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Abstract 

During human movement, the muscle and tendinous structures interact as a mechanical 

system in which forces are generated and transmitted to the bone, and energy is stored and 

released to optimize function and economy of movement and/or to reduce risk of injury. 

The present review addresses certain aspects of how the anatomical design and mechanical 

and material properties of the force transmitting tissues contribute to the function of the 

muscle-tendon unit and thus overall human function. The force bearing tissues are examined 

from a structural macroscopic point of view down to the nanoscale level of the collagen 

fibril. In recent years, the understanding of in vivo mechanical function of the force bearing 

tissues has increased, and it has become clear that these tissues adapt to loading and 

unloading, and further that force transmission mechanics is more complex than previously 

thought. Future investigations of the force transmitting tissues in 3D will enable a greater 

understanding of the complex functional interplay between muscle and tendon with 

relevance for performance, injury mechanisms and rehabilitation strategies. 
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Introduction 

The muscle-tendon unit can be seen as the basic functional entity of human movement 

capable of serving both as a motor, a damper and a spring to exert, dissipate or store and 

release energy respectively (1, 66). Such complex functions are made possible by serial and 

parallel coupling of active force generating tissues and passive force transmitting tissues and 

by taking advantage of the ability to shift energy between active and passive tissues during 

locomotion. The individual tissues of the muscle-tendon unit have been studied separately, 

but to comprehend human function in general, the functional interplay between these 

tissues must be understood. The present review discusses how the force transmitting tissues 

contribute to the function of the muscle-tendon unit and thus overall human function. The 

force bearing tissues are examined from a structural macroscopic point of view down to the 

nanoscale level of the collagen fibril. 

 

1. Tendon structure  

Anatomical design is complex and with large variation between separate muscle-tendon 

units (41). Generally, muscle fibers insert via extracellular matrix onto aponeuroses that in 

turn merge to become rope-like tendons of varying dimensions. The quadriceps and triceps 

surae, with the associated patella and Achilles tendon respectively, are important for human 

movement, and have been extensively researched in sports and human movement science. 

Nonetheless, these structures remain quite different in a functional perspective. While the 

Achilles tendon is long and relatively thin, the patella tendon is short and with a greater 

cross-sectional area (44, 45). The Achilles tendon has by far the greatest incidence of rupture 

(13, 47), illustrating that the Achilles tendon operates with high strain and closer to its 

breaking strength during daily function (40). The benefit of augmented strain however, is an 



 4 

increased ability to store and release mechanical energy and to provide for energy 

dissipation when necessary. Moreover, tendon deformation or stiffness has been shown to 

modulate contractile force production or efficiency during dynamic efforts by influencing the 

operating length of the involved muscle fascicles (38, 49, 50). The Achilles tendon is 

organized in compartments that relate to the three corresponding muscles of the muscle-

tendon unit (24, 85), which suggests that the Achilles tendon may be loaded 

heterogeneously during locomotion, and further that deformation may differ between 

tendon compartments (7, 8, 12, 15, 16, 18, 30, 78) (Fig. 1). Conversely, the patella tendon 

origins partly from and inserts into bone, and the tendon fascicles are organized more in 

parallel compared to the Achilles tendon. Although intra-tendinous differences in patella 

tendon material properties have been observed (36), and studies have observed non-

uniform patella tendon strain during (ex vivo) loading (4, 10) these studies show conflicting 

results, and it appears likely that the patella tendon undergoes more homogenous loading 

and deformation in vivo compared to the Achilles tendon. A special feature of the Achilles 

tendon is its internal rotation from proximal to distal which perhaps facilitates more optimal 

strain and energy storage during loading (17, 21, 24, 85) (Fig. 2). Both tendon 

compartmentalization and longitudinal tendon rotation is subject to large inter-individual 

variability (24), which in turn may reflect individual performance and/or injury risk. Tendon 

design seemingly reflects function and it is likely that a trade-off exists between the ability to 

store and release energy on one side, and force transmission, contractile efficiency and 

position control on the other (40). It should be noted that the free tendon remains just one 

single part of the force transmitting tissues, and that also the more proximal aponeurosis 

may play a role for muscle-tendon unit function. 
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2. Aponeurosis 

During locomotion, it is known that tendinous tissues are stretched and energy is stored, 

and subsequently converted into kinetic energy when unloaded (2, 14, 67), however, to 

what extent human aponeurosis and free tendon behave in a similar fashion and therefore 

contribute to energy storage in the same way remains largely unanswered. 

