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Abstract 

The classification of gait patterns has great potential as a diagnostic tool, for 

example for injury diagnostic or to identify at-risk gait in the elderly. This paper 

has the purpose of presenting a method for classifying gait pattern group 

differences using the complete spatial and temporal information of the segment 

motion quantified by markers. The obtained classification rates are compared to 

previous studies using conventional classification features.  

For our analysis, 37 three-dimensional marker trajectories were collected from 

each of our 24 young and 24 elderly female subjects while they were walking on 

a treadmill. Principal component analysis was performed on these trajectories to 

retain the spatial and temporal information in the markers. Using a Support 

Vector Machine with linear kernel, a classification rate of 95.8% was obtained. 

This classification approach also allowed visualization of the contribution of 

individual markers to group differentiation in position and time. 

The approach made no specific assumptions and did not require prior knowledge 

of specific time points in the gait cycle. It is therefore directly applicable for group 

classification tasks in any study involving marker measurements. 
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1 Introduction 

The automated recognition of gait patterns may be of importance because of the 

potential applications in medical diagnostics, e.g. for the identification of at-risk 

gait in the elderly. In such clinical gait analyses, 3D positions of markers attached 

to the human body are typically measured to determine joint angles and range of 

motion. 

Previous studies used pattern classification methods to differentiate gait patterns 

of young-elderly groups based on such kinematic variables (Wu et al., 2006) or 

the combination of kinematic and spatio-temporal variables (Wu et al., 2007) with 

classification rates of 89.6% and 91%, respectively. While these classification 

rates indicate the ability of pattern classification to differentiate the group gait 

patterns, a possible loss of information may have been introduced by the 

methods that were applied to the data. First, the calculation of the kinematic 

variables required to combine marker information. Therefore, the amount of 

spatial information was reduced. Second, only specific time points of the gait 

cycle (e.g. touch-down, toe-off) were considered in the evaluation. Thus, a 

substantial part of the available temporal information was discarded (Chau, 

2001). 

It is suggested that more information is available for group differentiation if the 3D 

marker trajectories, which represent the complete available temporal information, 

are used for feature computation and classification. Such a method for the 

classification of gait has not been presented in the literature. It is postulated that 

higher group classification rates will be obtained when using such an approach. 
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Therefore, the purpose of this study is to present a method for classifying gait 

pattern group differences using a more complete representation of the spatial 

and temporal information of the individual markers. The resulting classification 

rates were compared to previous studies using conventional classification 

features. 

2 Methods 

2.1 Data preparation 

2.1.1 Collected data 

Kinematic data was collected from 48 healthy female subjects (Tab. 1). The age 

of 24 subjects was between 55 and 70 years (elderly group), the age of the other 

24 subjects was between 21 and 30 years (young group). All subjects gave 

informed written consent according to the guidelines of the University of 

Calgary’s Conjoint Health Research Ethics Board, which approved the study. 

 

Table 1 about here. 

 

All subjects were equipped with 37 reflective markers that were placed on head, 

trunk, arms, hands, legs and feet consistent with Vicon’s (Oxford Metrics, Oxford, 

UK) Plug-In-Gait model (e.g. Orendurff et al., 2006; Buckley et al., 2009). 

Of the 37 originally collected markers, 28 were at anatomical landmarks (Tab. 2). 

These markers were selected for the current study as they represented 

comparable body locations. The remaining nine markers are needed in the Plug-
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In-Gait model for the determination of joint angles, however, these markers were 

not located on anatomically well-defined locations and were therefore not used 

for classification purposes. 

Before data collection, all subjects walked for five minutes on a treadmill in order 

to warm up and to select a comfortable walking speed. During data collection, the 

subjects walked for 80 seconds on the same treadmill at the self selected speed 

(Tab. 1). The walking speed remained constant for each subject throughout the 

data collection. 

Marker positions were recorded at 240 frames/second using a system of eight 

synchronized digital infrared high-speed cameras (Eagle and Hawk, Motion 

Analysis Corp., Santa Rosa, CA, USA). The coordinate system defined by the 

calibration of the camera system had the subjects walk along the y-axis (anterior-

posterior direction). The x-axis was aligned with the medial-lateral, the z-axis with 

the vertical direction. 

