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Summary 

Background: Milk protein and especially the whey fraction of milk protein have gained a lot of 

interest due to its effective stimulation of postprandial muscle protein synthesis. Whey protein 

can be isolated from pasteurized milk by a multi-filtration technique providing concentrated 

native whey protein which contains a higher leucine content than the traditional concentrate 

derived from cheese production. Leucine seems to be a key stimulator of muscle protein 

synthesis, and is suggested to be even more so in elderly. This is because the optimal protein 

dosage needed for stimulation of muscle protein synthesis, may be lowered with a higher 

leucine content. Aim: In this study we investigated whether daily supplementation of native 

whey protein could lead to larger muscle hypertrophy during 11 weeks of heavy load strength 

training than an isocaloric supplementation of milk protein in elderly subjects. Methods: 26 

elderly (age 73.5±2.7 years) men and women received either daily supplementation of 40 g 

(2x20 g) native whey or milk protein during 11weeks of heavy load strength training (3 sessions 

per week), following daily undulating linear progression. The experiment was conducted as a 

double blinded randomized controlled trial. Results: Similar gains in lean body mass (LBM) 

(measured by DXA) was achieved in the two groups, with changes of 1.8±0.7 kg (3.8%) (mean 

±95% CI) and 2.4±0.7 kg (5.2%) for the native whey and milk groups respectively. Regional 

changes were also similar, with leg LBM changes of 0.67±0.27 kg (4.2%) and 0.93±0.30 kg 

(6.0%). Thickness of m.vastus lateralis increased by 0.13±0.06 cm (6.1%) and 0.15±0.07 cm 

(7.2%) for native whey and milk groups respectively. Both supplementations also induced 

similar changes in muscle strength (1RM tests), with changes of 22% and 20% in chest press, 

and 38% and 31% in leg press in the native whey group and milk groups respectively. 

Furthermore, both groups improved performance in functional tests, with improvements of 

6.4% and 4.2% in stair climb and by 11.6% and 9.2% in timed sit to stand tests for the native 

whey and milk groups respectively. Although only the native whey group improved their loaded 

(+10 kg and +20 kg) stair climb performance (6.4% and 7.5%) there were no differences 

between groups for any muscular or performance parameters. Discussion/Conclusion: 

Supplementation with native whey and milk protein were equally effective in supporting 

changes in body composition, strength and functional performance during a period of strength 

training. This may be due to the high concentration of leucine in the milk protein utilized, 

resulting in only a small difference between the products. If any difference exists between the 

two products in eliciting muscular or functional changes following strength training in elderly 

this could not be detected in the present trial, and the two protein supplementations should 

therefore be regarded as equally effective.                                                                                      

Keywords: Protein, Elderly, Native whey, Milk, 1RM , LBM. 
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BCAA               Branched chain amino acids 

CI Confidence interval 

CT Computed tomography 
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eIF4E Eukaryotic translation initiation factor 4E 
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MVC Maximal voluntary contraction 

NSSS Norwegian School of Sport Sciences 
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P70S6K 70kDa ribosomal protein S6 kinase 1 

SPPB Short Physical Performance Battery 

VL m.Vastus lateralis 
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1. Background 

Skeletal muscle is a highly plastic tissue that exhibits a substantial ability to adapt to 

changes in activity stimulus (Gundersen, 2011). For example, in response to strength 

training the muscles may adapt by increasing muscle mass and strength (Bassel-Duby & 

Olson, 2006). Conversely in response to sedentary behavior or immobilization there is 

usually a net loss of muscle mass and performance (Bassel-Duby & Olson, 2006). In 

addition, muscle mass also changes due to normal growth throughout the human 

lifespan (Lexell, Taylor, & Sjostrom, 1988). During childhood and adolescence the 

muscle mass increases, and during ageing from maturity to senescence, muscle mass 

declines (Lexell, Henriksson-Larsen, Winblad, & Sjostrom, 1983; Lexell et al., 1988). 

Ageing related atrophy of the muscle is reported to begin around 25 years of age and 

thereafter accelerates (Lexell et al., 1988). Studies have reported that there is a 30-50% 

decrease in skeletal muscle mass in both men and women, between the ages of 40 and 

80 years (Faulkner, Larkin, Claflin, & Brooks, 2007; Lexell et al., 1988). In agreement 

others have reported that approximately 1% of muscle mass is lost per year after the 

fourth decade of life (Baumgartner et al., 1998). 

The inevitable age-associated decline of muscle mass and physical function is termed 

sarcopenia (Rosenberg, 1989). Characteristic of this ageing-related atrophy is that the 

decrease in muscle mass is accompanied by an even greater decrease in strength 

(Frontera, Hughes, Lutz, & Evans, 1991; Goodpaster et al., 2006) and power (Bassey et 

al., 1992). In a cohort with 1880 participants (aged 70-79) the annual loss in strength 

was 3 - 4% faster than the decline in muscle mass in the same individuals (1%) 

(Goodpaster et al., 2006). This implies that sarcopenia does not only involve loss of 

muscle mass but also a decline in muscle quality (e.g. changes in basic myofilament 

structure and function) (Frontera, Zayas, & Rodriguez, 2012).  

The loss of muscle mass seen in older adults has significant physiological, functional 

and health consequences. Often, concurrent with the loss of muscle mass is the 

decreased ability to perform functional tasks such as climbing stairs, doing household 

chores and other tasks that require muscular strength (Cawthon et al., 2009). Sarcopenia 

is also associated with an increased risk for developing chronic metabolic diseases such 
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as diabetes (Addison, Marcus, LaStayo, & Ryan, 2014; Koopman, 2011). Sarcopenia is 

therefore considered one of the major causes of frailty and disability in the elderly 

population and significant impact the quality of life for those affected. The implication 

of an ageing population worldwide increases the prevalence of sarcopenia and it is 

assumed that the world’s population aged 60 years or above will triple within the next 

50 years (Koopman, 2011). For example in Norway there are currently living 1.1 

million Norwegians aged ≥ 60 and it is estimated that the share of elderly in the 

population (aged 67 or more) will increase from its present 15% (2004), to 25% by 

2050 and 30% by the year 2100 (Bye, 2004). As a result of this development, 

sarcopenia has become a major subject of scientific research as well as a public health 

problem of large dimensions. 

In essence, the regulation of muscle mass reflects the balance between muscle protein 

synthesis and protein breakdown. The relatively slow rate of muscle decline during 

ageing must mean that there is an overall relatively small negative protein balance. 

However, it is currently substantial evidence showing that basal fasting protein 

synthesis and (or) breakdown rates are not different between young and elderly adults 

(Cuthbertson et al., 2005; Hasten, Pak-Loduca, Obert, & Yarasheski, 2000; Katsanos, 

Kobayashi, Sheffield-Moore, Aarsland, & Wolfe, 2005). Therefore, to better understand 

and to identify interventions that counteract or delay the decline in skeletal muscle mass 

in the elderly, research have started to focus on the regulation of muscle protein balance 

in response to anabolic stimuli such as physical activity and food intake. In this regard, 

both strength training and nutrition interventions have been shown to be promising 

means to increase muscle mass and strength, and improve physical capabilities in older 

adults (Frontera, Meredith, O'Reilly, Knuttgen, & Evans, 1988). However, data from 

more recent studies suggests that the anabolic response to the ingestion of essential 

amino acids is attenuated in the elderly compared with young controls (Cuthbertson et 

al., 2005; Katsanos et al., 2005; Volpi, Kobayashi, Sheffield-Moore, Mittendorfer, & 

Wolfe, 2003). In addition it is shown that the ingestion of glucose together with amino 

acids does not augment the anabolic response on muscle protein synthesis to the 

positive effect of amino acids alone in elderly compared to young (Volpi, Mittendorfer, 

Rasmussen, & Wolfe, 2000). It is therefore postulated that this “anabolic-resistance” is 

one of the main factors responsible for the age-related decline in muscle mass 

(Koopman, 2011).  



10 

 

 

In general there are mainly two factors that govern the effect a given protein intake has 

on muscle protein synthesis. Firstly, the amino acid composition of the protein intake is 

a key-determining factor. Essential amino acids exert a significant stimulatory effect on 

muscle protein synthesis (Volpi et al., 2003), and especially the branched chain amino 

acid leucine has been shown to be an essential regulator that stimulates protein synthesis 

the first 1-3 hours after ingestion in young (Glynn et al., 2010) and ageing (Casperson, 

Sheffield-Moore, Hewlings, & Paddon-Jones, 2012) human skeletal muscle. Notably, in 

terms of muscle protein synthesis, the addition of nonessential amino acids to an 

essential amino acid supplement does not stimulate protein synthesis additionally (Volpi 

et al., 2003). However newer findings suggest that the non-essential amino acids may be 

needed for continued increased rates of synthesis after the leucine induced initiation in 

humans (Churchward-Venne et al., 2012). Secondly, the digestibility and/or absorption 

kinetics of the protein ingested are also shown to affect the rate of muscle protein 

synthesis. For example, the combination of fast (whey) and slow (casein) proteins found 

in milk is shown to promote greater increase in muscle protein synthesis than an 

isonitrogenous and isoenergetic soy-protein beverage after exercise in young individuals 

(S. B. Wilkinson et al., 2007). When the two fractions of milk protein are investigated 

against one another, whey protein is found to be superior in stimulating postprandial 

muscle protein synthesis in the first phase after ingestion (Pennings, Boirie, et al., 

2011). 

In the context of developing nutritional strategies for preserving muscle mass in elderly 

it would be desirable to optimize both the amino acid composition and the 

bioavailability of the protein intake for maximizing muscle protein synthesis. In relation 

to this, many studies have shown that free-form essential amino acids and whey protein 

supplements promote muscle synthesis after strength exercise in both young (Burke et 

al., 2001; Paddon-Jones et al., 2004) and elderly people (Paddon-Jones, Sheffield-

Moore, Katsanos, Zhang, & Wolfe, 2006; Paddon-Jones et al., 2004). Previous acute 

studies in our lab show promising results of native whey protein supplementation. These 

results show that post-exercise ingestion of native whey results in both higher plasma 

concentrations of leucine and other essential amino acids (Laahne, 2013; Nyvik Aas, 

2014), and increased p70S6K phosphorylation compared to post exercise milk ingestion 

(Nyvik Aas, 2014). 
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In this master thesis we aimed to compare the effects of supplementing with these two 

different protein sources during a long-term strength training intervention in elderly 

subjects. 

Aim: 

To compare the effects of daily supplementation with either 40g of milk or native whey 

protein on muscle mass and muscle function in untrained elderly subjects, during 11 

weeks of progressive strength training. 

Hypothesis: The group supplemented with native whey protein will experience larger 

increases in lean body mass, muscle mass, and strength than the group supplemented 

with equal amounts of milk protein. 

 The rationale for this hypothesis was that native whey protein, due to its higher leucine 

content was supposed to increase anabolic signaling and the following increase in 

muscle protein synthesis in the elderly to a larger extent than regular milk protein. 
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2. Theory 

 

2.1 Regulation of skeletal muscle mass 

Skeletal muscle is a plastic tissue that adapts to use and disuse. In response to increased 

work load (for example heavy strength exercise) the muscle will increase in mass 

(hypertrophy) and strength. Conversely, in response to disuse the muscle mass will 

decline (atrophy). Since there is little turnover of skeletal muscle cells, gain or loss of 

muscle mass mainly reflect the balance between protein synthesis and protein 

degradation in permanent muscle fibers. 

The mammalian target of rapamyocin (mTOR) is considered the main regulator of 

protein synthesis, which when activated results in an increased translation efficiency 

(Bodine et al., 2001). The most known activators of mTOR are the Insulin-like growth 

factor (IGF-1) and its downstream protein kinase B (Akt). When activated, mTOR 

increase protein translation by phosphorylating the p70S6K which in turn 

phosphorylates the ribosomal S6 protein (S6K1) (Goodman, Kotecki, Jacobs, & 

Hornberger, 2012). Phosphorylated S6K1 protein is important for the translation 

process during protein synthesis (Kimball, 2002). mTOR also phosphorylates the 

translational repressor 4E binding protein (4EBP1). This relieves the translation factor 

eIF4E, which then in turn activates the ribosome and protein synthesis (Atherton et al., 

2005). 

The main regulatory pathway for the process of protein degradation is the myostatin -

smad 2/3 pathway (Schiaffino, Dyar, Ciciliot, Blaauw, & Sandri, 2013). The process of 

protein degradation relies on the ubiquitin-proteasome system and the autophagy-

lysosome systems (Schiaffino et al., 2013). The contribution of these two pathways of 

protein breakdown varies, but they collectively contribute to the turnover of protein and 

if the rates of protein breakdown exceed those of protein synthesis, muscle mass will be 

lost (atrophy). 
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2.2 Anabolic effect of resistance exercise 

Many studies report that the mTOR signaling pathway is activated in response to 

resistance exercise in humans (Eliasson et al., 2006; Terzis et al., 2008; S. B. Wilkinson 

et al., 2008). The findings that early exercise-induced increase in protein synthesis is 

blocked by rapamyocin treatment (Drummond et al., 2009), and that the 

phosphorylation status of S6K1 after exercise is a good indicator for long term increase 

in muscle mass (Terzis et al., 2008), both indicate that mTOR signaling play a crucial 

role in mediating the hypertrophic effect of strength training.  

The anabolic response following resistance exercise seems to be impacted by both the 

volume and intensity of the exercise (Burd, West, et al., 2010). High volume-low 

intensity (30%) exercise performed until failure, elicits a greater anabolic response than 

low volume–high intensity (90%) performed until failure, or low intensity exercise 

(30%) work matched to that of high intensity (Burd, West, et al., 2010). These data 

suggest that performing exercise until failure is important for the synthetic response 

following exercise; also with a higher volume proving more favorable (Burd, West, et 

al., 2010). In addition time under tension is shown to be important for the response 

(Burd, Andrews, et al., 2012). In summation, it seems that several aspects of the 

resistance exercise (intensity, time under tension, failure and volume) modulate the size 

of the anabolic response. 

