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Abstract

Background Ageing is associated with DNA methylation changes in all human tissues, and epigenetic markers can estimate
chronological age based on DNA methylation patterns across tissues. However, the construction of the original pan-tissue epi-
genetic clock did not include skeletal muscle samples and hence exhibited a strong deviation between DNA methylation and
chronological age in this tissue.
Methods To address this, we developed a more accurate, muscle-specific epigenetic clock based on the genome-wide DNA
methylation data of 682 skeletal muscle samples from 12 independent datasets (18–89 years old, 22% women, 99% Cauca-
sian), all generated with Illumina HumanMethylation (HM) arrays (HM27, HM450, or HMEPIC). We also took advantage of
the large number of samples to conduct an epigenome-wide association study of age-associated DNA methylation patterns
in skeletal muscle.
Results The newly developed clock uses 200 cytosine-phosphate–guanine dinucleotides to estimate chronological age in
skeletal muscle, 16 of which are in common with the 353 cytosine-phosphate–guanine dinucleotides of the pan-tissue clock.
The muscle clock outperformed the pan-tissue clock, with a median error of only 4.6 years across datasets (vs. 13.1 years for
the pan-tissue clock, P < 0.0001) and an average correlation of ρ = 0.62 between actual and predicted age across datasets (vs.
ρ = 0.51 for the pan-tissue clock). Lastly, we identified 180 differentially methylated regions with age in skeletal muscle at a
false discovery rate < 0.005. However, gene set enrichment analysis did not reveal any enrichment for gene ontologies.
Conclusions We have developed a muscle-specific epigenetic clock that predicts age with better accuracy than the pan-
tissue clock. We implemented the muscle clock in an R package called Muscle Epigenetic Age Test available on BIOCONDUCTOR

to estimate epigenetic age in skeletal muscle samples. This clock may prove valuable in assessing the impact of environmental
factors, such as exercise and diet, on muscle-specific biological ageing processes.
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Introduction

Ageing is the normal, progressive decline of function occur-
ring at the cellular, tissue and organismal levels over the
lifespan.1 Ageing increases susceptibility to a wide range
of diseases, including cardiovascular and neurodegenerative
diseases, metabolic disorders, and many cancers.1 It is
therefore important to identify early and potentially modifi-
able molecular mechanisms that occur with advancing age.
Changes in epigenetic patterns constitute a primary hall-
mark of ageing in all tissues of the human body.2 Epige-
netic marks are cellular properties conferring the ability to
remember a previous biological event,3 and some of these
marks are sensitive to environmental stimuli such as diet,
sleep,4 and exercise training.5,6 Epigenetic changes with
age are particularly well characterised at the DNA methyla-
tion level,7,8 including skeletal muscle.9

The first DNA methylation-based estimator of chronolog-
ical age (known as the pan-tissue epigenetic clock) was de-
veloped using a wide spectrum of tissues and nucleated cell
types.7 The resulting regression model could then be used
to estimate the chronological age of tissue samples based
on the DNA methylation levels of 353 cytosine-phos-
phate–guanine dinucleotides (CpGs). The difference be-
tween estimated DNA methylation age and chronological
age reflects not only technical noise but also biologically
meaningful variation seen in epidemiological studies linking
epigenetic ageing rates to mortality risk, Alzheimer’s dis-
ease, and many age-related conditions.10,11 Age-related
conditions are often associated with tissue-specific effects.
For example, obesity is associated with strong epigenetic
age acceleration in human liver samples but negligible ef-
fects in muscle tissue when assessed by the pan-tissue
clock.12

Most tissues exhibit similar epigenetic ages according to
the pan-tissue clock, but there are a few exceptions. For
example, the cerebellum has been found to age more
slowly.13 Conversely, female breast tissue exhibits an in-
creased epigenetic ageing rate, especially in younger
women.7,14 The construction of the original pan-tissue clock
did not include any skeletal muscle samples. The only two
skeletal muscle datasets included in the original study7