 

Table 2 about here. 

 

The trajectories of individual markers were reconstructed using the software Eva 

Real-Time (EVaRT, Motion Analysis Corp., USA). The data was not filtered. 

Short gaps in the dataset (1-10 frames) were filled using cubic interpolation. 

Gaps up to 0.1 s appeared rarely in the hip marker trajectories and could be 

reconstructed by determining the position of the missing marker from adjacent 

markers. Longer gaps were not present in the data. All subsequent analyses 
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were performed using a custom MATLAB (version 7.6.0.324, The MathWorks 

Inc., Natick, MA, USA) software. 

2.1.2 Gait cycle extraction 

For each of the 48 subjects, ten consecutive gait cycles were extracted from the 

collected walking gait data. For this purpose, gait phases without artifacts in the 

gait were used. Artifacts were defined as any measurements that deviated from a 

subject’s automated (unconscious) gait pattern, for example when the subjects 

scratched themselves or moved their head in an unusual way. 

For the purpose of artifact detection, eight markers were selected: the two wrist 

markers of the left and right hand and the four head markers. The data were 

analyzed in x- and z-axis components, information about artifacts in the y-

coordinate was considered redundant. The 16 resulting time sequences were 

individually normalized to mean μ = 0 and standard deviation  = 1. This was 

only done for the purpose of artifact detection to allow a fair comparison between 

markers. A 20 s window was then extracted from the start of all 16 sequences. 

For each of the windows, it was then tested whether any point was more than 

 = 2 away from the mean. If such a point was detected in any sequence, the 

latest of them was set as new starting point for another window extraction. If the 

end of the sequence was reached without success, the standard deviation 

criterion was increased by 0.1 and the process was repeated. As maximum 

value,  = 3 was set. However, this maximum value was not reached for any of 

the 36 subjects. Each resulting window was also visually inspected and no 

remaining artifacts were found. 



7 

From the artifact-free 20 s windows, ten complete gait sequences were extracted 

for subsequent analysis. The beginning of a new gait cycle was arbitrarily defined 

as the point in the time sequence when the left heel marker reached its lowest 

z-axis position. This point allowed unambiguous splitting of gait cycles. 

The ten extracted gait cycles were then prepared for classification in three steps. 

First, they were individually time normalized. For this purpose, a normalization to 

101 time steps from 0% to 100% was performed using a cubic spline 

interpolation (De Boor, 1978). Second, anthropometric differences of the subjects 

were eliminated by calculating the mean position of each of the 84 marker time 

sequences (28 markers in three axes each) for each subject and by subtracting 

them from the respective time sequence. Third, the classification was designated 

to use a mean gait cycle representation from each subject. For that reason, the 

mean of the ten consecutive gait cycles that were extracted was computed. 

The 84 marker sequences were then concatenated into one movement pattern 

vector mi per subject i = 1,…,48, which was of dimension 8484 (84 marker 

sequences times 101 time steps). 

The movement pattern vectors mi were visualized (Fig. 1), where the mean 

movement pattern vector m̄ Î Â8484 1́of all subjects is illustrated for four positions 

of the gait cycle. In each time point the marker positions were visualized in the 

x-z-plane (sagittal plane) on the left and the y-z-plane (frontal plane) on the right. 

 

Figure 1 about here. 
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2.2 Group classification algorithm 

2.2.1 Feature extraction 

The purpose of feature extraction was to retain as much of the spatial and 

temporal information of the movement patterns as possible. Therefore, a direct 

feature extraction from the movement patterns by principal component analysis 

(PCA, Fukunaga, 1990) was performed. The important characteristic of the PCA 

was that it conducted a transformation of the marker movement space that still 

incorporated all available information. Furthermore, the PCA feature 

representation is known to be suitable for classification (Theodoridis and 

Koutroumbas, 2009). 

