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Plasma and tissue sulfur amino acid (SAA) availability are crucial for intracellular

methylation reactions and cellular antioxidant defense, which are important processes

during exercise and in recovery. In this randomized, controlled crossover trial among

eight elite male cyclists, we explored the effect of exhaustive exercise and post-exercise

supplementation with carbohydrates and protein (CHO+PROT) vs. carbohydrates

(CHO) on plasma and urine SAAs, a potential new marker of methylation capacity

(methionine/total homocysteine ratio [Met/tHcy]) and related metabolites. The purpose

of the study was to further explore the role of SAAs in exercise and recovery. Athletes

cycled to exhaustion and consumed supplements immediately after and in 30min

intervals for 120min post-exercise. After ∼18 h recovery, performance was tested

in a time trial in which the CHO+PROT group cycled 8.5% faster compared to

the CHO group (41:53 ± 1:51 vs. 45:26 ± 1:32min, p < 0.05). Plasma methionine

decreased by ∼23% during exhaustive exercise. Two h post-exercise, further decline

in methionine had occured by ∼55% in the CHO group vs. ∼33% in the CHO+PROT

group (pgroup× time < 0.001). The Met/tHcy ratio decreased by ∼33% during exhaustive

exercise, and by ∼54% in the CHO group vs. ∼27% in the CHO+PROT group

(pgroup× time < 0.001) post-exercise. Plasma cystathionine increased by ∼72% in the

CHO group and ∼282% in the CHO+PROT group post-exercise (pgroup× time < 0.001).

Plasma total cysteine, taurine and total glutathione increased by 12% (p = 0.03),

85% (p < 0.001) and 17% (p = 0.02), respectively during exhaustive exercise. Using

publicly available transcriptomic data, we report upregulated transcript levels of skeletal
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TABLE 2 | Sulfur amino acids and serine concentrations at arrival and post-exercise and time triala,b.

Arrival Post-EXH

Analytes, µmol/L Mean SD Mean SD P

Methionine 27.3 3.18 21.0 5.81 0.014

tHcy 9.25 3.51 10.65 3.59 0.012c

Met/tHcy 3.06 0.81 1.40 0.48 <0.001

Cystathionine, nmol/L 283 129 654 297 <0.001

tCys 241 30.4 278 48.5 0.030

Taurine 75.1 13.9 139 32.9 <0.001

tGSH 6.90 1.22 8.08 1.34 0.020

Serine 107 10.1 65.8 14.3 <0.001

Pre-TT 15min post-TT

Methionine 28.06 2.55 25.27 3.51 0.012

tHcy 9.14 3.17 9.57 1.99 0.07

Met/tHcy 3.31 0.83 2.71 0.55 0.012

Cystathionine, nmol/L 240.75 92.93 493.71 122.24 <0.001

tCys 242.78 34.65 276.59 30.66 0.14

Taurine 68.13 6.51 101.00 18.76 0.024

tGSH 6.75 0.59 7.97 1.24 0.33

Serine 106 19.1 69.1 8.66 0.016

aPlasma concentrations of amino acids upon arrival and immediately after cycling to exhaustion. Data are from the CHO visit of all participants.
bPost-EXH, post-exhaustive exercise; tHcy, total homocysteine; tCys, total cysteine; tGSH, total glutathione.
c In a model adjusting for body weight changes to exhaustive exercise, the effect on total homocysteine was attenuated and no longer significant.

FIGURE 3 | Changes in estimated marginal mean (standard error) methionine, total homocysteine and their ratio from arrival up to 120min post exhaustive exercise.