(GSE38291 and GSE36166) were not used as training but
as test sets. Both datasets contained DNA methylation
profiles generated with the Illumina HumanMethylation
(HM)27 array on vastus lateralis muscle samples;
GSE38291 included 11 pairs of monozygotic twins aged
53–80 years old and discordant for type 2 diabetes,15 while
GSE36166 included 21 paired samples of young, healthy
men (24.6 years old) whose biopsies were taken after a
control diet and following a high-fat diet.16 When the
pan-tissue clock was tested on these few skeletal muscle
samples (n = 66), half of the samples’ predicted age was
off by more than 18 years.7 Therefore, there is currently

no epigenetic clock that performs well in skeletal muscle.
While the pan-tissue clock has many applications, tissue-
specific clocks developed exclusively in a given tissue, pro-
vide higher accuracy and specific application to specific
tissues. In particular, blood tissue provides the opportunity
to develop accurate predictors of lifespan and
healthspan,17,18 which is particularly useful as blood sam-
ples are little invasive. Specific epigenetic clocks have been
developed for fibroblasts, keratinocytes, buccal swabs,19

and for cord blood samples.20 However, to the best of
our knowledge, no study to date has tackled the challenge
of developing an epigenetic clock that is specific to human
skeletal muscle.

An epigenetic clock well calibrated in skeletal muscle
could prove useful for studying the impact of environmen-
tal factors (e.g. exercise) on epigenetic ageing of this tissue
and the relationship with health and disease processes.21 In
general, skeletal muscle tissue is of great interest to ageing
researchers and clinicians because skeletal muscle mass is
lost at a rate of 0.5–1% per year after age 50.22 This mus-
cle loss (sarcopenia) leads to a host of age-related compli-
cations including frailty, as well as increased morbidity
and mortality.23 At the same time, skeletal muscle loses mi-
tochondrial function and becomes increasingly resistant to
insulin with age.24 However, skeletal muscle is remarkably
plastic, which makes it a highly responsive target tissue
for lifestyle.24 For example, changes in DNA methylation
that occur with a healthy diet25 and exercise5,6 may be
mechanistically involved in slowing down the ageing
process.1

In the current study, we aimed to address the poor per-
formance of the pan-tissue clock in muscle by developing a
muscle-specific epigenetic clock. We hypothesise that
by using a large number of human skeletal muscle DNA
methylation profiles, we can develop a muscle-specific
epigenetic clock that outperforms the pan-tissue clock and
that can estimate chronological age with high
accuracy. We utilised DNA methylation data to estimate
epigenetic age in a total of 682 male and female skeletal
muscle samples aged 18–89. We also conducted an
epigenome-wide association study (EWAS) to discover
genes whose methylation change with age in skeletal mus-
cle. We have made the muscle clock freely available in an R

package called MEAT (Muscle Epigenetic Age Test) on
BIOCONDUCTOR.

Methods

Description of datasets used

We combined three datasets of DNA methylation in skele-
tal muscle [the Gene Skeletal Muscle Adaptive Response
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to Training,26 the E-MTAB-6908 study,4 and the Bond
University Limb Immobilisation and Transcriptional/Epige-
netic Responses (LITER) study (unpublished)], with human
skeletal muscle DNA methylation data from the open-
access Gene Expression Omnibus (GEO) platform and the
database of Genotypes and Phenotypes. We excluded
datasets with <3 samples, missing information on age
(i.e. no age information on the GEO and corresponding au-
thor unresponsive), and datasets from primary cell culture
experiments. Overall, we identified eight datasets on the
GEO and one dataset on database of Genotypes and Phe-
notypes (Supporting Information Data S1), with sample
sizes ranging from n = 3 to n = 282. Eight datasets were
paired designs (e.g. monozygotic twins discordant for dis-
ease or pre-/post-interventions) and four cross-sectional.
We described each dataset in details in the Supporting
Information.