To perform the PCA, the movement pattern vectors mi Î Â8484 1́ from all subjects 

were arranged in the data matrix M Î Â8484´48. As the number of individual 

samples (48) was smaller than the number of dimensions (8484), the small 

sample size PCA algorithm (Fukunaga, 1990) was used. In this algorithm an 

eigenvalue-decomposition of the sample correlation matrix MtM ( Î Â48´48) was 

performed first. The eigenvectors ek (
148 , k = 1,…,48) of this matrix were then 

multiplied with the data matrix M to compute the corresponding principal 

movements pk (
18484 ). The 48 principal movement vectors were ordered 

according to the magnitude of their corresponding eigenvalues, which encoded 

the amount of gait variability captured by this specific principal movement. 

Therefore, the first few principal movements corresponded to the largest overall 

gait variability, and described the main variations in the movement over time. 
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As a next step each movement pattern vector mi was projected onto the 48 

principal movements pk, resulting in 48 principle movement features k

ix  (Î Â1́ 1) 

per subject, where 

 k = 1,…,48  number of principal movement 

 i = 1,…,48   number of subject. 

Due to the properties of the PCA the movement patterns mi of each subject could 

now be represented as a weighted linear combination of up to 48 principal 

movements pk using the principle movement features k

ix  as weights.  

The principal movement features k

ix  were directly used as features for 

classification. For the evaluation of the classifier, an increasing number 

d = 1,…,48 of principal movement features k

ix  were combined into a principal 

movement pattern vector xi (
1 d ). This process was also conducted in a way 

that the principal movement features were ordered corresponding to the 

eigenvalues of the PCA. This is a standard procedure for classification 

(Theodoridis and Koutroumbas, 2009), as every PCA component adds additional 

information for group classification according to overall data variability. 

2.2.2 Group classification 

For group differentiation, a support vector machine (SVM) classifier (Vapnik, 

1998) was used. The SVM classifier (e.g. Begg et al., 2005; Wu and Wang, 

2008) has, to the knowledge of the authors, previously not been applied to 

principal movement patterns of gait. Important characteristics of the SVM 

classifier for this project were (a) that it typically obtained high classification rates 
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(Sapankevych and Sankar, 2009), (b) that the SVM implementation that was 

used (C-SVM, Chang and Lin, 2001) only possessed one free parameter that had 

to be set and (c) that the application of SVM with linear kernel allowed further 

analysis of the group differences with respect to spatial and temporal information 

of individual marker movement. 

To obtain high group classification rates, the SVM had to find an optimal decision 

hyperplane (Fig. 2) that separated the principal movements of subjects from 

different groups with a maximal margin, i.e. the distance of the hyperplane to any 

principal movement was as large as possible. 

 

Figure 2 about here. 

 

The parameter that needed to be set for SVM classification was the cost 

parameter C (Schölkopf and Smola, 2002). It determined the tradeoff between 

the classification performance on the training set and the generalization ability, 

i.e. the ability of the classifier to correctly classify new samples. Since no general 

rule for setting the C-parameter existed (Chang and Lin, 2001; Vapnik, 1998), the 

classification results when using different settings for C were experimentally 

evaluated (e.g. Begg and Kamruzzaman, 2005). For the evaluation, a logarithmic 

range (C = 10n, n = -3,-2.5,-2,…,3) was employed. 

The SVM operated by first subjecting the principal movements d

ix  to an implicit 

mapping to a higher dimensional space (Vapnik, 1998). For this purpose, 

different kernel functions (Schölkopf and Smola, 2002) were available. In the 
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present study a linear kernel was chosen because it allowed functional analysis 

of the contribution of individual markers to group differences. The group 

difference visualization that was used for this purpose also allowed investigating 

what spatial and what temporal information was needed for group differentiation. 

