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Structured abstract 

Purpose of review 

To what extent do different methods of physical activity measurement and statistical analysis influence the reported 

associations between physical activity and weight gain?  

 

Recent findings 

The obesity epidemic has led to a focus on lifestyle approaches to the prevention of weight gain. Physical activity is one 

such approach. A number of studies have reported beneficial associations between higher levels of physical activity and 

weight gain at the population level. However, limitations of physical activity measurement and analytical models in 

some of these studies is likely to have resulted in overestimation of the strength of association. 

 

Summary 

Understanding the limitations of assessment methods and analytical models used in epidemiological research should 

facilitate more realistic appraisal for physical activity to prevent weight gain at the population level and inform 

approaches to future research. 

 

Key words 

Measurement; methods; modelling; obesity; physical activity; weight gain. 
 

Introduction 

Physical activity is known to be beneficial for a range of health outcomes, leading some policymakers, researchers and 

health professionals to label it a “wonder drug” and “miracle cure” (1,2). Given the burgeoning rates of obesity, 

physical inactivity and associated health complications seen in recent decades, there has been substantial interest in the 

potential for physical activity to mitigate increasing body weight for individuals and populations. Maintenance of body 

weight requires balanced energy intake and expenditure, hence the expectation that increasing energy expenditure 

through higher levels of physical activity should reduce body weight (3).  
 

Weight regulation in humans is complex, involving genetic, physiological, and behavioural mechanisms (4). The 

optimum study design with which to infer causation between physical activity and weight regulation independent of 

caloric intake is a randomised controlled trial (RCT). These tend to be of short duration and require intense researcher 

supervision (5). Given that body weight increases with age (6), and the high intra- and inter-individual variability in 

physical activity and energy intake behaviours over time  (7,8), long-term trials would arguably provide more robust 

information. Unfortunately, such trials are not feasible, and we therefore rely on evidence from observational studies. 

Typically, such studies have a number of limitations, including recall and social desirability bias of participants (9), 

difficulties accurately measuring both physical activity and energy intake in large populations (10,11••), and a variety of 

approaches used to analyse the data. 
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Physical activity may promote weight loss and weight maintenance after weight loss in individuals (12), but do higher 

levels of physical activity prevent weight gain at a population level? The recent US Physical Activity Guidelines 

Advisory Committee (PAGAC) Scientific Report systematically reviewed the literature on this topic and concluded that 

there is a “significant relationship between greater amounts of physical activity and attenuated weight gain in adults” 

(13•). Here we aim to critically discuss some of the studies included in the PAGAC Scientific Report, focussing on the 

analytical models used to assess the prospective associations between physical activity and weight gain as well as the 

impact of different exposure assessment methods. 
 

Analytical models for examining whether physical activity prevents weight gain 

Modelling weight as the outcome variable 

Current body weight is one of the strongest predictors of future weight. Thus, adjusting for baseline body weight in 

statistical models is crucial to determine the independent association of physical activity with weight gain. Neither an 

unadjusted prospective model nor unadjusted weight change model (follow-up weight minus baseline weight) can 

estimate the independent association and likely overestimate the magnitude of association between physical activity and 

weight gain. Of the 33 studies included in the PAGAC Scientific Report, 14 modelled either follow-up weight or weight 

change as the outcome independent of baseline weight by including the latter as a covariate in their model (14–27) (see 

Table). In contrast, 11 studies modelled either follow-up weight or weight change as the outcome, without adjusting for 

baseline weight as a covariate (28–38). Many studies used either multiple linear regression or logistic regression, and 

explicitly described the modelling strategy employed and whether baseline weight was included as a covariate. Others 

used alternative modelling strategies, such as generalised estimating equations and mixed models (39–46). Though it is 

possible to adjust for baseline weight in these models, the majority of those included in the PAGAC Scientific Report 

did not provide sufficient detail to determine whether such an adjustment was performed.  
 