Pre-processing

Whenever possible (i.e. when we had information on P
value detection for each probe, raw methylated and
unmethylated signals or IDAT files, and batch/position
information for each sample), we downloaded and pre-
processed the raw data. If we did not have enough infor-
mation on a given dataset (e.g. missing batch information),
we utilised the processed data available on the GEO. In
datasets that we did not pre-process, missing data was im-
puted using the champ.impute function of the ChAMP
package,27 with default parameters. As quality control, we
ensured all datasets had a mean inter-correlation >0.97
and a maximum beta-value >0.99. For each individual
dataset we pre-processed, we applied the following pre-
processing steps using the R statistical software (www.r-
project.org) together with the ChAMP analysis pipeline27

(for a full description of pre-processing steps on each
dataset, see Data S2):

Any sample with >10% of probes with detection P value
>0.01 was removed (default parameter of the champ.load
function). All probes with missing β-values, with a detection
P value >0.01, probes with a bead count <3 in at least 5%
of samples, and non-CG probes and probes aligning to mul-
tiple locations were removed, and for datasets containing
men and women, probes located on the sex chromosomes
were removed. SNP-related probes (“EUR” population
probes in Zhou et al.28) were also removed. β-values were
obtained and defined as

Then, a β-mixture quantile normalisation method was ap-
plied to adjust for the Type I and Type II probe designs for
methylation profiles generated from the HM450 and HMEPIC
arrays. To identify technical and biological sources of varia-
tion in each individual dataset, singular value decomposition
was performed. In all pre-processed datasets, both the plate
and the position on the plate were identified as significant
technical effects. Thus, all β-values were converted to M-
values, and the ComBat function from the sva package used
to adjust directly for these technical artefacts.

Only 19 401 CpGs were identified to be in common be-
tween the 12 datasets after pre-processing, and all probes
found on the HM27, HM450, and HMEPIC arrays (Data S3).
To obtain DNA methylation profiles that were comparable be-
tween datasets, we adopted Horvath’s calibration method.
We calibrated 11 or the 12 datasets to a gold standard, using
the adapted version of the β-mixture quantile normalisation
algorithm.7 We used GSE50498 as the gold standard because
it was a large dataset (n = 48 samples) with the broadest age
range (18–89 years old).

Muscle clock development

We analysed 12 DNA methylation datasets from human skel-
etal muscle for which chronological age was available. We de-
veloped the muscle clock using an elastic net regression
model identical to Horvath’s where a transformed version
of chronological age was regressed on the 19 401 CpGs.7

We first performed 10-fold cross-validation to select the opti-
mal regularisation parameter λ, using the elastic-net mixing
parameter α = 0.5.

Given the limited number of datasets and the biased age
distribution in each dataset, we adopted a leave-one-
dataset-out cross-validation procedure to obtain an unbiased
estimate of the muscle clock accuracy. We then calculated
the prediction error as the age acceleration (AA), using two
definitions that have been previously described7,29: the dif-
ference between predicted and actual age (AAdiff) and the re-
sidual from a linear regression of predicted age against actual
age (AAresid) (Figure 1). While AAdiff is a straightforward way
of calculating the error in age prediction, it is sensitive to
the mean age of the dataset7 and to the pre-processing of
the DNA methylation dataset29; AAdiff can be biased upwards
or downwards depending on how the dataset was normalised
and depending on the mean age and age variance of the
dataset. In contrast, AAresid is insensitive to the mean age of
the dataset and is robust against different pre-processing

β� value ¼ intensity of the methylated allele
intensity of the unmethylated alleleþ intensity of the methylated alleleþ 100
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Figure 1 Methodology for leave-one dataset-out cross-validation (LOOCV) and measures of age prediction accuracy. In the LOOCV, one dataset is left
out (test set) and all other datasets (training sets) are used to develop the age predictor. The DNA methylation profiles of the training sets are input
into an elastic net regression model (glmnet package in R), and this model is then used to estimate age in the test set. Predicted and actual age were
correlated using Pearson’s correlation coefficient (unless all individuals had the same age or the dataset was too small). We also calculated the AAdiff as
the difference between predicted and actual age. We then calculated the median of the absolute values of AAdiff to estimate how well calibrated the
clock was to this particular test set, and we calculated the mean of AAdiff to see whether the test set as a whole was younger (or older) than expected.
Finally, we calculated the residuals from a linear regression of predicted age against actual age (AAresid) to obtain accuracy measures insensitive to the
mean age of the dataset and to pre-processing techniques.
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methods.29 Finally, we also calculated the Pearson correlation
between predicted and actual age of the sample cohorts.

