Untrained subjects have lower capac-
ity to store ingested carbohydrates after exercise than endurance
trained subjects (Hickner et al., 1997; Greiwe et al., 1999), but
exercise will still channel more of the ingested glucose into skele-
tal muscles glycogen and reduces metabolic stress in untrained
subjects.

Insulin stimulates skeletal muscle glucose uptake through
an increase of GLUT4 translocation from intracellular stor-
age vesicles to the plasma membrane and transverse tubules
(Etgen et al., 1996; Lauritzen et al., 2008). Insulin initiates its
effect in skeletal muscle by binding to the insulin receptor, fol-
lowed by receptor auto-phosphorylation. This induces a series
of phosphorylation and protein–protein interactions mediating
insulin signaling (Shepherd, 2005). In brief, insulin activates
insulin receptor tyrosine kinase activity that increases the tyro-
sine phosphorylation of insulin receptor substrate (IRS) pro-
teins, which recruit and activates class 1A phosphatidylinosi-
tol 3-kinase (PI3K; Figure 1). Activation of PI3K catalyzes the
formation of phosphatidylinositol 3,4,5-trisphosphate (PIP3),
which recruits both PDK1 and PKB to the phospholipid, and
subsequently allows PKB to be activated through phosphory-
lation by PDK1 at threonine 308 (Alessi and Cohen, 1998).
The mammalian target of rapamycin complexed with Rictor
(mTORC2) phosphorylates PKB at serine 473, and phospho-
rylation of both sites is required for full PKB activity (Alessi
and Cohen, 1998; Sarbassov et al., 2005). Several lines of evi-
dence have indicated the critical role of PKB phosphorylation and
activation in the regulation of insulin-stimulated glucose uptake
(Larance et al., 2008). It is the PKBβ isoform that controls whole
body glucose homeostasis (Cleasby et al., 2007; Schultze et al.,
2011).

PKB-mediated phosphorylation of AS160 and TBC1D1 has
recently emerged to regulate insulin-stimulated GLUT4 transloca-
tion beyond PKB (Arias et al., 2007; Sakamoto and Holman, 2008).
Insulin-stimulated phosphorylation of AS160 and TBC1D1 seems,
however, not to be regulated by glycogen content as we did not find
correlation between insulin-stimulated glucose uptake and AS160
phosphorylation using the phospho-Akt substrate (PAS) antibody
(Lai et al., 2010b).

Insulin also activates glycogen synthase (Cohen, 1993; Jensen
and Lai, 2009). Glycogen synthase (GS) is phosphorylated at nine
sites and insulin stimulates dephosphorylation of glycogen syn-
thase (Cohen, 1993; Jensen and Lai, 2009). Insulin stimulates
dephosphorylation of glycogen synthase via PKB-mediated phos-
phorylation of GSK3 (McManus et al., 2005; Bouskila et al., 2008;
Jensen and Lai, 2009). Phosphorylation of GSK3 decreases kinase
activity which will decrease phosphorylation of GS and increase
glycogens synthase fractional activity (Lai et al., 2007, 2010b;
Jensen and Lai, 2009).

FIGURE 1 | Insulin signaling pathways regulating glucose transport

and glycogen synthase in skeletal muscle. Insulin activates protein
kinase B (PKB) through phosphatidylinositol 3-kinase (PI3K) and two
upstream kinases; namely phosphoinositide-dependent protein kinase-1
(PDK1; phosphorylates PKB at threonine 308) and the mammalian target of
rapamycin complexed with Rictor (mTORC2; phosphorylates PKB at serine
473). The activated PKB phosphorylates Akt substrate of 160 kDa (AS160,
also called TBC1D4) and TBC1D1, which inhibits Rab GTPase activity and
promotes GTP binding to Rabs, thereby allowing GLUT4 translocation. For
glycogen synthesis, the activated PKB phosphorylates glycogen synthase
kinase-3 (GSK3), which leads to inhibition of GSK3 activity and
subsequently dephosphorylation and activation of glycogen synthase (GS).
IRS, insulin receptor substrate; PIP2, phosphatidylinositol 4,5-biphosphate;
PIP3, phosphatidylinositol 3,4,5-trisphosphate; G, glucose.