 

In contrast to the free tendon, the mechanical properties of the aponeurosis have not 

received a great deal of attention in the literature. Some early studies examined strain 

properties along the length of muscle-tendon unit in animal models (frog, semitendinosus), 

and these data show that during passive loading the tensile strain of the aponeurosis 

exceeded that of the free tendon (51, 52), or that it was similar in the gastrocnemius muscle-

tendon unit (89). It should be noted that the actual thickness of the aponeurosis changes 

along its length such that it becomes thicker closer to the free tendon (70), and therefore 

the strain may also differ, which has been shown in both human soleus and frog 

gastrocnemius muscle (27, 89). Because the muscle inserts onto the aponeurosis, it is 

conceivable that the force of the muscle contraction may influence the aponeurosis 

behavior along its length. It has been shown that the free tendon and aponeurosis in cat 

soleus muscle have equivalent mechanical properties during contraction (70), or that the 

stiffness of the aponeurosis is less than that of the free tendon (23). However, when 

comparing the aponeurosis strain in frog semitendinosus muscle during passive loading and 

that during muscle contraction, the aponeurosis strain was far less (14%) relative to strain 

during passive loading (24%), which indicates that the muscle contraction per se changes the 

aponeurosis strain behavior (52). 
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Human data on aponeurosis mechanical behavior in vivo have been relatively scarce, but 

recent developments in the imaging field have permitted the question to be investigated. 

Using ultrasonography it has been shown that the strain of the aponeurosis is greater than 

that of the tendon of the low stress anterior tibialis muscle-tendon unit in the longitudinal 

direction during electrical stimulation to sub-maximal forces (56). In contrast, it has been 

shown that the strain of the aponeurosis and tendon of the human gastrocnemius muscle 

are similar (60), although in this study the aponeurosis of the soleus muscle was 

unaccounted for. It is possible that these differences relate to muscle architecture and 

functional demands. Using the ultrasonography method coupled with a needle inserted into 

the free Achilles tendon as a marker, it has been shown that longitudinal strain for the 

tendon (8%) far exceeded that of the aponeurosis (1.4%)(57), which would suggest that the 

tendon and aponeurosis have different functional roles during in vivo force transmission.  

 

Importantly, the human aponeurosis architecture can be rather intricate, which is not readily 

captured with 2D ultrasonography, but is better suited for magnetic resonance imaging. 

With respect to the soleus muscle, for example, it has been shown that architecture is quite 

complex and that tissue velocity mapping during contraction varies throughout the 

aponeurosis (26). Moreover, using cine phase-contrast magnetic resonance images it has 

been shown that the Achilles tendon strains 4.7% at 40% of maximal voluntary contraction, 

while the mid-region of the aponeurosis, below the gastrocnemius insertion, strained 2.2%, 

and the distal aponeurosis shortened 2.5% (28), which supports the notion that that during 

contraction the aponeurosis strains less in the longitudinal direction than the free tendon 

(52, 57).  
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It has been suggested that longitudinal aponeurosis deformation is less and lateral 

deformation is greater during contractile loading compared to that during passive tensile 

loading (96). The vast majority of studies have examined the strain behavior in the 

longitudinal direction, but this overlooks the possibility that the aponeurosis can be loaded 

in the transverse direction. Using X-ray imaging technique and radio-opaque markers that 

tracked aponeurosis shape of the gastrocnemius in turkeys it was possible to demonstrate 

that muscle contraction caused the aponeurosis to expand both in the longitudinal and 

transverse direction relative to the muscle line of action (6). In fact, transverse strains were 

on average 4 times greater than longitudinal strains (9). Therefore, it seems that the muscle 

fibers that connect and anchor to the aponeurosis can exert both transverse forces due to 

expansion of shortening muscle fibers as well as longitudinal forces (6, 9), which can serve to 

augment aponeurosis stiffness in the longitudinal direction (Fig. 3). Increased understanding 

of the functional consequences of multidimensional aponeurosis strain during loading is 

required in future work. 

 

 

3. Intra-tendinous force transmission 

Tendon fascicles. Imaging and histopathology findings indicate that tendon injury mostly 

concerns a particular region of the tendon, e.g. the posterior portion of the patellar tendon 

(42), and this has prompted the question if the mechanical properties of this particular 

region differs from that of other regions of the tendon (35). Cadaveric studies examining 

strain during loading of whole patella tendon have yielded conflicting results with greater 

strain anteriorly (4) or greater strain posteriorly (10) of the patellar tendon. An alternative 

approach to examine regional differences has been to mechanically test isolated fascicles 
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(35): These data suggest that the anterior portion of the human patellar tendon in young 

men displayed far greater peak and yield stress and tangent modulus compared to the 

posterior portion of the tendon, indicating region specific material properties (35).  This 

study was subsequently repeated and the findings were confirmed, and moreover showed 

that there were differences in collagen crosslink composition and fibril diameter, although 

these differences appeared to be unrelated to the mechanical properties (34).  