Pan-tissue clock

We used the online epigenetic age calculator (https://
dnamage.genetics.ucla.edu/home) selecting the option “Nor-
malized Data” to implement the original pan-tissue clock.7

Statistics

We used a paired t-test on the absolute AA (AAdiff or AAresid)
to compare the accuracy of the muscle clock with that of the
pan-tissue clock. As recently suggested to improve replicabil-
ity in science,30 a P value <0.005 was deemed significant.

To identify age-associated methylation positions (DMPs),
we used linear models and moderated Bayesian statistics as
implemented in the limma package.31 The DNA methylation
levels at 19 401 CpGs from the n = 682 muscle samples were
regressed against age, sex, and dataset ID. We used the block
design as implemented in LMFIT to account for the paired de-
signs of some datasets. DMPs associated with age at a false
discovery rate (FDR) < 0.005 were deemed significant.30,32

To identify differentially methylated regions (DMRs, i.e. clus-
ters of DMPs with consistent DNA methylation change with
age), we used the dmrcate package.33

To identify age-associated GO terms, we conducted a gene
set enrichment analysis as implemented in the gometh func-
tion of the missMethyl package,34 using our own improved
annotation of the epigenome and largely based on Zhou
et al.’s annotation.28 This function accounts for the biased
distribution of CpGs in genes. All GO terms pathways at FDR
< 0.005 were deemed significant.30,32

To test whether the clock CpGs showed any enrichment in-
side or outside CpG islands, or enrichment for specific chro-
matin states, we compared the distribution of the clock
CpGs with that of all other CpGs in different CpG island do-
mains (open sea, CpG island, CpG island shore, and CpG is-
land shelf) or chromatin states in male skeletal muscle from
the Roadmap Epigenomics Project with a Fisher’s exact test.
As there are four different positions with respect to CpG
islands and 15 different chromatin states, we only considered
positions with respect to CpG islands and chromatin states
significant if FDR < 0.005.

Results

Description of the 12 skeletal muscle DNA
methylation datasets

We gathered skeletal muscle methylomes from 12 datasets
generated with three different platforms: HM27, HM450

and the more recent HMEPIC, totalling n = 682 samples
(Figure 2, Data S1). Three datasets came from our own lab
or collaborators, and the other nine were publicly available
on the GEO platform or the database of Genotypes and Phe-
notypes. Only three datasets included women, and only two
datasets included non-Caucasian individuals. Eight of the 12
datasets were paired designs (e.g. monozygotic twins discor-
dant for disease or pre-/post-interventions, Data S1), mean-
ing that some of the 682 muscle samples were taken from
healthy individuals at baseline or after a control diet, while
other samples were taken after an exercise intervention, a
high-fat diet, sleep deprivation, insulin stimulation, or were
from individuals with type 2 diabetes. We chose to keep all
samples in the development of the muscle clock, as none of
these factors were associated with drastic changes in age ac-
celeration. For details on each individual dataset such as sam-
ple collection and DNA methylation assay, see Data S2.

The 682 samples had a bimodal distribution of age, with an
under-representation of 30–50 year olds (n = 242 aged 18–
30, n = 105 aged 30–50, n = 275 aged 50–70, n = 60 aged
70-90, Figure 2). More importantly, datasets greatly differed
in their mean age and age range (Figure 2, Data S1). For ex-
ample, dataset GSE50498 contained younger (21.3 ± 2.4
years old) and older (73.2 ± 4.6 years old) but no middle-aged
individuals; GSE36166 and GSE40798 had no variability in age,
as all individuals were 24–25 years old.

Development of a highly accurate skeletal muscle
epigenetic clock

To develop the muscle clock, we adopted the same approach
as Horvath.7 Briefly, we restricted our analysis to the 19 401
CpGs that were present in all 12 datasets. Then, we used
dataset GSE50498 that had a large sample size (n = 48), and
the broadest age range (18–89 years old), as a gold standard
to calibrate all other datasets. Although it does not entirely
remove variability from different labs and platforms, this step
allows for a harmonisation of DNA methylation profiles be-
tween datasets. Then, a transformed version of chronological
age was regressed on the 19 401 CpGs using a penalised re-
gression model (elastic net).