Derived from the linear mixed models. E, significant effect of exercise; T, significant group difference between groups over time; CHO, carbohydrate supplement drink;

CHO+PROT, carbohydrate and protein supplement drink; TT, time trial; S, supplement drink.

and explored effects on expression levels of genes related
to methionine uptake and metabolism. mRNA transcripts
of the large neutral amino acid transporter (LAT1) were

significantly upregulated after an acute exercise bout (SLC7A5:
Meta-analysis restricted maximum likelihood log2 fold-change:
0.45, FDR: 1.8e−07). In addition, transcript levels of MAT2A
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FIGURE 4 | Changes in estimated marginal mean (standard error) cystathionine, cysteine, taurine, glutathione and serine from arrival up to 120min post exhaustive

exercise. E, significant effect of exercise; T, significant group difference between groups over time; CHO, carbohydrate supplement drink; CHO+PROT, carbohydrate

and protein supplement drink; TT, time trial; S, supplement drink.
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TABLE 3 | Total urinary excretion of sulfur amino acids and serine during the testing perioda,b.

CHO CHO+PROT

Urinary amino acids, µmol/18h Mean SD Mean SD p

Methionine 2.96 1.0 2.89 0.92 0.81

tHcy 4.73 3.66 4.71 2.77 0.97

Cystathionine 22.3 16.7 32.8 18.5 <0.01

tCys 300 78.6 300 68.1 0.97

Taurine 1443 641 2124 1324 0.11

tGSH 1.0 0.3 1.3 0.5 0.03

Serine 523 88.5 575 117 0.10

a Total excretion of amino acids from immediately after the exhaustive exercise test and up to the performance test.
b CHO, carbohydrate supplement drink; CHO+PROT, carbohydrate and protein supplement drink; tHcy, total homocysteine; tCys, total cysteine; tGSH, total glutathione.

which catalyze the formation of S-adenosylmethionine were
significantly upregulated (log2 fold-change: 0.38, FDR 3.4e−07).
Transcript levels for all genes involved in SAA metabolism are
given in Supplementary Table 6.

DISCUSSION

Principal Findings
In this exploratory study, we show that plasma concentrations of
methionine and serine decrease after exhaustive exercise, whereas
plasma concentrations of the other SAAs increased. Main
findings are summarized in Figure 5. In the following paragraphs
we discuss our findings in light of the wider literature and outline
potential underlying mechanisms. Due to the exploratory nature
of the study, we note that the potential mechanisms are meant to
aid interpretation and generate hypotheses that may be pursued
in future studies, and not provide proof or definite explanations.

Plasma methionine continued to decrease during the recovery
period after CHO ingestion and was reduced by 55% after
120min recovery. Importantly, the methionine decrease was
attenuated in the CHO+PROT group, stabilizing at 17.7 µmol/L
compared to 12.4 µmol/L in the CHO group after 120min of
recovery. A similar observation was made for the Met/tHcy ratio,
a plasma indicator of methylation capacity, which was 2.23 in the
CHO+PROT group vs. 1.40 in the CHO group after 120min
of recovery. These novel findings are in agreement with our
previous study (Rustad et al., 2016) and provide additional data
showing the changes in SAA availability and metabolism during
exercise and recovery and subsequent exercise performance.
The present study also indicates that CHO+PROT ingestion
exerts profound effects on intracellular methylation capacity,
which may in part explain the benefits of protein intake in
the immediate exercise recovery phase (Williams et al., 2003;
Ferguson-Stegall et al., 2011b; Rustad et al., 2016; Sollie et al.,
2018; Dahl et al., 2020).

A 23% decrease in plasma methionine was observed after
exhaustive exercise, whereas plasma tHcy, tCys and cystathionine
increased. With regards to the exercise-induced decrease in
methionine, Lee et al. reported that an acute exercise bout
at 70% of VO2max significantly reduces plasma methionine
concentrations of sedentary males (Lee et al., 2018). Plasma

methionine concentrations have also been found to decline
after 120min of cycling at 60% of VO2max (Galloway et al.,
2008), and after cycling to exhaustion at 72% VO2max (Rustad
et al., 2016). However, limited or no decrease in plasma
methionine was reported for less extensive exercise (Forslund
et al., 2000; Venta et al., 2009). In contrast to plasma
methionine, tHcy concentrations have consistently been reported
to increase after acute exercise (Deminice et al., 2016), whereas
muscle methionine levels have been found to increase in
exercising humans and animals (Blomstrand and Saltin, 1999;
Ishikura et al., 2013). Taken together, the decrease in plasma
methionine and increase in its downstream metabolites suggest
that SAA metabolism is activated by exercise above a certain
intensity threshold, possibly due to increased tissue uptake and
metabolism and in response to oxidative stress.