Glycogen synthase is also activated by glucose 6-phosphate
and allosteric activation is necessary for normal rate of glycogen
synthesis (Jensen and Lai, 2009; Bouskila et al., 2010). Glyco-
gen synthase activity with high concentrations of glucose 6-
phosphate (>8 mM) is independent of phosphorylation; activity
with high glucose 6-phosphate concentration is called total activ-
ity. However, dephosphorylation of glycogen synthase increases
affinity for glucose 6-phosphate and glycogen synthase activity
with a physiological concentration of glucose 6-phosphate (e.g.,
0.17 mM) describes activation of glycogen synthase (Jensen and
Lai, 2009).

Recently, a mutated glycogen synthase was developed where
phosphorylation-mediated regulation was normal, but allosteric
activation by glucose 6-phosphate was abolished (Bouskila et al.,
2010). Data achieved with the knockin mice expressing a GS with-
out glucose 6-phophate activation provided seminal information
about regulation of glycogen synthase (Brady, 2010). Bouskila et al.
(2010) showed that allosteric activation of GS is necessary for
regulation of glycogen synthesis in skeletal muscles. Therefore,
dephosphorylation of glycogen synthase increases glycogen syn-
thesis mainly by increasing GS affinity for glucose 6-phosphate
and allosteric activation. The GS knockin mice without allosteric
activation by glucose 6-phosphate also answered the challeng-
ing question why AICAR (AMPK activator), which reduces GS
fractional activity, increases glycogen content: AICAR stimulates
glucose uptake and glucose 6-phosphate mediated GS activation
stimulates glycogen synthesis (Hunter et al., 2011).
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Impaired insulin-stimulated disposal is a common feature in
people with type 2 diabetes, and causes inability to maintain blood
glucose in a normal range. Insulin-stimulated glycogen synthesis
is reduced in skeletal muscle in insulin resistant people and pre-
vent proper regulation of blood glucose (Shulman et al., 1990)
and particularly non-oxidative glucose metabolism is reduced in
insulin resistant subjects (Højlund and Beck-Nielsen, 2006). It is
also a consistent finding that insulin signaling is reduced at sev-
eral sites, like PI3K, PKB, GSK3, and GS, in muscle from insulin
resistance (Kim et al., 2000; Morino et al., 2005; Højlund and Beck-
Nielsen, 2006). Obesity is a strong risk factor for insulin resistance
but accumulation of fat per se does not cause insulin resistance,
as mice depleted for adipose triglyceride lipase (ATGL) accumu-
lates fat in muscles and heart, but do not develop insulin resistance
(Haemmerle et al., 2006). This finding suggest that lipid interme-
diates like long chain acyl-CoA, diacylglycerol, or ceramides causes
insulin resistance (Franch et al., 2002; Samuel et al., 2010).

EFFECT OF EXERCISE ON INSULIN SENSITIVITY AND
INSULIN SIGNALING
When insulin is administrated immediately after contraction or
exercise, there is an additive increase in glucose uptake. This
increased glucose uptake immediately after exercise occurs because
the effect of muscle contraction on glucose uptake is still present;
e.g., AMPK and glycogen synthase remains activated (Franch
et al., 1999; Musi et al., 2001). Insulin-mediated activation of
the proximal insulin signaling at the level of IRS1 and PI3K
is unchanged after exercise (Wojtaszewski et al., 1999; Jessen
et al., 2003). Most studies also report that insulin-stimulated
PKB activity is unchanged after exercise (Wojtaszewski et al.,
1999; Jessen et al., 2003), but some recent studies revealed
that prior contractile activity induces higher insulin-stimulated
PKB threonine 308 phosphorylation compared to rested mus-
cles, whereas insulin-stimulated PKB phosphorylation at serine
473 was unchanged by exercise (Arias et al., 2007; Lai et al.,
2009). Whether this increased site specific PKB phosphorylation
contributes to training-enhanced insulin sensitivity is currently
unknown. However, insulin-stimulated phosphorylation of GSK3,
the critical regulator of GS activity, was not increased after muscle
contraction (Lai et al., 2009, 2010b).