 

The fact that the tendon fascicle is a distinct entity within the tendon (39) and  that fascicles 

appear to differ in composition and mechanical behavior (34, 35, 88) have prompted 

investigations in to what extent tendon fascicle are independent force transmitting 

structures, or whether forces can be transmitted in parallel between adjacent tendon 

fascicles similar to parallel force transmission known to occur between muscle fibers. This 

was originally examined in cutting experiments of adjoining collagen fascicles obtained from 

the anterior human patellar tendon and Achilles tendon (37). Severing one of the two 

connected fascicles markedly reduced the stiffness, and when both fascicles were cut such 

that only lateral force transmission was possible via interfascicular connective tissue during 

specimen deformation, very little force was registered, indicating minor lateral force 

transmission between adjacent tendon fascicles (Fig. 4.A). This would also indirectly suggest 

that the human fascicle is an independent force transmitting structure that spans the length 

of the tendon (11, 25, 37). This apparent independence on part of the fascicles may be 

necessary to accommodate a changing force–length relationship of the fascicle (patellar 

tendon) with altered joint angle and/or heterogeneous muscle activation (Achilles tendon) 

(37). The differential human intratendinous movement, in vivo, has been demonstrated 

using dedicated ultrasound techniques (7, 30, 65). Interestingly, it should be noted that 
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more recently a similar approach of testing interfascicular force transmission has been used 

in animal models (horse, rat tail and porcine), and those data indicate that there is 

considerable more force transfer between adjacent fascicles (43, 88) than previously 

reported in human tendon (37). It also appears that horse fascicles do not to continue as 

separate entities within the tendon (3). It is difficult to reconcile these dissimilarities, but 

they may relate to species and methodological differences. In this context, it is also worth 

noting that tendon fascicles within a species may behave mechanically different. For 

example, fascicles from the patellar tendon appear to be far stiffer than that of the Achilles 

at a given strain (37), and in horse it has been shown that energy storing superficial digital 

flexor tendon is less stiff than the positional common digital extensor tendon (88). Albeit 

speculative, it appears that tendon properties are related perhaps to the function of the 

specific muscle-tendon unit (force transmission, energy storage) or perhaps related also to 

mechanical constaints of function where the direction of tendon load in some tendons 

change through the joint ROM.  

 

Tendon fibril. At collagen fibril level the specific pathway of force transmission remains 

largely unresolved. The collagen fibrils of tendon, which have a diameter ranging from 30 to 

200 nm (48, 58, 94), are considered the principle load transmitting structure of tendons. The 

extra-cellular matrix surrounds the fibrils and consists of water, proteoglycans, 

glycosaminoglycans (GAGs), elastin and glycoproteins (91). Uneven fiber deformation at the 

microscopic level (72-75), and x-ray diffraction studies demonstrating that fibrils are 

deformed less than the whole structure (31, 46, 63) support the notion that extrafibrillar 

components transfer force between neighboring fibrils. It has been suggested that lateral 

force transmission occurs via proteoglycans and their associated GAG chains, including 
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chondroitin- and dermatan-sulfate (68, 69). However, removing this complex in human 

tendon (80) and ligament (54, 55) does not appreciably affect the mechanical properties of 

the tissue and therefore indicates that they do not contribute in a meaningful way to lateral 

force transmission. Yet, it has been shown that some sliding can occur at the fiber level, 

which can result in strain at the cellular level (<2%) with implications for 

mechanotransduction and viscoelastic behavior (71, 72). 

 

The notion that there is a lateral pathway of force transmission largely rests on the 

assumption that fibrils in mature tissue are discontinuous but determining the actual 

structural length of fibrils with a diameter of 30-200 nm has proven rather challenging. 

Studies based on direct structural studies suggest that fibrils may be structurally continuous 

while those based on indirect methods tend to support that fibrils are discontinuous (20, 29, 

62, 77, 86). In a recent study serial block face-scanning electron microscopy was used to 

investigate tissue from adult human patellar and hamstring tendons, and it was possible to 

track 2700 fibrils over a defined distance and only detect one single fibril tip (82) (Fig. 4). In 

fact, reports of collagen fibril ends within mature human tendon are extremely rare. Based 

on these data it was estimated that the fibril length was 67.5 mm. In the same study, it was 

possible to track the full length of continuous fibrils from muscle to bone in a short animal 

tendon (mouse stapedius,125 m), and collectively these data suggest that fibrils are likely 

continuous (82).  

