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Abstract 

Previous studies investigating the effects of shoe midsole hardness on running 
kinematics have often used male subjects from within a narrow age range. It is unknown 
whether shoe midsole hardness has the same kinematic effect on male and female 
runners as well as runners from different age categories. As sex and age have an effect 
on running kinematics, it is important to understand if shoe midsole hardness affects the 
kinematics of these groups in a similar fashion. However, current literature on the 
effects of sex and age on running kinematics are also limited to a narrow age range 
distribution in their study population. Therefore, this study tested the influence of three 
different midsole hardness conditions, sex and age on the lower extremity kinematics 
during heel-toe running. A comprehensive analysis approach was used to analyze the 
lower-extremity kinematic gait variables for 93 runners (male and female) aged 16-75 
years. Participants ran at 3.33 ± 0.15 m/s on a 30 m-long runway with soft, medium and 
hard midsoles. A principal component analysis combined with a support vector machine 
showed that running kinematics based on shoe midsole hardness, sex, and age were 
separable and classifiable. Shoe midsole hardness demonstrated a subject-
independent effect on the kinematics of running. Additionally, it was found that age 
differences affected the more dominant movement components of running compared to 
differences due to the sex of a runner.  
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Introduction 1 

Midsole hardness is assumed to influence kinematics, performance, comfort and 2 

injuries (Clements et al., 2001; Frederick et al., 1984; Frederick et al., 1986; Hamill et 3 

al., 1983; Hardin et al., 2004). Current literature investigating the effects of shoe midsole 4 

hardness on running kinematics have often been limited in the number of participants 5 

and focused on male participants of a certain age range (Hardin et al., 2004; Morio et 6 

al., 2009). However, certain groups of individuals demonstrate group-specific movement 7 

patterns during over-ground running. For example, sex-related anatomical differences 8 

are known to affect lower extremity kinematics such as hip adduction, hip internal 9 

rotation and knee abduction during running with female runners showing typically a 10 

larger range of movement in the frontal and transverse planes than their male 11 

counterparts (Chumanov et al., 2008; Ferber et al., 2003). It is also known that ankle 12 

and knee joint kinematics are affected as the musculoskeletal system becomes stiffer 13 

with aging (Fukuchi and Duarte, 2008; Karamanidis and Arampatzis, 2007; Kerrigan et 14 

al., 1998; Silder et al., 2008). As these groups demonstrate different lower extremity 15 

kinematics, it is unknown whether a certain intervention such as a shoe will affect the 16 

kinematics of these groups in a similar manner. Answering this question requires the 17 

systematic testing of age and sex sub-groups using the same methodology within the 18 

same study.  19 

To our knowledge, the biomechanical testing of a large sample of recreational 20 

runners of both sexes from a wide age range has never been completed. Additionally, 21 

most kinematic evaluations of the effects of footwear, sex, and age have focused on 22 

biomechanical variables evaluated at discrete time points (Butler et al., 2006; Fukuchi 23 
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and Duarte, 2008; Hardin et al., 2004; Keenan et al., 2011). This approach depends on 24 

the investigator selecting the appropriate variables for the question of interest and 25 

leaves a large portion of the kinematic data unanalyzed where interesting results may 26 

appear.  A more comprehensive analysis approach should be taken in order to take 27 

advantage of the full data set rather than choosing discrete kinematic variables. 28 

An analysis approach that has gained more interest in biomechanical research is 29 

the use of vector-based pattern recognition methods such as principal component 30 

analysis (PCA) (Daffertshofer et al., 2004; Epifanio et al., 2008; Maurer et al., 2012; 31 

Moore et al., 2009; Troje, 2002) and support vector machine (SVM) (Begg et al., 2005; 32 

