Working Group 3: The classification of non-arthritic hip-related pain in adults

SUPPLEMENTARY MATERIAL: Summary of the literature review

Themes to explore for consensus include (i) imaging = morphology (threshold values, type and views); (ii) diagnostic tests to use; including symptoms and clinical signs.

SUMMARY: Femoroacetabular Impingement (FAI) Syndrome

Definition

FAI was initially defined as the biomechanical abutment of the femoral head-neck junction against the acetabular rim.¹ The term FAI syndrome was later proposed² and subsequently defined as "a motion-related clinical disorder of the hip with a triad of symptoms, clinical signs and imaging findings and represents symptomatic premature contact between the proximal femur and the acetabulum".³ The specific clinical utility of these three factors has not been clearly outlined previously.

Epidemiology

The prevalence of FAI syndrome in the general and athletic populations are variable and remain unclear.⁴⁻⁶ The prevalence of morphology typically seen in FAI syndrome is better understood. There are three types of morphology associated with FAI syndrome. These are 1) cam morphology, which refers to extra bone formation on the head neck junction of the femur; 2) pincer morphology, which refers to a deep or retroverted acetabulum; and 3) mixed morphology where both cam and pincer are found ⁷. The prevalence of cam morphology has been reported at 23% in asymptomatic non-athletes ⁵⁶, 49% in symptomatic non-athletes⁶, and 66% in athletes regardless of symptoms ⁵⁶.

Diagnosis – symptoms

The primary symptom of FAI syndrome is motion-related or position-related pain in the hip or groin. Pain may also be felt in the back, buttock or thigh.⁸ In addition to pain, patients may also describe clicking, catching, locking, stiffness, restricted range of motion or giving way.³ Absence of hip or groin pain can help exclude a diagnosis of FAI syndrome. These symptoms may also be related to co-existing labral and chondral pathology (see labral and chondral sections and appendix 2).

Diagnosis – clinical signs

According to the Warwick agreement on FAI syndrome,³ the "diagnosis of FAI syndrome does not depend on a single clinical sign". Range of motion (ROM) and muscle strength vary and their usefulness in diagnosing FAI syndrome is unclear. Diagnostic accuracy values are limited to clinical special tests.⁹

Clinical special tests are commonly used for diagnostic purposes. The flexion-adductioninternal rotation (FADIR) and flexion-internal rotation tests are more useful for ruling out than ruling in FAI syndrome (high sensitivity, low specificity) in meta-analyses (Table 1).⁹

Measure SN/SP (Reference +LR/-LR Standard)		Post-test probability shift with a (+) test result	Post-test probability shift with a (-) test result	(+)/(-) probability shift ¹⁰	Study Quality ¹¹
Meta-analysis					
FADIR (MRA)	0.94/0.09	Pretest=84%	Pretest=84%	Very small/	Low
	1.02/0.45	Posttest=83%	Posttest=78%	Small	
FADIR 0.99/0.0		Pretest=90%	Pretest=90%	Very small/	Low
(Surgery)	1.04/0.14	Posttest= 90%	Posttest=56%	Small	
Flexion IR	0.96/0.25	Pretest=87%	Pretest=87%	Very small/	Low
(MRA)	1.28/0.15	Posttest=90%	Posttest=	Moderate	
			52%		
Single Studies					
Bilateral LE	0.75/0.41	Pretest=30%	Pretest=30%	Very small for	High
Squat	1.3/0.61	Posttest=35%	Posttest=21%	both	
(maximum					
depth)					

TABLE 1. Diagnostic accuracy investigating clinical special tests for the diagnosis of FAI syndrome and/or labral tear (data from Reiman et al. 2015⁹ except FPAW test).