2.3 Regulation of skeletal muscle mass and ageing  

Muscle protein synthesis is stimulated by exercise in both young and old subjects 

(Frontera et al., 1988). However, some studies suggest that elderly subjects have a 

blunted muscle protein synthesis response compared to younger subjects (Kumar et al., 

2009). Kumar et al. (2009) reported that mTOR activation (phosphorylation of p70S6K 

and 4EBP1) was reduced in the elderly compared to young controls after heavy 

resistance exercise. Aging does however, not affect muscle protein breakdown at rest or 

following resistance exercise (Fry et al., 2013). 
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2.4 Anabolic response to food intake 

Protein balance in skeletal muscle is affected by nutrient intake (Rennie et al., 1982). 

Ingestion of essential amino acids is shown to directly activate regulatory proteins in 

mRNA translation, while non-essential amino acids have no effect on stimulation of 

muscle protein synthesis. Especially the branched-chain amino acid leucine, is shown to 

directly increase mTOR activity and its downstream effectors 4EBP1 and S6K1 (Norton 

& Layman, 2006). Hence, leucine seems to be the main amino acid that stimulates 

postprandial increase in muscle protein synthesis. 

As the positive effect of protein ingestion has been established, the quantities needed for 

optimal stimulation has been investigated. The amount of protein required to detect an 

increase in muscle protein synthesis (MPS) is reported to be dose dependent up to 10 g 

of essential amino acids, or the equivalent amount of whole protein (~20 g), while 

further increases in dosages fail to elicit further increases in stimulation (at least in 

young healthy subjects) (Cuthbertson et al., 2005). 

Few studies have investigated protein breakdown, possibly due to more complicated 

and less available measuring methods. When investigated, the plateau in anabolic 

response seen with synthesis measurements alone is no longer so apparent. In mixed 

meals it has been suggested that no practical limitation to the anabolic effect of 

increased dosage sizes exist, as net protein balance continues to rise  with higher 

dosages (Deutz & Wolfe, 2013). However, one important function of protein 

degradation process is to contribute to the turnover of proteins within the cell. Hence, 

the complete removal of breakdown would be disadvantageous as protein quality could 

be impaired. 

Sufficient intake of protein has been established to be slightly over 0.8 g/kg/day in 

elderly individuals (Campbell & Leidy, 2007). The present recommended daily 

allowance is now 1.2 g/kg/day of protein for the Nordic countries (Nordic Council of 

Ministers, 2014). When the total protein intake is manipulated there is no difference 

between a high (1.5 g/kg/day) or very high protein (3.0 g/kg/day) intake on postprandial 

muscle protein synthesis in both young and elderly subjects (S. Walrand et al., 2008). 
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This implies that an adequate intake is sufficient. Furthermore, since high protein intake 

may have adverse effects on kidney functions in the elderly (S. Walrand et al., 2008), it 

is important to investigate the effect of protein quality for this age group. 

 

2.5 Anabolic response to combined exercise and nutrition 

 

The effect of combining two anabolic stimuli such as resistance exercise and protein 

supplementation results in synergistic effects, leading to increased muscle protein 

synthesis, and a positive net protein balance (Biolo, Tipton, Klein, & Wolfe, 1997; 

Rasmussen, Tipton, Miller, Wolf, & Wolfe, 2000; Tipton, Ferrando, Phillips, Doyle, & 

Wolfe, 1999). 

When synthetic rates of different muscle fractions are investigated following unilateral 

exercise and protein consumption, myofibrillar fractional synthetic rate (FSR) is shown 

to be increased to a further extent in the exercised muscle than in resting muscle 

(Moore, Tang, et al., 2009). Interestingly the sarcoplasmic FSR is found to be 

exclusively stimulated by feeding, as no differences are found between exercised and 

rested muscle (Moore, Tang, et al., 2009).  

Investigation of protein intake following resistance exercise reveals a plateau in MPS 

stimulation with a dosage of 20 g of egg protein. Increasing the dosage up to 40 g only 

results in a significantly increased oxidation of traced amino acids with no additive 

effect on the rate of MPS (Moore, Robinson, et al., 2009). Similar results are found 

when a whey protein supplement is used. Increasing the dosages from 20 g to 40 g of 

whey protein, does not lead to higher muscle protein synthesis, but instead an increased 

oxidation and excretion of nitrogen. However, increasing the protein dosage up to 20 g 

seems to be important because intake of low dosages of protein (10 g of whey) does not 

seem to be sufficient to increase protein synthesis from baseline (Witard et al., 2014). 

Compared with carbohydrate ingestion, protein ingestion post-exercise elicits a greater 

anabolic response and a higher protein synthesis. Carbohydrate ingestion post-exercise 
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elicits a small increase in muscle protein synthesis when proteins are not ingested. 

However, no additive effect on MPS is seen when carbohydrates is co ingested with 

proteins, compared to an optimal protein intake alone (Koopman et al., 2007). 

Interestingly, carbohydrate ingestion post-exercise may have a role in reducing muscle 

protein breakdown rates (Borsheim et al., 2004). 

 

2.6 Training status 

 

Training status seems to affect the FSR response following exercise. There is a stronger 

immediate response in mixed muscle FSR in trained subjects than untrained subjects 

(Tang, Perco, Moore, Wilkinson, & Phillips, 2008). However, untrained subject 

experience a more prolonged and modest effect than trained subjects, which results in a 

higher total anabolic response (Tang et al., 2008), This shift is initiated during the 

typical duration of a resistance exercise period (12 weeks), as 8 weeks of training is 

utilized to differentiate between trained and untrained states within subjects (Tang et al., 

2008). A change in postprandial myofibrillar FSR is seen after only a few exercise 

bouts, suggesting that the shift is almost immediate (D. J. Wilkinson et al., 2014). 

Just as resistance exercise increases the anabolic response in muscles following amino 

acid or protein intake (Biolo et al., 1997), immobilization impairs the mixed muscle 

protein synthesis response. This was shown during 14 days of full leg-cast induced 

knee-immobilization which resulted in a 31% reduced MPS in the immobilized leg 

compared to the used limb (Wall, Snijders, et al., 2013). In contrast, resistance exercise 

is shown to induce an anabolic window lasting for a prolonged period (up to 48 hours) 

(Phillips, Tipton, Aarsland, Wolf, & Wolfe, 1997) and an anabolic window is even 

observed with aerobic exercise, showing increased postprandial MPS 15 hours post-

session in the elderly (Timmerman et al., 2012). 

Collectively physical activity level and training status seems to impact the anabolic 

response to both exercise and food intake. It seems physical activity increases the 

anabolic response, while lack of physical activity reduces the response. 
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2.7 Timing of protein intake 

 

The proximity of protein intake in relation to the exercise bout could also affect the 

anabolic response. However, in young subjects the synthetic response does not differ 

between feeding one or three hours after exercise (Rasmussen et al., 2000). This might 

suggest that the proximity of protein intake after exercise is of little importance for 

young people. This is also confirmed in meta-analysis showing little effect of protein 

intake proximity to exercise on hypertrophy in longitudinal training studies (Schoenfeld, 

Aragon, & Krieger, 2013). This meta-analysis concludes that the dosage of protein 

intake is more important than timing in determining the anabolic response after 

exercise.  

However, in rats hypertrophy induced by hindlimb suspension was larger and adipose 

tissue accumulation was less, when rats were fed immediately after performing exercise, 

compared to delayed feeding (Suzuki et al., 1999). Furthermore, in elderly subjects, data 

suggest the effect of immediate protein intake following exercise may be more 

important than in young. In agreement with this, immediate protein supplementation 

after exercise is shown to increase muscle mass and strength, compared with a delayed 

intake in elderly humans (Esmarck et al., 2001). 

2.8 Muscle protein synthesis in the elderly 

Recent studies suggests that elderly individuals need a higher dosage (35 g) of protein 

to maximize the muscle protein synthesis rate, than younger subjects (20 g) (Pennings et 

al., 2012), but not all find this difference at rest (Yang, Breen, et al., 2012). 

Interestingly, resistance exercise seems to increase the sensitivity to amino acids in 

elderly subjects. After resistance exercise there is a significant increases of myofibrillar 

FSR in the exercised muscle following the same increase in protein dosage of 20-40 g 

(Yang, Breen, et al., 2012). A recent report presenting results of acute responses in both 

young and elderly in studies utilizing similar methods, conclude that a relative dosage 

of 40 g/kg and 24 g/kg is needed to reach the plateau (maximize) the MPS response in 

elderly and young men, respectively (Moore et al., 2015). 
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Furthermore, when essential amino acids are administered to elderly men in similar 

doses as to young subjects, the plateau in MPS is lower than in younger subjects 

(Cuthbertson et al., 2005). This could suggest that anabolic resistance occurs with age. 

One mechanism causing this reduced sensitivity to intake of proteins in the elderly 

could be the observed lower activation of the mTOR - pathway, which is also found 

after exercise in elderly subjects (Kumar et al., 2009). 

It could be that the differences seen between young and elderly might be caused by the 

impact of changed kinetics of either digestion or absorption, and that the reduced FSR 

seen in elderly is due to less availability of amino acids in the circulation. However, 

when young and elderly consume intrinsically labeled protein at rest and after exercise, 

identical uptake is seen between both age groups (Pennings, Koopman, et al., 2011), 

which argues against this notion. 

In summation it is established that protein intake and exercise impact the response on 

muscle protein synthesis, and that age seems to have an effect on the response. The 

topic of the next segment will focus on how the response is impacted by different 

protein sources. 

 

2.9 Protein sources 

 

In research affecting protein supplementation, usually three different types of protein 

are used. These are soy protein and the two milk protein fractions; whey and casein. As 

they are the most commonly researched protein supplements, the next segment will be 

limited to these three types. 

 

2.9.1 Milk and soy supplementation 

Several studies have investigated the post-exercise muscle protein synthesis response 

after intake of different protein supplements. Increased muscle protein synthesis rates 

are reported following milk protein ingestion compared to soy protein ingestion (S. B. 
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Wilkinson et al., 2007). Furthermore, amino acid uptake across an exercised limb is 

lower following soy protein ingestion compared with milk supplementation (S. B. 

Wilkinson et al., 2007). This may be due to different distribution of the proteins in the 

postprandial state, as soy has been shown to be incorporated into the splanchnic bed to a 

higher degree than milk proteins (Fouillet, Mariotti, Gaudichon, Bos, & Tome, 2002). 

The differences in composition may also impact the results in muscle, as milk proteins 

contain higher concentrations of branched chain amino acids (BCAA). Branched chain 

amino acids are shown to be transferred to areas outside the splanchnic bed to a higher 

degree than other amino acids (Biolo et al., 1992). This results in a higher plasma 

concentration of branched chain amino acids following dairy consumption (Gran et al., 

2014). Dairy is also shown to induce a greater activation of the mTOR-pathway (higher 

phosphorylation of mTOR
Ser448

 and an elevation in ribosomal S6K
ser240/244

), than 

observed with soy consumption (Gran et al., 2014). However, no difference was seen 

for Akt or p70S6K (Gran et al., 2014). 

When comparing soy ingestion with the different strands of milk protein, soy promotes 

lower rises in mixed MPS than whey hydrolysate
1
 following exercise (Tang, Moore, 

Kujbida, Tarnopolsky, & Phillips, 2009). However at rest the effects are similar (Tang 

et al., 2009). Compared to micellar
2
 casein, the effect of soy is favorable after both 

exercise and at rest (Tang et al., 2009). 

In elderly ingestion of 20 g of soy protein fails to stimulate myofibrillar protein 

synthesis, both at rest and after exercise. Only after consumption of dosages as high as 

40g there is a significant rise in protein synthesis seen  in combination with exercise, 

whereas none is detected at rest (Yang, Churchward-Venne, et al., 2012). This could 

suggest that elderly are more sensitive to differences between whey and soy, then 

younger individuals at rest, and that exercise might reduce the threshold for the 

postprandial MPS response in the elderly.  

 

 1
Hydrolyzed proteins are proteins broken down to its 

component amino acids. 
2
Micellar casein is the form of casein found in bovine 

milk. 
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2.9.2 The Milk proteins 

 

The two main protein fractions in bovine milk are casein and whey, making up 80 % 

and 20 % of milk protein, respectively. Whey is soluble and the amino acids are 

absorbed more rapidly than after intake of casein, which is less soluble and clots in the 

stomach. This result in a slow release of amino acids in the circulation because of a 

slower gastric emptying and absorption of amino acids (Boirie et al., 1997). The faster 

absorption rates seen with whey leads to a rapid and strong increase both in plasma 

concentrations of amino acids and muscle protein synthesis response following feeding 

with whey, compared to micellar casein in both young (Tang et al., 2009) and elderly 

subjects (Burd, Yang, et al., 2012; Pennings, Boirie, et al., 2011). These differences are 

also present post exercise (Burd, Yang, et al., 2012; Tang et al., 2009). When casein is 

hydrolyzed, it increases the absorption rates, but myofibrillar MPS are still higher 

following whey supplementation (Pennings, Boirie, et al., 2011).  

In the mentioned studies above, biopsies for FSR-calculations after protein intake was 

taken 2 hours (Burd, Yang, et al., 2012) and 1.5–3 hours post protein intake (Pennings, 

Boirie, et al., 2011). When measurements are registered over a longer time period (1-6 

hours) the initial (1-3.5 hours) FSR is higher following whey ingestion compared to that 

of casein (Reitelseder et al., 2011). However, in the extended period, 3.5–6 hours, FSR 

following casein ingestion is still elevated, whereas FSR following whey ingestion is 

reduced to basal levels. When the net FSR (1–6 hours) is calculated, there is no 

difference between whey and casein (Reitelseder et al., 2011). Hence, the difference in 

FSR response may be smaller than what is indicated by the studies taking biopsies over 

a shorter time period. The casein supplementation used in the Reitelseder (2011) study 

is calcium caseinate (Reitelseder et al., 2011), which may have impacted the results as 

this form of casein is more soluble and result in a faster release of amino acids than that 

of micellar casein. This may induce higher FSR values in the initial period than would 

have been seen with micellar casein (Reitelseder et al., 2011). Similar results are also 

found when caseinate intake is compared with whey in elderly subjects (Dideriksen et 

al., 2011).  In addition, casein, but not whey protein, has been found to reduce whole 

protein breakdown rates (Boirie et al., 1997). 
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The dissimilar findings in some of these studies may be caused by differences in 

methodology e.g. different supplementation (micellar casein vs caseinate) and different 

isotopic tracers, and by the collection time for biopsies. Nevertheless, the results suggest 

that the effect of whey supplementation is superior to casein for MPS stimulation in the 

first hours after resistance exercise. However, if another meal is not consumed within 

six hours, the slow release of amino acids from casein may prove advantageous. 