Exercise training enhances insulin sensitivity. It is well estab-
lished that the enhanced insulin sensitivity after training is associ-
ated with adaptations in skeletal muscles such as increased expres-
sion of key proteins like GLUT4, hexokinase II, and GS, involved
in insulin-stimulated glucose metabolism (Dela et al., 1993; Frosig
et al., 2007). However, the signaling event that leads to enhanced
insulin sensitivity after exercise training is not conclusive. It has
been reported that short-term exercise training increased insulin-
stimulated PI3K activity (Houmard et al., 1999), but other studies
have reported that insulin-stimulated IRS1-associated PI3K activ-
ity is unchanged or reduced after training (Christ-Roberts et al.,
2004; Frosig et al., 2007). While the training effect on PI3K activity
is inconsistent, several studies have reported that enhanced insulin
sensitivity was associated with increased PKB phosphorylation
and expression (Christ-Roberts et al., 2004; Frosig et al., 2007;
Wadley et al., 2007). Consistent with the increased PKB activation
after training, it has also been demonstrated that insulin-mediated

AS160 phosphorylation is enhanced after training (Frosig et al.,
2007; Vind et al., 2011). However, exercise normalized insulin-
mediated AS160 phosphorylation in skeletal muscle from type
2 diabetic subjects but without normalizing insulin-stimulated
glucose disposal (Vind et al., 2011).

Exercise training also increases insulin-stimulated glucose
uptake and GLUT4 translocation in muscles from obese Zucker
rats (Etgen et al., 1997). Skeletal muscles from the obese Zucker
rats develop severe insulin resistance and impaired insulin sig-
naling (Christ et al., 2002). However, although training increases
insulin-stimulated glucose uptake in skeletal from obese Zucker
rats, insulin-mediated activation of PI3K and PKB remained low
after training (Christ et al., 2002). The signaling mechanisms
which increase insulin-stimulated glucose uptake after training
remain to be determined.

GLYCOGEN UTILIZATION DURING EXERCISE
Energy consumption at rest is low; oxygen uptake at rest is typ-
ically ∼0.25 L O2 and carbohydrate oxidation is ∼0.1 g min−1

(Hermansen et al., 1967; van Loon et al., 2001), and the rate of
carbohydrate oxidation gradually decreases during fasting. At rest,
the rate of carbohydrate oxidation depends mainly on the diet and
exercise prior to measurements, and the glycogen utilization in
skeletal muscles at rest is low or absent (van Loon et al., 2001).

The utilization of carbohydrate during exercise can easily be
calculated from oxygen uptake(VO2 ) and respiratory exchange
ratio (RER). Normally carbohydrate oxidation is calculated with-
out taking protein oxidation in consideration; tables and formulae
have been published for such calculations (Frayn, 1983; Peronnet
and Massicotte, 1991). The relative (as well as absolute) rate of
carbohydrate oxidation depends on exercise intensity and well-
trained persons have a much higher capacity to metabolize glucose
and fat compared to untrained persons. During exercise above
70% the major carbohydrate source is muscle glycogen (Romijn
et al., 1993; van Loon et al., 2001).

The physical form of humans are determined by their capac-
ity to oxidize energy substrates (carbohydrates and fat), which is
reflected in ability to utilize oxygen. Maximal oxygen uptake is used
to describe oxidative capacity, and values of 40–50 ml kg−1 min−1

are common in healthy young men. However,VO2max can vary
from below 15 ml kg−1 min−1 in elderly people to more than
90 ml kg−1 min−1 in some endurance athletes. Capacity for carbo-
hydrate oxidation varies correspondingly. Although, well-trained
people utilize more fat during exercise, there is huge variation in
carbohydrate oxidation. Well-trained subjects can more than oxi-
dize 3 g min−1 (Hermansen et al., 1967) which results in oxidation
of 180 g carbohydrate during 1 h of intense exercise.