Of the 14 studies that examined prospective associations and explicitly reported adjusting for a baseline weight variable 

in their models, 12 reported at least one statistically significant result with some measure of physical activity 

(14,16,17,19–27). For example, one study followed 34 079 women for 15 years (22). The authors categorised the 

participants according to baseline levels of physical activity measured in metabolic equivalent of task hours per week 

(MET h/wk) (<7.5; 7.5 - <21; ≥21 MET h/wk). They used repeated measures regression to determine prospective 

associations with change in weight over the subsequent 3 years, updating the baseline and follow-up measurements for 

every 3-year period. Using the most active group as the referent, the authors reported significantly greater mean 

differences in weight change for every three-year period for both the least active (+0.12 kg) and middle active groups 

(+0.11 kg). Repeated measures logistic regression analyses showed increased odds of ≥2.3 kg weight gain over a three-

year interval in both the middle active (OR = 1.07) and least active (OR = 1.11) groups compared to the referent. While 

statistically significant, the clinical relevance of these results appear modest.    
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The analytical approaches used by the reviewed studies were highly heterogeneous, limiting direct comparison and 

summarizing the results by a formal meta-analysis, but the strong influence of current weight on future weight is 

demonstrated by the results of Brien et al. (15). The authors investigated whether baseline physical activity, 

cardiorespiratory fitness (CRF), and body mass index (BMI) predicted being overweight, obese, or a weight gain of ≥10 

kg at 20-year follow-up in a sample of 459 Canadian adults. They found that higher baseline BMI predicted both 

overweight or obesity at follow-up, independent of baseline physical activity and CRF. In contrast, neither physical 

activity nor CRF were found to predict either overweight or obesity independent of baseline BMI. Further evidence of 

the potential mediating effect of current body weight on the association between physical activity and weight gain can 

be seen in a study examining the risk of becoming overweight or obese in middle-aged and older women (47). The 

authors found a graded decrease in risk with both crude and multivariable-adjusted models. However, inclusion of 

baseline BMI as a covariate diminished the hazard ratios for both total leisure-time physical activity and vigorous-

intensity physical activity (VPA), including a loss of statistical significance in the VPA model.  
 

Some of the studies included in the PAGAC Scientific Report investigated whether higher levels of physical activity 

reduced the likelihood of transitioning to being either overweight or obese at follow-up (15,24,30,31,33,43). Though it 

appears practical to examine the associations between physical activity and well-recognised clinical criteria, there are a 

number of drawbacks to categorising continuous outcome measures into broad diagnostic categories (48). Also, there is 

substantial loss of information due to the exclusion of individuals classified as overweight or obese at baseline, which 

prevents analysis of this important clinical group. Further, the typical statistical approach of logistic regression provides 

no indication of the magnitude of weight gain. By contrast, those studies that investigate the likelihood of gaining 

weight of a specific value (e.g., >2 kg) can utilise the information for every individual in the sample population.  
 

Modelling physical activity as the exposure variable 

Most commonly, physical activity is only measured at baseline in observational studies that examine associations with 

health outcomes, including body weight. However, such a model cannot account for the dynamic, reciprocal 

relationship between changing weight and physical activity levels over time. Data for 4880 United Kingdom Civil 

Service employees were examined for associations between physical activity and weight change over 10 years (44). The 

authors categorised the participants into three groups dependent on baseline levels of physical activity. In a cross-

sectional model at baseline, they reported differences in BMI between groups. Yet in the prospective model, they found 

no association between baseline physical activity and BMI change over 10 years. The authors interpreted this finding as 

the differences reported in the cross-sectional model persisting over time but not increasing. Additional analyses 

modelled for consistency of physical activity over two-year follow-up, determined by the proportion of assessments at 

which the participants reported physical activity levels that met national recommendations. These analyses found 

statistically significant associations with weight change that differed depending on consistency of meeting physical 

activity recommendations over time.  
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Unless an appropriate modelling strategy is used that accounts for consistency (or change) in physical activity 

behaviour over time (22,39), the results may not reflect the reality of a complex, varying behaviour. Whether there is a 

threshold duration of follow-up above which modelling strategies that fail to adjust for physical activity levels over time 

are inappropriate, and what that threshold should be, is open to debate. Further, the opportunity to perform analyses that 

account for temporal changes in physical activity is limited by the availability of the requisite data; many cohorts 

having measured physical activity at only one, or few, time point(s). Nonetheless, the assumption that physical activity 

behaviour will remain constant during follow-up of mid- to long-term prospective analyses may be erroneous (49), and 

the results should be interpreted with caution. We therefore advocate a study design that includes, and an analytical 

model that accounts for, repeated measures of the exposure and covariates, preferably over an extended period of time. 
 

