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Abstract (246 of 250 words) 

For a successful completion of a movement task the motor control system has to observe 

a multitude of internal constraints that govern the coordination of its segments. The purpose of 

this study was to apply principal component (PC) analysis to detect differences in the segmental 

coordination between healthy subjects and patients with medial knee osteoarthritis (OA). It was 

hypothesized that (1) systematic differences in patterns of whole body movement would be 

identifiable with this method even in small sample sized groups and that (2) these differences 

will include compensatory movements in the OA patients in both the lower and upper body 

segments. Marker positions and ground reaction forces of three gait trials of 5 healthy and 5 OA 

participants with full body marker sets were analyzed using a principal component analysis. 

Group differences in the PC-scores were determined for the first 10 PC-vectors and a linear 

combination of those PC-vectors where differences were found defined a discriminant vector. 

Projecting the original trials onto this discriminant vector yielded significant group differences 

(t(d=8)=3.011; p=0.017) with greater upper body movement in patients with knee OA that was 

correlated with the medial-lateral ground reaction force. These results help to characterize the 

adaptation of whole-body gait patterns to knee OA in a relatively small population and may 

provide an improved basis for the development of interventions to modify knee load. The PC-

based motion analysis offered a highly sensitive approach to identify characteristic whole body 

patterns of movement associated with pathological gait.  
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Introduction 

Clinical gait analysis has for many years contributed to the understanding of the etiology 

of gait abnormalities, aided in treatment decisions, and allowed for evaluation of the treatment 

efficacy (Davis, 1997).  Standard procedure in today’s gait analysis is the quantification of joint 

angles and, through inverse dynamic calculations, resultant joint forces and moments. 

Differences in gait patterns between different populations or due to an intervention or disease 

are commonly identified by statistically analyzing maximum or minimum values from these 

variables individually. An important shortcoming of the standard motion analysis approach is that 

it singles out and statistically analyzes individual variables, thereby treating them as independent 

and overlooking the fact that all kinematic or kinetic variables characterizing aspects of the same 

movement are interdependent. It is perhaps not surprising, given the limited view of traditional 

analysis methods, that the understanding of how and why individuals adapt to injuries, disease 

or different interventions is often still not clear.  

A substantial challenge for the identification of differences in gait patterns is caused by 

the large inter- and intra-subject variability observed in any movement (Bernstein, 1967; Winter, 

1984; Bartlett et al., 2007; Stergiou et al., 2006). Studies aiming at identifying systematic 

differences in gait patterns typically tackle variability issues by normalizing the data, e.g. to body 

height or body weight, averaging over multiple trials, or by including large sample sizes in order 

to reach the threshold of statistical significance. However, the variability stems not only from 

anthropometric differences between subjects or different strategies of executing a movement, 

but also from the fact that human movement is a multi-segmental motion (multi-body system) 

with many degrees of freedom that create a high-dimensional space of potential solutions for the 

same movement task (Bernstein, 1967).  

The many degrees of freedom described by Bernstein (1967) allow for a large variability 

in any single variable, however, the coordination between different body segments necessary for 
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the execution of any movement requires the observation of a multitude of internal and external 

constraints that have to be observed by the motor control system for the task to be successful. 

For example, upright standing is possible with many different knee angles – almost straight leg 

or deeply crouched – but for any given knee angle, the ankle and hip angles can no longer be 

arbitrarily chosen without compromising the success of the task. Hence, large variability is 

possible in the original variables knee angle, ankle angle and hip angle, however, the tolerance 

for deviations from the constraints defining how these angles correlate is small, making the 

actual solution space much tighter (circles in Figure 1). Interventions or systematic difference 

between different populations change the set of constraints defining how individual joints 

interrelate (triangles in Figure 1). Quantifying if and how the interrelationship between movement 

variables changes due to a clinical condition or due to an intervention, offers a set of information 

that has often been overlooked, and that may be more sensitive than the single-value statistical 

analysis applied in conventional biomechanical studies.  

Performing a principal component analysis (PCA) identifies correlations between 

observed variables and thus offers one technique to identify group differences in a movement’s 

solution spaces within the space of degrees of freedoms that were experimentally determined. 