(MRI or MRA) ¹²					
FABER Test ¹³	0.60/0.18/	Pretest=32%	Pretest=32%	Very small for	Low
(IA injection>50% relief)	0.73/2.2	Posttest=26%	Posttest=51%	both	
Scour Test	0.50/0.29/	Pretest=22%	Pretest=22%	Very small for	Low
(IA	0.71/1.72	Posttest=16%	Posttest=33%	both	
injection≥80%					
relief)					
Thomas Test ¹⁴	0.89/0.92/	Pretest=59%	Pretest=59%	Large/	Low
(Arthroscopy)	11.1/0.12	Posttest=94%	Posttest=15%	Moderate	
FPAW Test ¹⁵	0.61/0.56/	Pretest=55%	Pretest=55%	Very small for	High
(History, PE, radiographs)	1.4/0.7	Posttest=63%	Posttest=46%	both	

IR, internal rotation; FADIR, flexion adduction internal rotation; MRA, magnetic resonance arthrography; MRI, magnetic resonance imaging; LE, lower extremities; SN, sensitivity; SP, specificity; +LR, positive likelihood ratio; -LR, negative likelihood ratio; FPAW, foot progression angle walking; PE, physical examination; IA, intra-articular; (+), positive; (-), negative

Diagnosis – imaging

Radiographs (anteroposterior pelvis and lateral femoral head-neck views) are used to evaluate bony morphology, while cross-sectional imaging, such as magnetic resonance imaging (MRI), magnetic resonance arthrography (MRA) and computed tomography (CT), is used to examine both morphology and co-existing labral and chondral pathology (see sections below). There is currently no agreement on a threshold value to define either cam morphology or pincer morphology. Pincer morphology is often quantified by the centre edge angle (LCEA) and cam morphology is mostly quantified by the alpha angle (AA). Alpha angle threshold values of 50⁰ to 55⁰ were the most commonly utilised values in surgical indication¹⁶ and outcome studies¹⁷ while larger threshold values (e.g. >60⁰) are suggested to be more representative of FAI syndrome (Table 2).^{18 19}

TABLE 2. Diagnostic accuracy of single studies investigating diagnostic imaging for the diagnosis of FAI syndrome (data from Reiman et al. 2017²⁰). All studies were of High quality.¹¹

Measure	SN/SP +LR/-LR	Post-test probability with a (+) result	shift test	Post-test probability shift with a (-) test result	(+)/(-) probability shift ¹⁰

FAI syndrome Diagnosis (Cross-table Lateral Radiographic Imaging)										
Yamamoto et	87/89	Pretest=46%	Pretest=46%	Moderate						
al. (2014) ²¹	7.9/0.15	Posttest=87%	Posttest=11%	for both						
(Cam: α angle										
> 68.2 ⁰)										
FAI syndrome D	Diagnosis (1.5T MI	RA)								
Aprato et al	99/94	Pretest= 83%	Pretest= 83%	Large for						
(2013) ²²	16.5/0.02	Posttest= 98%	Posttest=10%	both						
(Cam defined										
as α angle										
>50 ⁰)										
FAI syndrome D	Diagnosis (3.0T MI	RA)								
González Gil	98/32	Pretest= 72%	Pretest= 72%	Very small/						
et al. (2015) ²³	1.4/0.07	Posttest= 78%	Posttest=15%	Large						
(Cam										
definition NR)										
FAI syndrome o	f Dynamic Mecha	nical Impingement Du	uring Testing (4D CT)							
Wassilew et	Anterior									
al. (2013) ²⁴	Impingement									
	95/88 7.9/0.05	Pretest= 90%	Pretest= 90%	Moderate/						
	Postorior	Posttest= 98%	Posttest= 31%	Large						
	Impingement			_						
	mpingement									
	97/75									
	3.9/0.04	Pretest= 70%	Pretest= 70%	Small/						
		Posttest= 90%	Posttest= 9%	Large						

NR, not reported; MRA, magnetic resonance arthrography; MRI, magnetic resonance imaging; CT, computed tomography; α , alpha; SN, sensitivity; SP, specificity; +LR, positive likelihood ratio; -LR, negative likelihood ratio; (+), positive; (-), negative;

Future prospective studies should determine the value of quantifying imaging morphology outcome measures (e.g. alpha angle as continuous variable in prognosis research) or with arbitrary cut-off values.