Modelling change in both the exposure and outcome variables 

Some studies, perhaps trying to account for the acknowledged volatility of physical activity behaviour, model change 

(follow-up measure minus baseline measure) in physical activity as the exposure, and weight change as the outcome. 

However, whilst these models are likely less prone to confounding, without adjusting for previous physical activity or 

weight status such an analysis represents a cross-sectional association, rather than examining the temporal association 

between the exposure and the outcome. 
 

Instead of modelling change in physical activity in units of measurement, such as time spent in moderate- to vigorous-

intensity physical activity (MVPA) or MET h/wk, some studies categorised the direction of change in volume of 

physical activity accumulated between two or more time points. One study grouped participants into tertiles of weekly 

leisure-time physical activity reported at baseline and allocated each participant an additional category determined by 

whether participants reported having increased, decreased, or maintained their baseline volume of physical activity at 

two-year follow-up interview (28). The follow-up interview did not solicit the volume of physical activity that 

participants had performed, which was instead estimated by the researchers. In their analysis, the authors examined 

whether the odds of gaining ≥5 kg weight differed dependent on the category of change in physical activity at follow-

up, stratified by baseline tertile of physical activity. Those in the highest physical activity tertile at baseline that 

subsequently increased their physical activity were designated the reference group. The authors reported the highest 

odds (OR 3.76) for weight gain in men that decreased their physical activity but were in the highest tertile at baseline. 

Those men in the lowest tertile who subsequently increased their weekly physical activity were more than twice as 

likely to gain ≥5 kg compared to the referent (OR 2.19). Without quantifying the change in volume of physical activity 

in the analysis, it is difficult to interpret these results as either evidence for higher levels of physical activity preventing 

weight gain, or that increasing levels of physical activity in those that are less active than average at baseline prevents 

weight gain. Further, given that there is an absolute limit to which an individual can reduce their volume of physical 

activity (i.e., 0 minutes/day (min/d)), the magnitude of reduction possible in the most active group is far greater than 

that in the least active, usually referred to as regression to the mean. It is therefore erroneous to assume an equal 

reduction in physical activity between each group that reported decreasing physical activity at follow-up, and additional 

insight that could have been gained by contrasting the groups is lost. 
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Categorising the exposure variable 

Implausible or conflicting associations 

In a study of postmenopausal women in the US, the authors defined categories of recreational physical activity in MET 

h/wk, estimating quartiles and creating a fifth category for those who reported 0 MET h/wk (29). They investigated 

whether baseline physical activity was associated with either 5 - 9 lb weight gain, or ≥10 lb weight gain, over the seven-

year follow-up period, and stratified their analyses on whether the participating women were “non-overweight” (<25 

kg/m2) or “overweight” (≥25 kg/m2) at baseline. The authors reported a 12% lower odds (OR 0.88) of ≥10 kg weight 

gain for non-overweight women in the highest quartile of physical activity at baseline when compared to the referent 

(>0 to <4.0 MET h/wk) in the multi-adjusted model. However, using the more conservative weight gain of 5 - 9 lb as 

the outcome, there was no evidence that those women performing either comparatively more or high absolute amounts 

of physical activity had a lower odds of weight gain compared with the referent. This suggests that even high levels of 

physical activity may not fully prevent weight gain. Interestingly, overweight women that reported performing 0 MET 

h/wk of recreational physical activity had a 29% lower odds (OR 0.71) of 5 - 9 lb weight gain compared to the referent. 