The elastic net model automatically selected 200 CpGs; with
increasing age, 109 were hypomethylated and 91
hypermethylated (Data S4). Sixteen were in common with
the 353 CpGs used in the pan-tissue clock (Figure 3a). This is
more than expected by chance, as none of the 1 000 000 ran-
domly drawn samples of 200 CpGs from our dataset had more
than 14 CpGs in common with the 353 CpGs of the pan-tissue
clock. In addition, the effect of age on themethylation levels of
15/16 of these common CpGs was the same in both clocks.
This shows that the muscle clock includes some CpGs whose
methylation changes with age in all human tissues. We then
tested for enrichment of the 200 muscle clock CpGs in CpG
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islands and in skeletal muscle chromatin states. These chroma-
tin states were determined by the Roadmap Epigenomics Pro-
ject and provide a powerful, accurate mapping of gene and
enhancer activity in human skeletal muscle at individual geno-
mic positions. While we did not find any enrichment in CpG
islands, shores, or shelves, the muscle clock CpGs that were
hypomethylated with age showed depletion in regions
flanking active promoters (FDR = 0.00085, Figure 3B).

The muscle clock outperforms the pan-tissue clock

As the number of datasets and samples were rather limited
(around six times fewer samples than those used to develop

the pan-tissue clock), we adopted a leave-one dataset-out-
cross-validation (LOOCV) procedure to obtain unbiased esti-
mates of the muscle clock accuracy.7 LOOCV is performed by
removing one dataset and developing the clock on the 11 re-
maining datasets; the omitted dataset is then used as a test
set (Figure 1). Because we had 12 available datasets, we per-
formed 12 LOOCVs (one for each dataset); this is better than
performing a leave-one sample-out cross-validation procedure
where the samples used to develop the clock contain samples
from the same dataset as the omitted sample. This could lead
to overly accurate age estimation, and would not apply well to
new datasets. We then calculated threemeasures of accuracy:
the correlation between predicted and actual age, the differ-

Figure 2 Age distribution in the 12 datasets used to develop the muscle clock. (A) Waffle chart of the 12 datasets, split by database. Each cell repre-
sents 1 percentage point summing up to the total number of samples (n = 682); dbGAP, database of Genotypes and Phenotypes; FUSION, Finland-
United States Investigation of NIDDM Genetics; GEO, Gene Expression Omnibus; LITER, Limb Immobilisation and Transcriptional/Epigenetic Responses;
Gene SMART, Gene Skeletal Muscle Adaptive Response to Training. (B) Age distribution in all 12 datasets pooled together (n = 682). (C) Age distribution
in each individual dataset. Datasets were colour-coded as in the waffle chart (A).
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ence between predicted and actual age (AAdiff), and the resid-
ual from a linear regression of predicted age against actual age
(AAresid) (Figure 1).

The skeletal muscle clock significantly outperformed the
pan-tissue clock on the correlation between predicted and
actual age (average ρ = 0.62 vs. ρ = 0.51 across datasets,
Figure 4A, Data S5), and on the absolute AAdiff by 7.0 years
(paired t-test P < 0.0001, Figure 4B left panel, Data S5); how-
ever, the muscle clock was as accurate as the pan-tissue clock
on the absolute AAresid (paired t-test P = 0.16, Figure 4B right
panel, Data S5). We also estimated the accuracy of the mus-
cle clock by calculating the median absolute error and the av-
erage difference between predicted age and chronological
age for each dataset.7 While the median absolute error is a
robust measure of prediction error, the average difference in-
dicates whether the predicted age of a given dataset is con-
sistently higher (or lower) than expected7 (Figure 1). Across
the 12 datasets, the muscle clock performed very well, with
a median absolute AAdiff of only 4.6 years on average (range
2.4–10.6 years) vs. 12.0 years for the pan-tissue clock, and a
median absolute AAresid of 3.4 years on average vs. 2.7 years
for the pan-tissue clock (Data S5). Unsurprisingly, considering
the biased age distribution between and within datasets
(Figure 2, Data S1), both the muscle and pan-tissue clocks
tended to predict younger ages for older individuals using AA-

diff (Figure 5). However, this bias was significantly reduced in
the muscle clock and was inexistent for AAresid because by
definition, AAresid is unrelated to age.