During cycling, ∼20 kg of muscle is active (Boushel et al.,
2011) and cycling is the preferred type of activity in exercise
physiology. Several studies have investigated glycogen breakdown
during cycling and exercise intensity cannot be maintained when
the active muscles are depleted for glycogen (Hermansen et al.,
1967). Hermansen et al. (1967) reported a glycogen content of only
7 mmol kg ww−1at exhaustion after cycling at 75% of VO2max Most
studies find low glycogen content at exhaustion, but the degree of
depletion depends of the exercise intensity, and the glycogen deple-
tion is most pronounced when cycling to exhaustion at ∼75% of
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VO2max (Saltin and Karlsson, 1971). Most studies report glycogen
concentration of 7–20 mmol kg ww−1 in m. vastus lateralis after
cycling to exhaustion (Hermansen et al., 1967; Nieman et al., 1987;
Hickner et al., 1997). Glycogen concentration in m. vastus lateralis
is typically 80–150 mmol kg ww−1 in rested muscles (Coyle et al.,
1986; Nieman et al., 1987; Hawley et al., 1997; van Loon et al.,
2001).

During running, the energy consumption is ∼1 kcal kg−1 km−1

(Åstrand and Rodahl, 1992). This means that an 85-kg person will
use about 850 kcal during a 10-km run; 850 kcal corresponds to
∼200 g carbohydrate or ∼90 g fat. During exercise, carbohydrates
and fat are used simultaneously. During running, a larger muscle
mass is used and less glycogen is broken down in the leg muscles
and m. gastrocnemius is not depleted for glycogen at exhaus-
tion (Madsen et al., 1990). Cross-country skiing mainly depletes
glycogen stores in arms (Ortenblad et al., 2011).

The intensity of exercise, together with duration, determines
the amount of energy used in the training session. High intensity
intermittent training (HIT) is often performed as 30 s “all-out”
cycling in experiments. The power that can be produced during
30 s “all-out” corresponds to ∼250% of VO2max (Gibala et al., 2006)
and 3–5 min rest is typically allowed between bouts. The metab-
olism in skeletal muscles during the moderate intensity training
and HIT differs dramatically. During HIT anaerobic provides the
major part of energy, which is repaid with aerobic processes in
the rest periods. During prolonged continuous exercise energy
consumption will be rather stable, and skeletal muscle glycogen
content will be reduced by 50–70% after 60 min cycling at 75% of
VO2max (Hermansen et al., 1967; Saltin and Karlsson, 1971).

During high intensity training the power output is high with
substantial anaerobic energy turn over and high adrenaline con-
centration. Jacobs et al. (1982) reported that a single 30 s all-
out cycling decreased glycogen content by 22% corresponding
to ∼20 mmol kg ww−1. Esbjornsson-Liljedahl et al. (1999) also
found that a single 30 s all-out cycling in males and females
decreased glycogen content by ∼25% in both type I and type II
fibers. Furthermore, three bouts of 30 s all-out cycling with 20 min
rest between sprints decreased glycogen content by more than 50%
in type II fibers and nearly 50% in type I fibers in both females
and males (Esbjornsson-Liljedahl et al., 2002). These data show
that high intensity training effectively decreases glycogen content
in skeletal muscles.

ADRENALINE-STIMULATED GLYCOGEN BREAKDOWN
In 1928, Carl and Gerty Cori showed that adrenaline injection into
young fasted rats increased glycogen content in the liver whereas
carcass glycogen content decreased (Cori and Cori, 1928). It was
concluded that “muscle glycogen is an indirect source of blood
sugar” (Cori and Cori, 1928); in biochemistry books this metabo-
lism of glucose is called the Cori cycle. The Cori cycle states that
skeletal muscles glycogen is broken down during adrenaline stim-
ulation and released as lactate, and converted to glucose in the
liver.

It is well-understood that adrenaline stimulates glycogen break-
down via β-adrenergic receptors and phosphorylation (activation)
of glycogen phosphorylase (Cohen, 2002). In details, β-adrenergic
receptors activate adenylyl cyclase via G-proteins which results

in cAMP accumulation and activation of PKA. PKA-mediated
phosphorylation of glycogen phosphorylase kinase increases phos-
phorylation of glycogen phosphorylase (Cohen, 2002). Phospho-
rylated glycogen phosphorylase is active and catalyzes break-
down of glycogen to glucose 1-phosphate. Skeletal muscles mainly
express β2-adrenergic receptors and adrenaline, rather than nora-
drenaline, stimulates glycogen breakdown (Jensen et al., 1995).
Adrenaline-mediated glycogen synthase inactivation also occurs
via cAMP and PKA (Cohen, 2002; Jensen et al., 2007, 2008).