With the employed linear kernel, the hyperplane that separated the groups was 

parameterized by its normal vector w Î Âd 1́ and by its distance to the origin b 

(Fig. 2). The vector w pointed in the direction of difference between the two 

groups on either side of the decision boundary (Fig. 2). Its length was defined by 

the mean distance to the individual group cluster centroids. As the vector w was 

an element of the principal movement space, it could be projected back onto the 

original marker movement space for further analysis of the group differences. For 

this purpose, a linear combination of the PCA eigenvectors using the 

components of w as weights was computed. This back projection of the vector w 

was called difference marker movement vector mw Î Â8484 1́. It represented the 

spatial and temporal contribution of each individual marker movement to group 

differentiation. To show these individual contributions, the difference marker 

movement vector mw was added (elderly group, labels +1) and subtracted (young 

group, labels -1) from the mean movement m̄ of all subjects that was shown in 

Fig. 1. 

For evaluation of the classification rate, a leave-one-subject-out cross-validation 

was conducted with all trials from one subject being removed for classifier 

training. Then, the left out trials were classified and tested for correctness. This 

was repeated until each subject was left out once. The number of correctly 
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classified trials divided by the total number of trials then gave the classification 

rate. 

3 Results 

The maximum classification rate of 95.8% was reached when using d = 36,…,39 

principal movements (Fig. 3). In this case, two subjects that belonged to the 

elderly class were incorrectly classified during cross-validation. The drop in 

classification accuracy when using more than 39 principal movements (Fig. 3) 

was attributed mainly to the fact that PCA components that belong to smaller 

eigenvalues mainly contain noise (Theodoridis and Koutroumbas, 2009). 

The setting of the cost parameter C did not affect the maximum classification rate 

or its locations. The mean classification rates over all d = 1,…,48 cross-validation 

runs for different cost parameters C varied slightly (Tab. 3). The minimum and 

maximum mean classification rate were 79.1% for C = 1000 and 80.5% for 

C = 0.1, respectively. 

 

Figure 3 about here. 

 

Table 3 about here. 

 

The computation of the contribution of individual markers to group differentiation 

in position and time was performed at the point of maximum classification rate 

using 36 principal movement features (Fig. 3). The resulting difference 

information is illustrated for four time points of the gait cycle (Fig. 4). A video of 
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the difference information for all time points of the gait cycle can be found at 

http://tinyurl.com/group-diff. 

 

Figure 4 about here. 

 

4 Discussion 

The results demonstrated that the proposed method was capable of obtaining 

higher classification rates compared to previous studies that differentiated young-

elderly gait based on 3D marker data. The previous studies reported 

classification rates of 89.6% based on kinematic variables (Wu et al., 2006) and 

of 91.0% based on the combination of kinematic and spatio-temporal variables 

(Wu et al., 2007). Based on the proposed approach in the current paper, a 

classification rate of 95.8% (Fig. 3) could be obtained. This increased 

classification power may be attributed to the more complete availability of spatial 

and temporal information that was achieved by direct feature computation via 

PCA from the 3D marker data. 

A direct PCA analysis of group marker information for gait classification had, to 

the knowledge of the authors, previously not been attempted. PCA was, 

however, applied to the analysis of the movement of individuals. Previous results 

showed that the gait patterns of individual subjects could be efficiently modeled 

using four principal components (Troje, 2002). In this light the number of principal 

movement patterns needed for a sufficient classification (36-39) in the present 

study may seem high. However, the current study did not focus on principal 
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components of the movement of individual subjects, but on the movement 

differences between groups of subjects. Human gait comprises high inter-

individual variance (Sadeghi et al., 2000). As opposed to the modeling of the 

movement of individuals, a higher number of principal movement patterns were 

therefore needed in the current study to efficiently generalize and classify the 

differences between groups. 

Each of the individual principal movement patterns represented a combination of 

spatial and temporal information about the movement of the individuals. Both 

aspects contributed to group differentiation (Fig. 4). The illustration showed the 

differences in individual marker positions that led to classification. One example 

of the combination of the spatial and the temporal aspect to group differentiation 

could be seen by examining the knee markers. During the swing phase (Fig. 4, 

33% and 75% gait cycle), the knee markers of both groups did not exhibit a large 

difference. However, during the double support phase (Fig. 4, 0% and 50% gait 

cycle), both knee markers exhibited a large difference. Thus, both the spatial and 

the temporal aspect of the movement were important for classification. The 

authors are not aware of a similar technique that allowed the analysis of 

individual marker contribution to group differentiation by taking both the position 

and time aspect into account. 

