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Abstract 

Background: Throwing performance is an important factor for scoring goals in 

handball. Mobility and power are two physical factors considered to be important for 

producing high ball speed. Evidence in the literature for a relationship between mobility 

tests and throwing performance, and power tests and throwing performance, are scarce 

and variable. One explanation for the variable and poor relationship to throwing 

performance could be that the conventional mobility and power tests are not specific 

enough to throwing. Aim: The aim of this study was to investigate the influence of 

mobility and power on overhead throwing with run-up, utilizing more sport specific 

tests (HSEBT and 1080 Quantum). The hypotheses being that: 1) functional mobility 

measured by the hand reach star excursion balance test (HSEBT) is significantly 

correlated with throwing performance, and 2) maximum power measured by the 1080 

Quantum is significantly correlated with throwing performance. Methods: Thirteen 

elite female handball players were recruited for the study, with twelve completing the 

testing protocol. A HSEBT, consisting of twelve hand reaches were used to measure 

mobility. Power was measured by twelve tests, consisting of six hop, two push, two pull 

and two rotational tests, using the 1080 Quantum. Throwing accuracy and ball speed 

were used as the measures for throwing performance. Results: No significant 

correlations was found between any HSEBT tests and throwing performance. For the 

power tests, only left foot anterior to posterior hop significantly correlated with ball 

speed (r = 0.577, p<0.05). Additionally, the non-dominant hand posterior and superior 

diagonal pull (r = 0.601, p<0.1) and the right foot anterior hop (r = 0.538, p<0.1) were 

correlated with a statistical tendency to throwing accuracy. Conclusions: The results of 

this study suggest that neither the mobility nor the power tests can be used as individual 

predictors of performance for overhead throws with run-up. The correlations found 

between the power tests and throwing performance is likely due to coincidence, rather 

than a statistically relevant relationship. However, the tests and idea of moving away 

from conventional testing to a more sport specific approach should not be completely 

discarded, since the study had a limited amount of subjects. Thus, more studies into the 

use of sport specific mobility and power tests are recommended.  

Key words: testing, mobility, power, throwing performance, sport specific 
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Abbreviations 

A0 Anterior zero degree vector 

Ant Anterior 

B Bilateral 

Dom Dominant 

ICC Intraclass Correlation Coefficient 

Inf Inferior 

L Left  

L45 Left 45-degree vector 

L135 Left 135-degree vector 

ms-1 meters per second 

MAP Movement Assessment Profile 

HSEBT Hand Reach Star Excursion Balance Test 

n Number of subjects 

Non-dom Non dominant 

NSS No scapular stabilization 

P180 Posterior 180-degree vector 

Pos Posterior 

R Right 

R45 Right 45-degree vector 

R135 Right 135-degree vector 

RM Repetition max 

ROM Range of motion 

Rot Rotation 
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SS Scapular stabilization 

Std Standard Deviation 
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 Diameter 
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1. Introduction 

Team-handball is an Olympic, fast pace ball sport with many offensive and defensive 

actions throughout a game, with the main objective of scoring more goals than your 

opponent in order to win (Wagner, Finkenzeller, Wurth, & von Duvillard, 2014). The 

sport is very demanding and requires superior physical skills including jumping, diving, 

blocking, sprinting, ball control, agility and throwing (Chelly, Hermassi, & Shephard, 

2010; Gorostiaga, Granados, Ibanez, & Izquierdo, 2005). Throwing ability is one of the 

most important physical skills for a handball player, in order to score goals (Bayios, 

Anastasopoulou, Sioudris, & Boudolos, 2001; Gorostiaga et al., 2005). The combination 

of throwing velocity and accuracy is two of the most important factors when it comes to 

scoring, because a fast and accurate throw at the goal gives the defenders and 

goalkeeper less time to parry the shot (Gorostiaga et al., 2005).  

Throwing performance throughout the game is determined by different physical factors 

such as: mobility, stability, strength, power and endurance. Additionally, the sequence 

and timing of movement through the kinetic chain are important to achieve a high ball 

velocity in the overarm throw (Bayios et al., 2001; Gorostiaga et al., 2005; van den 

Tillaar & Ettema, 2009b). Joint mobility can be viewed as the basis for any movement. 

This is reflected by the fact that mobility, or joint range of motion (ROM), is recognized 

by many as a key component of physical performance (McNeal & Sands, 2006; Nelson, 

Kokkonen, Eldredge, Cornwell, & Glickman-Weiss, 2001; Talukdar, Cronin, Zois, & 

Sharp, 2014; Witvrouw, Mahieu, Danneels, & McNair, 2004). However, there is a limit 

to how much mobility is needed for different activities. Thus, the demands of the sport 

should be considered, in order to achieve the optimal ROM to optimize performance in 

specific activities. For example, a ballet dancer has other ROM demands than a handball 

player. In order to achieve functional movements there also has to be a balance between 

mobility and stability along the kinetic chain when performing specific movement 

patterns such as throwing (Okada, Huxel, & Nesser, 2011).  

Strength and power are two closely related factors that often are determinant for 

throwing velocity (Debanne & Laffaye, 2011; Gorostiaga et al., 2005; Granados, 

Izquierdo, Ibanez, Bonnabau, & Gorostiaga, 2007). Accordingly, the ability to produce 

and transfer power through the kinetic chain can be considered closely related to over-
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head throwing velocity. It should be noted that, the endurance also plays a role in 

maintaining power over the duration of an entire game.  

The focus of this thesis lies on the relationship between mobility and throwing 

performance and between power and throwing performance. Several studies have 

investigated mobility in overhead throwing athletes (Almeida et al., 2013; Baltaci, 

Johnson, & Kohl, 2001; Baltaci & Tunay, 2004; Bigliani et al., 1997; Clarsen, Bahr, 

Andersson, Munk, & Myklebust, 2014; Downar & Sauers, 2005; Laudner et al., 2013; 

Laudner, Moore, Sipes, & Meister, 2010; Levine et al., 2006; Myers, Laudner, 

Pasquale, Bradley, & Lephart, 2006; Robb et al., 2010; Scher et al., 2010; Shimamura et 

al., 2015; Talukdar et al., 2014; Zakas et al., 2003). However, the majority of the studies 

focuses either on the relationship between mobility and injury risk (Almeida et al., 

2013; Clarsen et al., 2014; Myers et al., 2006; Scher et al., 2010) or merely on 

establishing a mobility reference of different level athletes in different throwing sports 

(Baltaci et al., 2001; Baltaci & Tunay, 2004; Bigliani et al., 1997; Downar & Sauers, 

2005; Laudner et al., 2013; Laudner et al., 2010; Shimamura et al., 2015). To the 

author’s knowledge the only studies that investigated the relationship between mobility 

and throwing performance, using mobility tests, are the studies from Robb et al. (2010) 

and Talukdar et al. (2014) in baseball and cricket players, respectively. Even though 

studies have established common mobility ranges and adaptations to the different sport 

demands, there is a lack of knowledge about the direct influence of mobility on 

overhead throwing performance, especially in handball players.  

The relationship between (muscular) power and overhead throwing performance for 

handball players has been investigated using different tests, including various isokinetic 

tests (Bayios et al., 2001; Fleck et al., 1992; Zapartidis, Gouvali, Bayios, & Boudolos, 

2007), as well as isoinertial (often referred to as isotonic) tests (bench press and squats), 

rotational power tests and medicine ball throws (Debanne & Laffaye, 2011; Gorostiaga 

et al., 2005; Granados et al., 2007; Marques, Saavedra, Abrantes, & Aidar, 2011; 

Talukdar et al., 2014; van den Tillaar & Ettema, 2004a). However, the results in these 

studies are highly variable, and there often is not a strong statistically significant 

relationship between power and throwing velocity. Thus, more research is required in 

order to gain greater knowledge into the relationship between power and throwing 

velocity.  
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The fact that the overhead throw is a dynamic, complex and multifactorial kinetic chain 

movement with an elaborate transfer of energy through the entire body, is recognized 

throughout the literature (Baltaci et al., 2001; Bayios et al., 2001; Bigliani et al., 1997; 

Bourdin et al., 2010; Chelly et al., 2010; Laudner et al., 2013; Laudner et al., 2010; 

Pedegana, Elsner, Roberts, Lang, & Farewell, 1982; Robb et al., 2010; Scher et al., 

2010; Talukdar et al., 2014). Despite this, there have been no mobility or power tests 

that can be regarded as functional, because none were able to fully encompass the 

complexity of the overhead throwing action.  

Recently, new tests for mobility and power designed to better reflect the functional 

complexity of athletic movements have been developed.  The 1080 MAP (mobility)  

(Athletic 1080 AB, Stockholm, Sweden) (Eriksrud et al., 2013) and the 1080 Quantum 

(power) (1080 Motion AB, Stockholm, Sweden) theoretically provides researchers, 

therapists and coaches with the possibility to quantify sport specific mobility and power 

while encompassing the complexity of the overhead throwing performance, by taking 

into account the kinetic chain, sequencing of dynamic movements, gravity and ground 

reaction force. Therefore, the purpose of this study was to investigate the influence of 

mobility and power on throwing performance, utilizing a hand reach star excursion 

balance test (HSEBT) measured on the 1080 MAP and power tests measured by the 

1080 Quantum. The hypotheses were that: 1) functional mobility measured by the 

HSEBT is significantly correlated with throwing performance, and 2) peak power 

measured by the 1080 Quantum is significantly correlated with throwing performance. 
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2. Theoretical Background 

2.1 Overhead Throwing Biomechanics 

In order to create sport specific tests for the overhead throw it is important to understand 

the biomechanics and the demands required of the activity. There is a consensus in the 

literature that an overhead throw is a complex body activity with a sequential activation 

of body segments (Baltaci et al., 2001; Bayios et al., 2001; Bigliani et al., 1997; Bourdin 

et al., 2010; Chelly et al., 2010; Fradet et al., 2004; Herring, Mole, Meredith, & Stern, 

1992; Laudner et al., 2013; Laudner et al., 2010; Pappas, Zawacki, & Sullivan, 1985; 

Pedegana et al., 1982; Roach & Lieberman, 2014; Robb et al., 2010; Scher et al., 2010; 

Talukdar et al., 2014; van den Tillaar & Ettema, 2009b). To achieve a high throwing 

velocity, the combination of mobility, power and segmental sequence timing seems to 

be very important factors. Van den Tillaar and Ettema (2009a) performed an 

investigation of the difference between the dominant and the non-dominant throwing 

arm in experienced handball players. They found that any difference in throwing 

velocity was mainly caused by a decreased joint maximum velocity and the timing 

difference at the start of the movements of the major joints. In addition, the non-

dominant arm throws went through less shoulder internal rotation and torso rotation 

ROM than the dominant throwing arm (van den Tillaar & Ettema, 2009a). Thus, 

resulting in a longer ball trajectory and thereby the possibility of increasing the velocity 

more (van den Tillaar & Ettema, 2009a). These findings are in line with the notion that 

mobility, power and segmental sequence timing were important factors affecting ball 

velocity.  

From a biomechanical perspective the overhead handball throw can be viewed as an 

open kinetic chain system, which is a combination of movements in which the terminal 

segment can move freely (Karandikar & Vargas, 2011; Palmitier, An, Scott, & Chao, 

1991; Putnam, 1993). This transfers readily to a handball overhead throw since the ball 

only has a negligible weight of around 0.4 kg. The greatest ball velocity in an overhead 

throw is achieved using a proximal-to-distal movement sequence in an open kinematic 

chain (Bayios et al., 2001; Fradet et al., 2004; Herring et al., 1992; Hong, Cheung, & 

Roberts, 2001; Marshall & Elliott, 2000; Pappas et al., 1985; Roach & Lieberman, 

2014; Stodden, Fleisig, McLean, & Andrews, 2005; van den Tillaar & Ettema, 2009b). 