 

The mechanical behavior of tendon has for decades been assessed using whole tendon using 

animal or cadaver tissue ex vivo, or more recently using ultrasonography-based 

methodology, in vivo (32, 57). Mechanical behavior of the individual fibril has only been 
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possible in recent years (53, 64, 79, 81, 83, 95). In one of the first studies, atomic force 

microscopy was used to test single fibrils and it was shown that similar to that of whole 

tendon individual fibrils from human patellar tendon display typical viscoelastic behavior 

when tested at different strain rates (81). The stress-strain behavior of whole tendon 

typically includes an initial toe-region with a low modulus that transitions to a linear region 

with much higher modulus before reaching the yield and fracture point. However, it appears 

that single human fibrils tested to failure behave differently (83):  they display a unique 

three-phase stress-strain behavior with an initial rise in modulus followed by a plateau with 

reduced modulus, which is finally followed by an even greater increase in stress and 

modulus before reaching the fracture point (64, 83, 84). The mechanism for such a three-

phase behavior is unknown, but may include helix uncoiling and molecular slippage (90), and 

may serve to increase toughness of the fibril and reducing the risk of brittle failure. 

 

 

4. Physiological behavior of tendons 

It is clear from the above that the distinct mechanical or physiological function of the force 

transmitting tissues during human movement remains complex both at the macroscopic and 

microscopic level. Below are considerations with respect to further research in the area.  

 

It is clear that on a species and individual level the tendon and muscle dimensions and 

properties develop in a close interplay most likely governed by the ability of the muscle to 

exert force (40, 41). Optimal material properties of the force bearing tissues is thus 

regulated by daily loading (93) and this notion has relevance for performance but also for 

the understanding of injury mechanisms/etiology. For example, recent studies suggest that 
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the mechanical properties of the force bearing tissues play a role for ‘explosive’ type MTU 

contraction as tendon stiffness seems to be related to rate of force development in rapid 

muscle action (19, 59), and concomitantly a number of studies have demonstrated increased 

tendon stiffness following strength training (5, 45, 76, 92). It follows that the force bearing 

tissues are more plastic and undergo adaptation following habitual loading (e.g. induced by 

strength training) than was previously thought.  

 

While the basis for tendon compartmentalization may lie in embryologic development, the 

functional relevance hereof, and/or the possibility for non-uniform tendon deformation is 

not well known. However, in the case of the triceps surae and Achilles tendon, it can be 

speculated that compartmentalization contributes to improved or optimized function during 

complex  locomotion tasks by enabling a more precise exertion of joint moments from the 

different muscle actuators that span the ankle and subtalar joints (18). 

Compartmentalization with respect to tissue mechanical properties or non-uniform loading 

of the patella tendon remains to be investigated. Perhaps compartmentalization is irrelevant 

for the patella tendon since it originates from and inserts onto bone. However, the anterior 

portion of the patella tendon where tendon fascicles cross the patella can be seen as a 

continuation of the more proximal quadriceps tendon. In line with this notion there are data 

demonstrating anterio-posterior differences in patellar tendon material properties (33, 36, 

79), which suggests that perhaps there is tendon compartmentalization and non-uniform 

loading. Nonetheless, whether compartmentalization in the patella tendon has functional 

consequences, for example in relation to stress concentrations and or injury mechanisms, 

remains to be examined.   
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The functional relevance of tendon rotation remains unknown but different explanations can 

be suggested: 1) Tendon rotation may enable muscle fibers situated far apart to operate at 

more similar and/or more optimal lengths with respect to force exertion during the full joint 

range of motion. One previous modelling study examined masseter muscles in fish where 

muscle and tendon rotation occur. It was shown that in broad muscles that operate at 

distance from the joint axis of rotation, and where the tendon enthesis covers a wide area, 

variation in the muscle fibers ability to exert force occurred due to inter-individual 

differences in relative fiber length through the joint range of motion. A rotated tendon, or a 

design where the muscle fibers rotate or cross each other, was shown to equalize force-

length properties for muscle fibers, thereby optimizing contractile ability (22). The human 

triceps surae is in fact a broad muscle that operates at distance from the joint compared to 

other ankle joint muscles, and the Achilles tendon does have a broad insertional area on the 

calcaneus perhaps suggesting a similar mechanism for this muscle.  2) Rotation may facilitate 

the ability to store and release energy during loading and unloading in a similar manner to 

that of rope design since one feature of twisted ropes is to enhance the ability to strain and 

store energy (16, 61). A rope analogy may seem reasonable for human tendon design since 

some tendons are more involved in position control and effective force transmission, such as 