This result is unexpected, given the typical assumption of a monotonic, inverse relationship between volume of physical 

activity and a variety of health-related outcomes, including weight gain. There are a number of methodological reasons 

that may explain these results, including lack of adjustment for multiple comparisons or spurious interactions when 

categorising two continuous exposure variables that are correlated (physical activity and non-overweight/overweight) 

(50••). Equally, the lack of association seen for the more conservative 5 - 9 lb weight gain outcome in comparison to 

≥10 lb could be due to known issues with cut-point selection when categorising continuous outcomes (48,51). 
 

Dose-response associations 

The biological gradient (or “dose-response trend”), refers to a change in effect, or outcome, for different levels of 

exposure (52). With regard to physical activity as the exposure, the PAGAC define dose-response as: 
 

“The relationship between the dose or volume of physical activity and the magnitude of change, if any, in 

the health outcome or physiologic change.” 
 

Delineating whether there is a minimum effective dose of physical activity, a threshold level above which causes harm, 

or, perhaps more usefully, a granular understanding of the magnitude of response per increment in amount of physical 

activity performed, is integral to the development of guidelines that are evidence-based, and therefore can 

constructively inform policy and clinical practice.  
 

It is common for studies investigating dose-response associations between physical activity and health outcomes to 

categorise the physical activity exposure. Potential reasons for categorising an exposure are numerous (50••), and can be 

performed in different ways, such as dividing the sample into groups based on volume of physical activity performed in 

a given time period (16), assigning physical activity scores (23), or defining directions of change in activity levels 
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between time points (28). Whilst categorisation may be adequate in certain circumstances to provide evidence of a 

dose-response relationship, there are a number of inherent limitations when categorising physical activity that bias the 

analysis and should be considered when interpreting the results of such studies. 
 

One potentially inappropriate assumption of categorisation is that of homogeneity of risk within exposure categories 

(53). For example, one study categorised total weekly MVPA into three groups and examined the prospective 

associations with odds of ≥2 kg weight gain compared to the referent (0 - 149 min/wk) (19). They found that the group 

accumulating ≥300 min/wk of MVPA had a 10% reduced odds (OR 0.90) of weight gain, but no difference in odds for 

the group that accumulated 150 - 299 min/wk. It is assumed that the odds for weight gain in those adults that achieve 

149 min/wk of MVPA will be the same as those adults performing no MVPA. Or one could interpret the lack of 

association between the lower two categories of MVPA exposure as evidence that the odds of weight gain are equal 

between adults who performed 10 min/wk of MVPA and those that accumulated 295 min/wk, for example. Using few 

categories of the physical activity exposure, each of which encompasses a broad spectrum of physical activity volumes, 

results in substantial loss of information, and can obscure variation in risk within categories, and also non-linear or 

monotonic associations (50••). 
 

Another limitation when categorising a continuous exposure such as physical activity, is that it assumes a step function 

between groups, and therefore a discontinuity of response in outcome (53,54). The assumption of discontinuity of 

response can reduce a study’s power to detect an association (55). For example, in one study, a discontinuity of 

response is assumed between the effects of 299 min/wk MVPA on weight gain, and the effects of 300 min/wk. Unless 

there is a threshold effect of MVPA at 300 min/wk (56), as opposed to a continuous dose-response relationship, this is 

improbable, and is one potential explanation for the lack of association reported for the group achieving 150 - 299 

min/wk MVPA volume as compared to the referent. However, the large sample size casts some doubt on this being the 

case. Further, given the lack of association between the two lower categories of MVPA volume, and without an overall 

test of significance (trend test), there is neither evidence for a dose-response association - contrary to the interpretation 

of the PAGAC - nor evidence against a threshold effect of ≥300 min/wk MVPA.  
 

One approach to categorising physical activity that could lessen the detrimental effects of the homogeneity of risk and 

discontinuity of response assumptions would be to create a greater number of ordinal categories. However, determining 

the optimum number of analytical groups would be a challenge given the broad range of time people spend physically 

active, and also whether or not the questionnaires used to collect the physical activity information are valid to 

discriminate smaller time intervals. In addition, the direction of association can be highly dependent on the number of 

categories and interval boundaries chosen, such that the direction of association can be reversed and, hence, easily 

manipulated (intentionally or unintentionally) (57).  
 