Epigenome-wide association study of age

We took advantage of the large number of samples to ex-
plore DNA methylation patterns associated with age in skel-
etal muscle. We found 1,975 age-associated Differentially
Methylated Positions (DMPs), corresponding to 180
Differentially Methylated Regions (DMRs) at FDR < 0.005
(Figure 6A, Data S6). The direction of DNA methylation
with age was balanced, with 51% of DMRs hypomethylated
and 49% hypermethylated with advancing age (Data S6).
60% of the muscle clock CpGs were among the age-
associated DMPs; one of these DMPs, located in
Pipecolic Acid And Sarcosine Oxidase (PIPOX), was both in
the muscle and pan-tissue clocks and showed one of the
largest effect sizes (DNA methylation increased by 2.8%
per decade of age, Fig 6b, Data S6). Both hypo- and
hypermethylated DMPs were depleted in CpG islands and
active TSS while simultaneously enriched in CpG island
shelves, open sea, actively transcribed regions and en-
hancers (Figure 6C). However, while hypomethylated DMPs
were enriched in regions flanking active TSS and depleted
in bivalent/poised TSS and in regions flanking bivalent
TSS/enhancers, hypermethylated DMPs showed the
opposite pattern (Figure 6C). We then conducted a gene
set enrichment analysis that takes into account the biased
distribution of CpGs in genes, but found no enrichment of
the DMPs for particular gene ontologies (GO) at FDR <

0.005.

Figure 3 The 200 muscle clock CpGs. (A) Overlap between the 353 CpGs of the pan-tissue clock and the 200 CpGs of the muscle clock. The 16 CpGs in
common between the two clocks are displayed as table, with the annotated gene(s), and the direction of methylation with age in each of the two
clocks. (B) Enrichment of the 200 muscle clock CpGs in positions with respect to CpG islands (top) and in chromatin (bottom). Enrichment was tested
with a Fisher’s exact test, adjusted for multiple testing. *False discovery rate< 0.005. CpG, cytosine-phosphate–guanine dinucleotide; TSS, TssAFlnk;
ZNF, zinc-finger proteins.
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Muscle Epigenetic Age Test: an R package to
determine the epigenetic age of skeletal muscle

As part of the current investigation, we developed an open-
access R package called MEAT, available on GitHub (https://
github.com/sarah-voisin/MEAT). MEAT uses DNA methyla-
tion profiles generated in skeletal muscle the with Illumina
HM technology (HM27, HM450, and HMEPIC) to infer epige-
netic age of the samples. MEAT uses R code adapted from
Horvath7 to calibrate skeletal muscle DNA methylation pro-
files to the GSE50498 gold standard. MEAT then calculates
the epigenetic age of the calibrated samples using the muscle
clock (elastic net model as implemented in glmnet). Users
should provide a pre-processed β-value matrix generated
with the Illumina HumanMethylation platform, as well as an
optional phenotype table containing information such as
age, sex, health/disease status, and so forth. If age is pro-
vided, the package will not only estimate epigenetic age,

but also age acceleration (AAdiff and AAresid). Users can also
ask MEAT to fit standard or robust linear models to test asso-
ciations between phenotypes of interest (e.g. sex) and age ac-
celeration in their datasets.