2.9.3 Native whey 

 

Whey protein supplements can be made through several processes. Typically it is made 

as a secondary step from the whey fractions which is derived from cheese production 

and preserved as a concentrate or isolate. However, new techniques allow for extraction 

of whey protein from pasteurized milk with a series of micro- and ultra-filtration 

techniques, which results in a higher content of essential amino acids, including leucine. 

It has been shown that ingestion of native whey protein will result in significantly 

higher blood leucine concentration than both milk and other variations of whey protein 

(Laahne, 2013; Nyvik Aas, 2014). Production of whey supplements in this way 

(filtration) do not denaturize protein as is traditionally seen with whey supplements 

derived from cheese production (Lactalis, 2014). Furthermore being produced in this 

way, whey protein is more similar to its native form in milk (hence the name). Native 

whey (30 g) is also shown to induce postprandial whole body protein synthesis 

significantly more than casein (30 g) following 10 days increased protein intake in 

elderly subjects (Gryson, Walrand, et al., 2014). However, no difference in postprandial 

whole body breakdown or synthesis were observed between native whey and casein 

supplementation for those subjects consuming 15 g of the protein as part of an adequate 

protein intake over the 10 day period (Gryson, Walrand, et al., 2014). In agreement with 

this there is also shown a significant increase in myosin FSR following ingestion of 15 g 

of native whey, comparable to 30 g of native whey or casein, whereas 15 g of casein 

fails to elicit a response (S.  Walrand et al., 2015). Interestingly postprandial 

mitochondrial FSR increased significantly only in the native whey groups, irrespective 

of dosage (S.  Walrand et al., 2015). An early investigation of native whey suggests that 

the rate of delivery of amino acids may be too rapid (Lacroix et al., 2006).  The 
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combination with casein may be favorable, as native whey ingestion results in a 

transient hyperaminoacidemia, compared to milk and casein (Lacroix et al., 2006). 

2.10 Leucine trigger 

 

Whey protein is characterized by having a high content of leucine. This is believed to be 

the main reason why whey protein stimulates protein synthesis stronger than other 

protein sources in the first phase after ingestion. Leucine has been shown to stimulate 

muscle protein synthesis through the mTOR-pathway and it is unique among the 

branched chain amino acids in this regard (Anthony et al., 2000). In rats there is a dose-

response relationship between leucine content in meals, mTOR-signaling, and peak 

muscle protein synthesis. This has been shown both with intake of different protein 

sources (Norton et al., 2009) and by manipulating the leucine content of a protein 

source (Norton, Wilson, Layman, Moulton, & Garlick, 2012). 

However, leucine is not the sole reason for the effectiveness of whey protein. Through 

an elegant design, Churchward-Venne et al. (2012) investigated the effects of three 

different supplement drinks on muscle protein synthesis in humans (Churchward-Venne 

et al., 2012). After unilateral resistance exercise, subjects consumed either 25 g of whey 

protein, or 6.5 g of leucine-enriched whey protein with increased leucine content to that 

of 25 g of whey, or 6.5 g of whey, with all the essential amino acids other than leucine 

similar to the 25 g dose. They found no difference in the acute post postprandial muscle 

protein synthesis between drinks. However, only the full 25 g whey protein supplement 

sustained the post-exercise rates of MPS (Churchward-Venne et al., 2012). This 

suggests that also other amino acids than leucine has to be available to maximize the 

protein synthesis response post-exercise. 

Even though Churchward-Venne et al. (2012) did not find any difference with their 

design at rest in young individuals, this may be different in elderly subjects. It has been 

shown that co-ingestion 2.5 g of leucine and 20 g of casein, increases the rates of 

postprandial muscle protein synthesis significantly more than casein ingestion alone 

over a period of 6 hours in elderly subjects (Wall, Hamer, et al., 2013). This suggests 

that elderly subjects need higher leucine content than young to fully stimulate post-
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prandial muscle protein synthesis. In support of this notion it has been shown that the 

FSR response present in young subjects following ingestion of a low-leucine (1.7 g) 

EAA mix (~15 g protein) was absent in elderly subjects (Katsanos, Kobayashi, 

Sheffield-Moore, Aarsland, & Wolfe, 2006). Only when a higher dosage (2.8 g) of 

leucine was ingested was an increased response observed in the elderly (Katsanos et al., 

2006). Furthermore when elderly have been chronically supplemented with leucine over 

14 days, increased postprandial phosphorylation of mTOR, 4E-BP1 and P70
s6k1

, as well 

as and increased FSR is observed after a mixed meal is consumed (Casperson et al., 

2012). Collectively it seems that at least 2 g of leucine has to be ingested for elderly to 

gain a postprandial response in muscle protein synthesis. This could have attenuated the 

response in those studies that used low doses of protein and therefore also leucine. It 

also seems that regular leucine supplementation may help prevent the anabolic 

resistance that occurs with age (Casperson et al., 2012). 

2.11 Longitudinal effects of protein intake with exercise 

 

It is documented in a meta-analysis that supplementation of protein (regardless of type) 

to a normal diet can provide a positive effect (0.69 kg ± 0.22 CI 95%) on accumulation 

of muscle mass when resistance exercise is performed over a prolonged period of  six or 

more weeks (Cermak, Res, de Groot, Saris, & van Loon, 2012). However, several of the 

studies not use a calorie matched placebo, which could make some of the studies hard to 

interpret (Cermak et al., 2012). This is because an increased energy intake in itself can 

elicit substantial changes as long as protein requirements are covered (Rozenek, Ward, 

Long, & Garhammer, 2002). 

The effect of consuming protein from different sources during long training 

interventions have shown a larger effect on lean body mass following milk protein 

supplementation than isocaloric soy consumption (Hartman et al., 2007; Phillips, Tang, 

& Moore, 2009; Volek et al., 2013). One study comparing the effect of native whey 

protein supplementation with that of micellar casein or carbohydrate in conjunction with 

resistance exercise, did, however, not find any difference in strength or body 

composition changes between the three groups of young subjects (Babault, Deley, Le 

Ruyet, Morgan, & Allaert, 2014). However, a better resistance to fatigue was observed 
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following native whey supplementation. Their dosage sizes may have been suboptimal 

for both protein groups (10 g) which could explain the lack of effect compared to 

carbohydrate (Babault et al., 2014). 

There are not many interventions combining protein supplementation and strength 

training on elderly subjects. An overview of interventions using elderly subjects (~70 

years old), of considerable duration (12-24 weeks) can be seen in table 2.1 This 

overview is limited to the interventions using DXA for lean body mass measurements 

and 1RM measurements, predominantly for leg press, most utilizing a full body 

resistance exercise programs (as is used in the present study), to allow for comparison 

of our results with similar interventions. 

The changes achieved with prolonged resistance exercise in lean body mass in these 

studies range from around 0.3-1.5 kg as a result of resistance exercise and protein 

intervention (table 2.1). As shown in the table, the results are inconsistent with no 

difference between protein consuming groups in most studies. The table also indicates a 

trend in most studies favoring protein intake on mean change in lean body mass. When 

data from multiple studies are compiled, meta-analysis shows a favorable effect for 

protein supplementation on lean body mass/fat free mass in elderly subjects (Cermak et 

al., 2012; Finger et al., 2015) as well as young subjects (Cermak et al., 2012). In studies 

of elderly subjects, most interventions are conducted on sedentary, or individuals 

inexperienced in resistance exercise. One review supports a link between exposure to 

resistance exercise and the response to protein supplementation on lean body mass gains 

in resistance exercise interventions (Pasiakos, McLellan, & Lieberman, 2015). 

Interestingly, in this review untrained subjects see no benefit of supplementation during 

the initial weeks of training, while trained subjects gain more lean body mass when 

protein is consumed. As the duration of training increases, an effect is seen on lean body 

mass regardless of previous exercise experience (Pasiakos et al., 2015). 

In The Tieland study (table 2.1) they investigated frail elderly, making it particularly 

interesting. They have investigated the effect of protein supplementation with (Tieland, 

Dirks, et al., 2012) and without exercise (Tieland, van de Rest, et al., 2012) over a 24 

week period. The supplements (2x15 g milk protein concentrate) were given in addition 

to meals, to ensure a higher dosage of protein with each meal than the placebo groups. 
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Only resistance exercise with added protein induced changes in lean body mass for the 

frail elderly (Tieland, Dirks, et al., 2012). Furthermore the effect seen by protein 

supplementation in the frail elderly is not present in elderly subjects who were not frail 

(Leenders et al., 2013), suggesting that frail elderly see more benefit from 

supplementation than healthy elderly individuals. 

Protein supplementation is shown to increase both muscle mass and strength following 

24 weeks of resistance exercise in post-menopausal women consuming a nutrient-

supplement containing 10 g of whey (Holm et al., 2008). Furthermore, another study 

conducted on middle-aged and elderly men, found an increased effect of whey protein 

supplementation on 1RM leg press only, however no difference for lean body mass 

changes (Eliot et al., 2008). In a recent report, elderly (60 years) men conducting 

concurrent training (4 months) experienced an increased effect of 10 g of protein (milk 

or native whey) supplementation on changes in body composition compared to 4 g 

(milk). However there was no difference between protein sources when given as a 10 g 

dosage (Gryson, Ratel, et al., 2014). 

Solberg et al. (2011) previously conducted a 13 week training intervention on elderly 

with a mean age of 74.3±4.6 years. The study did not include supplementation, but 

utilized a similar protocol with essentially identical exercises as in the present study for 

the strength training group, and was carried out in a similar fashion. The intervention 

induced a mean change in lean body mass of 1.4 kg (±0.4 kg 95% CI). Changes in 1RM 

strength were 20% for chest press, and 35% for knee extension (Solberg et al., 2011). 

Two possible explanations have been proposed as to why some studies find an effect of 

protein supplementation while others do not, and they are called the spread and change 

theory (Bosse & Dixon, 2012). According to spread theory, a sufficient difference in 

overall protein intake (g/kg/day) between the intervention and control groups must exist 

(Bosse & Dixon, 2012). In their review, a 66.1% average difference was found in 

g/kg/day between groups in those studies identifying a positive effect of protein, while 

the average difference in those studies identifying no effect, was 10.2% greater than 

controls (Bosse & Dixon, 2012). According to change theory, an increase in protein 

intake (g/kg/day) from baseline must be present during the training intervention. In their 

study, the average % increase in those studies finding an additional effect of protein 
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supplementation was 59.5%, while those studies finding no effect have an average 

increase of 6.5% from baseline (Bosse & Dixon, 2012). The included studies in this 

investigation both younger and older individuals. As mentioned previously, simply 

increasing protein intake may have adverse effects on kidney function in the elderly (S. 

Walrand et al., 2008), so for this group investigating protein quality with the aim of 

finding the most effective protein sources remain highly important. 
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2.12 Effects on physical performance in the elderly 

 

Several of the studies in table 2.1 have measured effects of protein supplements and 

exercise on physical performance in the elderly. Typically increases in strength when 

1RM is tested seem to be between 20-35%, at least when leg press is tested (table 2.1).  

Physical performance tests are conducted in several of the trials in table 2.1, with two of 

them  utilizing the short physical performance battery (SPPB) (Chale et al., 2013; 

Tieland, Dirks, et al., 2012), which is found to predict future disability (Guralnik, 

Ferrucci, Simonsick, Salive, & Wallace, 1995). The battery includes a standing balance 

test, a 2.4 m (8ft) normal-pace walk test, and a 5-times repeated chair rise. For each test 

the subjects are scored from 0 to 4, higher being better, and their total score represent 

their performance in the battery, ranging from 0-12 (Guralnik et al., 1995). 

Both trials utilizing the whole SPPB report a significant increase following the 

intervention in SPPB score, as a result of increased physical function (Chale et al., 

2013; Tieland, Dirks, et al., 2012), although they do not disclose all individual test 

values of the battery. The improvement in performance in 5 times chair rise after the 

first 12 weeks  is reported to be 13% (protein) and 5% (placebo) in the Tieland, Dirks, 

et al. (2012) trial,  and 9% (men) and 8% (women) in the Leenders et al. (2013) trial, 

also utilizing this test. The improvement continues following the next 12 weeks, with 

total improvements of 14% (protein) and 24% (placebo) in the Tieland, Dirks, et al. 

(2012) trial, and  18% (men) and 19% (women)  in the Leenders et al. (2013) trial 

following 24 weeks of supplementation and training. The completion times at inclusion 

in these trials were 15-17 s (frail) (Tieland, Dirks, et al., 2012) and 8 s (healthy) 

(Leenders et al., 2013). The previously mentioned Solberg et al. (2011) trial at our lab, 

improved performance to a similar extent, with a mean reduction of 1.0 s (9%) from 

11.1 s at inclusion in the same test following the 13 week strength training intervention 

(Solberg et al., 2011). 

Stair climb performance was improved by 8% and 18% for protein (no difference) and 

carbohydrate groups in the Chale et al. (2013) study. Solberg et al. (2011) improved 

stair climb performance by 0.6 s (7%) in unloaded and 0.8 s (9%) in loaded (20 kg) in 
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the same stair climb test utilized in the present study. The completion times of the test at 

inclusion were 8.4 s and 9.3 s for the unloaded and loaded (20 kg) conditions (Solberg 

et al., 2011).  