PCA has already been successfully applied in several studies identifying subtle differences 

between movement patterns (Boyer et al., 2012a; Maurer et al., 2012; Nigg et al., 2012; 

Astephen and Deluzio, 2005; Troje, 2002; Witte et al., 2010; Nigg, 2010). The current study 

combined all waveforms of the marker coordinates and the ground reaction forces (GRF) and 

thus operated in a vector space that combined all directly measured gait variables. The 

postulated high sensitivity of the PCA-based gait analysis may not only facilitate identification of 

subtle differences that were not detectable with conventional methods, it may also allow 

detecting systematic differences in groups of much smaller sample size. This property would be 

very useful in many clinical applications, for example, when investigating rare pathologies (Kim 
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and Fung, 2011), specific manifestations of underlying constructs (e.g. stroke), or individual 

responses to treatment interventions.  

To demonstrate the applicability of the PCA-based gait analysis technique for research 

into small sample sized groups, this study explored differences between patients suffering from 

medial knee osteoarthritis (OA) and matched healthy reference subjects. Such differences have 

been identified in previous studies relying on larger sample sizes. Specifically, more extended 

knee at touchdown of the injured leg (Huang et al., 2008; Mündermann et al., 2005; Landry et 

al., 2007) and throughout stance phase (Deluzio and Astephen, 2007; Astephen et al., 2008) as 

well as increased lateral GRF and vertical GRF load rates shortly after touchdown (Mündermann 

et al., 2005) have been reported for OA patients. Differences in joint moments (Astephen et al., 

2008; Mündermann et al., 2005; Landry et al., 2007) were not investigated in our study, 

however, changes in pelvis and shoulder movements have been proposed as explanation for the 

reported differences in joint moments (Mündermann et al., 2005) and increased trunk sway has 

also  been suggested as a mechanism to reduce joint loading (Mündermann et al., 2005; Hunt et 

al., 2008; Mündermann et al., 2008). Differences in upper body kinematics identified by the PCA 

as applied in the current study are interdepend and therefore, if they exist, are directly correlated 

to the alteration in lower body motion and GRFs. 

In summary, the first aim of this study was to test the feasibility of applying a PCA-based 

gait analysis approach to studies of small sample sizes. It was hypothesized that known 

systematic differences in gait kinematics and in ground reaction forces between knee OA 

patients and healthy reference subjects would be detectable even in small sample sized groups. 

Second, it was hypothesized that changes in shoulder and pelvis motion predicted in previous 

studies will appear as part of the systematic differences between OA patients and healthy 

volunteers.   
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Methods 

Participants 

This study analyzed gait data recorded for a single-blind washout, double-blind 

treatment, double dummy cross-over design study investigating the effect of two pain treatments 

on gait of knee osteoarthritis patients (Boyer et al., 2012b). After a rigorous screening procedure 

this study included six patients with medial knee OA of Kellgren-Lawrence radiographic severity 

grades 2 or 3 who completed all measurements. Five of them suffered from arthritis in the right 

knee and formed the patient group (61.6 ± 2.1 yrs; 178.1 ± 5.3 cm; 88.5 ± 7.5 kg) in our study. 

Five age and gender matched healthy volunteers (61.0 ± 2.6 yrs; 174.2 ± 3.7 cm; 79.1 ± 7.3 kg) 

selected from a database at Stanford University formed a control group. All subjects had 

provided informed written consent, and had agreed to their data being used in future research 

projects not directly linked to the study they originally participated in.   

Measurement procedures and instrumentation 

Three trials from the placebo phase for each subject walking at self-selected, fast-paced 

speed (“catching a bus”) on an 11 m long walkway were selected for this analysis. Kinematic 

data and 3D-ground reaction forces were recorded for one step. Kinematic data were collected 

at 120 Hz sampling frequency with an 8-camera motion analysis system (Qualysis, Gothenburg, 

Sweden) using 36 reflective markers. The markers were positioned according to a previously 

described point-cluster technique (Andriacchi et al., 1998), which uses a redundant set of 

markers on the thigh and shank of the injured leg. In addition, 3D-ground reaction force (GRF) 

data were recorded at 120 Hz sampling frequency using a multi-component force-plate (Bertec 

Corporation, Columbus, Ohio, USA). 