For the age related example, previous findings could be reproduced by this 

analysis of individual marker contribution to group differentiation. Notable 

differences visible in Fig. 4 were the foot clearance and the stride length of young 

and elderly. In the representations of the swing phase (Fig. 4, 33% and 75% gait 
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cycle), it could be seen that the young group had a higher position of the 

swinging foot than the elderly group. This observation of higher foot clearance in 

the young group was consistent with previous results (Begg et al., 2005). In the 

representations of the double support phase (Fig. 4, 0% and 50% gait cycle), it 

could be seen that the markers representing the feet were farther outwards for 

the young group than for the elderly group. This increase of stride width in gait of 

young subjects has also previously been reported, e.g. (Blanke and Hageman, 

1989). Naturally, several of the parameters mentioned can be directly attributed 

to effects of different walking speed. However, since we let the subjects choose 

their preferred movement speed themselves, the changes in those parameters 

can still be attributed to differences in the natural gait pattern of the groups under 

investigation. 

Other previously reported positional and temporal differences in young-elderly 

gait could be reproduced as well. These were, for instance, an increased range 

of motion in the arm movement (Elble et al., 1991) and in the plantar-dorsiflexion 

of the foot (Nigg et al., 1994). In the same manner, differences in individual body 

part movements could be observed by examining individual markers over time. In 

principle, the group difference representation in the original marker space also 

allowed further functional analyses by calculating kinematic variables. 

Limitations of the proposed methodology existed in the necessity for a time 

normalization of the gait cycles due to the equal sample length requirements for 

the PCA. Information about the different walking speeds (Tab. 1) was therefore 
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lost. Future work could include this information as an additional feature for 

classification. 

As an additional algorithmic limitation, the C-parameter of the SVM had to be set 

correctly. However, this setting could easily be determined by an experimental 

parameter search. Even with a non-optimal C-parameter, the algorithm 

converged with high classification rate (Tab. 3). 

When compared to more traditional approaches that used discrete kinematic 

variables at specific time points of the gait cycle for group differentiation, some 

further limitations existed. Given that the selection of variables and time points for 

the discrete approach was appropriate and functional, direct functional 

conclusions could be drawn about group differences. In the approach for the 

current paper, these conclusions were not as straightforward to draw, but 

required careful additional analysis of the reasons that led to group 

differentiation. 

However, not to perform the classification on discrete functional variables at 

specific time points of the gait cycle also had several advantages. First, the 

selection of functional features for the classification procedures is usually based 

on prior knowledge of the researchers. The method presented here extracts the 

features based on a mathematical algorithm. The classification result therefore 

identifies group differences independently of prior knowledge. Second, the 

calculation of kinematic and kinetic variables typically requires assumptions (e.g. 

about the direction of joint axes), which are often difficult to validate. Third, the 

computation of these variables might lead to error amplification (e.g. when 
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marker positions are affected by skin movement). Fourth, the process is often 

time consuming. Last, the incorporation of a more complete representation of the 

temporal information prevents discarding a substantial part of the available time 

dependent information (Chau, 2001). 

Since the presented methodology made no special assumptions, it could be 

applied for group classification tasks to any study involving marker 

measurements. Examples include analysis of pathological gait differences that 

are due to injuries, for medical pre-diagnosis of gait diseases and for evaluation 

of the outcome of treatment and rehabilitation. 

5 Summary 

The current study proposed a method for group classification that directly 

extracted spatial and temporal information from the 3D marker trajectories 

collected during human gait. Thus, this method did not require prior knowledge or 

assumptions, which are required when biomechanical features such as joint 

angles are determined in additional post processing steps. The classification 

using the SVM classifier yielded better group classification rates for a young-

elderly group example than those reported in previous studies. The group 

discriminator could be visualized, which allowed identification of functional 

differences between the groups. 
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Figure 1: Mean marker position of all subjects at different time points of the 

gait cycle. For each time point, the sagittal plane is shown on the 
left and the frontal plane on the right. Each star represents the 
position of one of the 28 markers that were used for classification. 