The principle of a proximal-to-distal sequence is in essence that, in order to produce the 
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maximum possible speed at the end of a linked chain of segments, the motion should 

start with the more proximal segments and proceed to the more distal segments. The 

more distal segments begin their motion at the time of the maximum speed of the more 

proximal one, with each succeeding segment generating a larger end-point speed than 

the proximal one (Marshall & Elliott, 2000). In other words, the maximum velocity of 

the ball in a overhead throw is the result of a combination of accelerations and 

decelerations of different segmental and joint movements through the kinetic chain (van 

den Tillaar & Ettema, 2009b). Additionally, the speed of at least one of the more 

proximal segments is greatly diminished by the time the most distal segment reaches its 

maximum speed. Based on this Putnam (1993) suggested that the speed of the distal end 

of the link system is built up by adding up the individual speed of all segments 

participating in the sequence. To support this the resultant linear speed of segment 

endpoints show that the distal ends of segments progressively gets faster in a proximal-

to-distal fashion. Another characteristic of the proximal-to-distal sequence is that the 

acceleration of the proximal segment causes the distal segment to lag behind (Putnam, 

1993). This lag may result in a rapid stretch of the muscles crossing the joint, thus 

inducing a stretch-shortening cycle type activation that further contributes to generating 

a higher ball velocity (Grezios, Gissis, Sotiropoulos, Nikolaidis, & Souglis, 2006).    

In overhead throws with run-up the leading leg is braced, which allows for the pelvis, 

trunk and throwing arm to accelerate over the braced leg, thus aiding in the transfer of 

momentum through the pelvis, trunk and throwing arm (Wagner, Pfusterschmied, Von 

Duvillard, & Muller, 2012). The transfer of momentum is considered to occur in all 

throwing movement, but with differences due to the run-up and tactical components of 

the game (Wagner, Pfusterschmied, Von Duvillard, et al., 2012). The joint motions 

considered to be contributors in the build up of ball velocity in the proximal-to-distal 

sequence in the overhead throw, are: 1) pelvic rotation, 2) trunk flexion, lateral flexion 

and rotation, 3) shoulder flexion, internal rotation and horizontal adduction, 4) elbow 

extension, 5) forearm pronation, 6) wrist flexion and 7) finger flexion (van den Tillaar 

& Ettema, 2007, 2009b; Wagner, Pfusterschmied, Von Duvillard, et al., 2012). 

Additionally, because of the distal segments’ lag on the proximal segments, the joint 

motion will be relatively opposite to the joint motions above, before the distal segments 

also start accelerating in the throwing direction. For example, the shoulder relative 

motion of external rotation will occur prior to the internal rotation, at least partially 
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because of trunk flexion occurring faster. This leads to a stretching of the activated 

muscle (e.g. internal rotators) prior to its shortening, which is thought to enhance the 

performance of the concentric phase (Bosco, Komi, & Ito, 1981). The enhanced 

performance in the stretch-shortening cycle is believed to be caused by release of elastic 

energy stored in series elastic elements of the muscles and the stretch reflex potentiation 

(Bosco et al., 1981).  

However, recent studies looking closer at the biomechanics of overhead throwing in 

handball suggests that a proximal-to-distal sequence is not always observed (Fradet et 

al., 2004; van den Tillaar & Ettema, 2009b). Fradet et al. (2004) investigated the 

proximal-to-distal sequence by looking at timing of the maximum velocity of the wrist, 

elbow, shoulder and upper torso before ball release. The results of the study indicated 

that the maximum velocity of the elbow occurs before the maximum velocity of the 

shoulder (Fradet et al., 2004). Van den Tillaar & Ettema (2009b) found similar 

deviations from the proximal-to-distal sequence timing when looking at the time of 

maximum linear velocity of the body segments distal endpoints and the maximum 

angular velocity of the joint movements. However, in spite of these findings one should 

not discard the principle of proximal-to-distal sequencing in overhead handball throws, 

because the deviation from the principle almost only occurs in the distal segments and 

joints. Additionally, when looking at the initiation of the joint movements the proximal-

to-distal sequence still applies. The joint movements studied were: 1) knee extension, 2) 

pelvis rotation, 3) trunk tilt, side tilt and rotation, 4) shoulder horizontal adduction, 

abduction and internal rotation, 5) elbow extension, 6) wrist flexion and 7) finger 

flexion (van den Tillaar & Ettema, 2009b). To further support the fact that the velocity 

of an overhead handball throw is the result of the power produced throughout the 

kinetic chain, another investigation showed that 53,1% of the velocity of the throw can 

be attributed to arm action, while the remaining 46,9% is due to the step and body 

rotation (Toyoshima, Hoshikawa, Miyashita, & Oguri, 1974). To insure the best 

possible validity, the kinematic chain, the kinetic chain and the proximal-to-distal 

sequence should be taken into consideration when designing functional tests to measure 

physical characteristics to correlate with an overhead throwing performance.   
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2.2 Mobility and the Overhead Throw 

2.2.1 Relationship Between the Overhead Throw and Specific Mobility 
Tests 

As previously stated mobility is considered an important factor in overhead throwing 

performance. However, the number of studies investigating this relationship does not 

reflect this. To this author’s knowledge there are only two studies that specifically 

investigate the relationship between mobility and overhead throwing performance; one 

investigating a cricket throw (Talukdar et al., 2014) and the other investigating a 

baseball pitch (Robb et al., 2010). No such investigation has been conducted on 

handball players.  

No clear relationship was found when using mobility tests (Robb et al., 2010; Talukdar 

et al., 2014). In Talukdar and co-workers’ (2014) study on the relationship between the 

overhead cricket ball throw and the rotational ROM of the hip and thoracic spine, a 

greater external hip rotation and bilateral rotational thoracic ROM was not associated 

with (increased) ball velocity. However, this research group did not directly correlate 

mobility and throwing velocity, they divided their subjects into a fast-throwing (11 

players) and a slow-throwing (10 players) group and investigated the differences 

between the two groups in mobility. They found a significant difference in mobility 

between the two groups, but concluded that greater ROM at the hips and thoracic spine 

does not increase throwing velocity (Talukdar et al., 2014). Robb and co-workers 

(2010) also investigated the relationship of hip ROM on throwing velocity in baseball 

players. They measured a total of 12 passive ROM variables: external rotation, internal 

rotation, abduction, adduction, total arc of internal and external rotation and total arc of 

abduction to adduction of both hips. The main finding of the study was that no 

individual measure of hip mobility significantly correlated with throwing velocity, 

except for the total arc of hip rotation in the non-dominant leg (left in a right handed 

thrower). More specifically, less total arc of hip rotation in the non-dominant leg was 

correlated with throwing velocity, however with a low correlation coefficient (r = 0.5) 

(Robb et al., 2010). One possible explanation is that in baseball pitchers the decreased 

total arc of hip rotation is an adaptation comparable to the (throwing) shoulder which is 

characterized by an increased external rotation and a decreased internal rotation (Robb 

et al., 2010). However, the fact that these two inconclusive studies are the only available 

in the literature justifies the need for further investigation. 
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2.2.2 Mobility Adaptations in Overhead Throwing Athletes 

Only few studies have investigated the relationship between mobility and overhead 

throwing performance. However, the literature on adaptive mobility changes in the 

throwing athlete from repetitive loading of the overhead throw, is abundant. Studies 

have reported specific adaptive changes of ROM of different joints in high level 

overhead throwing athletes: at the shoulder (Almeida et al., 2013; Baltaci et al., 2001; 

Bigliani et al., 1997; Brown, Niehues, Harrah, Yavorsky, & Hirshman, 1988), the hip 

(Laudner et al., 2010) and the thoracolumbar region (Laudner et al., 2013). While many 

of the authors look at these ROM adaptations from an injury perspective, some consider 

the ROM adaptations observed to play a role in the throwing performance (Bigliani et 

al., 1997; Tullos & King, 1973). For example, Bigliani and co-workers (1997) 

suggested that using the non-dominant arm as a reference would be ill advised because 

the treatment/training might result in a throwing shoulder that is not capable of its 

previous high level of performance. An adaptive change that is commonly observed in 

overhead athletes is an increased external rotation of the dominant shoulder compared 

with the non-dominant shoulder found both in handball (Almeida et al., 2013) and 

baseball players (Baltaci et al., 2001; Bigliani et al., 1997; Brown et al., 1988). This 

adaptation is considered to help improve efficiency of the internal rotator muscles of the 

shoulder, thus allowing the ball to be delivered with greater velocity (Tullos & King, 

1973).  

2.2.3 Evaluation of the Reliability and Validity of Mobility Testing 

When testing mobility in the overhead throwing athlete, the shoulder and hip have 

received the most attention from researchers. Especially the transverse plane have been 

investigated to a great extent (Almeida et al., 2013; Baltaci et al., 2001; Bigliani et al., 

1997; Brown et al., 1988; Clarsen et al., 2014; Downar & Sauers, 2005; Laudner et al., 

2010; Levine et al., 2006; Myers et al., 2006; Roach & Lieberman, 2014; Robb et al., 

2010; Scher et al., 2010; Shimamura et al., 2015; Talukdar et al., 2014; Van Dillen, 

Bloom, Gombatto, & Susco, 2008).  

Several authors have investigated the intra-rater and inter-rater reliability of the 

rotational ROM tests of the shoulder (Awan, Smith, & Boon, 2002; Boon & Smith, 

2000; Wilk et al., 2009). The tests were done passively with the subjects in the supine 

position, with 90 of shoulder abduction and 90 of elbow flexion, with the different 
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researchers using different forms of measuring equipment: either a standard goniometer 

(Boon & Smith, 2000), a standard goniometer with a bubble attachment (Wilk et al., 

2009) or an inclinometer (Awan et al., 2002). All the testers performed the 

measurements both with and without scapular stabilization (Awan et al., 2002; Boon & 

Smith, 2000; Wilk et al., 2009). Intra-class correlation coefficients were considered to 

be excellent above 0.75, fair to good from 0.40-0.75 and poor under 0.40 (Boon & 

Smith, 2000). However, these guidelines are very different from the ones found in 

statistical literature, stating that in general values of above 0.90 are considered high, 

0.80-0.89 moderate, and below 0.80 questionable for physiological data (Vincent, 

2005). The intra-rater reliability of internal rotation ROM varied from poor to 

questionable (0.23-0.71) without ever being good (Table 2.1) (Awan et al., 2002; Boon 

& Smith, 2000; Wilk et al., 2009). The best ICC scores for internal rotation seem to be 

achieved when the scapula is stabilized; all studies report ICC values over 0.6 (Table 

2.1). The inter-rater reliability when performing internal rotation tests is poor to 

questionable (0.13-0.66) without scapular stabilization, with all studies reporting 

slightly poorer ICC values when the scapula was stabilized. Intra-rater reliability of 

external rotation ranged from 0.58-0.79, whereas the inter-rater reliability ranged from 

0.41-0.84 when the scapula was not stabilized (Table 2.1) (Awan et al., 2002; Boon & 

Smith, 2000). Boon & Smith (2000) were the only ones to investigate external rotation 

with scapular stabilization, with intra-rater reliability and inter-rater reliability being 

0.58 and 0.78 respectively.  

To summarize, the results of the shoulder rotational tests seems to vary depending on 

the tester, type of testing and whether the scapula was stabilized or not. Awan et al. 

(2002) concludes that the results obtained in their study makes the tests good enough to 

recommend them for clinical use. The intra-rater reliability scores are similar, but the 

inter-rater reliability is slightly poorer in the two other studies (Boon & Smith, 2000; 

Wilk et al., 2009). However, if the results are evaluated according to the guidelines of 

Vincent (2005), then the results might not be suitable for clinical use. Either way, 

because of the varying results of these studies, further research on the reliability of 

current shoulder mobility tests is warranted.  
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Table 2.1: Summary of ICC scores for shoulder rotational ROM. 

Studies Measures Intra-rater reliability Inter-rater reliability 

            

Wilk et al (2009) 
IR NSS 0.48 0.47 

IR SS 0.62 0.43 

          

Boon & Smith 

(2000) 

IR NSS 0.23 0.13 

IR SS 0.6 0.38 

ER NSS 0.79 0.84 

ER SS 0.58 0.78 

            

Awan et al (2002) 

IR NSS (R/L) 0.71/0.64 0.62/0.66 

IR SS (R/L) 0.64/0.65 0.5/0.52 

ER NSS (R/L) 0.58/0.67 0.41/0.51 

IR: Internal Rotation, ER: External Rotation, NSS: No Scapular Stabilization, SS: With 

Scapular stabilization, R: Right and L: Left. 