Data analysis 

All calculations and statistical procedures were carried out in Matlab® (The MathWorks 

Inc., Natic, MA, USA). Three normalization steps were conducted to prepare the data for the 
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principal component analysis. First, all marker coordinates were expressed in coordinates 

relative to the horizontal position of the pelvis, i.e. the horizontal center of the four pelvis markers 

was subtracted from all marker coordinates. Second, kinematic and GRF data were temporally 

normalized in relation to the step cycle by interpolating each marker or GRF coordinate 

waveform using a piecewise cubic hermite interpolating polynomial. The stance phase of the 

injured leg from touchdown (0%) to take off (100%) and the last and first parts of the swing 

phase corresponding to 20% of the stance period were selected for analysis (in total -20% to 

120% of the stance phase). The waveforms of all variables (marker coordinates and GRF) were 

then resampled to 112 time points, with 80 points representing the stance phase and 16 points 

representing the end and beginning of the swing phase of the injured leg. Third, the influence of 

anthropometric differences between subjects on the variability of the variables was minimized by 

calculating and subtracting for each coordinate the mean over the analyzed period and then 

normalizing the waveform amplitude to unit standard deviation.  

The resultant normalized waveforms of all variables were concatenated into one data 

vector V with 12432 vector components ([36 markers + GRF] x 3D coordinates x 112 time points 

for each waveform). Performing a PCA on the matrix formed from the data vectors of all 30 trials 

[(5 OA subjects + 5 control subjects) * 3 trials] yielded (a) principle component vectors (PCi) 

indicating the direction of the largest variation in the dataset; (b) eigenvalues (EVi) indicating the 

amount of variation in the data explained by a given PCi; and (c) scores, ci, obtained by 

projecting individual trials onto the PCi.  Each PCi represents a characteristic manner of how 

individual trials deviated from the average gait pattern.  Characteristic differences between the 

gait patterns of the OA patients and the healthy controls were identified by comparing the scores 

ci of the first 10 PCi.  Thereto, mean scores were first calculated for the 3 trials of each subject. 

These mean scores were then compared between the groups using the effect size Cohen’s d 

(Table 1). A discriminant vector D calculated as a weighted linear combination of those PCi that 
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yielded large effect sizes (di > 0.8;(Cohen, 1992), Table 1) combined the characteristic 

deviations from the mean gait patterns that are associated with differences between the test 

groups.  The weight factors used in this linear combination were the eigenvalues EVi:  

   ∑          

 

              { 

                                      

                            

                                     
   

The trial vectors were then projected onto the discriminant vector and mean scores 

calculated for each subject. A Student’s T-test (independent samples) based on these mean 

scores was used to test if the gait features characterized by the discriminant vector were 

significantly different in the two test groups.   

Visualization of gait features that differed between the test groups 

Since the calculation was based on the marker positions, it was possible to visualize the 

characteristic differences between the healthy and pathologic gait patterns by arbitrarily 

selecting the normalized data of one healthy subject (black circles in Figure 2), adding the 

discriminant vector, and then retracing the normalization steps (red circles in Figure 2). 

Differences between the gait patterns turned out to be subtle and were therefore exaggerated for 

the visualization by multiplying the discriminant vector with an amplification factor of 10.  

Characteristic group differences in the GRF were similarly visualized by arbitrarily selecting the 

GRF of one healthy subject as reference curves (black lines in Figure 3) and then adding the 

systematic deviations from the mean that were characteristic for the difference between healthy 

and OA group (red lines in Figure 3). 

Results 

A discriminant vector combining PC1, PC8, and PC9 incorporated characteristic 

differences between movement patterns of the OA and of the matched control group. These 
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differences were significant (t(d=8)=3.011; p=0.017) within the two groups of only 5 subjects. 

The three principal components that constituted the discriminant vector explained together 

26.2% of the variance observed in the walking patterns between different trials (Table 1).  

The differences in the movement patterns between OA and controls were interpreted by 

examining the visualization of the discriminant vector (Figure 2). Characteristic features of the 

differences between the gait of the healthy and the OA group in the sagittal plane (Figure 2, top) 

included: (a) the OA patients showed signs of limping: the contralateral leg was longer weight 

bearing at the end of its stance phase and earlier weight bearing at its beginning; (b) increased 

knee extension at touchdown and throughout stance phase, which is accompanied by 

corresponding changes in ankle and hip angles; and (c) increased hip and knee flexion of the 

contralateral leg in swing phase.  

Characteristic features visible in the frontal plane (Figure 2, bottom) were (d) greater 

knee adduction in early to mid-stance and subtle increase of knee abduction in late stance; (e) 

differences in pelvis motion in late stance and during push-off from the injured leg; (f) increased 

sway of upper trunk and shoulders; (g) a shift of the contralateral foot position at touch-down and 

take-off which might either be related to the limping seen in the sagittal plane or it may be a sign 

of increased lateral pelvis motion (due to the normalization procedure this would only be visible 

indirectly, i.e. in the foot position).  