For FAI syndrome:

• The ability of symptom reports from the active adult to help rule in or out this condition is unknown.

- The ability of clinical signs favors ruling out versus ruling in FAI syndrome in studies of primarily low quality and are a caution recommendation.
- Diagnostic imaging:
 - 1.5T MRA (with a positive test) and, to a lesser extent, cross-table lateral radiographs are recommended imaging modalities for FAI syndrome.
- High pre-test probability (due to the populations studied e.g. surgical populations), large post-test probability confidence intervals and low study quality limit the confidence of any recommendations⁹ regarding the clinical utility of FAI syndrome symptoms, clinical tests or diagnostic imaging.
- Future high-quality studies in non-surgical cohorts are necessary to determine the value of the use of *symptoms, clinical signs and diagnostic imaging* to determine the actual presence/absence of FAI syndrome in patients suspected to have this condition.

Box 1. Literature consensus regarding clinical utility of *symptoms, clinical signs and diagnostic imaging* for the determination of *FAI syndrome* presence/absence.

SUMMARY: Acetabular dysplasia and/or hip instability

Definition

In the context of this review, acetabular dysplasia and/or hip instability addresses the dysplastic appearance of the acetabulum in active adults. Acetabular dysplasia refers to misalignment between the femoral head and the acetabulum secondary to changes in their shape, size, and orientation,²⁵ which may result in instability and overload of the acetabular rim during normal activities.^{26 27} Acetabular dysplasia was traditionally defined by imaging cut-off values that have lacked consistency.

Hip instability is defined as extra-physiological hip motion that is associated with pain and functional impairment.²⁸ It is a multi-factorial entity and encompasses a broad range of causes including trauma, generalized ligamentous laxity, collagen disorders, bone abnormalities and soft tissue laxity.²⁹ Diagnosing hip instability can be challenging due to

lack of specific signs and symptoms as well as subtle presentations.³⁰ At present, there is no established objective or radiological signs specific to hip instability.³¹

Epidemiology

The prevalence of acetabular dysplasia in adults is 4 to 31% in symptomatic populations and 1.7 to 20% in the general population.³² Prevalence varies according to gender (2 to 4 times increased relative risk in females), ethnicity or which imaging threshold values are used. ³³⁻³⁷

Diagnosis – symptoms

Symptoms of acetabular dysplasia and/or hip instability are not well defined, but include insidious onset of groin and lateral hip pain and a loss of function (e.g. descending/ascending stairs, squatting activities, sport- and work-related activities).³⁸

The clinical utility of symptoms is currently unknown for determination of acetabular dysplasia and/or hip instability existence/non-existence; even anecdotal evidence regarding symptoms is limited.

Box 2. Literature consensus regarding clinical utility of *symptoms* for the determination of *acetabular dysplasia and/or hip instability* presence/absence.

Diagnosis – clinical signs

Clinical special tests are commonly used to diagnose acetabular dysplasia and/or hip instability; however, their clinical utility is limited when investigated in high quality studies. (Table 3)

TABLE 3. Diagnostic accuracy of single studies investigating clinical special tests for diagnosis of dysplasia/instability (data from Reiman et al. 2018 (in press))

Measure (Reference Standard)	SN/SP	+LR/-LR	Post-test probability shift with a (+) test result	Post-test probability shift with a (-) test result	(+)/(-) probability shift ¹⁰	Study Quality ¹¹		
AB-HEER tes	t							
Норре	80/ 89	7.6/0.22	Pretest=57%	Pretest=57%	Moderate/	Low		
(2017) ³⁹			Posttest=91	Posttest=22	Small			
(Surgery)			%	%				
Prone Instability Test								