 

Investigators have also looked into the intra-rater reliability for several ROM tests at the 

hip, including hip flexion, extension, abduction, adduction, internal and external 

rotation (Cejudo, Sainz de Baranda, Ayala, & Santonja, 2014; Clapper & Wolf, 1988; 

Nussbaumer et al., 2010). In contrast to the intra-rater reliability scores of the shoulder, 

all the studies reported mainly high ICC scores for all the hip mobility tests when 

performed with a standard goniometer (Cejudo et al., 2014; Clapper & Wolf, 1988; 

Nussbaumer et al., 2010). A recent study found that the inter-rater reliability of hip 

ROM tests (using a goniometer measuring to the nearest 5) was questionable 

(ICC>0.73), with the exception for hip flexion yielding results of close to moderate 

reproducibility with an ICC of 0.79 (Poulsen et al., 2012). However, earlier studies have 

shown better results, ranging from close to moderate to high, with minor exceptions 

(Cibere et al., 2008; Sutlive et al., 2008). This indicates that both the intra- and inter-

rater reliability is better for the hip ROM tests than those of the shoulder.  

Finally, to assess the current way of testing, an evaluation of the validity of mobility 

tests related to the overhead throwing performance is provided. As previously 

mentioned there is a scarcity of studies looking into the relationship between mobility 
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and throwing performance. Only two studies report on the predictive validity (Robb et 

al., 2010; Talukdar et al., 2014). Based on the fact that these two studies did not really 

show a clear relationship between any specific mobility test and overhead throwing 

ability, it is worth to note that a test having good predictive validity for measuring 

overhead throwing performance is currently unavailable. 

To the authors’ knowledge, no comparative studies on mobility of overhead throwing 

athletes competing at different levels exist, which makes construct validity difficult to 

assess. However, several studies have been conducted looking at the difference in 

mobility between pitchers and positional players in baseball (Baltaci et al., 2001; 

Bigliani et al., 1997; Brown et al., 1988; Laudner et al., 2013; Laudner et al., 2010), 

which might provide some clues into the construct validity of different mobility tests. 

Only Brown et al. (1988) found significant differences when looking at shoulder 

mobility tests, 9 more external rotation and 9 less shoulder extension for pitchers 

compared to position players. This, in contrast to Bigliani et al. (1997) and Baltaci et al. 

(2001) who found no significant differences. A study investigating the thoraco-lumbar 

mobility of pitchers and positional players, found that the pitchers had significantly 

more rotation to their non-throwing arm side when compared to the positional players 

(Laudner et al., 2013). Looking at hip ROM Laudner and co-workers (2010) found that 

position players exhibited greater internal rotation ROM in their trail leg compared to 

pitchers.  

In summary, the construct validity of mobility tests has not been investigated to a great 

extent and the results of the (few available) studies are somewhat variable. Due to the 

limited amount of studies on the predictive and construct validity of mobility tests, it is 

difficult to find studies of relevance looking into the concurrent validity. The reason 

being that there is not any way of testing that can be considered a gold standard for 

testing mobility related to the overhead throwing performance.  

Finally, a brief discussion about the logical validity of the current way of testing 

mobility might offer an explanation why the predictive and construct validity is poor 

and variable, other than the lack of studies. A considerable shortcoming of the 

traditional way of testing mobility is that none of the tests encompasses the motion of 

the entire body in the overhead throw. The existing studies only looked at individual 
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joints, often performed either in a supine, prone or seated position. Thus, neglecting the 

kinetic chain, which as mentioned earlier, is acknowledged as a critical component of 

any overhead throwing performance. Additionally, all of the current mobility tests only 

measure mobility in one plane at a time, while a throwing performance is carried out 

with motions going on in all joints of the body, in all three planes simultaneously.  

2.3 Strength and Power Testing in Handball 

Contrary to mobility testing, many studies on the relationship between power and 

overhead throwing performance have been carried out, both in handball (Bayios et al., 

2001; Chelly et al., 2010; Debanne & Laffaye, 2011; Fleck et al., 1992; Gorostiaga et 

al., 2005; Granados et al., 2007; Marques et al., 2011; van den Tillaar & Ettema, 2004a; 

Zapartidis et al., 2007) and baseball (L. R. Bartlett, Storey, & Simons, 1989; Pedegana 

et al., 1982). The equipment and tests for measuring power in the overhead athletes are: 

isokinetic tests (L. R. Bartlett et al., 1989; Bayios et al., 2001; Fleck et al., 1992; 

Pedegana et al., 1982; Zapartidis et al., 2007), isoinertial tests, rotational power tests 

and medicine ball throws (Debanne & Laffaye, 2011; Gorostiaga et al., 2005; Granados 

et al., 2007; Marques et al., 2011; Talukdar et al., 2014; van den Tillaar & Ettema, 

2004a).  

2.3.1 Isokinetic Test Methodology 

The traditional isokinetic dynamometers are electromechanical or hydraulic instruments 

measuring force or torque (net moment of force), and calculating work or power in 

standardized movement conditions, i.e. constant (angular) velocity (Moffroid, Whipple, 

Hofkosh, Lowman, & Thistle, 1969; Stark, Walker, Phillips, Fejer, & Beck, 2011; 

Thistle, Hislop, Moffroid, & Lowman, 1967). An isokinetic measurement relies on the 

use of a machine to control the velocity of movement by providing resistance, through a 

specific ROM, when the tested limb reaches the preset angular speed (Cabri, 1991; 

Rothstein, Lamb, & Mayhew, 1987). Many different types of isokinetic dynamometers 

have been used in research, such as the Cybex II, Cybex NORM dynamometer, Cybex 

6000 dynamometer (Lumex Inc., Ronkonkoma, USA), Biodex 4 (Biodex Medical 

Systems Inc., New York, USA), Con-trex (CMV AG, Duebendorf, Switzerland) and 

Kin-Com (Isokinetic International, Chattanooga TN, USA). A common denominator of 

the isokinetic dynamometers, used in relation to throwing performance, is that they 

consist of a lever arm, attached to a part of the body and guided through a ROM 
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(Alderink & Kuck, 1986; Bayios et al., 2001; Brown et al., 1988; Li, Wu, Maffulli, 

Chan, & Chan, 1996; Madsen, 1996; Thistle et al., 1967). In all references found in the 

literature on throwing athletes, the traditional isokinetic equipment lock out other joints 

or body segments with bands and straps that may affect the single joint being tested 

(Alderink & Kuck, 1986; Bayios et al., 2001; Brown et al., 1988; Li et al., 1996; 

Madsen, 1996; Thistle et al., 1967). However, it varies whether the subjects being tested 

are in standing (Brown et al., 1988; Karatas, Gogus, & Meray, 2002; Keller, Hellesnes, 

& Brox, 2001; Madsen, 1996), lying (Sullivan, Chesley, Hebert, McFaull, & Scullion, 

1988; Zapartidis et al., 2007) or seated (Bayios et al., 2001) positions.  

Many authors claim that isokinetic dynamometers are reliable and valid (Alderink & 

Kuck, 1986; Connelly Maddux, Kibler, & Uhl, 1989; Karatas et al., 2002; Stark et al., 

2011). While others claim that the traditional isokinetic dynamometers have limited 

validity by the fact that they do not test subjects in a physiological position, and thereby 

neglect the influence of gravity and the kinetic chain (Kannus, 1994; Keller et al., 2001; 

Silva et al., 2006). Thus, it appears that an evaluation of validity and reliability in 

isokinetic testing is warranted.  

If the goal were to measure an athlete’s ability to develop power in an overhead 

throwing motion, then using a test as similar as possible to the actual throw would be 

preferable in order to insure good logical validity. The traditional isokinetic equipment 

and methodology isolates joint movements, thus neglecting the complexity of an 

overhead throwing action by undermining the influence of gravity, ground reaction 

force, segmental joint sequencing and the kinetic chain principle. To support this, 

several researchers highlight the problem of testing subjects in a position that bears little 

resemblance to the athletic movement of interest (Kannus, 1994; Keller et al., 2001; 

Silva et al., 2006). In addition a review article addressed another problem with using 

isokinetic data as a predictive value for performance, namely that the maximum velocity 

of the available isokinetic dynamometers is only able to cover 20 to 30% of the different 

physiological maxima. Also, many movements (e.g. throwing) demand high 

accelerations, not solely from the moving limb, but from other parts of the body as well, 

thus not in isokinetic conditions at all (Cabri, 1991). This is supported by the fact that 

shoulder internal rotation and elbow extension have been measured to average 5039 s-1 

and 1626 s-1 respectively in a handball throw (Wagner, Buchecker, von Duvillard, & 
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Muller, 2010b). This indicates that angular velocities used in isokinetic tests of handball 

players (maximum 300 s-1) are very low compared to the produced angular velocity of 

different joints in an overhead throw.  

An indication of the construct validity is provided by the investigation of Bayios et al. 

(2001), where a comparison of players with different performance abilities (the first 

division Greek National League, Second division Greek National League and a random 

sample of physical education students) was conducted. The Cybex II+ isokinetic 

dynamometer was used for the power testing. The main findings of the study were a 

significant difference in ball velocity between the three groups, but no difference 

between the groups in upper extremity peak torque production (Bayios et al., 2001). The 

results indicate that the traditional isokinetic tests did not demonstrate good construct 

validity, because the tests were not able to discriminate between professional handball 

players and recreational athletes. Furthermore, shoulder rotation peak torque was not a 

good predictor for throwing velocity, regardless the type of throw and throwing ability. 

Several studies investigated concurrent and predictive validity of traditional isokinetic 

testing (L. R. Bartlett et al., 1989; Bayios et al., 2001; Fleck et al., 1992; Pedegana et 

al., 1982; Stark et al., 2011; Sullivan et al., 1988; Zapartidis et al., 2007). The predictive 

validity of the traditional isokinetic equipment is often poor with variable results 

between different studies (L. R. Bartlett et al., 1989; Bayios et al., 2001; Fleck et al., 

1992; Pedegana et al., 1982; Zapartidis et al., 2007). Fleck et al. (1992) were the only of 

few researchers reporting many different isokinetic test results correlating with throwing 

performance. However, the majority of the correlations were found with the jump shot, 

which logically might move the emphasis of power production more to the upper 

extremities, since the legs are mostly used to generate height in the jump and not power 

in the throw. The same number of correlations was not seen for the set shot, which is in 

line with the literature. Bayios et al. (2001) also looked at different types of throws and 

found most of the correlations between shoulder internal/external rotation torque 

production and ball velocity during jump shots.  

In addition to the fact that validity of traditional isokinetic dynamometers can be 

deemed highly questionable, different researchers have also found questionable to high 

intra-class correlation coefficient (ICC) scores regarding intra-rater (Cowley, Fitzgerald, 
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Sottung, & Swensen, 2009; Karatas et al., 2002; Keller et al., 2001; Li et al., 1996; 

Sullivan et al., 1988) and inter-rater (Karatas et al., 2002) reliability. Questionable to 

high intra-rater reliability has also been reported for different shoulder tests (ICC: 0.06 - 

0.94) (Edouard et al., 2013; Forthomme, Dvir, Crielaard, & Croisier, 2011; Meeteren, 

Roebroeck, & Stam, 2002; Plotnikoff & MacIntyre, 2002). The reliability as well as the 

peak torque scores have been shown to vary depending on the position of the subjects, 

angular velocity and arm being tested (Edouard et al., 2011; Forthomme et al., 2011) 

and should be considered when comparing results of different studies. A final problem 

with the isokinetic tests is that the measurement errors increase with increasing angular 

velocity of the isokinetic test (Delitto, Rose, Crandell, & Strube, 1991; Drouin, 

Valovich-mcLeod, Shultz, Gansneder, & Perrin, 2004; Karatas et al., 2002; Tunstall, 

Mullineaux, & Vernon, 2005; Zawadzki, Bober, & Siemienski, 2010).            

2.3.2 Isoinertial Test Methodology 

Isoinertial and isometric tests are two alternative ways of measuring strength or power 

and strength, respectively. Isoinertial tasks, such the squat or the bench press, are often 

used in the assessment of strength and power. Isometric strength is defined as the force 

generated against an immovable object, without a change in joint angle (Abernethy, 

Wilson, & Logan, 1995; Frost, Cronin, & Newton, 2010).  