SAA Response to Supplement Drinks
The continued decrease in plasma methionine observed after
CHO ingestion in the present study parallels the reductions in
plasma BCAA reported in previous studies (Rustad et al., 2016;
Sollie et al., 2018), suggesting that insulin response to the CHO
supplement may have facilitated the decrease in methionine
due to increased tissue uptake. Interestingly, one euglycemic
hyperinsulinemic clamp study in healthy men demonstrated that
plasma methionine decreased after insulin was raised (Tessari
et al., 2005). Compartmental modeling based on isotope dilution
techniques in the same study demonstrated a six-fold increase in
intracellular transmethylation reaction kinetics when insulin was
raised. This particular finding suggests that the observed decline
in plasma methionine and the Met/tHcy ratio in the CHO group
may in part be due to increased insulin affecting methionine
uptake and intracellular transmethylation reactions. Changes in
insulin in the present study was published in the original paper
(Sollie et al., 2018), and showed that insulin increased similarly
in both groups, if not slightly more in the CHO+PROT group.
The abovementioned activation of methionine metabolism after
exhaustive exercise may therefore have become reinforced by
insulin in the CHO group. In the CHO+PROT group, this
responsemay have been prolonged due to the persistent ingestion
of methionine and other SAA via the protein supplement.
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FIGURE 5 | The metabolism of sulfur amino acids with arrow indicators of change in plasma concentrations during exhaustive exercise and the supplementation

period. Solid arrows represent changes after exhaustive exercise, dashed arrows represent responses to carbohydrate + protein supplementation vs. carbohydrate

supplementation.

Potential Mechanisms
Methionine, Homocysteine, Methylation, and

Exercise
The Met/tHcy ratio may be used as an indicator of methylation
capacity as suggested previously (Hooshmand et al., 2019;
Calderon-Larranaga et al., 2020). The observed decrease in
methionine and increase in tHcy post-exhaustive exercise
may thus reflect increased transmethylation in which DNA,
histones and other macromolecules are methylated in response
to exercise. Indeed, one animal experiment showed that
plasma methionine availability is an important determinant of
intracellular methylation capacity (Mentch et al., 2015), and post-
exercise elevations in tHcy is thought to reflect increased methyl
flux in tissues (Riberio et al., 2018). It has been reported that acute
exercise induced immediate hypomethylation of several genes
in skeletal muscle biopsies obtained from healthy individuals

(Barres et al., 2012). These findings tended to be reversed 3 h
post-exhaustive exercise, implying compensatory re-methylation
of promoter regions in the recovery phase. In addition,
methylome studies in humans show that both hypermethylation
and hypomethylation occur following exercise regimens (Turner
et al., 2019), and that specific promoters of exercise-responsive
genes such as PGC1α can be both hypomethylated (Barres
et al., 2012) and hypermethylated (Lochmann et al., 2015) after
exercise. Notably, plasma methionine was reduced by more than
50% 120min post-exhaustive exercise in the CHO group of the
present study. Considering the dependency of DNA and histone
methyltransferases on plasma methionine availability (Petrossian
and Clarke, 2011) and the positive effects of insulin on tissue
methionine uptake and transmethylation reactions (Tessari et al.,
2005), increased tissue uptake and flux through transmethylation
reactions in response to exercise and CHO ingestion may be
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potential mechanisms underlying our findings with respect to the
Met/tHcy ratio.

It is currently not known whether Met/tHcy reflects
cellular methylation capacity similar to the ratio of S-
adenosylmethionine to S-adenosylhomocysteine, although
our observations seem to reflect effects of exercise on
S-adenosylmethionine, S-adenosylhomocysteine and
homocysteine in animals leading to increase flux through
the transmethylation pathway (Riberio et al., 2018).
Unfortunately, determination of S-adenosylmethionine and
S-adenosylhomocysteine in plasma require specialized methods
for sample collection (Olsen et al., 2018), which was not
performed in the present study. Measurement of these analytes
in addition to tissue biopsies for methylome screening should
be considered in future studies in order to further unravel the
role of methionine and SAA metabolism in exercise, recovery
and performance.