The amount of glycogen breakdown in resting muscles during
adrenaline stimulation is significant but relatively low compared
to glycogen breakdown during intense muscle contraction (Jensen
et al., 1989; Jensen and Dahl, 1995; Aslesen and Jensen, 1998;
Lai et al., 2007, 2009). In humans, it has also been shown that
adrenaline infusion activates glycogen phosphorylase and stim-
ulates glycogen breakdown (Chasiotis et al., 1983). Indeed, not
all studies find that adrenaline infusion reduces glycogen con-
tent in humans (Laurent et al., 1998), but it has consistently been
reported release of lactate from muscles during adrenaline infusion
(Simonsen et al., 1992; Qvisth et al., 2007; Gjedsted et al., 2011). In
humans, we infused adrenaline for 4 h and found increased plasma
lactate concentration and lower glycogen content the following
day compared to the day after saline infusion (Jensen et al., 2011).
Despite that glycogen content was reduced the day after adrena-
line infusion, we did not find elevated insulin-stimulated glucose
disposal although there was a tendency (p = 0.14) for an increased
insulin sensitivity the day after adrenaline infusion (Jensen et al.,
2011).

The energy consumption during adrenaline stimulation is not
increased similarly to the activation of glycogen phosphorylase
because glycolytic intermediates accumulate and via feedback
mechanisms inhibit glycogenolytic flux (Connett and Sahlin, 1996;
Jensen, 2009). Adrenaline-stimulated glycogen breakdown in rest-
ing muscles is fiber type dependent and occurs only in muscles
rich in fast-twitch fibers (Jensen et al., 1989; Jensen and Dahl,
1995). With histochemical analysis, it has been shown that adren-
aline stimulates glycogen breakdown significantly in type II fibers
(fast-twitch) but not in type I (slow-twitch) muscle fibers (Jensen
and Dahl, 1995). In vivo, adrenaline acutely decreases glycogen
content, and Nolte et al. (1994) reported a 60% reduction in glyco-
gen content in epitrochlearis 2 h after subcutaneous injection of
adrenaline in conjunction with increased insulin sensitivity. We
have also found that glycogen content is reduced by ∼50% in
fast-twitch epitrochlearis muscles 3 h after subcutaneously adren-
aline injection but glycogen content did not decrease significantly
in the slow-twitch soleus muscle. Interestingly, adrenaline injec-
tion increased insulin-stimulated glucose uptake in epitrochlearis,
but not in soleus muscles (Kolnes and Jensen, unpublished obser-
vation). Adrenaline infusion with osmotic mini pumps for 24 h
also lowered glycogen content and increased insulin sensitivity
in epitrochlearis muscles (Jensen et al., 2005). However, glyco-
gen content was normal after 11 days of adrenaline infusion, but
insulin sensitivity in epitrochlearis muscles remained elevated
(Jensen et al., 2005).

The physiological role of adrenaline-stimulated glycogen
breakdown in non-active muscles is debated. However, there is
some evidence that adrenaline-mediated glycogen breakdown has
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physiological role. Taylor et al. (1993) reported that skeletal muscle
glycogen content increased after a carbohydrate rich meal reach-
ing a maximum after 4 h for thereafter to decrease. These data
suggest that skeletal muscle glycogen is used in rested muscles and
adrenaline-mediated glycogen breakdown may be the mechanism.

GLYCOGEN CONTENT AND INSULIN SENSITIIVTY
The glycogen content contributes to regulation of glucose uptake
during muscle contraction. In epitrochlearis muscles with normal
glycogen content, contraction-stimulated glucose uptake corre-
lated with glycogen breakdown when muscles were stimulated at
different intensities (Aslesen et al., 2001). Varying the glycogen
content prior to muscle contraction also showed that contraction-
stimulated glucose uptake inversely correlates with glycogen con-
tent prior to muscle contraction (Lai et al., 2010b). The mech-
anistic link between low glycogen content and high rate of
contraction-stimulated glucose uptake has not been determined,
but contraction-mediated AMPK activation is higher in muscles
with low glycogen content and may cause the higher glucose uptake
(Lai et al., 2010b).