Similarly to isokinetic testing, the logical validity of the isoinertial and the isometric 

tests can be criticized for not bearing enough resemblance to and not encompassing the 

complexity of an overhead throwing action. Critics of isometric protocols argue that the 

static strength measured at different joint angles in isometric tests are far away from the 

dynamic nature of most sporting activities (Ashley & Weiss, 1994; G. J. Wilson & 

Murphy, 1996). Additionally, the isometric protocol is not capable of measuring 

external power, due to the absence of movement, and thus no mechanical work being 

done nor power being produced (Abernethy et al., 1995; Frost et al., 2010). Therefore, 

isometric test methodology related to throwing performance will not be highlighted 

further in this thesis. Isoinertial protocols based upon exercises such as squats and 

bench-press, also has critics based on the argument that it bears little resemblance to 

many athletic performances in terms of posture, pattern or speed of movement 

(Abernethy et al., 1995).  
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Two studies using isoinertial protocols were able to differentiate between elite and 

amateur level athletes (Gorostiaga et al., 2005; Granados et al., 2007). In both studies 

the isoinertial tests, bench press and half squat, yielded significantly higher power 

production in the elite group compared to the amateur group. This was consistent with 

the higher throwing velocity measured in the elite group (Gorostiaga et al., 2005; 

Granados et al., 2007). Therefore, these isoinertial tests seem to have better construct 

validity than isokinetic tests described previously. 

Several authors have also tested the predictive validity of isoinertial tests on throwing 

performance (Chelly et al., 2010; Debanne & Laffaye, 2011; Gorostiaga et al., 2005; 

Granados et al., 2007; Marques et al., 2011; Marques, van den Tilaar, Vescovi, & 

Gonzalez-Badillo, 2007). These isoinertial power test protocols are more consistently 

correlated with overhead throwing velocity than traditional isokinetic protocols. 

However, the correlations found vary from poor to high, depending on the test and 

external load (Chelly et al., 2010; Debanne & Laffaye, 2011; Gorostiaga et al., 2005; 

Granados et al., 2007; Marques et al., 2011; Marques et al., 2007). Only the medicine 

ball throw, using a light ball (0,8kg) and correct handball throwing technique, reported 

high correlation (0.904) between the power test and the handball throwing performance 

(Garcia, Martinez, Grande, & Molinuevo, 2011).  

Abernethy et al. (1995) state that those questioning isoinertial assessment tend to 

emphasize the potential for injuries, poor reliability and objectivity due to test procedure 

variations. However, the intra-rater reliability of the half-squat and bench press tests 

performed in the studies of Gorostiaga et al. (2005) and Granados et al. (2007), ranged 

from questionable to high (Izquierdo, Hakkinen, Gonzalez-Badillo, Ibanez, & 

Gorostiaga, 2002). The highest ICC values reported for the bench press tests ranged 

from 0.93 (30% of 1RM) to 0.99 (1 RM). The half-squat showed more variable ICC 

scores ranging from 0.65 (80% of 1 RM) to 0.93 (60% of 1 RM) (Izquierdo et al., 

2002). High reliability of the bench press test is supported by Marques et al. (2007) with 

an ICC score of 0.91. Garcia and co-workers (2011) reported high reliability between 

attempts for both heavy (3 kg) (ICC = 098) and a light (0.8 kg) medicine ball throws 

(ICC = 0.99). This was corroborated by another study, which reported high test-retest 

reliability of seated chest throws and standing overhead throws (ICC = 0.88-0.97) (van 

den Tillaar & Marques, 2013).  
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In summary, isoinertial methodology seems to be adequately reliable for performance 

testing, but has some shortcomings regarding validity. Even though isoinertial power 

tests results are correlated with throwing performance its predictive validity is generally 

not very high.  

In light of the above one can conclude that hardly any tests are available adequately 

predicting throwing performance. Therefore, the purpose of the present study was to 

investigate the influence of mobility and power on throwing performance.  
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3. Methods and Materials 

To investigate the research questions, a cross sectional study was carried out using 

quantitative analysis methods.  

3.1 Subjects 

Thirteen Norwegian, top division, female handball players (age: 21.71.7 years; weight: 

71.19.1 kg; height: 174.86.5 cm) were recruited for the study, with twelve 

completing the entire protocol.  

Exclusion criteria were: 

- Subjects with previous (within six months prior to testing) or current injuries. 

- Subjects were unable to participate in normal handball and throwing activities.  

- Subjects reporting pain/discomfort during the adaptation trial in more than one 

power test. 

The study complied with requirements of the regional ethics committee and with current 

Norwegian law and regulations. Accordingly, all subjects were informed about the 

purpose of the study, as well as the advantages and risks of participating, after which an 

informed consent was signed (Appendix 1). Participation was voluntary, and the 

subjects were informed that they could drop out of the study at any time without any 

consequences. 

3.2 Experimental setup   

3.2.1 Lab Setup  

All tests were carried out in the Human Movement and Biomechanics Lab of the 

Norwegian School of Sport Sciences. Detailed description of the lab setup is given in 

Figure 3.1.  
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3.2.2 The Kinematic Setup  

Five Oqus-4 cameras were used (Figure 3.1) to collect kinematic data using the 

Qualisys Track Manager software (Qualisys AB, Gothenburg, Sweden) to measure ball 

speed and the speed of the subject in the run-up before ball release (entry speed) 

(sampling frequency 480 Hz, exposure time 122 s). The recording volume was 

calibrated using the Qualysis calibration kit consisting of a 750 mm T-shaped wand 

with two reflective markers and an L-shaped reference structure with four reflective 

markers, which defined the direction of the lab coordinate system. After the calibration 

the cameras covered an approximate recording volume of 6 m (length) x 4 m (width) x 3 

m (height).  

Five reflective markers (20 mm ) were used in the kinematic setup; two on the ball 

exactly opposite to each to determine the center of the ball, one on the throwing hand 

Figure 3.1: Illustration of the lab setup seen from above.  
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(on the head of the intermediate phalanx of the third digit) and two on the pelvis (left 

and right highest point of the iliac crest). The two markers on the subjects’ iliac crest 

were used to calculate the maximum entry speed of the run-up before the ball release. 

The markers on the ball in combination with the marker on the finger were used to 

calculate the release speed of the ball.  

3.2.3 Anthropometric, Throwing, Mobility and Power Testing Setup 

The anthropometric equipment consisted of a Seca model 217 stadiometer, with a 437-

adapter element that connected the stadiometer to a Seca flat scale (Seca gmbh & co, 

Hamburg, Germany) to measure the subjects’ height and weight. In addition, a standard 

tape measure was used to measure wingspan, arm- and leg length.  

A height jump mat (2 m x 3 m) 

was used for measuring throwing 

accuracy and to protect lab 

equipment (Figure 3.2). Sports 

tape was used to mark up the 

target area (1 m x 1 m) (Figure 

3.2) and define the throwing 

distance (8 m; Figure 3.1). A 

Basler acA2000 – 165uc video 

camera (Baser AG, Ahrensburg, 

Germany) was used to measure 

the accuracy of the throws. Select resin and an International Handball Federation 

standard size women’s handball was used (Select AS, Glostrup, Denmark). The size and 

placement of the target was based on a combination of different protocols previously 

used in throwing studies (van den Tillaar & Ettema, 2003b; Wagner, Pfusterschmied, 

Tilp, Von Duvillard, & Müller, 2014). For right-handed subjects the target was placed 

0.1 m below the crossbar at the right side of the goals midline (van den Tillaar & 

Ettema, 2003b). This was mirrored for the left handed subjects.  

Figure 3.2: Height jump mat with the target area 

of 1 x 1m. 
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Functional mobility was 

tested on a grid (1080 

MAP; Athletic 1080 AB, 

Stockholm, Sweden) 

(Figure 3.3). The grid 

consists of nine circles at 

10 cm intervals, and vectors 

from the centre of the mat 

for every 45°. There is a 

mark for each 2 cm interval 

within the 10 cm intervals. 

The vectors are marked as 

A0 (anterior), L45 (Left 45), R45 (Right 45), L90 (Left 90), R90 (Right 90), L135 

(Left 135), R135 (Right 135) and P180 (posterior) (Appendix 2). The function of the 

mat is to act as guidelines for the subjects’ movements and foot positions, and to 

measure functional mobility. A plum weight and a stick were used to project a line 

down to the grid when the subjects performed tests were they did not reach to the 

ground.  

The power testing was conducted using the 1080 

Quantum (Figure 3.4) (1080 Motion AB, 

Sweden). A belt (Figure 3.11) with different 

anchors was used to attach the cable for the hop 

tests. For the push, pull and rotational tests the 

subjects grabbed a handle attached to the cable. A 

more detailed explanation of the 1080 MAP and 

the 1080 Quantum is provided in Appendix 2.  

 

 

 

Figure 3.3: 1080 MAP testing grid. 

Figure 3.4: 1080 Quantum. 
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3.3 Test Protocol 

All subject performed the same protocol in the following order: Anthropometric 

measurements, warm-up, throwing performance test, mobility tests and power tests. On 

the adaptation day only the anthropometric measurements (height and weight), warm-up 

and the power tests were conducted.  

3.3.1 Anthropometrics 

Upon arrival the subjects’ anthropometrics were measured. The measurements consisted 

of: 

- weight (kg), 

- height (cm), 

- wingspan (cm), 

- arm- and leg length (cm) 

 

The arm length was measured from the tip of the acromion to the end of the third digit 

with the shoulder abducted to 90. Wingspan was measured from the left to the right tip 

of the third digits with bilateral shoulders abducted to 90. Leg length was measured 

from the tip of the greater trochanter to the floor. The hand dominance was decided by 

which hand the subject threw the handball with.  

3.3.2 Warm-up Protocol 

After the anthropometric measures, the subjects were asked to perform a 15-minute 

standardized warm-up, which consisted of a general and a handball specific part. The 

warm-up was performed in a gymnasium. The general part of the warm-up consisted of 

different exercises and dynamic stretching. The exercises took place on the short side of 

a handball court (20 m), and were as follows: 1) Jog (2 x 20 m), 2) lateral shuffle with 

focus on arm swings (ab- and adduction) (2 x 20 m), 3) angled shuffles forward and 

backwards (2 x 20 m), 4) jog with dominant arm shoulder roll forward and backwards 

(2 x 20 m), 5) skip with trunk rotation (2 x 20 m) and 6) skip with bilateral shoulder roll 

forward and backwards (2 x 20 m). The exercises were then repeated with the subject 

being instructed to slightly increase the intensity of the runs. The exercises took 4 

minutes to complete. The dynamic stretching consisted of four exercises: 1) full body 

dynamic stretches, with three repetitions per leg per movement, with a total of six 
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movements (Appendix 3). 2) Trunk rotation with a gradual anterior bend, 3) anterior 

bend and toe-reaches and 4) posterior reach with rotation. The dynamic stretching was 

also performed twice, with the instructions to increase intensity on the second run-

through. The dynamic stretching took 6 minutes to complete. After the 10 minutes 

general warm-up the subjects were asked to perform 5 minutes of standard overhead 

throws at a wall from 4 m, 6 m, 8 m and 8 m with run-up. The subject spent one minute 

on the first three throws (4 m, 6 m and 8 m) and two minutes on the last throwing 

exercise (8 m with run-up). The subjects were instructed to gradually increase the 

intensity of the throws, according to the distance they were throwing from. 

3.3.3 Throwing Protocol               

After the warm-up the subjects entered the lab and the reflective markers for the 

kinematic setup were positioned. The subjects then threw at the target until five valid 

throws were collected. The instructions were as follows: “Throw the ball as hard as you 

can and hit the target” (van den Tillaar & Ettema, 2003a). The center of the target was 

marked with an + (Figure 3.2). The criterion for a valid throw was to hit inside the 

target.  

The throwing technique selected was a standing throw from 8 m with a three-step run-

up. This was chosen since this throw is frequently used in team handball when throwing 

from the backcourt position (Wagner, Pfusterschmied, Von Duvillard, et al., 2012). 

Between each throw the subjects had a one-minute rest period.  

3.3.4 Mobility Tests 

The functional mobility was tested using a HSEBT, which consisted of a total of twelve 

tests (hand reaches), six on each foot. Of the twelve tests, eight were diagonal reaches 

(measured in cm) and four were rotation tests (measured in ). The results of the tests 

give a description of subjects’ diagonal flexion and extension, as well as rotational 

movement capacity.  
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The twelve tests were performed in the following order: 

1) Left leg, left hand R45 reach  

2) Right leg, right hand R45 reach       Flexion 

3) Left leg, right hand L45 reach       Patterns 

4) Right leg, left hand R45 reach 

5) Left leg, right hand L135 reach 

6) Right leg, left hand R135 reach  Extension  

7) Left leg, left hand R135 reach       Patterns 

8) Right leg, right hand L135 reach 

9) Left leg, bilateral hands right rotation reach 

10) Right leg, bilateral hands left rotation reach Rotational  

11) Left leg, bilateral hands left rotation reach Patterns 

12) Right leg, bilateral hands right rotation reach 

Criteria for a valid mobility test were: 

1) the foot tested was placed in the center of the grid, with the foot covering the same 

distance anterior and posterior relative to zero, with the anterior-posterior vector 

running through the second toe and the center of the heel. 