It seems the interventions investigating physical performance changes are all able to 

increase performance following resistance exercise and supplementation, however not 

different from placebo groups, suggesting resistance exercise is the most important 

stimuli. Although, a positive effect on both strength and physical performance changes 

has been identified following protein supplementation alone in the frail elderly (Tieland, 

van de Rest, et al., 2012), however to a lower extent than in those performing resistance 

exercise (Tieland, Dirks, et al., 2012). 

 

2.13 Measurements of body composition 

 

There are many means of measuring body composition. The methods used in research 

include, but are not limited to, underwater weighing, magnetic resonance imaging 

(MRI), computed tomography (CT) and dual x-ray absorptiometry (DXA) (Heymsfield, 

Adamek, Gonzalez, Jia, & Thomas, 2014). DXA measurements, which are frequently 

used in randomized controlled trials are proved to be an practical and accurate approach 

to measure changes in muscle mass on the whole body level (Heymsfield et al., 2014). 

Both computed tomography and magnetic resonance imaging have been deemed valid 

references when compared to cadaver methods for measurement of adipose tissue free 

skeletal muscle mass (Mitsiopoulos et al., 1998). DXA on the other hand, has been 

found to have strong correlations with both of these measurement methodologies when 

investigating body composition (Heymsfield et al., 2014). DXA is reported to have a 

coefficient of variation of 2.4% for lean tissues, and 1.7% for body fat (Bredella et al., 

2010). In controlled physical models, hydration levels increase fat estimation errors, 

pointing towards the importance of standardized procedures taking feeding and 

hydration into account (Pietrobelli, Wang, Formica, & Heymsfield, 1998). In our lab the 

measured coefficient of variation for lean body mass is 1.13% and 4.20% for fat mass, 

however this is based on repeated measures of only 10 recreationally active young 

adults (Tofte & Walle, 2013). Ultrasound can be utilized as a means of measuring 
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muscle characteristics. As ultrasound measurements are hands on, the accuracy is highly 

dependent on the operator. Furthermore, as hypertrophy does not occur homogenously 

across a muscle length (Hakkinen et al., 2001), measurements of hypertrophy should 

probably be paired with whole limb measures. 

 

2.14 Relationship between acute studies and long term 
changes 

 

Although the effects of protein intake and exercise can be measured both acutely 

following a single exercise bout or after ingestion alone, and over time, the relationship 

between these two approaches has recently been called into question (Mitchell, 

Churchward-Venne, Cameron-Smith, & Phillips, 2015). Hypertrophy is the result of 

repeated exposure to episodes of positive net protein balance. However, attempts to 

correlate the measurements of acute muscular protein synthesis rates and subsequent 

hypertrophy following resistance exercise in the same subject show no correlation 

(Mayhew, Kim, Cross, Ferrando, & Bamman, 2009; Mitchell et al., 2014). However 

correlation of hypertrophy with phosphorylation of different signaling proteins has been 

identified (Mayhew et al., 2009; Mitchell et al., 2014; Terzis et al., 2008). As the 

measurement of acute responses depend on muscle biopsies, collection time, number of 

biopsies and analysis of these, might impact the results and make it hard to register 

subtle differences underpinning the stimuli’s effectiveness in promoting changes over 

time. Factors impacting the ability of these acute measurements in predicting 

longitudinal changes in muscle mass include the change of subjects training status, as it 

shifts from untrained to more experienced during the duration of an intervention as 

described in chapter 2.6. 

However as elucidated in the previous segments, the different approaches are in 

agreement in evaluating different protein sources, with milk proteins promoting 

favorable effects both in acute responses (S. B. Wilkinson et al., 2007) and  in 

hypertrophy induced over time (Phillips et al., 2009) compared to soy protein. Although 

acute investigations of myofibrillar FSR may be unable to predict hypertrophy over 
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time, their investigation remains relevant, as they provide important insight into the 

mechanistic properties of different exercise and nutrition interventions, as well as their 

possible potential over time (Mitchell et al., 2015).AAAAAAAAAAAAAAAAAA
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2.15 Summary and aim 

Sarcopenia, the age associated loss of muscle mass and function, reduce the 

performance of daily life activities in the elderly. Currently, strength training is the most 

effective way to counteract the development of sarcopenia as it in some cases can 

increase muscle mass, or at least prevent the loss of muscle mass. Generally, exercise 

or/and intake of essential amino acids stimulates muscle protein synthesis in young 

subjects. However, possibly due to high variation in adaptations between subjects, few 

studies find an additional effect of protein supplementation to that of exercise with a 

normal diet in elderly subjects (Table 2.1). When meta-analysis is conducted the 

documented effect on both fat-free mass and strength in younger subjects seems also to 

be present in the elderly (Cermak et al., 2012). However, other reviewers find no 

additional effect of protein supplementation except on lean body mass (Finger et al., 

2015). The dairy protein whey is superior to both soy and casein in inducing increased 

muscle protein synthesis the first hours after exercise. It is believed that its superiority is 

due to its high leucine content, found to activate the mTOR-pathway exclusively among 

amino acids. It seems that an amount of at least 2 g of leucine has to be surpassed in 

order to elicit postprandial changes in MPS in elderly subjects. Furthermore, it seems 

that a dosage of approximately 20 g of high quality protein may be sufficient in 

reaching the threshold for a saturation for MPS in young (Moore, Robinson, et al., 

2009); although higher dosages may  be needed in the elderly (Cuthbertson et al., 2005; 

Moore et al., 2015; Pennings et al., 2012). 

Our aim was to investigate whether a leucine rich native whey protein elicits more 

extensive longitudinal adaptations in lean body mass, strength and function than a 

similar dosage of milk protein consumed daily during a prolonged exercise period in 

elderly subjects. 
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3. Methods 

 

This master thesis is part of a larger study. In total the study consists of two acute 

response trials conducted at start and end of an eleven week training intervention (this 

study) with chronic protein supplementation throughout. The study was approved by the 

south east regional ethical committee of Norway and carried out in line with the 

declaration of Helsinki. The study was conducted at the Department of Physical 

Performance at the Norwegian School of Sport Sciences and funded by the Norwegian 

Research Council and Tine SA. 

3.1 Recruitment and inclusion 

30 untrained elderly subjects were recruited through posters on senior-citizen centers, 

newspaper advertisements, internet articles, and links to the information on the 

university website that was spread through social media applications like Facebook and 

Twitter. All recruiting channels led to contact with the project-manager. Upon contact, 

detailed information sheets were distributed (Appendix II), informing participants of all 

aspects of the study including potential risks as well as the expected benefits of 

participation. Various criteria would prevent from participation in the study, among 

these were: diagnosed diabetes (both types), diagnosed osteoporosis, regular 

participation in heavy resistance-training, and the use of some pharmaceuticals known 

to influence relevant cellular signaling. If subjects did not meet any of these immediate 

exclusion-criteria, they were invited to the Norwegian School of Sport Sciences (NSSS) 

for further testing and in most cases inclusion in the study. 

26 subjects completed the entire study (aged 73.5±2.7 years). Four subjects chose 

voluntarily to withdraw from the trial due to lack of interest in the study, medical 

conditions, or other personal reasons. 
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3.2 Study design 

 

Figure 3.2: Timeline of the overall study design. 

3.3 The preliminary testing day: 

After giving their written consent to participate in the study, subjects arrived at the 

Department of Physical Performance, at the Norwegian School of Sport Sciences. They 

arrived in a fasted state (>6hours) between 8 and 10 AM. After meeting with the project 

manager a Dual X-Ray Absorptiometry (DXA) scan was performed, used for the 

measurement of body composition. If their bone mineral density was found to be 

substantially reduced (osteopenic) subjects would be informed, and in severe cases 

(osteoporotic) excluded from further participation. 

 The rest of the day involved a series of tests, in short these were: blood samples and 

blood pressure in a fasted state, a 24-h recall nutrition interview, examination of 

m.vastus lateralis, 1RM tests, functional tests and isometric maximal voluntary 

contraction in knee- extension.  

The entire preliminary testing day (figure 3.3), with the exception of DXA, blood 

pressure and blood sampling was repeated after a few days of rest. The reason for 

including two pretests was to minimize the possible learning-effects of especially 1RM 

and functional tests before the intervention began, and also to estimate the repeatability 

of the ultrasound measurements on the included subjects, and in order to get a repeated 

24-hour recall interview of nutrition. 
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Figure 3.3 Outline of the preliminary testing day, from arrival to completion of testing. 

After all blood samples were taken subjects would consume a self-made meal, as they 

were no longer needed to be in a fasted state. 

3.3.1 Dual x-ray absorptiometry (DXA) 

Subjects arrived in a fasted state (>6 hours) before the DXA- measurements.  Subjects 

were positioned according to the manufacturers protocol (Lunar iDXA, GE Healthcare, 

Madison, USA). For subjects with artificial joints (e.g. knee / hip), the appropriate 

adjustments were made, for separate limb analysis in these cases. The measured 

coefficient of variation of repeated DXA measurements in our lab is as mentioned 

1.13% and 4.20% for lean body mass and fat mass, measured in young men (Tofte & 

Walle, 2013). The software version utilized in the current trial was enCORE Software 

v.14.10.022. 

3.3.2  Nutrition interviews 

All 24-h recall interviews of the subjects were done by the same MSc. student in 

nutrition. Subjects that revealed sub-optimal diets with regards to composition of the 

macronutrient intake were given the necessary instructions to optimize their diet. No 

subject was allowed to have a protein intake that would result in a total intake less than 
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1.2 g/kg/day of protein including the sachets. If this was the case they were informed 

how to make the appropriate adjustments. In all interviews an illustration- sheet of 

portion sizes for different food types developed by the University of Oslo was used. The 

collected data were analyzed in the professional application of a Norwegian online 

nutrition analysis tool (www.diet.no).  

3.3.3 Ultrasound measurements 

Subjects underwent ultrasound (US) -measurements of the thigh and measurements of 

the thickness of m. vastus lateralis (VL) were done.  Several images were taken and the 

3 best images were used for calculation of thickness. All measurements were taken at 

40% of the measured femur length (distal-proximal). To calculate the 40% distance, 

measurements spanning from the (VL) insertion (estimated by ultrasound) and 

trochanter major (estimated by palpation) was used. 

When the correct distance was found a pen was used to draw a horizontal line. Assisting 

lines were drawn when positioning the ultrasound probe along the line to help with the 

alignment of the probe for retesting (figure 3.4). 
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Figure 3.4: The protocol used, from identification of measurement points (A). Drawing 

of measurement and assistance lines (B). Transferring the lines to an overlay (C). 

Overlay with markings and punctured holes to be used on subsequent testing days (D). 

 

After the lines were drawn, a transparent overlay was placed on the leg. Characteristic 

features like moles and scars, as well as the kneecap were copied by a permanent 

marker as well as the measurement line. This was used on subsequent testing days to 

reposition the line using these various features. The line would be transferred to the skin 

through punctured holes in the overlay.  

On these subsequent days, previously taken pictures were shown on a separate screen, 

to allow for fine-adjustments of the position in relation to characteristics on the image 

like lines indicating connective tissue. 



38 

 

All images were analysed three times in OsiriX v 5.5.1 (Pixmeo, Switzerland) and a 

total of 9 measurement values from three images would together provide the mean value 

submitted as the PRE, MID or POST value for the specific measurement. 

The coefficient of variation (CV) between the preliminary testing days for the subjects 

that underwent both US-scans included in the study was 2.23%, out of 82 images. 

Ultrasound was conducted to provide another measurement for changes in muscle mass 

in addition to regional changes in lean body mass (DXA).  

3.3.4 Maximal Strength 

 

Before maximal testing began, subjects performed a 10 min warm up on either an 

exercise-bike (Technogym, Italy) or a treadmill (Technogym, Italy; Woodway, USA). 

This preference was noted and repeated on the subsequent testing days. Tests were 

conducted in machines made by Technogym (Cesena, Italy). 

3.3.5 Leg press 

Subjects were instructed to position their feet in the center of the platform shoulder 

width apart, and not allowing their knees to fall in medially. Before any load was added 

to the sled, subjects would maintain the instructed position while lowering the sled to 90 

degree angle of the knee joint. When accomplished, the corresponding wooden pole 

(18-36 cm) would be selected to ensure all repetitions would meet the desired depth 

(figure 3.5). This pole was then used as a distance marker for all warm-up sets and 

1RM-attempts on all testing days to ensure repeatable testing conditions.  
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Figure 3.5: Leg press start and end position (left), middle/bottom position (mid) and 

foot position (right). 

After the desired conditions were obtained, the subjects would undergo specific warm-

up sets before attempting 1RM-lifts. These sets would respectively consist of 10, 6 and 

3 repetitions, with progressively increasing loads. 

1RM attempts were conducted with maximal effort, starting from the extended position. 

The subject would then gain complete control of the load, lowering it slowly towards 

the depth marker, with an aim of barely touching it. Upon contact they would instantly 

press the sled up towards the starting position. After each successful lift they would 

attempt a heavier lift after approximately 2 min of rest. 

If subjects were unable to lift the load after lowering it to the depth marker, or resting it 

for a prolonged period (>0.5 s) they would have to repeat at the same weight or the next 

attempt would be performed at a lower weight. However, if a repetition was completed 

with sufficient depth but with unsatisfactory technique (most often medial movement of 

knees) this would count as their 1RM, as the test leader would not allow for increased 

weights. If subjects completed an attempt with insufficient depth, the test leader would 

either increase the weight if appropriate or repeat on the same weight if the attempted 

weight seemed close to the subjects 1RM. If technique was not an issue, the trial would 

continue until failure was reached. The CV between the measured 1RM values between 

the two preliminary testing days was 4.43% for leg press (24 subjects). 
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3.3.6 Chest press 

 

Figure 3.6: Chest press start position (left), end position (middle) and grip options 

narrow/normal/wide and lower (right). 

The subjects were informed that they could not allow their back to leave the back 

support and that a successful repetition would require straight elbows upon finish. All 

lifts would begin in the flexed position (elbows bent) and finish with straight arms. 