The glycogen content also influences insulin action. We have
in several studies investigated the role of glycogen content on
insulin- and contraction-stimulated glucose uptake, glycogen syn-
thase activation, and activation of signaling proteins in skeletal
muscles (Jensen et al., 1997, 2006; Lai et al., 2007, 2009, 2010a,b).
In 1997, we demonstrated an inverse relationship between glyco-
gen content and insulin-stimulated glucose uptake in the isolated
rat skeletal muscle (Jensen et al., 1997). In that study, we observed
that the ability of insulin to stimulate glucose uptake was markedly
increased in muscle with low glycogen content, compared to mus-
cle with normal and high glycogen content (Jensen et al., 1997).
When the glycogen content was increased acutely by fasting–
refeeding, insulin signaling, and insulin-stimulated glucose uptake
was unchanged (Jensen et al., 1997, 2006). However, high glyco-
gen content decreased insulin-stimulated glycogen synthesis and
increased glycolytic flux (Jensen et al., 2006). Such changed glu-
cose metabolism may over time cause insulin resistance (Jensen,
2009).

Several studies have documented similar relationship between
glycogen content and metabolic regulation. It has been shown that
GLUT4 protein content on cell surface was inversely correlated
with glycogen content during insulin stimulation (Derave et al.,
1999), suggesting that insulin-stimulated GLUT4 translocation is
regulated by the level of muscle glycogen content. Furthermore,
the enhanced insulin-stimulated glucose uptake observed after an
acute bout of exercise can be preserved for more than 48 h by
carbohydrate deprivation (Cartee et al., 1989), whereas the insulin-
stimulated glucose uptake returned to normal when rat were fed
chow, which is rich in carbohydrate (Young et al., 1983; Cartee
et al., 1989).

Varying glycogen content acutely does not change the early
steps of proximal insulin signaling, including insulin receptor tyro-
sine kinase activity, insulin receptor tyrosine phosphorylation, and
PI3K activity (Derave et al., 2000; Kawanaka et al., 2000; Jensen
et al., 2006). Interestingly, insulin-stimulated PKB phosphory-
lation and activity was enhanced in muscle with low glycogen
content (Derave et al., 2000; Kawanaka et al., 2000; Jensen et al.,

2006; Lai et al., 2010b), which suggests that increased PKB activity
may contribute the enhanced insulin-stimulated glucose uptake
in muscles with low glycogen content. However, we were unable
to find elevated AS160 phosphorylation in muscles with reduced
glycogen content despite that PKB phosphorylation was increased
(Lai et al., 2010b).

Exercise increases insulin sensitivity but insulin signaling is
not consistently improved after exercise (see above). However,
a consistent finding is that exercise decreases glycogen content
(Bergström et al., 1967; Hermansen et al., 1967; Coyle et al.,
1986). Glycogen breakdown has mostly been investigated after
prolonged exercise, but high intensity also decreases glycogen con-
tent (Esbjornsson-Liljedahl et al., 2002). Interestingly, 2 weeks of
HIT training has been reported to increase insulin sensitivity
(Richards et al., 2010) and exercise-mediated glycogen break-
down in skeletal muscles may contribute to the increased insulin
sensitivity.

Exercise regulates insulin sensitivity via other mechanisms than
reducing glycogen content. Training increases GLUT4 content in
skeletal muscles, which contributes to improved insulin sensitivity
(Houmard et al., 1993). A rather consistent finding is that glyco-
gen content is higher in skeletal muscles from trained subjects and
training increases glycogen content (Burgomaster et al., 2008). The
glycogen stores are also refilled 24 h after exercise (Costill et al.,
1981) whereas insulin sensitivity remains increased 24 h after a
bout of exercise. Indeed, the fact that glycogen content is increased
in skeletal muscles after training may result from increased insulin
sensitivity. From an evolutional point of view such increase in
glycogen content may reflect an important adaptation: high skele-
tal muscles glycogen content improves the chance for survival in
emergencies.