2) the heel of the standing leg, as well as the 1st and 5th metatarsal, had to maintain 

contact with the mat during the entire test. 

3) the foot that was not tested was placed on a vector, 135° relative to the vector the 

subjects were reaching to. The support foot (toe-touch) had to be parallel with the 

direction of the reach and placed between the 20 and 30 cm radius on the vector. This 

was done to ensure limited weight-shift to the support foot. 

4) an exception to criterion nr. 3 was for the rotational tests, where the support foot was 

placed 90° relative to the tested foot (L90 or R90) pointing anterior.  

5) the tip of the third digit was used for taking the measurements (cm or ) for each test. 

When reaching anteriorly, the subjects reached to the ground (Figures 3.5 and 3.6). The 
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subjects were not allowed to support any weight on the reaching hand. In the posterior 

reaches, the subjects had to keep the elbow extended and the wrist in a neutral position. 

The plumb weight was used for measuring the posterior tests from the subjects’ tip of 

the third digit down to the floor (Figures 3.7 and 3.8). For the rotational tests the 

subjects used both hands, the hands overlapping at the third digit with the hand of the 

foot tested at the bottom, elbows extended, forearm pronated and wrist joints in a 

neutral position (Figures 3.9 and 3.10). The stick was used for measuring how many 

degrees the subjects rotated in each rotational test, from the overlapping third digits 

down to the floor (Figures 3.9 and 3.10).  

6) the hand not performing the reaching, in the diagonal tests, was placed on the same 

side hip.  

7) before initiating the diagonal reaches, the subjects had to align their trunk along the 

vector they were reaching to.  

8) the subjects had to return to the starting position, while maintaining balance.  

Before performing three recorded repetitions, all subjects performed three practice 

repetitions. 
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Figure 3.5: Illustration of the left leg, left hand R45 reach. Starting position 

and ending position. 

Figure 3.6: Illustration of the left leg, right hand L45 reach. Starting and 

ending position. 
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Figure 3.7: Illustration of the left leg, right hand L135 reach. Starting and 

ending position. 

Figure 3.8: Illustration of the left leg, left hand R135 reach. Starting and 

ending position. 
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Figure 3.9: Illustration of the left leg, bilateral hands right rotation reach. 

Starting and ending position. 

Figure 3.10: Illustration of the left leg, bilateral hands left rotation reach. 

Starting and ending position. 
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3.3.5 Power Tests 

There were 12 power tests: six hops, two pushes, two pulls and two rotational tests.  

Resistance was set to approximately 10% of the subjects’ body weight. The concentric 

speed of the 1080 Quantum was always set at 8 ms-1, which was the maximum speed of 

the machine. For the eccentric speed the settings were put to 6 ms-1 when performing 

the hop tests, and 2 ms-1 when doing the other tests.  

Six hops, three on each leg were tested in the following 

directions: posterior, lateral and anterior (Figures 3.12-

3.14). The arm of the machine was set at hip-height in all 

the hop tests, and the cable was attached to the subject via 

a belt (Figures 3.11-3.14). When performing the posterior 

hop the cable was attached to the anterior middle anchor 

of the belt. The subjects were instructed to take a quick 

step anterior (80-100 cm), before hoping posterior as far 

as they could (Figure 3.12). When performing the lateral 

hop the cable was attached laterally via a climbing rope 

to the two most lateral anchors (anterior and posterior) 

(Figures 3.11 and 3.14). The subjects were instructed to 

take a quick step (80-100 cm) laterally towards the 

machine, before performing a lateral hop in the opposite direction, as far as they could 

(Figure 3.14). When performing the anterior hop the cable was attached to the middle 

posterior anchor. When performing the anterior hop, the subject stood on the foot being 

tested with the other foot in the air (Figure 3.13). The subjects did not take a step 

posterior before performing the hop. They were instructed to perform a counter-

movement type motion induced by the opposite swinging leg (Figure 3.13, picture C to 

D).  

 

 

 

Figure 3.11: 1080 Belt with 

climbing rope and three 

karabiners attached to the 

cable. 
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Figure 3.12: Anterior to posterior hop test. A) Cable attachment to belt. B) Starting 

position. C) Anterior step. D) Posterior unilateral hop. E) Landing. 

Figure 3.13: Anterior hop test. A) Cable attachment to belt. B) Starting position. C/D) 

Countermovement phase. D) Start of the concentric phase of the unilateral hop. E) 

Landing. 
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The push, pull and rotational tests were performed with either unilateral or bilateral grip 

to the handle. The feet placement was standardized for each test. In the push tests the 

arm of the 1080 Quantum was set to its highest vertical position (level 12). Based upon 

facing the machine, when using the right hand, the right foot was placed 140 cm in front 

and the subject rotated 135 to the left (Figure 3.15). When performing a left hand push, 

the subject rotated a 135 to the right. A more detailed description of the foot placement 

and movements performed for each test is provided in Appendix 4. The subject then 

performed a unilateral anterior and inferior diagonal push (Figure 3.15). 

 

Figure 3.14: Lateral hop test. A) Cable attachment to climbing rope and 

belt. B) Starting position. C) Lateral step to unilateral lateral hop. D) 

Landing.  
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Figure 3.15: Illustration of the starting (A), middle (B) and ending (C) position of the 

anterior and inferior push test. 

 

 

 

 

 

 

 

 

 

 

In the pull tests the arm of the 1080 Quantum was set to its lowest vertical position 

(level 1). Based upon facing the machine, when using the right hand, the left foot was 

placed 140 cm in front and the subject rotated 45 to the right. When performing a left 

hand pull, the subject rotated a 45 to the left (Figure 16). A more detailed description 

of the foot placement and movements performed for each test is provided in Appendix 

4. The subject then performed a unilateral posterior and superior diagonal pull (Figure 

3.16). 

 

 

 

A B 

C 

A B 
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In the rotational tests the arm of the 1080 Quantum was set to hip height for each 

subject. Based upon facing the machine, when performing a right rotational pull, the left 

foot was placed 160 cm in front and the subject rotated 90 to the right. When 

performing a left rotational pull, the subject rotated 90 to the left (Figure 3.17). A more 

detailed description of the foot placement and movements performed for each test is 

provided in Appendix 4. The subject then performed a bilateral rotational pull (Figure 

3.17). 

 

 

 

 

 

 

 

Figure 3.16: Illustration of the starting (A), middle (B) and ending (C) positions of the 

posterior and superior pull test. 

C D 

A B 

C D 

Figure 3.17: Illustration of the starting (A), middle (B and C) and ending (D) positions 

of the bilateral hands rotational test. 
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The subjects went through an adaptation day for all power tests, because pilot studies 

indicated that at least one test session would be necessary to get reliable results. On the 

adaptation day the subjects had an unlimited number of practice attempts before 

measurements were recorded. Practice attempts were performed until the instructor was 

satisfied with the sequencing of the movement. This was done to ensure a proximal-to-

distal sequencing, especially for the push, pull and rotational tests. On the testing day 

the subjects performed five practice attempts before measurements were recorded. After 

the practice attempts the subjects had five minutes of rest before performing at least four 

maximum repetitions. When the maximum power decreased relative to the previous 

repetition the test was stopped. The three median scores were recorded, based upon 

deleting maximum power values for different repetitions in the following sequence: 

lowest-highest-lowest-highest.  

3.4 Analysis 

Normalization of diagonal mobility hand reach scores was done by linear regression 

analysis, using Matlab (Mathworks Inc, Natick MA, USA). The following values were 

included in the analysis: wingspan, trunk (height - leg length) and leg length. The linear 

regression analysis calculated a predicted mobility score (predicted value = Y intercept 

+ 1 (leg length) + 2 (trunk (height-leg length)) + 3 (wingspan)) based on the analysis 

of 28 male subjects in an ongoing validation study of the hand reach tests (Eriksrud, 

Unpublished data). A mobility score was calculated as a percentage of the measured 

value compared to the predicted value. The measured values were based on the average 

of the three recorded tests. This analysis was not done for the rotational tests, since the 

anthropometrics were not considered to affect the score. The weight measurement was 

used to determine the resistance in the power tests.  

Throwing performance was based on speed and accuracy data. The average of five valid 

throws was used for the statistical analysis. Ball speed (ms-1) was calculated at ball 

release, which was defined as the point of greatest acceleration between the marker on 

the third digit and the center of the ball (midpoint between the two ball markers) using 

Matlab (van den Tillaar & Ettema, 2009a; Wagner, Buchecker, von Duvillard, & 

Muller, 2010a). Entry speed (m⋅ s-1) was defined as the maximum speed of the midpoint 

between the two pelvic markers prior (between 3 and 100 ms) to ball release (Wagner et 

al., 2010a).  
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Accuracy of valid throws was done by video analysis in Dartfish (Figure 3.18) 

(Dartfish, Fribourg, Switzerland). The mean radial error was used as the measure (m) 

and defined as the average of the absolute distance from the center of the ball to center 

the target for the valid throws (van den Tillaar & Ettema, 2003a). This was done by 

measuring the distance from the center of the target to the point most distant at the ball 

at impact, and then subtracting the radius (0.088 m) of the ball.  

 

 

 

 

 

 

The diagonal mobility hand reach tests were expressed in cm, while the rotational reach 

tests were measured in degrees. The average of the three repetitions recorded of each of 

the twelve tests was used for the statistical analysis. The average of the three median 

values for each of the maximum power tests (W) was used for the statistical analysis. 

3.5 Statistics 

The mean and standard deviation of the anthropometrics (age, height and body mass) 

and throwing characteristics (entry speed, accuracy and ball speed) were calculated 

using Excel version 14.4.8 (Microsoft Corp, Redmond, WA, USA).  

Correlations between mobility, power and throwing performance (speed and accuracy), 

were calculated by pearsons product moment correlation coefficients using Prism 6 

(GraphPad Software Inc., La Jolla, CA, USA). Additionally, the relationships between 

accuracy and ball speed, height and ball speed, body mass and ball speed, and entry 

Figure 3.18: Illustration of how accuracy was measured using Dartfish. 
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speed and ball speed of the throws were calculated by linear regressions in Excel 

version 14.4.8. The level of significance for all correlations was set to p<0.05, with a 

statistical tendency set to p<0.1.    

Test-retest reliability (adaptation day to testing day) for each power test was calculated 

using ICC scores in SPSS version 22 (IBM Corp., Armonk, NY, USA). These ICC 

scores defined reliability as follows: questionable = ICC<0.80, moderate = 0.80-0.90 

and good = ICC>0.9 (Vincent, 2005). 
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4. Results 

The 12 subjects used (mean  standard deviation) 9  3 throws to complete five valid 

throws. The average ball speed of the valid throws was 22.7  1.8 ms-1 with an 

accuracy of 0.31  0.10 m. The average entry speed of the run-up was 3.1  0.5 ms-1.  

A summary of the mean and standard deviations of all twelve mobility and power tests 

are presented in Tables 4.1 and 4.2, respectively. These tables also show the number of 

subjects completing each of the mobility and power tests.    

Table 4.1: Summary of mobility tests.  

Mobility tests Mean SD n 

L leg, L hand, R45 (%) 5.4 6.7 12 

R leg, R hand, L45 (%) 9.3 8.2 12 

L leg, R hand, L45 (%) 6.5 10.8 12 

R leg, L hand, R45 (%) 12.5 12.2 12 

L leg, R hand, L135 (%) 0.8 8.2 12 

R leg, L hand, R135 (%) 8.6 8.7 12 

L leg, L hand, R135 (%) 10.9 25.4 12 

R leg, R hand, L135 (%) 11.1 26.4 12 

L leg, B hands, R rot () 123.0 9.2 12 

R leg, B hands, L rot () 123.6 7.7 12 

L leg, B hands, L rot () 118.2 11.8 12 

R leg, B hands, R rot () 114.6 10.5 12 

L: Left, R: Right, B: Bilateral, rot: rotation, SD: Standard deviation and             

%: Mobility score.    
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Table 4.2: Summary of power tests. 