Characteristic group differences in the GRF between the healthy and the OA group were 

also observed in the medial-lateral and vertical force component, but no noteworthy differences 

were found in the anterior-posterior force components (Figure 3, top). In the medial-lateral force 

component (Figure 3, middle) a tendency towards a higher initial force peak (A in Figure 3) and 

a reduced force peak in the second half of the stance phase (B) were observed. The vertical 

GRF component (Figure 3, bottom) showed differences in the loading rate characteristics after 

touchdown (C) and higher forces at mid-stance (D).    
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Discussion 

The results of this study supported the hypothesis that systematic differences between 

knee OA and healthy gait can be identified even in small-sized test groups when using PCA as a 

mathematical tool that analyzes the interrelation between variables. This suggests that this 

approach to the analysis of clinical gait data may open the doors for other research areas where 

it is impossible to recruit a large sample sizes.  

This study did not only confirm observations of previous studies with respect to OA gait 

characteristics by identifying differences in lower body motion and in external forces (Figure 2, 

items a, b, g; Figure 3  A, C), it also showed that changes in shoulder and pelvis motion (Figure 

2, item f) are part of the systematic differences between OA and healthy gait. The methods 

described here had the capacity to detect quantitative evidence in a relative small sample that 

one of the mechanisms to alter force profiles at the arthritic knee joint is related to the 

coordination of upper and lower body motions. This result is consistent with observation made in 

larger studies (Mündermann et al 2005).  In fact, there are only two mechanisms that can 

produce changes in the resultant forces and moments acting in a joint: changes in the joint 

loading resulting from altered upper body movement characteristics or changes in the alignment 

of the joint itself. The subtle, yet systematic difference in the knee adduction characteristics 

observed in this study (Figure 2 item d) is evidence of a second mechanism that is also relevant 

for understanding changes in the OA knee mechanics. This may be an indication of an altered 

knee joint alignment or stability affecting the knee kinematics. The observation of a change in 

both the upper and lower body coordinated pattern of movement in relation to the changes in 

GRF suggests a mechanism in OA patient gait for the reduction of both the first and second 

peak external knee adduction moments previously observed in similar cohorts (Mündermann et 

al., 2005; Deluzio and Astephen, 2007). This information provides an improved understanding of 



12 
 

the natural adaptation mechanisms that knee-OA patients use to unload their joint and prevent 

pain.  

This study has provided unique insight into the characteristics of OA gait by linking 

Bernstein’s degree of freedom model with modern techniques for biomechanical gait analysis. 

Bernstein stated that “coordination of movement is the process of mastering the redundant 

degrees of freedom” (Bernstein 1967) within the internal and external constraints imposed by the 

body and the environment. Our analysis is based on the assumption that a pathology or 

intervention changes some of these internal constraints and thus leads to an altered shape of 

the solution space of the movement task within the high-dimensional space spanned by 

Bernstein’s degrees of freedom. By analyzing movement variability with a PCA we determine 

which of the constraints governing the interrelation between movement variables differ between 

the two test groups. In taking this perspective, our approach differs not only from traditional gait 

analysis, but also from previous studies that used PCA to identify differences in the waveforms 

of individual variables but did not combine several variables (Deluzio and Astephen, 2007; 

Astephen Wilson et al., 2011; Deluzio et al., 1997; Landry et al., 2007; Astephen et al., 2008; 

Brandon and Deluzio, 2011). Instead, this method is conceptually related to the idea that multi-

muscle synergies (Kang et al., 2004; Latash et al., 2002; Latash, 2010; Bernstein, 1967) 

produce and control movement tasks and to theories such as the “uncontrolled manifold 

hypothesis” (Scholz and Schöner, 1999; Latash et al., 2007; Schoner, 1995) or the “optimal 

feedback control theory” (Todorov and Jordan, 2002; Todorov, 2004). Similar to our study, the 

“uncontrolled manifold hypothesis” analyses the solution space for a movement task, but 

focuses on identifying which variables affect the outcome of a task, i.e. variables that the motor 

control system has to monitor tightly, and which variables don’t affect the outcome and thus 

shape an “uncontrolled manifold” within the solution space (Black et al., 2007). The “optimal 

feedback control theory” investigates how neuro-cerebral motor control processes influence 
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motion variability (Decker et al., 2012; Dingwell et al., 2010), while the current study focuses on 

how a clinical condition affects the internal and external constraints.     