Another approach is to divide the participants into quantiles based on the measure of physical activity, as has been done 

in some of the studies included in the PAGAC Scientific Report. Though this seems an objective approach, the 
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categories created are heavily dependent on the distribution of the data, and therefore specific to each sample. This 

makes it difficult to compare results across studies.  
 

It seems practical to categorise physical activity using cut-points that correspond to those of published physical activity 

guidelines. However, these categories are predicated on a number of assumptions. Recommended physical activity 

levels are non-specific for any one health outcome, having been developed as general recommendations to address a 

number of non-communicable diseases (NCDs) and risk factors through change in one behaviour. Therefore, it is highly 

unlikely that these broad categories are optimal to investigate associations with singular health outcomes, such as 

weight gain, and that potentially important insights remain undetected. Further, the recommended levels of physical 

activity result in categories so broad that significant information loss is inevitable and hence high participant numbers 

are required.  
 

Given the marked limitations of categorising physical activity and thereby determining dose-response associations with 

health outcomes, including weight change, perhaps the over-reliance on guideline recommendations to categorise 

physical activity should be discouraged. There are alternative approaches available that incorporate far more of the 

original data, such as cubic spline modelling (58). Further discussion of the limitations of categorising continuous 

exposure variables and suggestions for alternative analytical approaches have been discussed elsewhere (50••,53,55). 
 

Physical activity assessment methods 

Of the 33 original studies included in the PAGAC Scientific Report, 30 measured physical activity using self-report 

methods, including questionnaires (23), activity logs (14), in-person (39) and telephone interviews (41), and used recall 

lengths that ranged from 24 hours (41) to one year (29). Physical activity was measured in different contexts, for 

example occupational (42) or leisure-time physical activity (43), and quantified differently, such as time spent at certain 

intensities (19), time spent walking (18), or weekly running distance (35–37). Even the comprehensiveness of 

information solicited regarding physical activity varied markedly between included studies, from those that used 

validated multi-component physical activity questionnaires (44), to those that asked one question only (34).  
 

The limitations of various self-report measures, including proneness to various biases, have been comprehensively 

discussed in existing reviews (11••,58). Measuring physical activity using devices such as accelerometers can overcome 

some of the biases inherent in self-report methods, yet comparatively few studies have used objective measures to 

investigate associations between physical activity and weight gain. Included in the PAGAC Scientific Report, 3 studies 

measured physical activity objectively using either arm-worn accelerometers (16,17) or pedometers (27). All three 

studies reported favourable associations between more physical activity and weight gain.  
 

One study examined the associations between change in light-, moderate-, and vigorous-intensity physical activity 

(min/d) measured over a 12-month period (LPA, MPA, and VPA, respectively), and body weight at 12-month follow-

up in 195 young adults (20 - 35 years old) (16). They stratified the physical activity change variables between weekdays 
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and weekends, and analyses were adjusted for baseline body weight and physical activity measure. The authors reported 

inverse associations for MPA increased on both weekends and weekdays, and VPA increased on weekends. In their 

follow-up study, the authors explored associations between two-year change in LPA, MVPA, and MVPA bouts, and 

body weight at two-year follow-up (17). Inverse associations with body weight were reported for both increased MVPA 

and MVPA bouts.  
 

Another investigated whether achieving 10 000 steps/d or not was associated with body weight in 1155 adults (26 - 36 

years old) over five-year follow-up (27). The participants were grouped into four categories dependent on whether they 

achieved 10 000 steps/d at baseline or follow-up. Using the group that met the recommended step count at both baseline 

and follow-up as the referent, the two groups that did not meet the threshold step count at follow-up had greater weight 

gain. 
 