Power tests Mean  SD n 

Dom hand posterior & superior diagonal pull (W) 912.5 133.7 11 

Non-dom hand posterior & superior diagonal pull (W) 878.9 145.8 10 

Dom hand anterior & inferior diagonal push (W) 872.3 157.0 12 

Non-dom hand anterior & inferior diagonal push (W)  727.0 147.1 12 

Dom bilateral side rotation (W) 1308.2 234.2 12 

Non-dom bilateral side rotation (W) 1326.3 216.9 12 

Left Foot anterior to posterior hop (W) 319.9 62.8 12 

Right Foot anterior to posterior hop (W) 334.0 35.2 12 

Left foot right lateral hop (W) 333.6 34.1 12 

Right foot left lateral hop (W)  328.0 35.5 12 

Left foot anterior hop (W) 684.0 41.5 12 

Right foot anterior hop (W) 718.8 54.1 12 

SD: Standard deviation, W: watt, Dom: Dominant hand, Non-dom: Non-dominant hand.   

 

Correlation coefficients between the mobility tests and throwing performance (speed 

and accuracy) are presented in Table 4.3. There were no significant correlations found. 

Correlation coefficients between the power tests and throwing performance are 

presented in Table 4.4. Left foot anterior to posterior hop was significantly correlated 

with ball speed (r = 0.577, p<0.05). Additionally, the non-dominant hand posterior and 

superior diagonal pull (r = 0.601, p<0.1) and the right foot anterior hop (r = 0.538, 

p<0.1) correlated with a statistical tendency with throwing accuracy (Table 4.4).  

Correlation coefficients between the mobility and power tests are presented in Table 

4.5. The right leg stance left hand L45 reach test was significantly correlated with the 

left foot right lateral jump test (r = -0.593, p<0.05) and with the right foot left lateral 

jump test (r = -0.668, p<0.1), while the left leg R45 reach was correlated with the same 

power tests (r = -0.534 and r = -0.548, p<0.1). Additionally, the right foot bilateral 

hands right rotational reach correlated significantly with the right hand posterior and 

superior diagonal pull power test (r = 0.604, p<0.05). 
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y = 1.6418x + 22.227
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The linear regression between accuracy and ball speed, and entry speed and ball speed 

of the overhead throws with run-up is presented in Figures 4.1 and 4.2.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1: Relationship between ball speed and accuracy.  

Figure 4.2: Relationship between ball speed and entry speed. 
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y = 0.0775x + 9.1768

R² = 0.07626
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Linear regression between ball speed and height, and between ball speed and weight is 

presented in Figure 4.3 and 4.4, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3: Relationship between ball speed and height.  

Figure 4.4: Relationship between ball speed and weight. 
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ICC scores for test-retest reliability for all power tests are presented in Table 4.6.  

Table 4.6: Test-retest reliability of the power tests. 

Power tests ICC scores 
Difference between days 

(W) 
Student T-test 

(p-value) 

Dom hand posterior & 

superior diagonal pull 
0.839 -9.5 0.710 

Non-dom hand posterior 

& superior diagonal pull 
0.888 23.7 0.348 

Dom hand anterior & 

inferior diagonal push  
0.638 82 0.025* 

Non-dom hand anterior & 

inferior diagonal push  
0.610 37.7 0.289 

Dom bilateral side rotation 0.767 52.1 0.294 

Non-dom bilateral side 

rotation 
0.843 104.1 0.034* 

Brace foot anterior to 

posterior hop 
0.384 -7.4 0.734 

Non-brace foot anterior to 

posterior hop 
0.555 18.6 0.293 

Left foot anterior to 

posterior hop 
0.417 -6.3 0.774 

Right foot anterior to 

posterior hop 
0.541 17.6 0.306 

Left foot right lateral hop 0.558 -3.4 0.694 

Right foot left lateral hop  0.347 7.3 0.525 

Left foot anterior hop 0.356 56.8 0.036* 

Right foot anterior hop 0.649 35.4 0.066T 

*Significant difference (p<0.05) and Tstatistical tendency (p<0.1). 

Dom: Dominant, Non-dom: Non-dominant, ICC: Intraclass correlation coefficient. 
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5. Discussion 

The main finding of this study was that both hypotheses should be rejected: mobility 

measured by the HSEBT and peak power measured by the 1080 Quantum are not 

significantly correlated with throwing performance. None of the twelve HSEBT tests 

and only one of the twelve power tests correlated significantly with overhead throwing 

performance (p<0.05) (Tables 4.3 and 4.4).  

5.1 Relationship Between Mobility and the Overhead Throw 

None of the HSEBT tests correlated with throwing performance (Table 4.3), which is in 

line with the few previous studies investigating the relationship between mobility and 

overhead throwing performance (Robb et al., 2010; Talukdar et al., 2014). However, 

this is not in line with the argument that mobility is important for the overhead throw 

(Bigliani et al., 1997; Tullos & King, 1973).  

Intra- and inter-rater reliability is fundamental to any clinical test. A study on the intra- 

and inter-rater reliability of the HSEBT was conducted simultaneously to this study 

(Data from an unpublished NIH master thesis, 2015). In this study the intra-rater 

reliability was found to be moderate (seven out of twelve tests) based upon the criteria 

previously described, two tests being questionable (ICC between 0.70 and 0.80) and 

three tests out of twelve being high (ICC>0.90) (Vincent, 2005). The inter-rater 

reliability was poorer, with ICC scores being poor (two with ICC < 0.70) questionable 

(seven) and moderate (five out of twelve). These results are slightly poorer than the 

same type study performed on the star excursion balance test (SEBT), which reported 

moderate to high ICC scores (Gribble, Kelly, Refshauge, & Hiller, 2013; Hyong & 

Kim, 2014). However, these results are generally better than those reported for shoulder 

internal and external rotation (Table 2.1) (Awan et al., 2002; Boon & Smith, 2000; Wilk 

et al., 2009). Based upon these findings it seems that reliability might not be the main 

limiting factor resulting in the poor correlation between the mobility tests and throwing 

performance. 

The HSEBT used in this study differ from traditional mobility tests. The tests are 

performed in a standing position, with the subjects affected by gravity while performing 

hand reaches, which triggers movement of the full kinematic chain. The hand reach tests 
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do not test the full ROM capacity of individual joints (Data from an unpublished NIH 

master thesis, 2015), since most likely elements of balance, stability, strength and 

coordination affect the results. The tests reflect how the full kinematic chain utilizes 

joint excursions to perform the hand reaches. Thus, HSEBT reflects the overall full 

body mobility from a standing position. The reason for using the HSEBT in this study, 

was that traditional single joint isolated tests poorly reflects the specificity of movement 

patterns performed in the overhead handball throw. The principle of specificity relating 

to training states that the body adapts to exercise according to how it is exercised, and 

applies to muscles and movements, energy systems and speed of movement (Cissik, 

2011). Assuming that the principle of specificity is also applicable to testing, then the 

interdependent relationship between segments and regions should be considered when 

creating tests that aim to assess sport performance. The HSEBT, with its different hand 

reach tests is an attempt to test mobility in a more specific manner to athletic 

performance. However, all HSEBT tests used in this study were not expected to be 

equally predictive of overhead throwing performance, since not all tests reflect joint 

motions related to generating high throwing velocities. Flexion patterns were not 

expected to correlate with the throwing performance, while the extension patterns 

where, because extension patterns were considered important to the acceleration 

distance in the overhead throw. However, none of the four extension tests correlated 

with the throwing performance (Table 4.3).  

There are several possible reasons why correlations between HSEBT and overhead 

throwing performance were not found in this study. The HSEBT performed in this study 

might not be specific enough to throwing performance. Furthermore, movements in the 

concentric (acceleration) phase of throwing are: 1) pelvic rotation, 2) trunk rotation, 

flexion and lateral flexion, 3) shoulder flexion, horizontal adduction, internal rotation, 

4) elbow extension, 5) forearm pronation, 6) wrist flexion and 7) finger flexion (van den 

Tillaar & Ettema, 2007, 2009b; Wagner, Pfusterschmied, Von Duvillard, et al., 2012). 

Joint motions based on the ones described above, but in the opposite direction of the 

concentric phase might therefore be most relevant for assessing mobility related to the 

overhead throw. In other words, in the right-handed thrower, the test ideally should 

include the motions of 1) left hip extension and external rotation, 2) right hip extension 

and internal rotation, 3) thoraco-lumbar extension, right rotation and right lateral 

flexion, 4) shoulder extension, external rotation and horizontal abduction, 5) elbow 
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flexion, 6) wrist extension and 7) finger extension. However, not all of these joint 

motions are equally important for the overhead throwing performance in handball. 

Creating a single mobility test that quantifies and encompasses all these joint motions 

would be difficult. Furthermore, some of these joints motions, such as elbow flexion 

and trunk lateral flexion, should not be restricted in injury free players, thus there is no 

need to test these motions. The main contributing motions of relevant joints and regions 

to a particular performance should therefore be prioritized when creating tests. 

However, here in lies one of the problems with this version of the HSEBT, since 

shoulder rotation, which is a key contributor to throwing speed, (van den Tillaar & 

Ettema, 2004b, 2007) is not challenged. Furthermore, the standardization of the tests by 

prepositioning the subjects in the diagonal reach direction might limit the ability of the 

test to describe thoraco-lumbar rotation. However, thoraco-lumbar rotation is 

challenged in the rotational tests, but then without extension of the hip, spine and 

shoulders as well as rotation of the shoulders. Therefore, it is possible that none of the 

HSEBT tests individually is able to test the joint motions most relevant for the overhead 

throw with run-up. A possibility could be to combine tests to create a profile score. 

However, this was not the scope of this study.  

Movement variability might help explain the lack of a significant relationship between 

the mobility tests and the overhead throwing performance. Movement variability at the 

individual level is associated with the complexity of the neuro-musculoskeletal system 

and the abundance of degrees of freedom (Davids, Glazier, Araujo, & Bartlett, 2003; 

Preatoni et al., 2013). Every time the same task is performed, a certain amount of 

change may be observed between its subsequent repetitions, regardless of how skilled or 

familiar we are with performing it (Stergiou, Harbourne, & Cavanaugh, 2006; C. 

Wilson, Simpson, van Emmerik, & Hamill, 2008). Wilson et al. (2008) suggests that the 

coordination variability present in the system provides movement flexibility so that the 

system can search for the optimal solution. Differences in movement patterns among 

players may develop over time, and could be a consequence of environmental changes, 

learning phenomena, latent pathologies or incomplete recoveries. These underlying 

factors may easily be masked by the presence of movement variability (Preatoni et al., 

2013). Therefore, it is likely that the individual players in this study used slightly 

different movement patterns when performing the overhead throw, which might be 

related to different backgrounds (playing position, tactical role, ROM, injuries and 
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external conditions). This can then be used to describe between-subject movement 

variability or individual strategies in solving the same task. For example, some players 

may perform the task of throwing utilizing a more transverse plane strategy (hip and 

trunk rotation), while others may solve the same task with a more sagittal plane strategy 

(hip and trunk extension). Therefore, if some players utilizing either a transverse plane 

or a sagittal plane strategy throw with the same speed, then no significant correlations 

between mobility and throwing performance can be found. In support of this argument a 

review concludes that different athletes performing the same task (e.g. javelin) do so 

with an individual pattern in relation to timing and movements (R. Bartlett, Wheat, & 

Robins, 2007).   

The multifactorial and complex nature of the throw itself might be another reason for 

the lack of significant correlations between throwing performance and the outcomes of 

the HSEBT. The results reported by van den Tillar & Ettema (2009a) is consistent with 

the notion that throwing performance is multifactorial in nature and affected by 

mobility, power and the sequencing of motion. Several authors argue for the importance 

of mobility (Bigliani et al., 1997; Tullos & King, 1973), power (Debanne & Laffaye, 

2011; Fleck et al., 1992; Garcia et al., 2011; Marques et al., 2007) and sequencing 

(Garcia et al., 2011; Herring et al., 1992; Marshall & Elliott, 2000; Roach & Lieberman, 

2014; Stodden et al., 2005) to overhead throwing performance. With this in mind the 

throwing performance can originate from any combination of these factors. The best 

combination would be: sport specific mobility and high power production in the proper 

proximal-to-distal sequence. However, with overhead throwing being multifactorial and 

complex in nature there is a possibility that players throwing with equal speed 

emphasize different factors in order to achieve this ball speed. For example, one player 

could be mainly reliant on mobility and sequencing while another player’s throw with 

the same ball speed could rely predominantly on power. Consequently, different players 

might therefore rely on different combinations of joint and regional mobility, 

sequencing and power generation. This can be described as “between-subject 

variability”, or “strategy”, by choosing the optimal combination of factors for solving 

the throwing task.   
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5.2 Relationship Between Power and the Overhead Throw 

The results of the power tests were generally not significantly correlated with 

performance in the overhead throw, with the only exception being the left foot anterior 

to posterior hop (Table 4.4). Additionally, the right foot anterior hop and the non-

dominant arm superior and posterior diagonal pull showed a statistical tendency (p<0.1) 

to correlate with throwing accuracy (Table 4.4).  