Transsulfuration, Glutathione, and Exercise
The transsulfuration pathway, which catalyzes the conversion
of homocysteine to cystathionine and cysteine, is activated by
oxidative stress and cellular S-adenosylmethionine (Brosnan and
Brosnan, 2006). Notably, methionine and S-adenosylmethionine
increase in plasma shortly after intake of a methionine-rich
meal (Olsen et al., 2020), and considering the importance of
their plasma availability for intracellular processes (Mentch
et al., 2015), intake of methionine-rich protein sources such
as whey, may induce intracellular transsulfuration. Supporting
this notion, cystathionine, the product of the rate-limiting
step of transsulfuration, increased dramatically in plasma after
exhaustive exercise in the present study and a continued increase
was observed throughout the 120min recovery period in the
CHO+PROT group. In addition, serine, which condenses with
homocysteine to produce cystathionine, decreased sharply after
exhaustive exercise. One explanation for this hypothesized
increase in transsulfuration is that this pathway provides
substrates for synthesis of the major antioxidant glutathione,
which may be in demand during and after exhaustive exercise
(Radak et al., 2008, 2013). In the present study, plasma
tGSH increased after exhaustive exercise, which is partly in
line with previous studies. One study showed that oxidized
glutathione increased in the plasma of cyclists following a
mountain stage (Aguilo et al., 2005), whereas it decreased in
plasma of cyclists after a flat race stage (Cordova et al., 2015).
Although we did not observe increased plasma concentrations
of tGSH during either intervention, urinary excretion of both
cystathionine and tGSH was elevated in the CHO+PROT
group the following morning. Overall, these results indicate
altered SAA metabolism in favor of transsulfuration, possibly to
provide sufficient glutathione in response to exercise. Although
we have insufficient data on the redox systems, we note that
homocysteine re-methylation is inhibited by oxidative stress
whereas both reactions of transsulfuration is activated by
it (Joseph and Loscalzo, 2013; Sbodio et al., 2019). Future
studies assessing the role of exercise-induced oxidative stress
on SAA and the relationship with redox systems should aim

to measure reduced and oxidized fractions of glutathione in
blood, hippuric acid in urine and components of the thioredoxin
and nicotinamide dinucleotide (NAD) systems. Importantly,
methionine metabolism can provide substrates for oxidative
phosphorylation and NAD metabolism has been suggested to
link methionine metabolism with the tricarboxylic acid cycle in
a recent study (Lozoya et al., 2018).

Taurine and Exercise
There was an ∼85% increase in plasma concentrations of
taurine after exhaustive exercise whereas no effects were observed
between the supplement groups. Taurine production is activated
when cysteine increases and is one of the main pathways
for cysteine degradation catalyzed by cysteine dioxygenase
in the liver (Stipanuk, 2004; Brosnan and Brosnan, 2006).
The hypothesized increase in transsulfuration and subsequent
cysteine production may thus have contributed to increased
plasma concentrations of taurine. In addition, an antioxidant
role for taurine has been suggested in exercise (Spriet and
Whitfield, 2015) and hepatic taurine production and release may
be increased in response to exercise-induced oxidative stress.
However, experimental studies have shown that overexpression
of cysteine dioxygenase depletes glutathione pools (John et al.,
2007) rendering this mechanism implausible in the context
of exercise-induced oxidative stress where glutathione may
be in demand. Considering that skeletal muscle contains
large amounts of taurine, another potential explanation could
be that some taurine leaks from muscle during exercise
(Spriet and Whitfield, 2015). However, human skeletal muscle
taurine contents remain stable during 120min of exercise
at 60% VO2max (Galloway et al., 2008), which further
complicates interpretation. It should be noted that the taurine
response may depend on intensity and duration of exercise,
and that the exhaustive exercise bout in our study may
have been more physically demanding compared to earlier
trials (Galloway et al., 2008). There were no effects of the
supplements on taurine concentrations in the recovery phase.
Without further data, it is difficult to assess the importance
of changes in taurine concentrations on performance the
following day.