These studies had a number of limitations. The sample sizes were small and the age ranges narrow, especially in 

comparison to some of the other studies included in the PAGAC Scientific Report. Two papers analysed the same 195 

participants and tested similar, though not identical, hypotheses. It is arguable whether this be considered a “redundant 

publication” in the strictest sense, but certainly it is not necessary to include both publications with equal importance 

attributed to each (60). A further issue in both papers is that of potential confounding by reverse causation. Both studies 

showed that those who increased body weight over the follow-up period, decreased MPA or MVPA significantly. The 

authors of the third study dichotomised the physical activity exposure into those that did or did not meet a “guideline” 

amount of >10 000 steps/d, effectively discarding a third of the data and creating other limitations of categorising 

continuous exposure variables, which have been discussed above. They then further categorised the participants 

dependent on change in physical activity. Given the limitations of these three studies, the data should be interpreted 

cautiously. 
 

The findings of more recent papers that used device-based measures of physical activity failed to demonstrate 

prevention of weight gain. Data on physical activity and body weight in 1710 Norwegian 20 - 85-year-olds, sampled 

from a national physical activity surveillance programme were collected at two time points, approximately six years 

apart (61). In prospective models of LPA, MPA, and VPA, there were no associations with either body weight or BMI, 

adjusted for the respective anthropomorphic variables in either crude or multivariable models. 
 

Another study that measured physical activity using accelerometers in 71 young adults concluded that neither high 

sedentary time nor low levels of MVPA predicted gain in body weight or body fat over time (62). Neither did they find 

associations with any anthropomorphic variables in a two-year change model. Similarly, in a study of 1943 adults 

sampled from five countries, there were no associations between accelerometer-measured MVPA or LPA and weight 

gain over two-year follow-up (63). These studies challenge the general belief that low levels of physical activity are a 

strong predictor of weight gain. 
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Bidirectional association 

An increasingly recognised concern when interpreting the association between physical activity and weight gain is 

reverse causation. Simply put, does past or present weight status, or weight gain, increase the risk of having lower levels 

of physical activity? Equally, the association may be bidirectional, in that a reduction in physical activity or an increase 

in weight, increases the risk of further detrimental changes in physical activity or weight status. If the latter is true, in 

which directional is the association stronger?  
 

Of the 33 studies included in the PAGAC Scientific Report, 31 demonstrate that adults have a tendency to increase their 

body weight over time. The other two studies either did not provide enough information to determine average weight 

change, or reported only a trend to reduced weight over a short follow-up (31,41). It appears that, at best, physical 

activity may mitigate age-related weight gain (22), or that those who are more active at baseline gain weight at the same 

rate as less active individuals, but from a lower absolute weight (44). Given that almost all included studies report 

absolute weight gain in spite of physical activity, it is surprising that only four of these studies examine reverse 

causation (16,17,28,44). One study stratified baseline BMI into quintiles and examined change in leisure-time physical 

activity over two years as the outcome. The authors reported that men with higher baseline BMI tended to increase their 

leisure-time physical activity, whereas women with higher baseline BMI tended to decrease their leisure-time physical 

activity. These results suggest reverse causation, at least in women. In another study, the authors compared the 

participants that gained at least 5% BMI over five years, with those who either maintained or reduced their BMI. The 

group that gained weight displayed lower levels of MVPA at five-year follow-up. Similarly, in the other two studies, the 

group that gained weight between baseline and follow-up reduced either their MPA or MVPA. 
 

Reverse or bidirectional causation between physical activity and weight gain is plausible. In a cohort of children from 

ALSPAC, Mendelian randomisation was used to assess the causal association between BMI and fat mass index (FMI), 

and objectively measured physical activity (64•,65). Their results suggest that increased adiposity determined future 

reduced total physical activity, reduced MVPA, and increased sedentary time. One study, in which physical activity was 

measured objectively with accelerometers found that body weight at baseline predicted lower time spent in both MVPA 

and VPA at follow-up, having adjusted for multiple covariates including baseline values of the respective physical 

activity domain (61). Similarly, in a study that measured sedentary time using heart rate (HR) monitors, the authors 

found that sedentary time predicted neither body weight, BMI, waist circumference, nor fat mass at follow-up, yet all 

four anthropometric variables predicted higher amounts of sedentary time at follow-up, having adjusted for baseline 

sedentary time and a number of other covariates (66). Furthermore, there is evidence to suggest that the rate of weight 

gain is also an important predictor of future physical activity levels (67), and even a threefold stronger magnitude of 

inverse association when body weight is modelled as the exposure compared to when modelled in the opposite direction 

(68). 
 