Vapnik, 1995; Weston, 1999). The kinematic marker data from an entire stance phase 33 

can then be used in one analysis step to determine lower-extremity differences for 34 

certain groups. The principal component analysis method allows for the dominant 35 

movements of a certain activity to be identified, such as the control movements used in 36 

bicycle riding at different speeds (Moore et al., 2009). The most dominant movements 37 

arise in the lower number principal component vectors while the less dominant 38 

movements arise in the higher number principal components vectors. In the case of 39 

running, principal component analysis has the potential to identify dominant movements 40 

that explain the overall running movement. It is then possible to determine which 41 

movements of the running motion are affected by certain conditions (age, sex, shoe 42 

midsole hardness). The separation and classification rate between age, sex, and shoe 43 

midsole hardness can then be determined using mathematical approaches such as a 44 

leave-one-out support vector machine (SVM) (Begg et al., 2005; Vapnik, 1995; Weston, 45 

1999).  46 
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Thus, the purpose of this study was to determine the influence of three different 47 

midsole hardness conditions, sex and age on the lower extremity kinematics during 48 

heel-toe running using a principal component analysis approach.    49 

It was hypothesized that: 50 

H(1) Age, sex, and shoe midsole effects on kinematics are separable and 51 

classifiable using a principal component analysis approach and 52 

H(2) Subject-independent changes due to shoe midsole hardness exist. 53 

Methods 54 

Subjects 55 

Ninety-three recreational runners (47 male, 46 female) who ran at least 30 56 

minutes per week participated in this study (Tab. 1). Approval for research using human 57 

subjects was obtained from the University of Calgary’s Conjoint Health Research Ethics 58 

Board and all participants provided written informed consent. All subjects were free from 59 

injury or pain at the time of testing. Four age groups were defined as follows: Group 1 60 

(G1) – Age 16-20, Group 2 (G2) – Age 21-35, Group 3 (G3) – Age 36-60, and Group 4 61 

(G4) – Age 61-75.  62 

Experimental setup 63 

Three different shoe conditions provided by Decathlon (now Oxylane Group, 64 

France) that differed only in their midsole hardness were investigated: Asker C-40 65 

(Soft), Asker C-52 (Medium) and Asker C-65 (Hard). Kinematic data were collected 66 

using 12 retro-reflective markers mounted on the pelvis and right lower extremity to 67 

measure three-dimensional movements of each segment (Figure 1) with an eight-68 

camera, 240 Hz motion capture system (Motion Analysis, CA). Data were filtered with a 69 
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low pass fourth order Butterworth filter with a cutoff frequency of 12 Hz. 70 

Subjects performed heel-toe running trials on a 30 m lane in the Human 71 

Performance Laboratory at the University of Calgary. A force plate embedded in the 72 

floor of the running lane was used to determine heel contact and toe off. Five running 73 

trials (3.33±0.16 m/s) for each of the three different shoe conditions were collected. The 74 

order in which the shoes were tested was randomly selected for each subject. Subjects 75 

were allotted familiarization time prior to data collection for each of the shoe conditions. 76 

Data analysis 77 

Markers were identified and tracked using EVaRT Real Time (Version 5.0.4, 78 

Motion Analysis, CA). All variables were clipped for the stance phase of the step with 79 

the right foot on the force plate. Heel contact and toe-off were determined using a 15 N 80 

threshold in the vertical ground reaction force.  81 

A position matrix was formed using the marker position data for all 93 subjects. 82 

As a first step, all marker positions were expressed as distances to the pelvis center 83 

and normalized to the static height of each subject. The motion data for the x, y, and z 84 

coordinates of each of the 12 markers were normalized to 100% of the stance phase 85 

(101 time points x 3 directions x 12 markers) and combined into a 3636-dimensional 86 

column vector.  All vectors for each subject, shoe, and trial combination (93 subjects x 3 87 

shoe conditions x 5 trials) were used to form a position vector matrix. Hence, the 88 

position matrix had the dimensions 1395 x 3636 (Figure 1) and formed the input for the 89 

PCA. 90 

The position matrix was further refined depending on the goal of the analysis. To 91 

analyze shoe effects, subject-specific differences were reduced. This was done with a 92 
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whitening approach, where the mean of each subject’s position vectors was subtracted 93 

from each trial for that subject (Fukunaga, 1990; Theodoridis and Koutroumbas, 2006). 94 