They were given the choice of grip width (narrow/normal/wide) and would use the same 

grip and chair height on subsequent testing days. The assistance lever was kept down in 

all warm ups and tests, to increase reliability and facilitate for reduced shoulder mobility 

that was common among our subjects. If subjects were unable to use the normal grips 

due to shoulder problems/pain, they were allowed to option for the lower grip, and the 

same option would be used for subsequent testing days. Between the two preliminary 

testing days, the CV was 4.92% for 1RM in chest press (24 subjects). 
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3.3.7 Functional tests 

 

Two functional tests were used, these were chosen in accordance with a previous study 

on a similar population (elderly) performed in our lab (Solberg et al., 2011), and were 

performed after the testing of 1RM strength. 

3.3.8 Timed stair climb 

  

The subjects performed the test 6 times, with 3 different levels of external load. If the 

subject did not perform the test correctly after instruction in the first trial, they received 

further instruction at this point, until they were able to meet the test criteria. The stair 

climb was conducted in a 2-level staircase located in one of the multi-purpose halls 

within the NSSS and all trials were conducted with the same measurement equipment 

on these stairs (figure 3.7). 

 

Figure 3.7: The stair and added weights (10.1 kg west and two 5 kg weight discs) used 

for the Timed stair climb trials. 
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Subjects were instructed to start with their feet in contact with the edge of the first step. 

Then when ready they would climb the stair as fast as they could without transitioning 

into running. All trials were closely observed by test leaders, if there was a hint of 

running within the trial this would be noted, or the trial repeated. After two trials with 

no external load, they would wear a weight-west (10.1 kg) for two more trials, then 

finally adding two weight discs (2x5 kg) held in their hands, they would repeat the trial 

with a total load of 20.1 kg. On this trial they were instructed that arms be kept aside the 

body at all times, lifting their arms up to their chest or swinging the weights were not 

allowed, as these weights were simulating daily-life situations like carrying a rucksack 

and shopping bags. 

Trials were timed using Photocells (Speedtrap 2, Brower Timing Systems,Utah, USA), 

these were placed carefully within the handlebars of the stairs (Top and bottom) in the 

same position for all trials (figure 3.7). The CV between the preliminary testing days 

were 4.37%, 4.91% and 4.09% for the bodymass, +10 kg and +20 kg trials respectively 

(18 subjects). 

3.3.9 Timed 5 times Sit-to-stand. 

Timed chair raise (sit-to-stand) involved the subjects standing with their arms crossed in 

front of a chair, then sitting and standing 5 times as rapidly as they were able to within 

the restrictions of the test. Upon the chair laid a pressure-plate, covered by a wooden 

board used to increase the surface-area and allow for easier compression of the sensor.  

 

Figure 3.8: illustration of both the equipment used (left) and satisfactory execution of 

the protocol for the sit-to stand test. 
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Subjects were instructed to start standing (figure 3.8), then when seated they would 

have to lift their feet from the ground before standing again. Before starting another 

repetition they would have to demonstrate straight legs, no flexion of the hip or knee 

joints were allowed. However if all these criteria were met the 5 repetitions would be 

performed as fast as possible. If not they were repeated until all subjects had repeated 2 

trials of satisfactory standards. The measuring device used was a plug-in to the same 

equipment used for stair-climb (Speedtrap 2, Brower Timing Systems,Utah, USA). The 

CV between the trials at the preliminary testing days was 5.74% for the sit to stand test 

(14 subjects). 

3.3.10 Maximal Voluntary Isometric Contraction 

 

Maximal Voluntary isometric contractions or MVC was performed last of all tests on all 

testing days.  Prior to the MVC the subjects would cycle on a bike as a general warm up 

for 5 minutes at their own pace. When finished the chair would be set up for optimal 

individual settings before testing begun. Great care was given to make sure the axis of 

rotation would align with the center of the knee-joint for each subject. Also the position 

of the pressure-point on the shin, chair height and the back-support were noted and 

repeated on all following tests. 

When all adjustments were made, subjects would perform 3 voluntary contractions of 

25%, 50% and 75% of their perceived maximal effort. After this specific warm-up was 

completed 3 unilateral MVC trials were then performed, using an elastic strap around 

the calf to ensure constant contact with the pressure-point before initiation. 

Subjects were instructed to press as hard as they could, and as rapid as they could. They 

received vocal encouragement from the test leader to maintain maximal effort for 3-4 

seconds before rest. The leg in question would then rest (~1 min) while the other leg 

was tested and so on. After 3 trials were completed for both legs, the maximal MVC 

was noted. For MVC only the best trial was noted between the two testing days (no CV 

available). 
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3.4  Resistance Exercise Intervention 

 

The training intervention involved 12-weeks of resistance exercise, with 3 sessions a 

week following a daily undulating linear progression. For a subgroup (N=15) the period 

involved 2 acute sessions, one at start (first session) and one in the final week of 

training. These sessions consisted of the same exercises, however calf raise, pull down, 

back extension and abdominal crunch were not performed on these two sessions.  

Deviations from the program would only happen if a subject could not attend one of the 

standard training days (Monday, Wednesday and Friday). The different periods is 

described in more detail in the following segments. Example sheets used for each 

individual can be seen in appendix IV. 
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Table 3.4 Overview of the training periodization for the entire intervention (week 1-12) 

with details of all periods. 

 

All sessions were supervised, 3 subjects were followed by one instructor.  The 

instructors would rotate between groups so that all subjects would have conducted 

approximately the same number of sessions with each instructor. This was to eliminate 

any differences between the instructors, and the subsequent impact this might have 

made. 
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3.4.1 First period weeks 1-3 

As can be seen in table 3.4, the total volume lifted during the first weeks of the program 

is drastically lower (fewer sets) compared to later weeks. The weights systematically 

increased from session to session the first two weeks, as we were far off the RM 

weights we aimed to train with these subjects. This easy start was intentionally done to 

ensure two things, to reduce the risk of injury, and proper technical instruction in all 

exercises. In week 3 however the load was sufficient enough that the sub-maximal 

session on Wednesdays was calculated to 90% of the Monday session load. As can be 

seen in table 3.4 this session involves doing 10 repetitions on a 12RM weight, making it 

a substantially lighter session. 

3.4.2 Second period weeks 4-6 

The second period involved continuous progression in both intensity and total volume 

in the training program. The relative intensity of the sub-maximal sessions also increase 

as the intensity is now calculated from a weight used with the same amount of 

repetitions. During the last week of this period the subjects were asked to report to the 

lab for two midway nutrition-interviews and a ultrasound-scan of the m. vastus lateralis 

thickness. On all sessions during week 6, the subjects would perform leg press with 

their individual distance- marker used at pretest. This was done to ensure all subjects 

performed this important exercise with sufficient depth. 

3.4.3 Third period weeks 7-9 

The third period involved another increase in both intensity and volume to the program, 

adding another set to various exercises and increasing the intensity on Friday to ensure 

continued linear progression. As many subjects were now exercising with considerable 

loads, focus was on keeping both range of motion and technique acceptable. In this 

period many subjects would frequently reach failure on the last set in various exercises, 

not limited by their technique. 

3.4.4 Final period weeks 10-12 

The final period had multiple focus areas. The first was to maintain the linear 

progression. The intensity was increased while still keeping a high volume in the 

program, through increasing the intensity from 10 to 8RM on Mondays and 

Wednesdays (90%) and adding another set on key exercises.   
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The secondary focus area was making sure that all subjects in the acute-group were able 

to perform their final acute-session in an identical fashion with regards to previous 

sessions and the amount of rest days leading up to this session. The same care was taken 

to make sure subjects would have an identical amount of rest leading up to the final test 

day (for details see preliminary test day). This test day was done in an identical fashion 

as the preliminary testing day. 

3.5 Supplement intervention 

 

The subjects consumed two sachets of either powdered milk, or native whey protein 

daily. The Sachets contained 298 (milk) and 299 (Native whey) kilocalories 

respectively. Being isocaloric the only difference between products should be the 

composition (table 3.5). The supplements were distributed in a double blinded fashion. 

All instructors and test personnel were unaware of group affiliation of subjects and 

batch number contents.  

The sachets were consumed twice a day; one in the morning and afternoon or night time 

on rest days. On training days, one of the sachets would be consumed following 

exercise sessions. Most sessions were scheduled early in the day, so the post-exercise 

drink replaced the morning drink for most subjects on exercise days.  

New sachets were provided weekly on Mondays, subjects would be asked if they had 

consumed all sachets since last exercise session after every session. If any sachets had 

been missed or otherwise this was noted.  
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Table 3.5: Composition of supplement sachets, analyzed with the Kjeldahl (total 

protein) and Eurofins (amino acids) accredited methods. 

        

Nutrients Milk  Native whey Difference (% of milk) 

Energy (kcal) 298 299 100 

Protein (g) 20.3 19.0 94 

BCAA (g) 4.3 4.5 105 

EAA (g) 9.3 9.6 105 

Carbohydrate (g) 37.8 39.7 105 

Fat (g) 7.3 7.2 98 

Amino acids (g) Milk Native whey Difference (% of milk) 

Alanine 0.7 0.9 136 

Arginine 0.6 0.6 88 

Asparagine 1.6 2.1 135 

Cysteine 0.2 0.5 297 

phenylalanine 1.0 0.8 83 

Glutamic acid 4.3 3.7 85 

Glycine 0.4 0.4 98 

Histidine 0.6 0.5 83 

Isoleucine 1.0 1.1 105 

Leucine 2.0 2.3 118 

Lysine 1.7 2.0 118 

Methionine 0.5 0.5 99 

Proline 2.0 1.2 62 

Serine 1.1 1.0 87 

Threonine 0.9 1.0 112 

Tyrosine 0.9 0.7 78 

Valine 1.3 1.1 87 

Tryptophan 0.3 0.4 150 

% difference values are relative to milk (100%)  
 

3.6 Statistics 

All statistics were done in Microsoft Excel 2010 v. 14.0.4760 (Microsoft Corporation, 

Redmond, USA) and Graphpad Prism 6 (Graphpad Software, Inc., La Jolla, USA). 

Between group differences were evaluated using two-tailed unpaired student t-tests. 

Within group differences were evaluated using two-tailed paired student t-tests. The p-

value set for statistical difference was p<0.05. Absolute values are presented as mean ± 

standard deviation, with changes presented as mean ± 95% confidence interval. 
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4. Results 

Absolute values are presented in tables and relative changes in figures throughout the 

results. 

 

4.1 Nutrition 

 

There was no difference in nutritional intake between the groups for either energy 

intake or any of the macronutrients at baseline (table 4.1). Nutritional values at pre are 

the mean of calculated values from the two 24-h recall interviews performed during the 

preliminary testing days. Values for nutritional intake during the intervention are means 

of the four interviews from mid and post, plus the macronutrient values of the daily 

supplementation. Significant increases from Pre (p<0.05) were found for all values 

except fat in the milk group. There was no statistical difference in the change in fat 

between groups, however there was a strong statistical tendency (p-value: 0.06). When 

examining individual changes in fat intake, several people in the milk group reported 

lower intake of dietary fat in the recall interviews during the intervention. 

 The compliance with regards to supplementation resulted in a pooled mean compliance 

of 99.2%, based on the self-reported intake of sachets.
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4.2 Strength 

 

 There were no significant differences between groups in the strength tests performed at baseline 

(table 4.2).  

Table 4.2: Performance in the strength tests at pre and post, absolute values presented as mean (± 

SD), changes as mean (± 95% CI). 

            

  
Performance Performance change 

 

  
Mean(±SD) Mean(± 95% CI) Between groups 

Measurement Group Pre Post absolute values 
difference of 

change(P<0.05) 

Leg press 1RM (kg) 
Milk 171 (± 57,0) 219*(± 59.4) 48 (±9.6) 

NS 
NW 162 (± 53.6) 220* (± 64.3) 57 (±14.0) 

 
     

Chest press 1RM (kg) 
Milk 47 (± 18.5) 56* (± 21.3) 9.0(±2.7) 

NS 
NW  43 (±18.1 ) 52*(± 19.7) 8.5(±1.8) 

 
     

MVC (N) 
Milk 289 (±82) 321* (±92) 32(±17) 

NS 
NW 328 (±115) 357*( ± 116) 29 (±6) 

NW= Native whey, MVC= Maximal voluntary contraction, SD= Standard deviation, CI= confidence interval, NS 

= non-significant, stars (*) signifies significant difference from Pre.  

  

 

Both the milk group and the native whey group increased 1RM in leg press (31% and 38%, 

respectively) and in chest press (20% and 22%, respectively), but there were no significant difference 

between groups (figure 4.2.1). 
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Figure 4.2.1: Individual and mean 1RM changes (%) in leg press (A) and chest press (B) for milk (p 

< 0.01) and native whey (p< 0.01) (with 95% CI). 

One individual in the milk group showed an exceptional relative increase of 80% in chest press 

1RM. This could be due to shoulder pain at pre-tests, and these values were therefore excluded. 

There was, however, still no difference of change between groups with this subject included.   

A total of two subjects had to have their 1RM at post-test estimated for leg press, as they due to pain 

could not complete the test until failure. This also applied to one individual for chest press. 
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Figure 4.2.2: Mean MVC changes (%) for milk (p<0.01) and native whey (p<0.01) (with 95% CI). 

Both groups increased maximal force of isometric voluntary contraction in knee-extension (figure 

4.2.2) with 11% and 10% for the milk and native whey group, respectively, with no differences 

between groups. The numbers presented are the mean value of both legs.  Seven tests in total of 
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either one leg or both were not included in this analysis, as due to pain or considerable fatigue, or 

other circumstances which made these subjects unable to perform the test as intended for both legs. 

4.3 Body composition 

 

There were no differences in body composition measurements at baseline between groups 

(table 4.3). There was no change in total fat mass for either group, however the body fat 

percentage decreased significantly (p<0.01) for the milk group (table 4.3). All individuals 

except one increased body mass (figure 4.3.1A). This individual was also the individual with 

the smallest increase of lean body mass in the milk group. 
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Figure 4.3.1: Relative changes (%) in body mass (A), Lean body mass (B) and Fat mass 

change (C).  All values shown as Mean with 95% CI.  
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The mean changes for lean body mass were 2.4 kg (5.2%) and 1.8 kg (3.8%) for the milk and 

native whey group respectively (table 4.3; figure 4.3.1B). There were however no significant 

difference between groups. 
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Figure 4.3.2: Regional changes in lean body mass (LBM) showing relative changes (%) for 

arms (A), legs (B) and trunk (C). changes are shown as mean (with 95% CI). 