Expression of Genes in SAA Metabolism in Exercise
Co-ingestion of CHO+PROT may improve consecutive-day
performance (Rustad et al., 2016; Sollie et al., 2018) and VO2max
over time (Ferguson-Stegall et al., 2011a) by influencing the
transcription of several genes in skeletal muscle (Rowlands
et al., 2011). Indeed, data included in this article from
external sources (Pillon et al., 2020) showed that genes related
to amino acid uptake (SLC7A5/SLC3A2) and formation of
S-adenosylmethionine (MAT2A), the primary methyl donor,
were upregulated after acute exercise. These data support our
hypothesis that methionine and SAA metabolism including
methylation reactions may be involved in post-exercise recovery.
Genes in transsulfuration were not increased in skeletal muscle
after exercise. This finding is not surprising since transsulfuration
as well as glutathione and taurine synthesis mainly takes place
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in the liver and because regulation of several enzymes occur
on the protein level (Stipanuk, 2004; Brosnan and Brosnan,
2006). These data were included with the purpose of supporting
our findings with more information beyond plasma and urine,
as we do not have tissue available for analysis. We note
that these data are not intended to be explanatory for our
findings as they were generated from different studies with
differing design.

Strengths and Limitations
The main strength of this study is its randomized crossover
design, which is essential for minimizing bias and the exercise
studies were conducted in a rigorous manner. The CHO
group in this study is believed to serve as an adequate
control group. However, the lack of a pure placebo condition
may be considered a limitation e.g., considering the potential
mediating effects of the insulin response which would not
be expected in a placebo arm. The small sample size
and lack of female participants limits statistical power and
generalizability, respectively, and in line with this we emphasize
that the aim of the study was strictly exploratory and not
inferential, highlighting the need for future studies specifically
designed to assess SAA metabolism in exercise. For example,
plasma concentrations can reflect several processes including
externalization, internalization, flux and dietary intake, and thus
there is a need for studies that are specifically designed to
investigate SAA exchange between compartments and organs
during exercise. In addition, it should be mentioned that
the concentrations of SAA also depend on other unmeasured
factors such as choline, betaine and vitamins B6, B9, and
B12, which may have affected the reported results. The SAAs
were measured in stored samples. However, even at −25◦C,
the stability of most of the measured analytes are generally
acceptable (Hustad et al., 2012). Another consideration is that
the plasma concentrations can be affected by dehydration, as
genes in methionine metabolism are affected by changes in
blood volume (Hoffmann et al., 2013). However, adjusting
analyses for body weight loss during exhaustive exercise only
minimally affected the results. Finally, it would have been useful
to measure total excretion of the amino acids before the testing
period to assess the effects of exercise on total excretion vs.
resting conditions.

CONCLUSIONS

In this exploratory study, we show that plasma concentrations of
methionine and an indicator of methylation capacity, Met/tHcy,
decrease after exhaustive exercise, and continue to decrease
if protein is not provided in the immediate recovery phase.
Together with the observed increase in plasma concentrations
of other SAAs, this suggests that methionine metabolism may
be activated by exercise with potential ramifications for recovery
and subsequent performance if post-exercise protein is not
provided. Our findings underline that ingestion of whole-protein
sources after exercise may be preferable to supplements with

individual or a few amino acids, consistent with other results.
Given the observed changes in SAA concentrations with the
potential to influence SAA metabolism, our results suggest
that the beneficial effect of whole protein could be related to
its content of methionine. Future studies should be carried
out in a larger sample and aim to characterize mechanisms
involved in methylation processes and redox status that might
impact exercise recovery, and how post-exercise protein nutrition
modifies the effects of exercise on cellular methylation capacity.
Preferably, tissue data should be collected in order to further
address the relevance of the proposed mechanisms.
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