An important conceptual advantage of this method is that variability in the execution of a 

movement does not necessarily reduce the power of its statistical analysis. On the contrary, 

movement variability is necessary to reveal correlations between variables and thus leads to a 

clearer definition of the principal component axes and may even lead to higher statistical power 

when comparing PC-scores between groups. The high sensitivity to subtle but systematic 

differences in movement patterns that this approach has demonstrated in several previous 

studies (Boyer et al., 2012a; Maurer et al., 2012; Nigg et al., 2012; Astephen and Deluzio, 2005) 

and the applicability in studies with a small number of participants (as demonstrated here) are 

related to this conceptual advantage and are of great practical value. 

This study choose to conduct the PCA with the original marker coordinates and the GRF 

data, not with secondary variables derived in further post-processing steps. The original marker 

coordinates represent all directly measured information without any pre-selection of variables 

(through the decision which secondary variables are calculated) or definition of arbitrary axes to 

define the motion of the joint and without the risk of introducing artifacts (Kristianslund et al., 

2012). Furthermore, the marker coordinates facilitate the creation of stick figures to visualize the 

differences in the movement patterns (Figure 2; supplementary material) and thus promote a 

holistic viewpoint when interpreting the results. This approach has been used previously, not 

only for gait analysis (Federolf et al., 2012b; Daffertshofer et al., 2004; Troje, 2002; Eskofier et 

al., 2011) but also to investigate balance strategies (Federolf et al., 2012c) or more complex 

movements in sports (Federolf et al., 2012a).  

An important limitation of any study relying on a small sample size is a potential sampling 

bias. This was minimized by selecting data from a study (Boyer et al., 2012b) where pre-defined, 

objective inclusion criteria had led to a small sample size despite a large pool of potential 
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volunteers. Limitations of the analysis approach include that PCA is a linear data analysis 

technique. It seems plausible that for small differences in the gait patterns a linearization is 

appropriate; however, this cannot be assumed in general. A second limitation is that a 

normalization of the dataset is necessary to reduce the influence of anthropometric differences 

on the results. In our experience, time normalization to percentage of stance phase (or step 

cycle), removal of each variable’s mean, and normalization of each variable’s amplitude to unit 

variance were – despite of the considerable loss of information – necessary steps to ensure that 

systematic differences could successfully be identified. However, this normalization levels out 

differences in the amplitude and therefore explains why the differences in the medial-lateral GRF 

peaks were not as pronounced as reported in previous studies (Mündermann et al., 2005). 

Conclusions 

This study applied a PCA-based movement analysis technique to clinical gait analysis. 

As opposed to classical gait analysis, which assesses differences in the amplitude of variables, 

this technique quantified differences in the coordination between variables. The technique 

detected systematic differences in gait characteristics between knee OA patients and healthy 

controls in small sample-sized groups and provided insight into the coordination of the lower and 

upper body segment motion and their relationship with external forces.     
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Figure 1:  Schematic figure to visualize the internal constraints governing the interrelation 

between movement variables. The task “standing” can be accomplished with many 

different ankle, knee and hip angles leading to a large variability in these coordinates 

(filled circles). However, tolerance for deviations from how these angles correlate is 

small since such deviations would compromise the task. A pathology or intervention 

– here exemplified by standing on a shoe with elevated heel (hollow triangles) – 

alters not only the original movement variables but also how they interrelate. 

Detecting differences in such internal constraints therefore offers an alternative and 

potentially more sensitive approach for identifying systematic differences in a 

movement.  

 



19 
 

 

Figure 2:  Stick figures representing postural differences in the stance phase of the injured leg 

(indicated by a grey circle). Deviations from the normal gait patterns due to knee OA 

were 10-fold amplified. Highlighted differences (a,b,c,d,e,f,g) refer to the items 

discussed in the text. For better clarity, only markers at the shoulders, sternum, 

elbows, wrists, iliac crests, ASIS, greater trochanter, knee, maleolus, calcaneus, and 

5th metatarsal (21 of the 36 markers) were included in these figures.  
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Visualization of the group differences in the ground reaction forces (GRF). Black lines: healthy 

gait; red lines: OA gait. Highlighted differences (A,B,C,D) refer to the items 

discussed in the text. The differences in the shape of the GRF components were 

directly visible and were therefore not artificially amplified in this figure. 