Discussion

In the present study, we developed an accurate epigenetic
clock, specific to skeletal muscle, which outperformed the
pan-tissue clock by an average of ~7 years across 682 sam-
ples, in 12 independent datasets. This clock uses DNA meth-
ylation levels at 200 CpGs to predict chronological age, with
a median absolute error of only 4.6 years, a significant im-
provement compared with the pan-tissue clock (12.0 years).
We have made this clock available as an open-access R pack-
age called MEAT and available on GitHub (https://github.
com/sarah-voisin/MEAT). MEAT takes DNA methylation

Figure 4 Predicted vs. actual age and errors in age prediction in the LOOCV procedure. Each point corresponds to one of the 682 samples, coloured by
datasets to which they belong. (A) Predicted vs. actual age. Note that to obtain truly unbiased estimates of age prediction accuracy, the age predicted
by the muscle clock is from the leave-one-out cross-validation procedure. (B) Error in age prediction either as the difference between predicted and
actual age (left panel) or as the residuals from a linear model of predicted against actual age (right panel). Note that both panels are on different scales.
FUSION, Finland-United States Investigation of NIDDM Genetics; LITER, Limb Immobilisation and Transcriptional/Epigenetic Responses; Gene SMART,
Gene Skeletal Muscle Adaptive Response to Training.
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profiles assessed with the Illumina Infinium technology as in-
put and outputs predicted age. This tool allows researchers to
study the impact of environmental factors (e.g., exercise
training, bed rest/immobilisation, diet, etc.) on the rate of
ageing in skeletal muscle samples. It could also be used to
test whether diseased populations exhibit accelerated
muscle-specific age acceleration compared with a matched
healthy population, as was previously done using the pan-
tissue clock.12,35–37

We highlighted some important limitations in age distribu-
tion both within and between datasets that could influence
the accuracy of the muscle clock. Despite these limitations,
the accuracy of the age predictor was excellent. The remark-
able accuracy in prediction can be explained by multiple fac-
tors, most of which previously mentioned by Horvath.7 First,
the largest datasets (GSE50498, GSE49908, Gene Skeletal
Muscle Adaptive Response to Training, and FUSION (Finland-
United States Investigation of NIDDM Genetics)) were also
those with the broadest age range, which limits the confound-
ing effect of age with dataset. Second, measurements from
Illumina DNAmethylation arrays are known to be less affected
by normalisation issues compared with those from gene ex-
pression (messenger RNA) arrays. Third, the elastic net model
used to develop the epigenetic clock automatically selects

CpGs that are less sensitive to differences in cohorts, labs,
and platforms because it is trained on datasets from various
cohorts, labs, and platforms. Fourth, the relatively large num-
ber of datasets helps average out spurious results and arte-
facts. Lastly, age affects DNA methylation levels of tens of
thousands of CpGs.9

We found that there were more CpGs in common between
the muscle- and pan-tissue clock7 than what would be ex-
pected by chance (as determined by our random sampling
test). This suggests that the ageing process, despite being as-
sociated with many tissue-specific DNA methylation changes,
is also associated with DNA methylation changes ubiquitous
to all human cell types. The epigenome-wide association study
of age in skeletal muscle uncovered many genes whose meth-
ylation change with age. However, these genes were mostly
distinct from the genes that are known to be differentially
expressed in muscle with age.38 Our relatively large sample
size and wide age range allowed us to detect small effect sizes
and to uncover a large number of genes differentially methyl-
ated with ageing in skeletal muscle. It is possible that age af-
fects DNA methylation levels at these CpGs in all muscle
cells. However, it is also possible that the DNAmethylation dif-
ferences between young and old individuals are because of
differences in fibre type distribution and perhaps also