One possible explanation for the correlation of the left foot anterior to posterior hop 

with ball speed could be due to this being the lead leg being braced in throwing 

(Wagner, Pfusterschmied, Von Duvillard, et al., 2012). The brace of the lead leg 

transfers horizontal momentum from the run-up to the throwing arm, thereby increasing 

throwing speed (Wagner, Pfusterschmied, Von Duvillard, et al., 2012). It can be argued 

that the lead leg performs a similar task in the brace of the run-up as it does in the 

anterior to posterior hop. A closer look into our data showed that this might not be the 

case. Since two of the subjects where left-handed, their lead leg in the throw with run-

up was be the right leg. When corrected for the lead leg, the correlation analysis did not 

yield a significant correlation for the anterior to posterior hop, but showed a statistical 

tendency with a p-value of 0.0905. Thus, this correlation is likely to be coincidental.  

The traditional methods for testing power for throwing performance have been 

criticized and often failed to show statistical significance with throwing performance (L. 

R. Bartlett et al., 1989; Bayios et al., 2001; Debanne & Laffaye, 2011; Fleck et al., 

1992; Gorostiaga et al., 2005; Marques et al., 2011; Marques et al., 2007; Pedegana et 

al., 1982; Talukdar et al., 2014; van den Tillaar & Ettema, 2004a; Zapartidis et al., 

2007). One of the arguments against the use of isokinetic and isoinertial power and 

strength tests is that these methods have low specificity to overhead throwing 

performance based upon posture, movement pattern and speed of movement (Abernethy 

et al., 1995; Kannus, 1994; Keller et al., 2001; Silva et al., 2006). One exception was 

the lightweight medicine ball throw with correct handball technique, performed in the 

study of Garcia et al. (2011), where a high correlation (r=0.904) with throwing velocity 

was reported. However, it is rather obvious that using a ball weighing only 325-375 g 

more than a normal handball and instructing the subjects to throw the ball like a 

handball, will yield high correlations between the power test and the overhead handball 

throw. In addition, this is only an indirect way of measuring power, since they only 
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measured distance but neither force nor speed (Garcia et al., 2011). The intention of 

using the 1080 Quantum was to be able to measure the subjects’ power (calculated from 

force and velocity) directly, with the subjects conducting what was thought to be more 

handball specific movement patterns than what has traditionally been done. 1080 

Quantum with its adjustable arm and 5 m line allows for any functional movement 

pattern to be performed (Appendix 2). However, due of the machines speed and weight 

resistance limits it was not possible to perform tests with the desired movement patterns 

specific to the overhead handball throw. The reason was that the subjects would be at 

risk for shoulder injuries, considering that the minimum resistance from the machine is 

1 kg (650 g more than a handball), and that the highest speed in the concentric direction 

is 8 ms-1 (ball speed in this study was 22.7  1.8 ms-1, which reflects hand speed). 

Thus, to avoid injuries the power tests performed in this study were based around a 

general set of tests: hops, push, pull and rotational pull. The push, pull and rotational 

power tests had the most logical validity to overhead throwing performance. The one 

test with the best expected specificity to the overhead throw was the dominant hand 

anterior and inferior diagonal push. The diagonal pull and bilateral rotational pull were 

done to reflect movements of the eccentric phase after ball release and the rotational 

components (hip and trunk) of the throw, respectively.  

Neither push nor pull power tests correlated significantly with the overhead throwing 

performance. One reason might be that none of the power tests simulated specific 

enough movement patterns to the overhead throw. The test thought to be the most 

specific (anterior and inferior diagonal push) was performed with a proximal-to-distal 

sequence, with the lead foot initiating the movement and bracing before ending with 

dominant hand pushing inferiorly. However, this face validity movement specificity did 

not result in a significant correlation with throwing performance. A possible cause for 

the poor relationship may be that the arm pushing action is very different from the 

whipping/pulling motion of the arm in the handball throw. A change of arm action is 

likely to have a substantial influence, considering that more than half of the ball speed is 

attributed to arm action (Toyoshima et al., 1974). Additionally, the push was in an 

inferior direction, which further deviates from the throwing movement pattern.  

Test-retest reliability of the power tests performed in the 1080 Quantum was calculated 

between the adaptation day and testing day, and displayed poor to moderate reliability 
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(Table 4.6). This poor reliability can be attributed to both a learning effect of the 

complex movements tested and the different protocols being used on the two days. 

However, the student T-test showed a significant difference (three out of twelve tests) 

and a statistical tendency (one out of twelve tests) between the two days (Table 4.6). 

Thus, a learning effect is not supported by the results for all the tests. However, a 

general tendency seems to be that the subjects are improving in the power tests between 

days. The same learning effect was also found in a pilot study of test-retest reliability 

conducted prior to this study. Six subjects performed the same power tests on four 

separate occasions. The same general tendency of a learning effect from session 1 to 

session 2 was observed. Therefore the decision was made to include one adaptation day 

in this study. The ICC scores reported in this study should be interpreted cautiously 

since the protocols are substantially different with possible effects of fatigue due to the 

number of repetitions not being controlled for the adaptation day, limited control of 

subjects’ pre-testing condition (type of training, nutrition and general activity level) and 

an expected learning effect. Further research should be conducted on the reliability of 

the power tests conducted in the 1080 Quantum.  

Despite the validity of the power tests to overhead throwing performance not being 

proven in this study, this approach to testing should not be discarded, but instead further 

refined. One major issue related to throwing performance is the specificity of the arm 

action and direction of arm movement.  

5.3 Additional Findings 

The ball speed of the overhead throw with run-up was 22.7  1.8 ms-1, which is similar 

to what was reported in other studies in elite female handball players (Granados et al., 

2007; Granados, Izquierdo, Ibanez, Ruesta, & Gorostiaga, 2008; Moss, McWhannell, 

Michalsik, & Twist, 2015; Vila et al., 2012).  

Previous studies have reported a relationship between body size (height and mass) and 

playing level, with elite players being significantly taller and heavier than amateurs 

(Granados et al., 2007; van den Tillaar & Ettema, 2004a). Additionally, a significant 

relationship between throwing velocity and body size (fat free mass, total mass and 

height) has been reported for elite players (van den Tillaar & Ettema, 2004a). However, 
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the results of the present study contradict these findings with height and weight showing 

poor relationships with ball speed (Figure 4.3 and 4.4).   

The ball speed of the overhead throws with run-up did not correlate with the accuracy 

calculated by the mean radial error (Figure 4.1), which is in accordance with previous 

research (van den Tillaar & Ettema, 2003a; Wagner, Pfusterschmied, Klous, von 

Duvillard, & Muller, 2012). Since there is no velocity-accuracy trade-off when 

comparing throwing performance in different level athletes, velocity seems to be the 

main factor in determining throwing performance in handball (Wagner et al., 2010b; 

Wagner, Pfusterschmied, Klous, et al., 2012). The correlation between maximum entry 

speed (3.1  0.5 ms-1) and ball speed (22.7  1.8 ms-1) was also investigated in this 

study, with results showing a poor relationship (Figure 4.2), which contradicts a 

previous study, finding a significant relationship between the center of mass goal 

directed movement (3.0  0.3 ms-1) and throwing velocity (23.9  1.2 ms-1) (Wagner, 

Pfusterschmied, von Duvillard, & Muller, 2011). Wagner and co-workers’ (2012) 

results are consistent with results from a different study conducted on javelin throwers, 

which found that the javelin release velocity is the sum of the thrower’s center of mass 

velocity and the velocity applied to the javelin by the thrower during release (R Bartlett, 

Muller, Lindinger, Brunner, & Morris, 1996).  

Only a few correlations between mobility and power were observed (Table 4.5). One 

rationale for the relationship between mobility and power is that, similar to the 

argument of mobility being important to throwing velocity, a larger 

trajectory/displacement to develop force/velocity can result in a greater outcome 

velocity (van den Tillaar & Ettema, 2009a). However, similar to the relationship 

between mobility and ball speed in the overhead throw with run-up, few correlations 

were found (Table 4.5). There were a few exceptions, with some results probably being 

a coincidence, rather than a statistically relevant relationship. Based on the assumption 

that more ROM will increase power production, because one can develop power over a 

greater distance, it was surprising to find negative correlations between flexion pattern 

mobility tests (Right foot stance with right hand L45 reach and Left foot stance with left 

hand R45 reach) and the L/R lateral hop power tests (Table 4.5). It cannot simply be 

discarded as coincidental findings, since all of the tests correlated with either a tendency 

or significant relationship (Table 4.5). A possible explanation to these results is that 
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there might not be a linear relationship between mobility and power development, but 

rather an optimal range of motion for development of power in specific tasks based on 

the force-length relationship of sarcomeres (Rassier, MacIntosh, & Herzog, 1999). The 

subjects were instructed to perform a swift lateral hop, since this was thought to be a 

more sport-specific motion. This might have led to some subjects not performing as 

deep a movement as they normally would. If this specific power task demanded “too 

little” mobility from the knee and hip extensor muscles, then there is a possibility that 

some subjects were too mobile and thus their muscles were working outside their 

optimal range for generating force and power. Thus, even if the subjects had the same 

potential for generating force, the more mobile players were not able to generate their 

maximum force because they were more mobile than required for this test (Figure 5.1). 

This is a simplification, since the task is complex, in addition to the fact that the results 

of this study do not say anything about the length-tension relationship. In support of 

these speculations, a study that measured differences in isometric knee flexion peak 

torque generated with different knee angles, with subjects having little or normal 

mobility in the knee flexors, displayed a shift in the torque produced at a certain knee 

angle (Alonso, McHugh, Mullaney, & Tyler, 2009). This study reported a shift in the 

less flexible hamstring with an increased knee flexion torque at short muscle lengths, 

and decreased at long muscle lengths (Alonso et al., 2009).     

 

 

 

 

 

 

Figure 5.1: Proposition to why a negative correlation occurs between flexion 

pattern mobility tests and the lateral hop tests.     
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5.4 Limitations 

The main limitation of this study was that only a small sample of elite handball players 

was tested (n = 12). Furthermore, there was no control for any confounding factors 

leading up to the tests. The fact that the testing period was performed in-season made 

recruiting subjects difficult since only players from the top-division in Norway were of 

interest. Controlling pre-testing conditions (type of training, nutrition and general 

activity level) was not compatible with the subjects’ busy schedule with team training or 

games every day, in addition to work or studies. This led to an inability to re-schedule 

the test days, even though several subjects complained about fatigue. The low number 

of subjects increases the likelihood of a Type II error, which might offer some 

explanation as to why the correlations were so low. Additionally, no statistical power 

analysis was performed prior to the study. Therefore, no indications of the minimal 

sample size required to detect an effect were acquired.   
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6. Conclusion 

The goal of this study was to investigate an unconventional and more sport specific 

approach to test the physical factors considered to be important to throwing 

performance in elite handball players, and to explore if increased specificity of physical 

tests would lead to better correlations between the physical tests and the throwing 

performance.  

The hypotheses that functional mobility measured with the HSEBT is significantly 

correlated with throwing performance, and that peak power measured by the 1080 

Quantum is significantly correlated with throwing performance, were rejected. The 

main reason why no significant correlations were found is probably that no individual 

test was specific enough, and neglected important joint motions in the overhead throw.  

The results of this study suggest that neither the mobility nor the power tests can be 

used as individual predictors of performance for overhead throwing. However, the tests 

and the idea of moving from conventional testing and training to a more task and sport 

specific approach should not be discarded. This study was the first step towards 

developing more specific tests and equipment, which will enable scientist, therapists 

and trainers to improve assessment of the factors that determine athletic performance. 

Even though the tests used in this study seem too general to be predictors for throwing 

performance, they could possibly be useful as a general screening for functional 

mobility and power in athletes, and may serve as predictors for injury or athletic 

performance other than in throwing. However, further research is required to validate 

these assumptions.   