Decreasing glycogen content by exercise or fasting stimulates
glycogen accumulation to levels above the glycogen content in
well-fed conditions (Hespel and Richter, 1990; Jensen et al., 1997;
Derave et al., 2000; Lai et al., 2007). It is possible to increase the
glycogen content in skeletal muscles if they are exposed to high
concentrations of insulin and glucose (Richter et al., 1988; Hoy
et al., 2007). Why does glycogen content not increase when high
amount of carbohydrates are ingested under normal physiological
conditions? Why is the excess carbohydrate ingested converted to
lipid without elevation of glycogen content in skeletal muscles?

The glycogen content in skeletal muscles will reflects a bal-
ance between available glucose and insulin sensitivity in skeletal
muscles. Studies in rats have under controlled conditions shown
that training increases expression of GLUT4, but insulin sensitiv-
ity is not elevated in skeletal muscles because glycogen content
also increases (Kawanaka et al., 1999, 2000). The acute adapta-
tion to training is, therefore, higher glycogen content but stable
insulin sensitivity. From an evolutional point of view, this indicates
that high glycogen content is more important than high insulin
sensitivity.

Prolonged training increases insulin sensitivity beyond the last
training session, and insulin sensitivity correlates with oxidative
capacity in skeletal muscles (Bruce et al., 2003). GLUT4 expression
in skeletal muscles also regulates insulin sensitivity and correlates
with rate of glycogen resynthesis (Hickner et al., 1997; Greiwe et al.,
1999), which supports that glycogen synthesis is important from
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an evolutionary point of view. Interestingly, 24 h fasting GLUT4
content was elevated in fast-twitch epitrochlearis muscles where
glycogen content was reduced (Jensen et al., 2006; Lai et al., 2007)
but refeeding rats for 24 h increased glycogen content rather than
increasing insulin sensitivity (Jensen et al., 1997, 2006). In soleus
(slow-twitch muscle), glycogen content was minimally affected by
24 h fasting and GLUT4 was unchanged (Lai et al., 2009). These
findings support that replenishment of glycogen store is superior
to elevated insulin sensitivity.

Blood glucose concentration can be regulated in vivo even
when skeletal muscle glycogen synthesis is impaired by short-term
overeating (Acheson et al., 1988). Genetic findings support that
skeletal muscle glycogen synthesis is not an absolute requirement
for regulation of blood glucose concentration. Knockout mice
lacking the skeletal muscle isoform of glycogen synthase have nor-
mal insulin sensitivity (Pederson et al., 2005). However, it is of note
that 90% of the mice homozygotic knockout mice with deleted
glycogen synthase die shortly after birth (Pederson et al., 2005). In
human, a child without glycogen synthase has been described, and
also this person had a normal glucose response to an oral glucose
tolerance test (Kollberg et al., 2007).

Glycogen resynthesis is an important part of restitution after
training and athletes optimize glycogen synthesis by intake of high
amount of carbohydrates immediately after exercise (Ivy, 2001).
The energy source for rapid glycogen synthesis is blood glucose and
rapid extraction of glucose from the blood is required for high rate
of glycogen synthesis. Diabetes subjects have impaired removal of
blood glucose, because insulin-stimulated glycogen synthesis is
impaired (Shulman et al., 1990; Højlund and Beck-Nielsen, 2006).
Exercise-stimulated glycogen breakdown will stimulate skeletal
muscle glycogen synthesis and extraction of blood glucose and
increase insulin sensitivity. Such increased insulin sensitivity may
be secondary to replenishing glycogen stores in the context of
survival. However, in the modern society, the increased insulin
sensitivity after exercise may have its superior role to prevent
development of insulin resistance and type 2 diabetes.

MODEL FOR DEVELOPMENT OF INSULIN RESISTANCE
Glycogen content has a strong feedback inhibition of glycogen syn-
thase activity (Danforth, 1965) and the glycogen stores are limited.
It is not possible to dispose glucose into glycogen when stores are
filled and under such condition, glucose remains in the blood until
it is utilized as energy or transformed into lipid. Skeletal muscles
have a crucial role for regulation of whole body glucose metab-
olism, but acute elevation of glycogen does not impair insulin
signaling and insulin-stimulated glucose transport may be normal
(Jensen et al., 1997, 2006). However, insulin-stimulated glycogen
synthesis is decreased, and more glucose is metabolized via gly-
colysis and we suggest that such increased glucose metabolism in
skeletal muscles is unhealthy.