The associations between physical activity and weight gain are complex, likely bidirectional, and further complicated 

by the difference in accuracy of the exposure and outcome variables. Physical activity is measured imprecisely 
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compared to weight, and therefore its association to the outcome tends to be underestimated. This is known as 

regression dilution bias. Conversely, when the exposure is measured with more precision that the outcome, the 

uncertainty of the estimate of the effect size increases, but the association is not underestimated. Therefore, an 

association is far more likely when modelling body weight as the exposure and physical activity the outcome. 
 

Conclusion 

Though physical activity is advocated as an important intervention to prevent weight gain, the considerable 

methodological and analytical limitations present in the current literature prohibit firm conclusions regarding the 

magnitude and direction of association. Despite weak associations between physical activity and weight gain, 

promoting physical activity remains one of the most important public health strategies. High levels of physical activity 

are consistently associated with reduced risks for many chronic diseases and all-cause mortality (69,70). In addition, 

high levels of physical activity seem to eliminate the detrimental association between high sitting time and all-cause, 

cardiovascular and cancer mortality (71,72). Whilst it may not confer a protective effect against weight gain, what is 

absolutely clear is that physical activity is beneficial for a number of health outcomes, regardless of body weight, and 

encouraging more active lifestyles remains integral to tackling the global rise in NCDs. 
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Table 1 Characteristics of included studies 

Reference Analytical 
sample (n) 

Age at first assessment (mean 
± SD) 

Physical activity measure Outcome Baseline outcome adjustment 
(statistical model) 

Adair et al. (2011) 3055 
100% female 

27.1 ± 6.0 years Self-report 
Interview 

∆weight Mixed models 

Basterra-Gortari et 
al. (2009) 

11 974 
59.2% female 

40.0 - 48.8 years 
(depending on sex and level of 
physical activity) 

Self-report 
Questionnaire 

∆BMI 
Relative (%) ∆BMI 
Weight gain ≥5 kg 

No 

Bea et al. (2010) 122 
100% female 

56.3 ± 4.3 years Self-report 
Questionnaire and activity log 
7-day recall 

∆weight Yes 

Blanck et al. (2007) 18 583 
100% female 

60.1 years Self-report 
Questionnaire 
1-year recall 

Weight gain 5 - 9 lbs 
Weight gain ≥10 lbs 

No 

Botoseneanu and 
Liang (2012) 

10 314 
52.3% female 

55.8 ± 3.2 years Self-report 
Interview 

∆BMI Hierarchical linear models 

Brien et al. (2007) 459 
51.4% female 

32.8 ± 9.6 years Self-report 
Questionnaire 
1-year recall 

Transition to overweight 
Transition to obesity 
Weight gain ≥10 kg 

Yes 

Brown et al. (2016) 4881 
100% female 

20.7 ± 1.4 years Self-report 
Questionnaire 
Weekly 

Maintain BMI <25 kg/m2 No 



 17 

Chiriboga et al. 
(2008) 

572 
48.1% female 

47.8 ± 12.3 years Self-report 
Telephone interview 
24-hour recall 

Weight Linear mixed models 

Colchero et al. 
(2008) 

2952 
100% female 

26.3 ± 6.1 years Self-report 
Interview 

∆BMI Fixed effects regression 

de Munter et al. 
(2015) 

23 108 
55.2% female 

48.3 ± 16.0 years Self-report 
Questionnaire 
1-year recall 

∆BMI 
Transition to overweight 
Transition to obesity 

Generalised estimating equations 

Drenowatz et al. 
(2017) 

195 
48% female 

27.8 ± 3.7 years Device 
Accelerometer and activity log 
Worn for 10 days 

Follow-up weight Yes 

Drenowatz et al. 
(2016) 