Future studies should continue to develop tests and equipment that enables a better 

understanding of the multifactorial nature of athletic performance.  
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Appendix 2: Evaluation of 1080 MAP and 1080 Quantum 

1080 MAP 

The 1080 MAP provides a quantitative way of testing mobility with tests performed in a 

standing position, with the subjects affected by gravity, while doing reaches creating 

movements throughout the kinematic chain. In some regard the 1080 MAP test can be 

viewed as a modified star excursion balance test (SEBT) (Hyong & Kim, 2014), where 

arm reaches is applied instead of foot reaches. The 1080 MAP can be considered to 

have better logical validity than traditional mobility tests related to overhead throwing, 

which focuses on testing mobility of isolated joints. Like the SEBT, the 1080 MAP test 

is a multifactorial test assessing dynamic mobility/stability. By using arm reaches 

instead of foot reaches along a set of vectors (see figure below) the 1080 MAP test are 

also able to include mobility of the spine, scapula and shoulder, unlike the SEBT that is 

only measuring dynamic mobility/stability of the hip, knee and ankle joint.  

 

 

 

 

 

 

 

 

 

Illustration of the 1080 MAP testing grid with the 

directional vector names (A0, L45, L135, R45, R135 

and P180). 
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1080 Quantum  

According to the manufacturer the 1080 Quantum, with its robotic technology and 

functional design, is a flexible training and measurement system capable of obtaining 

accurate documentation of physical factors (force, speed and power) in a wide variety of 

movement patterns. The adjustable arm with a 5 m line allows for any functional 

movement pattern to be performed. The speed and resistance of the concentric and 

eccentric phases of movement can be set independent of each other. The resistance can 

be three times as high in the eccentric as compared to the concentric phase. Difference 

in speed between the concentric (0.1 – 0.8 ms-1) and eccentric (0.1 – 0.6 ms-1) phase 

has no restrictions since it can be manipulated freely within the speed ranges given. 

Furthermore, the speed setting can also serve as a speed limit for the movement 

performed. A lower speed can therefore translate any movement into isokinetic testing 

or training. Additionally, the 1080 Quantum has four basic settings that can be applied 

in both testing and training:  

1) Normal, where the load mimics a regular mass.  

2) No flying weight, in which the inertia of the mass is rapidly reduced as the force 

output of the athlete is decreasing.  

3) Vibration at 25 Hz with a selection of different amplitudes. 

4) Isotonic resistance mode. 

Finally, two gears are available to generate resistance. Gear 1 allows for a resistance 

range from 0-25 kg and gear 2 0-50 kg. The resistance settings can only be put at integer 

numbers.  

The 1080 Quantum single specifications: 

- 1-25 kg of continuous concentric load 

- 1-37 kg of continuous eccentric load  

- 1-50 kg of continuous concentric load with Gear 2  

- 1-74 kg of continuous eccentric load with Gear 2  



 84 

- Maximum con/ecc load during 3 seconds: 75 kg, 150 kg with Gear 2  

- Concentric velocity: 0.1–8 ms-1  

- Eccentric velocity: 0.1–6 ms-1  

- In Gear 2 maximum speed is halved  

- Sampling frequency of force, speed and power: 333 Hz  

- Tablet with touch screen interface or laptop  

- Operating system: Windows 7 or 8  

- Weight: 180 kg  

- Body height: 1.7 m  

- Max cable travel: 5 m   

The technical summary of the 1080 Quantum provided by the manufacturer is as 

follows:  

“Speed is measured by a high resolution (20 bit) optical encoder, directly attached to the 

motor. The encoder measures the position of the motor axis. By system design, this 

position measurement directly corresponds to the position of the line when it is being 

unwound or retracted on to the drum. The sampling frequency of position data is 333 

Hz. The position signal is then used to calculate both speed and acceleration, which is 

the first and second derivative of position with respect to time, respectively. A low pass 

(LP) filter is used in both derivations to eliminate noise caused by the derivation. The 

LP filter is a first order filter with a time constant of 0,01 s, which corresponds to a 

cutoff frequency of 15,9 Hz. The LP-filter is implemented in discrete time using bilinear 

transformation (Tustin).”  

“The load/resistance offered by system in both the eccentric and concentric phase of the 

movement is electromagnetic. The force applied to the system is internally recorded 

based on the amount of current and voltage that are being sent to the motor by the servo 

drive. This information is used by the drive to calculate the actual torque that is 

delivered to the motor shaft. However, the force experienced at the end of the line is not 

only directly related to the shaft torque, but also to the acceleration of the line-drum. 

This acceleration is used to compensate for the inertia caused by the motor and drive 

shaft in 1080 Quantum.”  
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“Based on the design of the system there will be friction between the motor axis and the 

end of the line at the user. This is especially true for the 1080 Quantum. These friction 

losses are not measured by the system. They are dependent on both the magnitude of the 

force at the end of the line and the direction of the force relative to the arm/pulley”.   

Validation 

A validation of the accuracy of the time, position, speed and force of measurements of 

the 1080 Quantum was conducted by Dala Sports Academy (Hallegren, Unpublished 

data). The accuracy of the position was validated using a standard measuring tape. Prior 

to the tests the position of the line was calibrated, with line fully retracted. Position data 

in the software was based on this position. The calibrated position was noted on the 

measuring tape on the floor. Then measurements were obtained at 0.5, 1.0, 1.5, 2.0, 2.5, 

3.0, 3.5 and 4.0 m. The accuracy of the measurement of time, and subsequent 

calculation of speed, was validated by obtaining and verifying the time of the machines 

internal clock. “The system calculates speed of the motor shaft by counting the number 

of encoder pulses (Δp) that have passed during a fixed interval of time (ΔT). Speed is 

therefore proportional to: 𝑆𝑝𝑒𝑒𝑑 ~
∆𝑃

∆𝑇
. The optical encoder has a resolution of 20 bits. 

This means that the encoder has a resolution of 1 048 576 points during each rotation of 

the motor shaft. The speed of the motor shaft is calculated at fixed intervals of time 

ΔT=3 ms in the system. A test was conducted to verify that ΔT was in fact 3 ms. The 

test was made in the software using a counter that got its value increased by 0.003 

(=3ms) at each interval. It was setup to run exactly one hour in order to determine the 

drift in time. The time value of the software counter was then compared to an external 

clock”.  

The investigation into the accuracy of the position measurements showed a 

measurement error of -3 mm at 0.5 m and 11 mm at 4.0 m. Therefore the total error was 

14 mm, yielding an average of 4 mm/m. Additionally, the validation of the internal 

clock showed an error of less than 1 s in an hour. Since both the accuracy of the time 

and position are highly accurate, the speed calculation can also be deemed highly 

accurate.  
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To validate the accuracy of the force measurements in the 1080 Quantum an external 

force sensor was used (Model 333AL, K Toyo co., Ltd, South Korea). The force sensor 

was calibrated before testing, with known masses ranging from 5-90 kg. The force 

sensor was then attached to the line between and the user and the machine. The subject 

was then asked to perform pulling motions at an estimated 25, 50 and 75% of maximum 

effort. This was repeated using different load ranging from 4 to 24 kg and three different 

concentric speeds (0.5, 1 and 8.0 ms-1). The maximum force from both the 1080 

Quantum and the force sensor was noted for all of the 97 trials. The accuracy between 

the force measurements acquired from the 1080 Quantum show little no linearity errors 

to the measurement of the force sensor (r = 0.9995). Additionally the tests showed a 

slight offset error of 4.7 N of the 1080 Quantum. “Given a normal distribution and a 

standard deviation of 4.0 N it is 95% and 99,7% certain that a true value lies within  

8.0 N and  12.90 N respectively”.   

Even though the 1080 Quantum can be deemed highly accurate to determine position, 

speed and force based on the tests conducted there are some limitation that should be 

considered when testing athletes:  

The ability to perform functional movement patterns is a great feature of the machine, 

but also poses some challenges. The type of exercise selected, since functional 

movements include major muscle groups and/or joints of the body, may affect the 

accuracy of the force measurement. Factors such as: 1) the angle of the line relative to 

the pulley, 2) position of the athlete, 3) angular position of the joints and 4) distance of 

the line to axis of rotation of different joints will influence force measurements. 

According to the manufacturer these issues are addressed by carefully designing testing 

and training protocols where position of the arm of the 1080 Quantum, position of the 

subject relative to the machine and the action performed are standardized.  
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Appendix 3: Full Body Dynamic Stretches 

Beneath, illustrations of the ending positions of all six movements of the Full body 

Dynamic Stretch warm-up is presented. The subjects started the motions from a normal 

stance. The six motions performed three times on each leg consisted of two sagittal, 

frontal and transverse plane full body motions. The motions were:  

 

Sagittal:  

1) Anterior stretch: Unilateral anterior step with bilateral hands posterior overhead 

reach. 

2) Posterior stretch: Unilateral posterior step with bilateral hands and foot/ankle reach. 

 

 

 

 

 

 

Frontal: 

3) Lateral stretch: Unilateral hip abduction step with opposite side bilateral hands 

overhead lateral reach. 

 

1 2 
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4) Lateral stretch: Unilateral hip adduction step with opposite side bilateral hands 

overhead lateral reach. 

 

 

 

 

 

 

Transverse: 

5) Hip external rotation: unilateral external rotation step with same side bilateral hands 

rotational reach at chest height. 

6) Hip internal rotation: Unilateral internal rotation step with same side bilateral hands 

rotational reach at chest height. 

 

 

 

 

3 4 

5 6 
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Appendix 4: Foot Positions in the 1080 Quantum Push, Pull and 
Rotational Tests 

The coordinates for the foot placement have the following order in each of the arm 

driver test: (X linear position, Y linear position, XY rotation). Linear position is based 

upon the position of the big toe of the stance foot. Rotation is the orientation of a line 

bisecting the stance foot from the calcaneus to the second toe in the XY plane. Facing 

1080 Quantum is given a 0 rotation. Rotating clockwise at 45 increments from this 

position is defined as: R45, R90, R135, P180, L135, L90 and L45.   

Push, Pull and Rotational Power Tests with Explanation of Test  

1. Right hand posterior and superior diagonal pull:  

Position of left foot relative to 1080 Quantum was 140 cm in front rotated 45 to the 

right. Allow the 1080 Quantum to pull the right hand anterior and inferior to knee 

height. At the same time allow the right foot to slide toward the left stance foot. No 

weight is put on the right foot. Then pull as fast a possible posterior and superior while 

at the same time taking a right foot right rotational step/lunge.   

2. Left hand posterior and superior diagonal pull 

Position of right foot relative to 1080 Quantum was 140 cm in front rotated 45 to the 

left. Allow the 1080 Quantum to pull the left hand anterior and inferior to knee height. 

At the same time allow the left foot to slide toward the right stance foot. No weight is 

put on the left foot. Then pull as fast a possible posterior and superior while at the same 

time taking a left foot left rotational step/lunge.  

3. Right hand anterior and inferior diagonal push  

Position of right foot relative to 1080 Quantum was 140 cm in front rotated 135 to the 

left. Allow the 1080 Quantum to pull the right hand posterior and superior. Maintain the 

forearm parallel with the line of pull from the 1080 Quantum. At the same time allow 

the left foot to slide toward the right stance foot. No weight is put on the left foot. Then 

push as fast a possible anterior and inferior while at the same time taking a left foot left 

rotational step/lunge.   
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4. Left hand anterior and inferior diagonal push  

Position of left foot relative to 1080 Quantum was 140 cm in front and rotated 135 to 

the right. Allow the 1080 Quantum to pull the left hand posterior and superior. Maintain 

the forearm parallel with the line of pull from the 1080 Quantum. At the same time 

allow the right foot to slide toward the left stance foot. No weight is put on the right 

foot. Then push as fast a possible anterior and inferior while at the same time taking a 

right foot left rotational step/lunge.  

5. Bilateral arms left rotation 

Position of right foot relative to 1080 Quantum was 160 cm in front and rotated 90 to 

the left. Allow the 1080 Quantum to pull both hands to the right. Maintain the forearms 

parallel with the ground/floor. At the same time allow the left foot to slide toward the 

right stance foot. No weight is put on the left foot. Then push as fast a possible into left 

rotation while at the same time taking a left foot left rotational step/lunge.   

6. Bilateral arms right rotation 

Position of left foot relative to 1080 Quantum was 160 cm in front and rotated 90 to the 

right. Allow the 1080 Quantum to pull both hands to the left. Maintain the forearms 

parallel with the ground/floor. At the same time allow the right foot to slide toward the 

left stance foot. No weight is put on the right foot. Then push as fast a possible into 

right rotation while at the same time taking a right foot right rotational step/lunge.   

 