Each trial with the subject mean subtracted was then divided by the standard deviation 95 

of that subject’s position vectors. The reduction of subject specific differences increased 96 

the prominence of the shoe differences. For the sex and age analysis, the whitening 97 

process was not used. Therefore, the mean of all subject position vectors was 98 

subtracted from each trial for the analysis of sex and age effects. As a result of these 99 

steps, a different input matrix was used for the shoe analysis than for the age and sex 100 

analysis. 101 

Following the normalization procedures, a principal component analysis (PCA) 102 

was used on each respective input movement matrix (Daffertshofer et al., 2004). A 103 

support vector machine (SVM) was used to determine if the shoe, sex, and age 104 

conditions were separable and classifiable based on the first principal components that 105 

explained at least 95% of the variance in the data (Duda et al., 2001). A leave-one-out 106 

method was applied to determine the classification rate for a new subject (Fukunaga, 107 

1990). A binomial distribution was also completed to determine significance for 108 

classification rates. The CRITBINOM function of Microsoft Office Excel was used to 109 

determine the number of correctly classified subjects needed to reach a 95% level of 110 

confidence.  111 

For the functional interpretation of the data, principal component projections with 112 

a large Cohen’s d effect size (d > 0.8) between sex, age groups and shoe conditions 113 

were determined (Cohen 1969). Principal components showing significant differences 114 

with respect to a group or condition were linearly combined. The combination indicates 115 
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common differences in the movement between two groups or conditions. For these 116 

principal component vectors, the direction of change in the marker position between 117 

conditions was determined and plotted on stick figure diagrams of the right lower 118 

extremity and pelvis. Mean marker positions were indicated with black circles while the 119 

direction of change of the marker movement was indicated with blue arrows. The length 120 

of the arrows indicates the contribution of the movement of individual markers to the 121 

overall condition-dependent movement changes. The projection of the movement onto 122 

this vector gives the change of the markers averaged over all marker positions.  123 

Results 124 

Shoe Midsole 125 

Using a leave-one-out method with the first 35 principal components which 126 

explained 95.6% of the variance in the data, a classification rate of 99.5% (SD 2.3) was 127 

found between the hard and the soft midsole while a classification rate of 95.6% (SD 128 

8.8) was found between the hard and the medium midsole and a classification rate of 129 

86.0 % (SD 14.4) was found between the soft and the medium midsole. All of these 130 

classification rates were significant. Principal component vectors 3, 5, 6, and 19 showed 131 

a large effect size for the projection difference between the shoe midsole conditions 132 

(Figure 2). Plotting the projection for each trial onto principal component 3 and 5 133 

demonstrated a clustering of the soft, medium and hard midsole trials (Figure 2). An 134 

investigation of the movements described by these principal components indicated less 135 

hip flexion, less knee flexion and more ankle dorsiflexion with the soft midsole as 136 

compared to the hard midsole. The direction of change in marker position in the 137 

combined principal component vector (PC 3, 5, 6, 19) for the hard shoe compared to the 138 
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soft shoe was plotted on a stick figure diagram of the right lower limb and pelvis (Figure 139 

3). The average displacement from the mean of all 12 markers during the stance phase 140 

for principal component vectors 3, 5, 6, and 19 was 3.73 mm. Support vector machine 141 

separation and leave-one-out classification rates for midsole stiffness can be seen in 142 

Table 2. 143 

Sex Effects 144 

The first 20 principal components explained 95.9% of the variance in the data 145 

and allowed a classification rate of 86.6% (SD 27.2) between the male and female 146 

subjects. This classification rate was significant. Principal component vectors 8, 9, and 147 

19 showed a large effect size for the projection difference between the male and female 148 

subjects. Plotting the projection of each trial onto principal components 8 and 9 149 

demonstrated a clustering of the male and female subjects (Figure 4). An investigation 150 

of the movements described by these principal components indicated greater 151 

movements in the frontal plane including greater hip adduction and greater knee 152 

abduction for the female subjects compared to the male subjects. There also appears to 153 

be greater pelvis tilt for the female subjects compared to the male subjects. The 154 

direction of change in marker position in the combined principal component vector (PC 155 