for example tendons of the hand or forearm, while the Achilles tendon is highly involved in 

energy storage and release during locomotion. One study reported greater maximal strain 

and strength but surprisingly increased stiffness in a cadaver model where patella tendons 

were twisted 90°, which underscores that additional studies are required to elucidate the 

relevance of tendon rotation (87). 3) Finally, tendon rotation could serve to regulate 

intratendinous pressure during the high stresses and strains. In a coherent or linear 

structure, internal pressure is reduced more under tensile stress compared to a rotated 
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structure. Albeit highly speculative, modulation of intratendinous pressure may play a role 

for maintaining vessel and nerve function, and potential fluid diffusion that in turn may 

relate to the health and function of the tissue.  

 

 

Conclusion / perspectives 

In conclusion, developments in both imaging technology and application thereof in in vivo 

studies, but also studies at nanoscale have increased the understanding of the function of 

the force bearing tissues. It has become clear that these tissues respond to habitual loading, 

and moreover that force transmission is more complex than previously assumed. Notably, at 

collagen fibril level, it seems that failure and material properties appear different from that 

observed at the whole tendon level. At tendon fascicle level, it seems that force may be 

directed non-uniformly into the tendon, and that at least some tendons undergo 

heterogeneous loading with associated inter fascicle sliding as a result. At tendon structure 

level, it seems at least in some tendons, that anatomical design such as tendon 

compartmentalization and even tendon rotation may contribute to the mechanical function 

or performance of the tendon structure in the interplay with contractile tissues. Many 

studies have examined the force bearing tissues in two dimensions, however, recent 

advances in imaging has enabled three dimensional investigations and it seems clear that 

the next steps in future research must be to achieve a detailed understanding of function 

during loading of the force bearing tissues, and the muscle-tendon unit in 3D. Such 

understanding will have great relevance for the understanding of injury mechanisms, for 

developing strategies for rehabilitation from injury and injury prevention, and not the least 

for performance enhancement and development in sports and exercise training. 
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Figure legends 

 

Figure 1: Non-uniform Achilles tendon displacement during loading as examined with 

ultrasonography (speckle tracking) and verified in the same study by tracking of tantalum 

beads surgically placed into the tendon. Panel A: Sagittal image of the Achilles tendon where 

4 regions of interest (layers) were identified. Panel B: Non-uniform displacement of 

intratendinous tissues where superficial (posterior) layers underwent appr. 20% less 

displacement compared to deeper layers of the tendon. Fig modified from Beyer et al 2018 

(12)   

 

Figure 2: Achilles tendon rotation. Panel A: Tendon rotation as noted in 1894 by F. G. 

Parsons in different mammals (including humans)(61). Panel B: Illustration of the rotation of 

the human Achilles tendon. Arrows show that tendon fascicle bundles that originate from 

the medial gastrocnemius (GM) insert on the postero-lateral side of the calcaneus, while 

fascicle bundles from the lateral gastrocnemius (GL) insert on the lateral-anterior aspect of 

the insertion site. Oval cartoons depict cross sections of the tendon at a proximal site (upper 

drawing) and just above the calcaneal insertion (lower drawing). From Bojsen-Moller and 

Magnusson 2015 (18) 

 

Figure 3: During active muscle contraction (black lines), the aponeurosis lengthens and 

widens (B). During passive loading (grey lines), both muscle fibers and aponeurosis lengthens 

while the aponeurosis width decreases (B). The study illustrates that the aponeurosis follows 
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a different force-length profile during active loading versus passive stretch. From  (6) with 

permission. 

 

Figure 4: Fascicle and fibril loading: A) Force–displacement data from a human patellar 

tendon specimen that was strained to ∼3%. Cycle 1 represented two adjacent and intact 

fascicles with potential force transmission both longitudinally and laterally. In Cycle 2, one 

fascicle was cut (marked by small black notch) and thus the curve represents one intact 

fascicle that could potentially transmit force longitudinally and laterally, and one adjacent 

fascicle that could potentially transmit force laterally only via the intact fascicular membrane 

intact. In Cycle 3 both fascicles were cut at opposite ends (marked by small black notches), 

and thus the trace represents two adjacent fascicles that could potentially only transmit 

force laterally via the intact fascicular membrane. Adopted from (37). B) Stress-strain 

response during loading of a human patellar tendon collagen fibril. Three distinct regions can 

be observed that give rise to two distinct peak modulus values (from (83) with permission). 

C) Illustration of fibril tracing through the tendon. Serial block face-scanning electron 

microscopy 3D segment of a region with 300 individual collagen fibrils where no fibril ends 

are visualized (from (82) with permission). 
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