Both groups significantly increased lean body mass for all regions (P<0.01) when the DXA 

measurements were divided into arms, legs and trunk, with no differences between groups. 

Mean changes were 6.9% vs. 5.0% for arms (figure 4.3.2A), 6.0% vs. 4.2% for legs (Figure 

4.3.2B) and 3.8% vs. 3.1% for trunk (figure 4.3.2C) for the milk and native whey groups 

respectively.
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Figur 4.3.3: Individual measurements of m. vastus lateralis thickness (cm) (A) before (Pre), 

during (Mid) and after (Post) the intervention, and percentage changes from baseline (with 

95% CI) with pre values set to zero (B). 

 

Both groups increased thickness of m. vastus lateralis with mean changes of 7.2% for milk 

and 6.1% for native whey (figure 4.3.3B) with individual changes shown in figure 4.3.3A. 

Both groups experienced significant (P<0.01) changes from the initial measurements 

however, the milk group also experienced significant (P<0.05) changes between 

measurements taken during (mid) and at the end of intervention (post). At no point were the 

changes statistically different between the groups. 

4.4 Functional tests 

The native whey group achieved significant (P<0.05) reductions in completion time for the 

stair climb with body mass (-6.4%) and with added mass of both 10 kg (-6.4%) and 20 kg (-

7.5%) (Figure 4.4.1B). The stair climb completion time was also significantly (P<0.05) 

reduced for the Milk group when completing the test with body mass (-4.2%), but with added 
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mass the milk group did not achieve statistically different reductions (p-values of 0.09 and 

0.054 for 10 kg (-3.1%) and 20 kg (-4.5%) trials respectively). At no point were changes in 

stair climb performance statistically different between groups. Individual changes in 

completion time can be seen in figure (4.4.1A). 

 

 

Figure 4.4.1: Individual changes in seconds (left) and relative (%) changes for timed stair 

climb with mean changes (right) (with 95% CI) for body mass, 10 kg and 20 kg added load. 

NW= native whey group, Symbols (*, # ) indicate significant(p<0.05) and tendency(p= 0.05-

0.10). 

For the timed sit to stand test, both groups experienced significant reductions (P<0.05) in 

completion time (figure 4.4.2). The native whey group reduced completion time by 11.6%, 

and the milk group by 9.2%, with no difference in between the two groups.  

Absolute values for completion times at baseline and posttest can be seen in table 4.4. There 

were no between group difference for either pre, post or mean values of change. 
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Figure 4.4.2 (A) Individual values in completion time (seconds) and (B) relative changes (%) 

in the 5 times sit to stand test showing mean (with 95% CI) 
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5. Discussion 

The main findings in this study were: 1) There was no enhanced effect of native whey 

supplementation compared to milk in eliciting changes in lean body mass, strength or 

functional performance during an 11 week strength training period. 2) Our intervention 

seems to have yielded better results than found previously in subjects of this age group. 

This chapter will discuss our findings in relation with those by other groups presented in 

the theory chapter. First a discussion of our main findings will be presented, followed 

by methodological considerations and the thesis conclusion. 

 

5.1 Nutritional changes 

The nutritional intake during the intervention was similar in the two groups.  The 

supplements increased the protein intake by 53% and 46% in the milk and native whey 

groups respectively. It is suggested that an increase in protein intake from baseline elicit 

an additive effect in addition to that of strength training alone (Bosse & Dixon, 2012). 

The average increase in protein intake (g/kg/day) from baseline was 59.5% in 

interventions identifying an additive effect from protein intake (Bosse & Dixon, 2012). 

This suggests that the supplementation may have induced an appropriate change in 

protein intake in both groups, as there were no differences between them. However as 

we had no placebo group we can only compare effects between our two 

supplementations. 

Due to less fat intake among some subjects during the intervention, the milk group did 

not increase their overall fat intake. However, there were no differences between 

groups. As there were no differences in nutritional changes, the main difference in food 

intake between the groups should be their appointed protein supplement. Therefore the 

resulting physical and performance changes will be discussed mainly based on the 

different supplementations. 

 



61 

5.2 Body composition changes 

There were no differences between the groups in changes in body mass, lean body mass, 

or fat mass. There were no differences between the changes in appendicular lean body 

mass, or thickness changes of the m. vastus lateralis. However, the muscle thickness 

increased from mid to post only in the milk group, but no difference was seen from the 

native whey group. We hypothesized that the group supplemented with native whey 

would receive the greatest increase in lean body mass, due to its higher leucine content. 

Although the uptake of branched chain amino acids of native whey has been shown to 

result in  higher plasma concentrations of leucine than milk (Laahne, 2013; Nyvik Aas, 

2014), this had no additive effect on lean body mass gain during the period of 

investigation in the present study. This could be due to us using another product 

(PROLACTA®) than in the Laahne (2013) and Nyvik Aas (2014) studies, which used 

native whey produced by Tine SA (Laahne, 2013; Nyvik Aas, 2014).  

As mentioned ingestion of less than 2 g of leucine has failed to elicit an optimal protein 

synthesis response in the elderly (Katsanos et al., 2006) and the leucine concentrations 

are shown to differ between milk protein fractions (Phillips et al., 2009). The leucine 

content is 7.7 g per 100 g of protein in skimmed milk powder, which would result in a 

total of 1.54 g for 20 g of protein (Phillips et al., 2009). Analysis of the milk used in the 

present study however, showed leucine content of 2.0 g in the provided 20.3 g dose. 

Furthermore, due to our persistence in keeping the supplement isocaloric, there may 

have been more protein in the milk sachets, as the analyzed sachets of native whey 

protein showed a protein content of 19 g. As a result of this, both protein sources have 2 

g or above in leucine content, with 18% more in the native whey sachets (2.3 g). This 

seems a plausible explanation as to why the response is similar in both groups, as it 

seems that both groups were given an appropriate amount of leucine. However, others 

do not find an increased effect in either whole body or appendicular muscle mass when 

investigating the effect of supplementing with 10 g of the same native whey compared 

with milk protein in the elderly (Gryson, Ratel, et al., 2014). If native whey is indeed a 

better protein source in eliciting muscle hypertrophy, this is probably due to its ability to 

stimulate protein synthesis in lower dosages (15 g) than casein (30 g) in the elderly (S.  

Walrand et al., 2015). However, it has to be taken into account that some authors of 

these articles, as well as the mentioned Gryson, Walrand, et al. (2014) study, are 
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employed by Lactalis, the producer of the used whey protein supplement (Gryson, 

Walrand, et al., 2014). 

Whey protein is as mentioned superior in inducing muscle protein synthesis in both 

young (Tang et al., 2009) and elderly (Pennings, Boirie, et al., 2011) in the immediate 

hours following intake, compared to soy and casein. Although these acute findings 

favor whey protein, this is not supported by our longitudinal data, although we 

investigated milk, it consists mainly of casein proteins (80%). Even though not 

statistically significant (p=0.16), the mean change in lean body mass was if anything 

favoring the milk group (2.4 vs. 1.8 kg), suggesting that perhaps milk incorporates 

important qualities not restricted to the whey proteins. 

It has been suggested that the absorption rates following native whey supplementation 

may be too fast to sustain a postprandial anabolic response due to its transient 

hyperaminoacidemia (Lacroix et al., 2006). As the dosage in the milk sachets of leucine 

may be sufficient (2 g), the milk group may have increased their net protein balance also 

due to casein’s effect on whole-body protein breakdown, and slower release of amino 

acids (Boirie et al., 1997). The possibility of increased effects by combining whey and 

casein as in milk or as a 50/50 blend has been suggested (Reitelseder et al., 2011). The 

transient but substantial FSR response following whey ingestion is more moderate but 

extended following casein ingestion (Reitelseder et al., 2011) and they propose a 

combination of the two may prove advantageous. It could be argued that the trend in our 

data support this. However this is merely a trend, with no statistical difference.   

The overall protein intake of both groups was above the recommended daily allowance 

(1.2 g/kg/day) for elderly in the Nordic countries (Nordic Council of Ministers, 2014). 

No subject consumed less than 1.1 g/kg/day, with only 3 subjects reporting an intake 

below 1.2 g/kg/day. As elucidated by Katsanos et al. (2006) and Walrand et al. (2015) 

differences between protein sources seem most apparent when given in smaller boluses. 

Although the overall intake does not directly reflect the dosage size of protein with each 

meal, many subjects reported ingesting their protein supplement with breakfast/lunch 

and supper on non-training days, as they were instructed to ingest one sachet in the 

morning and in the afternoon/evening. This suggests that our subjects could be ingesting 
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dosage sizes of proteins at mealtimes nullifying the differences between them (Katsanos 

et al., 2006). 

Even though no differences were seen between groups, a substantial effect was seen 

from baseline following the intervention. Our intervention induced increases in lean 

body mass higher then reported in comparable interventions in elderly individuals. The 

increase in lean body mass following resistance exercise with protein supplementation 

in elderly during 12-24 weeks of training seem to range from 0.5 kg to 1.5 kg (table 

2.1). Our intervention-induced changes were 2.45±0.70 kg (5.2%) for the milk group, 

and 1.82±0.67 kg (3.8%) in the native whey group, considerably more than the 

presented gains reported on similarly aged subjects (table 2.1). The next segments will 

focus on possible contributing factors as to why this difference exists, in addition to the 

appropriate change in protein intake described already. 

Our subjects performed exercise with heavy loads with sets performed to failure, as we 

increased the load lifted by our subjects progressively with adjustments session to 

session. We challenged our subjects to lift heavier loads until they reached failure 

within the prescribed range of repetitions (which happened frequently), or were unable 

to perform the exercise with the correct technique. As a result, our subjects consistently 

trained at the prescribed relative intensity, close to failure, proven to be advantageous in 

the literature (Burd, West, et al., 2010). Some studies describe similar methods as ours 

for adjusting the intensity. Iglay et al. (2009) adjusted intensity by two methods with the 

first two sets in an exercise being performed at 80% of 1RM (tested every 4 weeks), 

while the last set was performed until voluntary failure. If 12 repetitions was exceeded 

the load was adjusted by 5% for the next session (Iglay et al., 2009). Number of 

exercises performed by others range from 5 (Chale et al., 2013) to 8 (Iglay et al., 2009) 

suggesting that the total volume of the exercise conducted by our subjects may be 

higher, as the amount of reps and sets for the studies in table 2.1 are comparable, 3-4 

sets 8-15 reps with an intensity of ~80% of 1RM for each exercise was used in those 

studies conducting whole body resistance training presented in table 2.1. 

The exercise program used in the mentioned study by Solberg et al. (2011) is probably 

the trial most comparable to the present study, although the duration was extended. 

They reported an increase in lean body mass of 1.4±0.4 kg with an exercise intervention 
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identical to ours. Even though their exercise intervention was similar, our subjects 

experienced a larger increase in lean body mass. This could possibly be due to 

difference in execution of the program, or an additive effect of the protein supplements, 

however, direct comparison is not possible. 

Another contributing factor could have been physical activity level of the subjects. One 

requirement for inclusion was as mentioned no prior experience with strength training. 

However, we did not set any requirements for recreational activity. We believe several 

of our subjects were quite active for their age, as they reported their fondness for hiking, 

bicycling and cross-country skiing. Moderate aerobic activity has previously been 

shown to improve postprandial MPS response (Timmerman et al., 2012). Furthermore 

as mentioned, disuse reduces the anabolic response to protein intake (Wall, Snijders, et 

al., 2013). It could be argued that our subjects “lack of disuse” and participation in 

recreational physical activity (mainly aerobic in nature) could have improved their 

anabolic sensitivity, resulting in larger adaptations than other studies. That is if their 

subjects were more sedentary at inclusion and on non-training days (weekends), where 

the documented post-session anabolic window might be reduced (Phillips et al., 1997). 

In addition to the possible contributing factors already mentioned, the high content of 

energy in our supplementations might have further augmented changes, as an increased 

energy intake regardless of macronutrient source promote lean mass accretion as long as 

protein requirements are met through diet (Rozenek et al., 2002). Some trials presents 

only supplied supplementation post exercise (Verdijk et al., 2009), and supplied protein 

only in their supplement, with no further caloric content (Verdijk et al., 2009). The 

caloric content in the protein supplementations of the presented interventions range 

from under 100 kcal (Leenders et al., 2013; Verdijk et al., 2009) to 378 kcal in two 

dosages (Chale et al., 2013). The overall daily caloric intake during supplementation in 

all studies range from 1700 kcal (22 kcal/kg) (Chale et al., 2013) to 2400 kcal (30 

kcal/kg) for the male group (33 kcal/kg for females) in the Leenders et al. (2013) trial. 

Both our groups received close to an extra 600 kcal per day in supplements during the 

intervention, resulting in an overall intake of over 2400 kcal (33-34 kcal/kg) per day for 

both groups. This suggests the overall caloric intake in our intervention was close to 

optimal, as body composition analysis revealed no change or decrease in fat mass, 

whereas others have observed reductions (Verdijk et al., 2009). This suggests their 
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intake might have been suboptimal for promoting muscle hypertrophy. The relative 

mean protein intake is also higher in the present study compared with others, with a 

reported mean intake of 1.1-1.3 g/kg during supplementation in several studies (Chale et 

al., 2013; Leenders et al., 2013; Tieland, Dirks, et al., 2012; Verdijk et al., 2009). 

5.2.1 Regional changes 

The increase in lean body mass was present in all regions (table 4.3). In addition to this, 

thickness of m.vastus lateralis increased similarly in both groups, indicating increases in 

lean body mass were not related to increases in connective tissue and inner organs, but 

primarily caused by chances in muscle mass. Since there were no placebo group in this 

study, we cannot answer whether the change in muscle mass is impacted by the protein 

intake itself. The meta-analysis by Finger et al. (2015) concluded that protein 

supplementation only elicits further increases in lean body mass, with no further effect 

on skeletal muscle mass gains than those induced by resistance exercise alone in the 

elderly. Of the other interventions in the elderly, several measure appendicular 

adaptations and a mean increase in leg lean mass of 3% was found across groups by 

Leenders et al. (2013) while (Verdijk et al., 2009) induced a change of 6% in lean leg 

mass. Both results are relatively comparable to our results showing an increase of 6.0% 

and 4.2% in lean leg mass for milk and native whey respectively. Tieland, Dirks, et al. 