8, 9, 19) for male versus female subjects can be seen in Figure 4. The average 156 

displacement from the mean of all 12 markers during the stance phase for principal 157 

component vectors 8, 9, and 19 was 4.42 mm. Support vector machine separation and 158 

leave-one-out classification rates for sex are listed in Table 3. 159 

Age Effects 160 

Using the first 20 principal components, the largest classification rate was found 161 
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between Group 1 (youngest) and Group 4 (oldest) with a rate of 79.4% (SD 30.3). 162 

Significant classification rates were found between all age groups except for Group 2 163 

and 3 and Group 3 and 4. Leave-one-out classification rates and support vector 164 

machine separation rates can be seen in Table 4 with significant rates marked with an 165 

asterisk. Principal component vector 1 showed a large effect size for the projection 166 

difference for multiple age groups. Plotting the projection for each trial onto principal 167 

component 1 and 2 demonstrated a clustering of the age groups (Figure 5). An 168 

investigation of the movements described by the first principal component indicated 169 

greater movements in the sagittal plane including increased knee flexion, increased 170 

ankle dorsiflexion and greater vertical displacement of the pelvis for the younger groups 171 

compared to the older groups (Figure 5). The average displacement from the mean of 172 

all 12 markers during the stance phase for principal component vectors 1 and 2 was 173 

9.19 mm. 174 

Discussion 175 

The purpose of this study was to identify the influence of three different midsole 176 

hardness conditions, sex and age on the lower extremity kinematics during heel-toe 177 

running. A principal component analysis approach with a support vector machine was 178 

used to identify the movements of running that are most strongly influenced by each of 179 

these conditions. The results of this study supported the hypothesis that movement 180 

effects due to midsole hardness, sex, and age are separable and classifiable using such 181 

a statistical approach. The second hypothesis was also supported as subject-182 

independent shoe midsole hardness effects were seen regardless of sex and age 183 

It has been reported in the literature that female runners demonstrate a larger 184 
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range of movement in the frontal plane during running, specifically increased 185 

magnitudes of hip adduction and knee abduction compared to male runners (Chumanov 186 

et al., 2008; Ferber et al., 2003). The results of this study support these previous 187 

findings and demonstrate that these movement patterns between men and women are 188 

classifiable. The effects of age on the kinematics of running have also been investigated 189 

with older individuals demonstrating less knee flexion (Fukuchi and Duarte, 2008). The 190 

results of this study also support these findings and demonstrate that movement 191 

patterns between age groups are often classifiable. However, this separation is more 192 

prominent with increasing age differences between individuals.  193 

Using a principal component analysis approach in biomechanics allows for a 194 

certain motion to be broken down into its dominant movement components. It can then 195 

be determined if certain interventions affect the more dominant movements of a motion 196 

or the less dominant movements. The results from this study suggest that age affects 197 

the more dominant movements of over-ground heel-toe running as age differences were 198 

seen in the lower principal component vectors (principal component vectors 1 and 2). 199 

An individual’s sex, on the other hand, affected the less dominant movements of 200 

running as differences were not seen until the higher principal component vectors 201 

(principal component vector 8 and 9). This would indicate that age affects the more 202 

dominant movements of running compared to an individual’s sex. 203 

What was most interesting in this study was that subject-independent effects of 204 

shoe midsole hardness on running kinematics could be identified. This indicates that 205 

regardless of an individual’s sex or age category, shoe midsole hardness affects certain 206 

movement components of running similarly for all individuals. Previous research using a 207 
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discrete approach found no effects of shoe midsole hardness on the muscle activity of 208 

the lower extremity (Nigg and Gerin-Lajoie, 2011). The application of a principal 209 

component analysis to this data may provide more information regarding the effects of 210 

shoe midsole hardness on muscle activity and if this can be used to explain the 211 

differences seen in the kinematics. 212 

The movements of running that were affected by the shoe midsole hardness 213 

were seen more dominantly in the sagittal plane. As the shoe midsole hardness did not 214 

appear to affect movements in the frontal plane at the knee and hip as strongly as 215 

sagittal movements at the knee and ankle, midsole hardness may not be the shoe 216 

characteristic to customize for female runners compared to male runners. The mean 217 

displacement of all markers from the mean for the shoe differences was in the same 218 

order of magnitude as that for the age differences. This may indicate that shoe midsole 219 

hardness could affect the sagittal movements for a runner enough to compensate for 220 