Figure 5 Age acceleration as a function of age in the muscle and the pan-tissue clocks. Here, we show the bias in age prediction depending on the age
of the individual. Using the difference between predicted and actual age (AAdiff), younger individuals show systematically epigenetic ages than their
real age, while older individuals show systematically older epigenetic ages than their real age. However, this bias is less pronounced in the muscle clock
and inexistent when using AAresid. FUSION, Finland-United States Investigation of NIDDM Genetics; LITER, Limb Immobilisation and Transcriptional/Epi-
genetic Responses; Gene SMART, Gene Skeletal Muscle Adaptive Response to Training.
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differences in satellite cell number and profiles. Slow- and fast-
twitch fibres have distinct DNA methylation profiles,39 and
older muscle tends to have a greater proportion of slow-
twitch fibres than young muscle.40 In addition, satellite cells
maintain their multipotent state via distinct DNA methylation
profiles,41 and both satellite cell numbers42 and DNA methyl-
ation profile43 change with age. The strength of this study lies
in the utilisation of datasets that contained both young and
older individuals from the general population; thus, it is likely
that the muscle clock captured these DNA methylation
changes because of fibre type changes with age. It was re-
cently shown that controlling for heterogeneity in
tissue/muscle fibre type reduces the number of physiological
trait associations,44 and it may also be the case that the epige-
netic clock developed herein predicts different ages in differ-
ent fibre types of a given individual. This uncertainty
surrounding the influence of different cell types on epigenetic
age does not pertain to skeletal muscle and is also a challenge
for virtually all epigenetic clocks, as highlighted in a recent,
very comprehensive review.45 This matter is further compli-
cated for skeletal muscle, as different muscle groups show var-
ied proportion of fibre types46 (e.g. ~80% of Type I fibres for
the soleus vs. 39% for the biceps brachii). It should be noted
that the muscle clock developed herein used DNAmethylation
profiles exclusively from the vastus lateralis muscle. It is un-
known whether the muscle clock performs well on samples

collected from other muscle groups, such as abdominal
muscle collected during surgery. Uncovering which DNA
methylation patterns change with age in fast-twitch fibres,
slow-twitch fibres, or in both fibres would be the next step
to further enhance precision in the estimate of muscle age
and in understanding how age affects muscle structure and
function.

Skeletal muscle follows a circadian rhythm whose phase
can be changed by environmental cues such as food, exercise,
and sleep.47 Importantly, epigenetic mechanisms are involved
in circadian rhythms, and some DNA methylation oscillations
were recently shown to happen at the same CpG sites that
show age-related DNA methylation shifts in mice.48 In the
datasets we used to develop the muscle clock, most biopsies
were taken in the morning in a fasted state, following a con-
trol diet for >24 h and exercise restriction for >48 h, which
limits short-term environmental influences on DNA methyla-
tion levels. However, some datasets containing middle-aged
and older individuals (GSE49908 and GSE38291) did not have
information on the conditions surrounding biopsy collection,
so there is the possibility that some of these oscillations in
DNA methylation are confounded with age in these datasets.
We foresee that as more DNA methylation profiles in skeletal
muscle are generated under controlled conditions and be-
come publicly available, the muscle clock will be updated
and gain in precision.

Figure 6 Differential DNA methylation with age in skeletal muscle. (A) Volcano plot of DNA methylation changes with age. Each point represents a
tested CpG (19 401 in total) and those highlighted in red were the differentially methylated positions (DMPs) significant at a false discovery rate
(FDR) < 0.005. The x axis represents effect size, expressed as differential methylation per year of age. The y axis represents statistical significance,
expressed as –log10(P value), so CpGs that are higher on the graph are more significant. (B) DNA methylation level as a function of age, for the
CpG in PIPOX that was in both the muscle and pan-tissue clocks and that showed one of the largest effect size. (C) Enrichment of DMPs in positions
with respect to CpG islands (left), and in chromatin states (right). Enrichment was tested with a Fisher’s exact test, adjusted for multiple testing. *FDR
< 0.005. CpG, cytosine-phosphate–guanine dinucleotide; TSS, TssAFlnk; ZNF, zinc-finger proteins.
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Conclusions

In conclusion, we have developed an advanced muscle-
specific epigenetic clock, using all known available datasets.
This clock is freely available on GitHub (https://github.com/
sarah-voisin/MEAT) as an R package (MEAT) for the scientific
community to calculate epigenetic age in their samples inter-
rogated with the Illumina HM technology (HM27, HM450,
and HMEPIC). This new clock significantly outperforms the
previous pan-tissue clock and can calculate the epigenetic
age in skeletal muscle with a mean accuracy of 4.9 ± 4.5 years
across 682 samples. This muscle clock will be of interest and
potential use to researchers, clinicians, and forensic scientists
working in the fields of skeletal muscle, chronic diseases, and
ageing. In the future, we intend to evaluate how environmen-
tal factors, such as exercise and diet, could influence ageing
via this newly developed clock.
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