(2012) showed an increase of 5% in appendicular lean mass following resistance 

exercise and protein intake (Tieland, Dirks, et al., 2012) comparable effects to what we 

found in our study. However, their study is as mentioned conducted on frail elderly, 

over a longer intervention period, with a lower training frequency (table 2.1). 

 In studies measuring CSA changes for quadriceps, induced changes vary from 3% 

(Chale et al., 2013) to 9% (Leenders et al., 2013; Verdijk et al., 2009). However, as 

elucidated by Hakkinen et al. (2001), hypertrophy following exercise is not 

homogenous across the length of all muscles, making these results difficult to compare 

as small differences in point of measurements could impact the results found by 

different groups. Although we were not able to utilize MRI or CT measurements in the 

present study, measurements of muscle thickness were conducted. Both lean leg mass 

and ultrasound measurement of thickness increased significantly, with no difference 

between groups. Although not directly comparable with other interventions, the 

observation that both lean mass for legs, and muscle thickness increased suggest that 
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skeletal muscle mass in the lower limbs increased significantly in both groups in the 

current intervention. 

5.3 Changes in strength and physical performance 

The intervention induced significant changes in strength for both groups. Significant 

increases in strength were induced in chest press, leg press, and isometric maximal 

voluntary contraction in leg extension, irrespective of supplementation type. No 

significant differences were found between the changes in strength. 

The increase seen in leg press with mean changes of 31% (milk) and 38 % (native 

whey) were not different between groups. Furthermore, it is comparable to the relative 

increase induced over 12-24 weeks in the presented similar interventions. It seems that 

an increase in 1RM of 20-40% is to be expected in the elderly, which is in line with the 

expected 1% increase per exercise session (Kraemer et al., 2002) for untrained 

individuals. The increases in 1RM in chest press were not as substantial; an increase in 

20% and 22% in 1RM were seen in the milk and native whey groups respectively. It 

was expected that the increase in strength was lower in this test since the training 

program only contained one exercise for the chest muscles. Whereas the subjects 

performed four lower-limb exercises, all of which could contribute to an increase in leg 

press strength. 

As mentioned in the introduction, one of the defining characteristics of sarcopenia is the 

impaired ability to perform habitual activities, due to loss of muscle mass and strength. 

Although none of our subjects had problems performing daily activities, they all 

increased their muscle strength. This suggests the intervention has been effective in 

increasing their functional ability, which could reduce their risk of dependability in the 

future. In frail elderly it has been found that both exercise and protein intake can 

individually improve physical function (Tieland, Dirks, et al., 2012; Tieland, van de 

Rest, et al., 2012). Even though our subjects were not frail, the next segment will 

discuss the effect of the intervention on physical function. 

The strength changes also elicited significant improvements in the functional physical 

performance tests. Both groups reduced their completion time of the stair climb 

significantly with bodyweight, but only the native whey group reached statistical 
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significance in both the +10 kg and +20 kg trials. These improvements was, however, 

not significantly different from the milk group. In the same test, the subjects in the 

Solberg et al. (2011) study, were ~1 second slower than in the current study for both the 

bodyweight and 20 kg loaded trials. However, their improvements were similar to those 

seen in our intervention (Solberg et al., 2011). Their subjects were however 

considerably slower at both inclusion and end in the sit to stand test, suggesting our 

subjects may have had a higher level of function at inclusion (Solberg et al., 2011), 

although some differences exist in the execution of the test which might have affected 

the absolute time. Their subjects were asked to touch the back support while sitting, 

while our subjects were required to lift their feet from the ground. Other differences 

were our utilization of a pressure plate timing system, while they used a stopwatch 

which may further have impacted the comparability of the test (Solberg et al., 2011). 

Several others also find an effect in chair-rise tests (Chale et al., 2013; Leenders et al., 

2013). An improvement by approximately 10% after 11-12 weeks is seen in this study 

and others (Leenders et al., 2013). The two subjects with the highest completion times 

at start also reduced their completion time the most, with improvements of 27% and 

24.5% for these two individuals, suggesting they received the most benefit from the 

intervention.  

The changes in functional performance were not uniform among subjects, and some 

subjects did not improve their performance. This could be due to fatigue from the 

previous tests conducted, or the change in strength did not have an impact on their 

physical performance, or that some subjects simply cared less about their performance 

in the physical tests. This last notion is based on several statements from subjects 

reporting that they had personal goals for their 1RM performance in leg press and chest 

press, but not for increasing their performance in the functional tests. Furthermore, there 

was a considerable learning effect in these tests, resulting in a high CV between the two 

preliminary testing days (see methods), as subjects generally improved their completion 

time on the second day (best value noted as PRE). Changes between their best trials at 

pre and post-tests, suggests that an improvement took place. This notion is supported by 

the fact that the first testing day was conducted with a focus for learning the execution 

of the test, while a good performance was the focus for the second preliminary testing 

day and at posttest. 
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In summation our high number of exercises may have contributed to the increased effect 

on changes in body composition of our intervention compared to others, as the volume, 

intensity, and that exercises are performed until failure, have been shown to impact the 

response (Burd, Holwerda, et al., 2010). The increases in strength also resulted in an 

improved physical performance in the functional tests, confirming that strength training 

with protein supplementation is an effective way of reducing the effects of sarcopenia. 

Furthermore, as mentioned after the age of forty the average decline in muscle mass is 

1% annually (Baumgartner et al., 1998). The current intervention increased lean body 

mass and lean leg mass substantially, underpinning the potential for counteracting the 

age related loss with strength training and proper nutrition. However no statistical 

differences exist that suggest a better effect from either protein supplement. 

5.4 Methodological considerations 

There was an ambition to perform MRI-scans to estimate regional changes of both thigh 

and arm muscles in this study. However, coordination issues between our department 

and the MRI-facility meant the scans would have to be performed after the exercise 

period had begun, during week 1 or 2 of training and most likely with a different (non -

individual) protocol than requested. As this would be less than optimal these funds were 

redistributed towards the upcoming intervention on younger subjects. The protocol 

made by the author of this thesis will still prove valuable for this purpose. However, 

although  regional changes obtained by DXA and US (m. vastus lateralis) were 

measured in this study, originally we would have liked to have MRI-scans for these 

subjects as well to have more sensitive measurements of any possible regional changes. 

The resistance exercise was, in our opinion, conducted in an optimal way. This is due 

several aspects of how the strength training was organized. Rotation of instructors 

ensured that if different instructors played a role, this would be minimized as subjects 

were constantly subjected to all instructors. Subjects completed a similar number of 

sessions, however the time course varied. As subjects missed sessions (e.g. sickness), 

their training period was extended to allow for completion of the prescribed 33 sessions. 

All subjects were treated the same, however some consideration were taken in the case 

of pain. This was most common in the execution of shoulder press, as not all subjects 

were able to complete the exercise with abducted arms out to the side due to pain or 
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reduced mobility. For these subjects the exercise was conducted with a neutral grip, 

allowing the elbows to be kept in front of the trunk during the execution. 

The reported compliance (99.2%) to supplementation could have possible dark figures, 

since no external control of the intake was conducted. We trusted our subjects to 

consume sachets twice a day and report their intake to us with honesty. We could have 

implemented a weekly delivery of empty sachets could have improved this aspect of the 

intervention, as we then would have two measures of compliance to supplementation. 

In hindsight the functional tests could have been expanded to include the entire SPPB 

battery (Guralnik et al., 1995), allowing us to compare our subjects physical function at 

baseline more accurately with those interventions utilizing this battery. However, our 

tests are similar to the Solberg et al. (2011) intervention previously conducted in our lab 

(Solberg et al., 2011). 
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6. Conclusion and future research 

The current study suggests that native whey protein is not more effective in increasing 

lean body mass, muscle thickness, strength or physical performance compared to that of 

milk protein in elderly subjects during a prolonged training intervention. Both 

supplements elicited similar effects when given in a dosage of 2x20 g as co-ingested 

with carbohydrates and fat. If any differences exist between the two products 

effectiveness, it could not be found during our 11 week trial, with our measurements. 

However, more subjects are currently completing the intervention to allow for higher 

statistical power.  

Future research into the possible effects of different protein sources on muscle mass and 

muscle function in combination with strength training in the elderly should strive to 

utilize isocaloric and isonitrogenic supplements. Furthermore, in doing this it is 

important that habitual protein intake is monitored. Differences in protein intake should 

be limited to the investigated supplementations, as changes in overall protein intake 

could influence the results. Currently few studies have been conducted in the frail 

elderly; however they show a significant effect of protein supplementation, both without 

and with exercise (Tieland, Dirks, et al., 2012; Tieland, van de Rest, et al., 2012). 

Future research into different protein sources should strive to investigate this group. 
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Appendix I: Information poster regarding the study 

 

 

Prosjektet ”Hvordan påvirker forskjellige melkeproteiner 

muskelproteinbalanse hos eldre?” har til hensikt å undersøke 

effekten av forskjellige melkeproteiner på muskelvekst gjennom en 12 

ukers treningsperiode hos yngre og eldre.  

Vi søker etter kvinner og menn over 70 år som ikke trener 

regelmessig, men ønsker å komme i bedre fysisk form 

Studien vil foregå i perioden september-desember 2014 og innebærer 

en rekke tester før og etter treningsperioden. Det vil bli ca. 4 oppmøter 

på 2-3 timer i forkant og etterkant av treningsperioden for testing.  

Treningen vil foregå 3 ganger per uke i grupper på 3 med personlig 

trener på alle økter ved Norges idrettshøgskole.        

Før og etter treningsperioden vil det bli tatt blodprøver og 

muskelbiopsier 

Er du interessert, ta kontakt med : 

Håvard Hamarsland: 93445916; haavardh@nih.no 

 

Forsøkspersoner søkes! 

«Styrketrening og melkeprotein» 

 

mailto:haavardh@nih.no
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Forespørsel om deltakelse som forsøksperson 

Hvordan påvirker inntak av forskjellige melkeproteiner 

muskelproteinbalanse hos eldre? 

 

Dette skrivet er til alle potensielle forsøkspersoner. Vi ber om din deltakelse i 

prosjektet, så fremt du oppfyller kriteriene: Du må være 70 år eller eldre, være normalt 

aktiv, og ellers kunne gjennomføre styrketrening. Du kan ikke bruke spesifiserte 

medikamenter eller kosttilskudd (proteinpulver, kreatin eller lignende). Hvis du bruker 

slike kosttilskudd kan du likevel delta som forsøksperson ved at du slutter med 

tilskuddet senest én uke før prosjektstart. Du kan ikke delta om du er laktoseintolerant, 

har melkeallergi eller er allergisk mot lokalbedøvelse (tilsvarende det man får hos 

tannlegen).  

 

Bakgrunn og hensikt med forsøket 

Sarkopeni (aldersrelatert muskelsvinn) har de siste årene fått mye oppmerksomhet da 

det i tillegg til å redusere funksjon og livskvalitet i hverdagen også disponerer for flere 

livsstilssykdommer (bla. type II diabetes og osteoporose). Styrketrening og et økt inntak 

av proteiner har vist seg å kunne motvirke muskelsvinnet. Inntak av proteiner har i seg 

selv en umiddelbar muskeloppbyggende effekt ved at proteinsyntesen øker; og 

kombinerer vi proteininntak med styrketrening får vi en vesentlig kraftigere effekt. 

Økningen i proteinsyntesen bestemmes i stor grad av mengden og kvaliteten på 

proteinet, samt hvor raskt proteinet tas opp i blodet. I tillegg til proteinsyntesen vil også 

proteinnedbrytningen til enhver tid spille inn på proteinomsetningen i muskulaturen. 

Sammenliknet med proteinsyntesen vet vi lite om hvordan proteinnedbrytningen 

påvirkes av proteininntak etter styrketrening. Ny kunnskap om dette kan gi oss bedre 

forutsetninger for å maksimere utbyttet av styrketrening, som vil være av stor interesse 

for eldre med tanke på livskvalitet og funksjon i hverdagen.  
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I denne studien ønsker vi å undersøke om et nyutviklet myseprotein produsert av Tine® 

kan bedre effekten av styrketrening (føre til større økning i muskelmasse og 

styrke). Dette nye myseproteinet vil sammenliknes med effekten av vanlig 

lettmelk. 

 

Dette er et dobbelt blindet, randomisert, kontrollert studie, som betyr at verken du eller 

forskerne du kommer i kontakt med vet hvilken drikk du inntar.  

 

Gjennomføringen av forsøket 

Forsøket går kort fortalt ut på å gjennomføre en treningsperiode på 12 uker med 

styrketrening tre ganger i uken. Gjennom denne perioden inntas det to enheter på 0,6 l 

daglig med enten melk eller nativ myse. Du vil bli tilfeldig trukket (randomiseres) til én 

av gruppene. Før og etter treningsperioden vil det gjennomføres en rekke tester (se 

under) for å se på effekten av de forskjellige drikkene.  

 

Før treningsperioden 

Du skal møte på Norges idrettshøgskole 4 ganger for tilvenning til tester og 

treningsøvelser, styrketester, måling av kroppssammensetning (DXA), en legesjekk og 

muskelbiopsier i ukene før forsøket. I tillegg må du møte for en MR-analyse hos Curato 

røntgen. Tidspunkter for de ulike oppmøtene avtales individuelt. Under følger et 

eksempel på tidsplan for tester: 

Dag 1: Underskrevet samtykke og helseerklæring. Fastende blodprøve, DXA-scan, 

medbrakt frokost, tilvennig til styrketester og funksjonelle tester (ca. 2 timer). 

Minimum 2 dager hvile. 