 
Figure 2: An SVM example group classification for a two class problem. 

Class 1 is represented by white circles and labels -1 and class 2 by 
black circles and labels +1. The class representatives are shown for 
two feature dimensions x1 and x2. The decision hyperplane is 
represented by the normal vector w and the distance to the origin b. 

 
Figure 3: Classification rate in percent when using d = 1,…,48 principal 

movement pattern features and C = 0.1. 
 
Figure 4: Visualization of the contributions of individual markers to group 

differentiability at different time points of the gait cycle. The marker 
location differences in relation to the overall mean movement of all 
subjects (Fig. 1) is shown for the elderly group (black crosses) and 
the young group (red plusses). 
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Table 1: Characteristics of the 48 subjects that were used for analysis 
purposes. Values in the first two rows are presented as mean 
(standard deviation). Values in the last two rows indicate the ranges 
of the different parameters. 

 

 n Age 
[y] 

Height 
[m] 

Mass 
[kg] 

Treadmill speed 
[m/s] 

Elderly group 
Young group 
 
Ranges 
Elderly group 
Young group 

24 
24 
 
 
 
 

59.9 (4.5) 
25.3 (2.4) 
 
 
[55.0;70.0] 
[21.0;30.0] 

1.61 (0.05) 
1.66 (0.07) 
 
 
[1.50;1.75] 
[1.52;1.78] 

68.8 (10.9) 
67.2 (13.0) 
 
 
[51.1;89.4] 
[50.5;101.0] 

1.24 (0.27) 
1.53 (0.17) 
 
 
[0.76;1.67] 
[1.07;1.79] 

 

 



23 

Table 2: Identifiers of the 28 markers that were used for classification 
purposes. The identifiers were in accordance with Vicon’s plug-in-
gait marker set. 

 

Marker nr. Marker identifier Marker position 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 

'LTOE' 
'LANK' 
'LHEE' 
'LKNE' 
'RTOE' 
'RANK' 
'RHEE' 
'RKNE' 
'RASIS' 
'LASIS' 
'RPSI' 
'LPSI' 
'STRN' 
'CLAV' 
'C7' 
'T10' 
'RSHO' 
'RELB' 
'RWRA' 
'RWRB' 
'LSHO' 
'LELB' 
'LWRA' 
'LWRB' 
'LFHEAD' 
'RFHEAD' 
'LBHEAD' 
'RBHEAD' 

Left toe 
Left ankle 
Left heel 
Left knee 
Right toe 
Right ankle 
Right heel 
Right knee 
Right anterior superior iliac spine 
Left anterior superior iliac spine 
Right posterior superior iliac spine 
Left posterior superior iliac spine 
Sternum 
Clavicle 
7th cervical vertebrae 
10th thoracic vertebrae 
Right shoulder 
Right elbow 
Right wrist thumb side 
Right wrist pinkie side 
Left shoulder 
Left elbow 
Left wrist thumb side 
Left wrist pinkie side 
Left front head 
Right front head 
Left back head 
Right back head 
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Table 3: Mean classification rates for different C-parameter settings. The 
C-parameter was evaluated over a logarithmic range (C = 10n, 
n = -3,…,3). The parameter n is given within the table. The mean 
classification rates were computed over all d = 1,…,48 cross-
validation runs. The best result of 80.5% mean classification rate is 
obtained when using n = -1. 

 

Parameter n  Mean classification rate [%] 

 -3.0 
 -2.5 
 -2.0 
 -1.5 
 -1.0 
 -0.5 
 0 
 0.5 
 1.0 
 1.5 
 2.0 
 2.5 
 3.0 

 80.0 
 80.0 
 80.0 
 80.1 
 80.5 
 79.7 
 79.5 
 79.2 
 79.1 
 79.3 
 79.2 
 79.2 
 79.1 

 