the sagittal movement effects due to age.  221 

This study also demonstrated the benefit of using a statistical comprehensive 222 

approach for the analysis of running kinematics. Using this statistical approach, a more 223 

general interpretation of the effects of shoe midsole hardness, sex, and age on the 224 

modes of heel-toe running can be visualized. These results may be functionally difficult 225 

to interpret, however, and should be interpreted with caution. Additionally, while this 226 

approach added the benefit of analyzing the entire stance phase, information may also 227 

be found in the analysis of the full stride cycle (stance and swing phase).  228 

Concluding remarks 229 

The use of a principal component analysis allows for the analysis of the complete 230 
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marker set data collected during running. This ensures that the entire data set is 231 

analyzed and avoids the risk of poor discrete variable selection that may miss important 232 

information within the data set. The combination of this approach with a leave-one-out 233 

support vector machine demonstrated that the kinematic effects of shoe midsole 234 

hardness, sex, and age were separable and classifiable. While age affected the more 235 

dominant movements of running, sex influenced the less dominant movements. It was 236 

found that subject-independent effects on the running movement due to shoe midsole 237 

hardness exist. These effects are more prominent at the ankle and in the sagital plane 238 

and, therefore, shoe midsole hardness may be more customizable for age groups as 239 

opposed to sex, where differences are seen more in the transverse and frontal planes at 240 

the hip and knee.  241 
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Table captions 

Table 1.  Number of subjects in each age and sex subgroup. 

 

Table 2.   Support vector machine classification rates and separation rates (average, 

standard deviation, and significance level) for shoe effects using a leave-one-out 

method on the first 35 principal components. Significant classification rates are marked 

with an *. 

 

Table 3.  Support vector machine classification rate and separation rate (average, 

standard deviation, and significance level) for sex effects using a leave-one-out method 

on the first 20 principal components. 

 

Table 4.  Support vector machine classification rates (average, standard deviation, and 

significance level) for age effects using a leave-one-out method on the first 20 principal 

component vectors. Significant classification rates are marked with an*. 

 

Figure captions 

Figure 1.  (A) Frontal view of retro-reflective marker placement on the shoe, shank, 

thigh and pelvis and (B) Position matrix for the principal component analysis. Marker 

positions in the x, y, and z direction normalized to stance (101 time points) formed the 

columns of the input matrix while subject, shoe, and trial combinations formed the rows. 
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Figure2.  (A) Average principal component projection difference due to shoe midsole 

hardness for the first 20 principal component vectors. Principal component vectors with 

a significant effect size are marked with an asterisk. (B) Principal component projections 

(3,5) for the soft (pink, Δ), medium (green, o) and hard (blue, +) midsole conditions. A 

clustering of the three conditions is already visible even with only two principal 

component vectors. 

 

Figure 3.  Visualization of the linear combination of principal components 3, 5, 6, and 19 

at mid-stance in the sagittal plane (A) and the frontal plane (B). The blue arrows indicate 

direction of marker movement changes from the hard midsole to the soft midsole. The 

length of the arrows indicates the contribution of the movement of individual markers to 

the overall condition-dependent movement changes. 

 

Figure 4.  Visualization of the linear combination of principal components 8, 9 and 19 at 

mid-stance in the sagittal plane (A) and the frontal plane (B). The blue arrows indicate 

direction of marker movement changes from male to female subjects. The length of the 

arrows indicates the contribution of the movement of individual markers to the overall 

condition-dependent movement changes. (C) Principal component projections (8,9) for 

the male (blue, +) and female (pink, Δ) subjects.  A clustering of the male and female 

subjects is already visible even with two principal component vectors. 
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Figure 5.  Visualization of the linear combination of principal components 1 and 2 at 

mid-stance in the sagittal plane (A) and the frontal plane (B). The blue arrows indicate 

direction of marker movement changes from the oldest age group to the youngest age 

group. The length of the arrows indicates the contribution of the movement of individual 

markers to the overall condition-dependent movement changes. (C) Principal 

component projections (1,2) for the various age groups (Group 1 – purple (), Group 2 

– green (Δ), Group 3 – pink (+), Group 4 – blue(o)). 