Insulin signaling and insulin-stimulated glucose transport are
impaired in muscles from rats and humans showing manifest
insulin resistance or type 2 diabetes (Etgen et al., 1996; Ruzzin et al.,
2005; Højlund and Beck-Nielsen, 2006; Petersen et al., 2007). How-
ever, such insulin resistance develops gradually. The mechanisms
for development of insulin resistance in skeletal are not well-
understood, but accumulation of lipid and lipid intermediates are

FIGURE 2 | Excess energy intake is stored after meals as glycogen and

triacylglycerols. Carbohydrate can be stored as glycogen mainly in skeletal
muscles or the liver; fat is manly stores as triacylglycerol in adipose tissue.
With filled glycogen stores, glucose can be the substrate for de novo lipid
synthesis and stored in adipocytes, muscles, or the liver and cause insulin
resistance. Glycogen and fat are important energy substrates during
exercise.

likely contributors (Aas et al., 2005). Furthermore, energy surplus
increases production of reactive oxidative spices (Hoehn et al.,
2009; Hue and Taegtmeyer, 2009). The production of ROS is
increased when high amount of glucose and fat is supplied the
mitochondria simultaneously and forces electrons into the elec-
tron transport chain (Hue and Taegtmeyer, 2009). Preventing
ROS production in skeletal muscles protects skeletal muscles form
developing insulin resistance (Hoehn et al., 2009) and high glyco-
gen content will favor metabolic stress in skeletal muscles. Insulin
resistant muscles are characterized with numerous changes (e.g.,
expression of signaling proteins and activation of signaling path-
ways), and the mechanisms for initiation of insulin resistance may
vary.

In skeletal muscles with low glycogen, glucose will be stored
as muscles glycogen (Ivy, 1991; Hickner et al., 1997; Greiwe et al.,
1999; Jensen et al., 2006). A major concern for athletes after stren-
uous training is to replete the glycogen stores is skeletal muscles
preparing for new training sessions or competitions. Skeletal mus-
cles are able to extract blood glucose effectively when high amount
of carbohydrate are supplied (Ivy, 2001), and we suggest that glu-
cose disposal into skeletal muscle glycogen is healthy storage of
carbohydrates.

Indeed, healthy humans have large capacity to store glucose as
lipid (Figure 2). Acheson et al. (1988) overfed people for 7 days in
a calorimeter and found that healthy humans were able to convert
475 g carbohydrate to 150 g lipid per day. Importantly, de novo
lipid synthesis occurred without development of hyperglycemia,
but blood triglyceride content increased 10-fold (Acheson et al.,
1988). Accumulation of fat per se does not cause insulin resistance
(Haemmerle et al., 2006), but lipid intermediates like long chain
acyl-CoA, ceramides, or diacylglycerol will impair insulin signal-
ing and cause insulin resistance (Aas et al., 2005; Samuel et al.,
2010).
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Accumulation of lipid intermediates seems to occur secondary
to increased glycogen content and acute exercise reduces lipid
synthesis during glucose loads (Figure 2). Glucose conversion to
lipid was reduced in untrained young healthy males 15 h after
cycling 1 h at 65% ofVO2max (Mikines et al., 1989). Moreover, it has
been reported that insulin resistant subjects stores a larger part of
ingested glucose as lipid in skeletal muscles and liver compared to
insulin sensitive subjects, whereas skeletal muscles glycogen syn-
thesis is lower in insulin resistant subjects (Petersen et al., 2007).
A reduced capacity to store glucose as glycogen promotes de novo
lipogenesis, which will deteriorate of insulin sensitivity due to lipid
accumulation.

The increased insulin-mediated glycogen synthesis after exer-
cise benefits survival in “fight or flight” situations from an

evolutionary perspective. In the modern society, abundant food
and inactivity are large challenges for humans, and metabolic dis-
eases related to obesity deteriorate public health. Although the
improved insulin sensitivity after glycogen depleting exercise may
not have evolved to improve regulation of blood glucose, such
effect of exercise may be the mechanism that protect humans from
developing type 2 diabetes in the modern society. We suggest that
dynamic glycogen metabolism is important for healthy regulation
of blood glucose and prevention of insulin resistance.
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