Dag 2: Gjennomføring av styrketester og funksjonelle tester (ca 1 time). 

Minimum 2 dager hvile. 

Dag 3: MR hos Curato røntgen (ca. 30 minutter). 
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Dag 4: Akuttforsøk (ca. 8timer) eller prebiopsi (ca 45 minutter). 

 

Før treningsstudien må du også gjennomføre to kostintervju, en tilsvarende 

kostregistrering vil gjentas mot slutten av treningsperioden. I de to siste dagene før 

tester og biopsi(er) må du avstå fra all krevende fysisk aktivitet (trening).  

 

Akuttforsøk 

Ti deltakere fra hver gruppe trekkes tilfeldig ut til å gjennomføre et akuttforsøk før og 

etter treningsperioden, dette innebærer 2 biopsier før treningsperioden og 2 biopsier 

etter treningsperioden (totalt 4 biopsier). De resterende deltakerne i hver gruppe deltar 

ikke i akuttstudien og tar bare én biopsi før og én etter treningsperioden. Hensikten med 

akuttforsøket er å måle hvordan muskulaturens respons til trening forandres over 

treningsperioden og hvordan inntak av de to drikkene påvirker dette. Oppstart denne 

dagen vil være mellom kl. 0800 og 0900, og forsøket er ferdig mellom kl. 1530 og 

1630. Før vi gjennomfører treningsøkten vil vi ta en biopsi og gjennomføre en styrketest 

i et kneekstensjonsapparat. Treningsøkten vil være identisk med noen av øktene som 

gjennomføres senere i treningsperioden. Etter treningsøkten vil du innta en av de to 

drikkene, og det vil bli tatt en biopsi tre timer etter økten. Det vil også bli tatt 

blodprøver (gjennom venekateter) flere ganger i løpet av dagen, og gjennomført 

styrketester rett etter økten, 3 timer etter økten og 24 timer etter økten, for å måle 

restitusjon. Dermed vil du måtte sette av en hel dag til testdagen (fra 0700-0800 frem til 

ca. 1530-1630) og 30 min til styrketesting og blodprøve dagen etter.  

 

Treningsperioden 

Treningsperioden starter når man har gjennomført alle testene, og den varer i 12 uker. I 

disse 12 ukene skal det trenes styrke tre ganger i uken (mandag, onsdag og fredag) i 

grupper på tre deltakere med oppfølging av en personlig trener på alle økter. Drikkene 

inntas to ganger om dagen; etter trening og på kvelden på treningsdager, og morgen og 

kveld på treningsfrie dager.  

Etter treningsperioden gjennomføres alle testene på nytt for å måle endringer.  
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Tester 

DXA: ved et av oppmøtene før testingen gjøres en DXA-analyse for å måle 

kroppssammensetningen som vil danne grunnlaget for de standardiserte måltidene ved 

testgjennomføringen. Denne testen innebærer at deltakerne ligger stille i ca. 10 minutter. 

MR: for å måle muskelvekst i lår- og overarmsmuskulaturen benyttes en MR-analyse. 

Denne testen innebærer at du må ligge i ro ca. 15 minutter. 

1RM tester: for å måle styrke vil det testes hvor mye du kan løfte maksimalt en gang i 

to øvelser som heter beinpress og brystpress.  

Muskelfunksjonstest: testingen av muskelfunksjonen gjøres i et kneekstensjonsapparat 

som er låst ved 90° i kneleddet. 

Funksjonelle tester: en test av hvor raskt du kan reise seg fra en stol fem ganger på rad, 

samt en test av hvor raskt du kan gå opp en trapp vil bli brukt til å si noe om funksjon i 

hverdagen og mobilitet.   

Blodprøver: blodprøvene vil tas i sammenheng med biopsiene og vil gjøres gjennom 

venekatetrene slik at det ikke blir noen ekstra stikk for blodprøver.  

Biopsier: For de som tilfeldig velges til å være med på akuttforsøket blir det to biopsier 

før og to biopsier etter treningsperioden. For de som ikke skal være med på 

akuttforsøket blir det én biopsi før og én etter treningsperioden.  

Biopsiene tas ut på følgende måte: 

 Huden og bindevevet lokalbedøves der vevsprøven skal taes. 

 Et snitt på ca. 1-2 cm gjøres gjennom hud og muskelfascien. 

 En nål med diameter på 6 mm føres inn (2‐3 cm) og 1‐3 små biter av 

muskulaturen tas ut (total 2-300 mg). 

 Snittet lukkes med tape (strips). 

 

Eventuelle ulemper ved å delta 

Deltakelse i prosjektet vil kreve en del tid og oppmerksomhet.   

Trening skal gjennomføres med stor belastning, og vil medføre en viss risiko for skade 

og følelse av sårhet/stølhet i muskulaturen.  
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Venekateter medfører en liten infeksjonsfare og det kan oppleves ubehagelig. 

Vevsprøvetakninger (biopsier) medfører en liten infeksjonsfare, og ubehag/smerter kan 

oppleves under inngrepet. Du kan også oppleve lette til moderate smerter i 1-2 døgn 

etter inngrepet.  

Du vil få et lite arr etter snittet i huden; arret vil sakte bli mindre tydelig. Enkelte 

personer vil kunne få en fortykning av huden i arrområdet. 

 

Personvern 

Vi vil kun lagre informasjon om deg under ditt forsøkspersonnummer. Undervis i 

forsøket vil vi oppbevare en kodeliste med navn og forsøkspersonnummer. Denne 

kodelisten vil fysisk være låst inne, slik at det er kun forskerne tilknyttet studien som 

har adgang til den. Alle som får innsyn i informasjon om deg har taushetsplikt. 

Innsamlet data vil bli anonymisert etter 15 år (kodelisten destrueres). 

  

Alle prøver vil analyseres ”blindet”, det vil si at forskerne som utfører den enkelte 

analysen ikke vet hvilken forsøksperson prøven kommer fra (verken 

forsøkspersonnummer eller gruppe). Prøver vil bli analysert ved NIH (biopsier), 

Universitet i Oslo (ernæringsinstituttet; biopsier og blod) og Universitetet i Arkansas, 

USA (biopsier og blod). 

 

Det vil ikke være mulig å identifisere deg i resultatene av studien når disse publiseres.  

 

Biobank 

Biopsiene og blodprøvene vil bli oppbevart i en forskningsbiobank uten kommersielle 

interesser (vurdert av Regional Etisk Komite). Hvis du sier ja til å delta i studien, gir du 

også samtykke til at det biologiske materialet og analyseresultater inngår i biobanken. 

Prøvene vil bli lagret til år 2020. Ansvarlig for biobanken er Professor Truls Raastad 

ved Seksjon for fysisk prestasjonsevne ved NIH. Det biologiske materialet kan bare 

brukes etter godkjenning fra Regional komité for medisinsk og helsefaglig 

forskningsetikk (REK). Hvis du sier ja til å delta i studien, gir du også ditt samtykke til 
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at prøver og avidentifiserte opplysninger utleveres til ernæringsinstituttet ved 

universitetet i Oslo og universitetet i Arkansas.  

 

 

Innsynsrett og oppbevaring av materiale 

Hvis du sier ja til å delta i studien, har du rett til å få innsyn i hvilke opplysninger som 

er registrert om deg. Du har videre rett til å få korrigert eventuelle feil i de 

opplysningene vi har registrert. Dersom du trekker deg fra studien, kan du kreve å få 

slettet innsamlede prøver og opplysninger, med mindre opplysningene allerede er 

inngått i analyser eller brukt i vitenskapelige publikasjoner. 

 

Informasjon om utfallet av studien 

Etter at data er innsamlet og analysert vil vi avholde et møte for alle forsøkspersonene 

der vi presenterer resultatene fra studien. 

 

Forsikring 

Deltakere i prosjektet er forsikret dersom det skulle oppstå skade eller kompikasjoner 

som følge av deltakelse i forskningsprosjektet. NIH er en statlig institusjon og er således 

selvassurandør. Dette innebærer at det er NIH som dekker en eventuell erstatning og 

ikke et forsikringsselskap. 

 

Finansiering 

Prosjektet er fullfinansiert av Tine® og Norges forskningsråd. 

 

Publisering 

Resultatene fra studien vil offentliggjøres i internasjonale, fagfellevurderte, tidsskrift. 
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Du vil få tilsendt artiklene hvis du ønsker det. 

 

Samtykke 

Hvis du har lest informasjonsskrivet og ønsker å være med som forsøksperson i 

prosjektet, ber vi deg undertegne “Samtykke om deltakelse” og returnere dette til en av 

personene oppgitt nedenfor. Du bekrefter samtidig at du har fått kopi av og lest denne 

informasjonen. 

Det er frivillig å delta og du kan når som helst trekke deg fra prosjektet uten videre 

begrunnelse. Alle data vil, som nevnt ovenfor, bli avidentifisert før de blir lagt inn i en 

database, og senere anonymisert. 

 

Dersom du ønsker flere opplysninger kan du ta kontakt med Håvard Hamarsland 

på tlf: 93 445 916 eller e-post: haavardh@nih.no, Gøran Paulsen på tlf: 93429420, eller 

Truls Raastad på tlf: 23 26 23 28 el. 913 68 896 

 

Vennlig hilsen 

Håvard Hamarsland (Stipendiat) 

Gøran Paulsen (forsker) 

Truls Raastad (Professor) 

 

 

Appendix II: Information letter sent to prospective participants. 
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Samtykke til deltakelse i studien Hvordan påvirker 

inntak av forskjellige melkeproteiner 

muskelproteinbalanse hos eldre? 

 

 

Jeg er villig til å delta i studien  

 

 

----------------------------------------------------------------------------------------------------------

------ 

(Signert av prosjektdeltaker, dato) 

 

 

 

Jeg bekrefter å ha gitt informasjon om studien 

 

 

----------------------------------------------------------------------------------------------------------

------ 

(Signert, rolle i studien, dato) 

 

 

 

 

Appendix III: Written consent form. 
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Uke 1-3 Mandag Dato:____________ Tatt alle drikker?: 

FP:_______________ Instruktør:______________ Tid: 

Øvelse 1:  Hammersquat     Reps Kg Borg  

   
Oppv. 12     

   
Serie 1 12     

   
Serie 2 12     

       Øvelse 2:  Beinpress     Reps Kg Borg  

Kloss: 
  

Serie 1 12     

       

Øvelse 3:  
Knee 
extensions     Reps Kg Borg  

Sete: 
  

Serie 1 12     

Fot: 
  

Serie 2 12     

       Øvelse 4:  Tåhev     Reps Kg Borg  

   
Serie 1 12     

   
Serie 2 12     

              

Øvelse 5: Chest 
press       Reps Kg Borg  

Sete: 
  

Oppv. 12     

   
Serie 1 12     

       Øvelse 6: Sittende 
roing       Reps Kg Borg  

   
Oppv. 12     

   
Serie 1 12     

       Øvelse 7: Nedtrekk       Reps Kg Borg  

     
    

       Øvelse 8: 
Skulderpress       Reps Kg Borg  

   
Oppv. 12     

   
Serie 1 12     

       Øvelse 9:  Back extension     Max 15 Kg Borg  

   
Serie 1       

       Øvelse 10: Ab 
crunch       Max 15 Kg Borg  

   
Serie 1       
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Uke 1-3 Onsdag Dato:____________ 
Tatt alle 
drikker?: 

 FP:_______________ Instruktør:______________ Tid: 

Alle øvelser gjennomføres ved 90% av 10 RM.  * = 10 RM 

Øvelse 1: Hammersquat     Reps Kg Borg  

   
Oppv. 10     

   
Serie 1 10     

   
Serie 2 10     

       Øvelse 2:  Beinpress     Reps Kg Borg  

Kloss: 
  

Serie 1 10     

   
Serie 2 10     

       

Øvelse 3:  
Knee 
extensions     Reps Kg Borg  

Sete: 
  

Serie 1 10     

Fot: 
  

Serie 2 10     

       Øvelse 4:  Tåhev     Reps Kg Borg  

   
Serie 1 10     

   
Serie 2 10     

              

Øvelse 5: Chest 
press       Reps Kg Borg  

Sete: 
  

Oppv. 10     

   
Serie 1 10     

       Øvelse 6: Sittende 
roing       Reps Kg Borg  

   
Oppv. 10     

   
Serie 1 10     

       Øvelse 7: Nedtrekk*       Reps Kg Borg  

   
Serie 1 10     

       Øvelse 8: 
Skulderpress       Reps Kg Borg  

   
Oppv. 10     

   
Serie 1 10     

       

Øvelse 9:  
Back 
extension*     Max 15 Kg Borg  

   
Serie 1       

       Øvelse 10: Ab 
crunch*       Max 15 Kg Borg  

   
Serie 1       
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Uke 1-3 Fredag Dato:____________ Tatt alle drikker?: 
 FP:_______________ Instruktør:______________ Tid: 

Øvelse 1:  Hammersquat     Reps Kg Borg  

   
Oppv. 8     

   
Serie 1 8     

       Øvelse 2:  Beinpress     Reps Kg Borg  

Kloss: 
  

Serie 1 8     

   
Serie 2 8     

       Øvelse 3:  Knee extensions     Reps Kg Borg  

Sete: 
  

Serie 1 8     

Fot: 
  

Serie 2 8     

       Øvelse 4:  Tåhev     Reps Kg Borg  

   
Serie 1 8     

   
Serie 2 8     

              

Øvelse 5: Chest press       Reps Kg Borg  

Sete: 
  

Oppv. 8     

   
Serie 1 8     

       Øvelse 6: Sittende 
roing       Reps Kg Borg  

   
Oppv. 8     

   
Serie 1 8     

       Øvelse 7: Nedtrekk       Reps Kg Borg  

     
    

       Øvelse 8: 
Skulderpress       Reps Kg Borg  

   
Serie 1 8     

       Øvelse 9:  Back extension     Max 15 Kg Borg  

   
Serie 1       

       Øvelse 10: Ab crunch       Max 15 Kg Borg  

   
Serie 1       

IV: Session sheet examples (Monday – Wednesday – Friday) used for each 

participant during the strength training period. 