338 
46.6% female 

27.8 ± 3.7 years Device 
Accelerometer and activity log 
Worn for 10 days 

Follow-up weight Yes 

French et al. (2012) 153 
61.4% female 

41.0 ± 8.8 years Self-report 
Questionnaire 

Follow-up BMI Yes 

Gebel et al. (2014) 32 087 
53.4% female 

59.5 ± 9.3 years Self-report 
Questionnaire 

Weight gain ≥2 kg Yes 

Gradidge et al. 
(2015) 

428 
100% female 

41.1 ± 5.4 years Self-report 
Questionnaire at interview 

∆BMI Yes 

Hamer et al. (2013) 4880 
28.5% female 

49.3 ± 5.9 years Self-report 
Questionnaire 

∆BMI 
Follow-up BMI 

Linear mixed models 



 18 

Hankinson et al. 
(2010) 

3554 
52.5% female 

24.5 - 25.2 years 
(depending on sex and level of 
physical activity) 

Self-report 
Questionnaire 
1-year recall 

∆BMI Yes 

Hillemeier et al. 
(2011) 

689 
100% female 

32.8 years (normal BMI) 
33.4 years (overweight BMI) 

Self-report 
Interview 

Transition to 
overweight/obesity 
Transition to obesity 

No 

Kaikonnen et al. 
(2015) 

1715 
53.8% female 

32.1 years (female) 
31.9 years (male) 

Self-report 
Questionnaire 

∆weight Bivariate analysis only 

Kelly and Latner 
(2015) 

86 
100% female 

20.3 ± 2.9 years Self-report 
Questionnaire 
Weekly 

∆weight No 

Lee et al. (2010) 34 079 
100% female 

54.2 years Self-report 
Questionnaire 
Weekly 

∆weight 
Weight gain ≥5 lbs 

Yes 

MacInnis et al. 
(2014) 

5879 
63.8% female 

53.6 ± 8.2 years (female) 
53.5 ± 8.4 years (male) 

Self-report 
Questionnaire 
6-month recall 

Follow-up weight Yes 

Moholdt et al. (2014) 19 127 
56.4% female 

34.9 - 39.4 years 
(depending on sex and level of 
physical activity) 

Self-report 
Questionnaire 
Weekly 

∆weight 
Weight gain ≥2.3 kg 

Linear mixed models 

Mortensen et al. 
(2006) 

4595 
22.4% female 

40.7 ± 3.0 years Self-report 
Interview question 

∆BMI Yes 

Parsons et al. (2006) 15 006 
48.6% female 

11.0 years Self-report 
Questionnaire 

∆BMI Multilevel model 
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Rosenberg et al. 
(2013) 

20 259 
100% female 

30.4 ± 5.0 - 31.5 ± 5.0 years 
(dependent on amount walking / 
strenuous exercise) 

Self-report 
Questionnaire 
Weekly 

Transition to obesity No 

Shibata et al. (2016)  3261 
56.5% female 

48.3 ± 10.5 years Self-report 
Questionnaire 

∆waist circumference Yes 

Sims et al. (2012) 57 735 
100% female 

50 - 79 years 
(stratified into three 10-year age 
groups) 

Self-report 
Questionnaire 

∆weight 
∆BMI 

Yes 

Sjösten et al. (2012) 3812 
24.7% female 

56 ± 2.4 years 
(age at retirement) 

Self-report 
One question 

∆weight 
Relative (%) ∆weight 

No 

Smith et al. (2017) 1155 
57.5% female 

31.3 ± 2.7 years (female) 
31.7 ± 2.5 years (male) 

Device 
Pedometer 
Worn for 7 days 

Follow-up weight Yes 

Williams and Wood 
(2006) 

12 568 
38.2% female 

39.8 ± 9.9 years (female) 
46.4 ± 10.3 years (male) 

Self-report 
Questionnaire 
Weekly 

∆BMI 
Relative (%) ∆weight 

No 

Williams (2007) 8340 
26.6% female 

39.6 ± 9.7 years (female) 
45.3 ± 10.1 years (male) 

Self-report 
Questionnaire 
Weekly 

∆weight 
∆BMI 

No 

Williams and 
Thompson (2006) 

6406 
30.2% female 

Not reported Self-report 
Questionnaire 
Weekly 

∆weight 
∆BMI 

No 
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