Hoppe (2017) ³⁹ (Surgery)	34/ 98	15.9/0.6 8	Pretest=57% Posttest=95 %	Pretest=57% Posttest=47 %	Large/ Very small	Low
HEER Test						
Hoppe (2017) ³⁹ (Surgery)	71/ 85	4.8/0.34	Pretest=57% Posttest=86 %	Pretest=57% Posttest=31 %	Small for both	Low
Foot Progres	ssion Angl	e Walking	Test			
Ranawat (2017) ¹⁵ *	67/70	2.2/0.5	Pretest=27% Posttest=45 %	Pretest=27% Posttest=15 %	Small for both	High
FABER Test						
Ranawat (2017) ¹⁵	54/90	5.4/0.5	Pretest=27% Posttest=67 %	Pretest=27% Posttest=16 %	Moderate/ Small	High

SN, sensitivity; SP, specificity; (+)LR, positive likelihood ratio; -LR, negative likelihood ratio; AB-HEER, abduction–hyperextension–external rotation; HEER, hyperextension–external rotation; FABER, flexion, abduction, external rotation; *, reference standard=combination of patient history, physical examination and radiographs; (+), positive; (-), negative;

Box 3. Literature consensus regarding clinical utility of *clinical signs* for the determination of *hip instability* presence/absence.⁴⁰

Diagnosis – imaging

There are varying imaging definitions of acetabular dysplasia. The lateral and/or anterior centre-edge angle (CEA), acetabular index and Shenton line sign have been used. There is no agreement on threshold values to define acetabular dysplasia. A lateral CEA of <20° and <25° are the most widely used radiographic cut-off values to define acetabular dysplasia and borderline dysplasia, respectively.⁴⁰ Studies examining the diagnostic utility of imaging for acetabular dysplasia most commonly use AP pelvic radiographs.⁴¹ (Table 4)

TABLE 4. Diagnostic accuracy of single studies investigating diagnostic imaging for diagnosis of dysplasia/instability (data from Reiman et al 2018 (in press))

Measure (Reference Standard)	SN/SP	+LR/-LR	Post-test probability shift with a (+) test result	Post-test probability shift with a (-) test result	(+)/(-) probability shift ¹⁰	Study Quality ¹¹
Crossover Sig	n				-	
Bellaïche	23/84	1.4/0.92	Pretest=45%	Pretest=45%	Very small	Low
(2010) ⁴²			Posttest=55%	Posttest=44%	for both	
(Arthroscan						
and/or MRI)						
Iliofemoral Lir	ne [bord	erline dysp	lasia (15 to 22% r	medialization)]		
Kraeutler	62/89	5.6/0.43	Pretest=19%	Pretest=19%	Moderate/	Low
(2017) ⁴³			Posttest=56%	Posttest=9%	Small	
(AP Pelvis						
radiograph)						
Iliofemoral Lir	ne [frank	dysplasia	(>22% medializat	ion)]		
Kraeutler	77/94	13/0.24	Pretest=17%	Pretest=17%	Large/	Low
(2017) ⁴³			Posttest=73%	Posttest=5%	Small	
(AP Pelvis						
radiograph)						
Shenton Line	[borderl	ine dysplas	ia (15 to 22% me	dialization)	_	
Kraeutler	4/97	1.2/0.99	Pretest=19%	Pretest=19%	Very small	Low
(2017) ⁴³			Posttest=22%	Posttest=18%	for both	
(AP Pelvis						
radiograph)						
Shenton Line	[frank dy	/splasia (>2	2% medialization	ו)		
Kraeutler	16/99	16/0.85	Pretest=17%	Pretest=17%	Large/	Low
(2017) ⁴³			Posttest=77%	Posttest=15%	Very small	
(AP Pelvis						
radiograph)						
Shenton Line	(acetabu	ılar dysplas	sia)			
Rhee	83/98	53/0.17	Pretest=50%	Pretest=50%	Large/	Low
(2011) ⁴⁴			Posttest=91%	Posttest=22%	Moderate	

(AP Pelvis									
radiograph)									
Iliocapsularis-to-rectus femoris ratio (cross-sectional area)									
Haefeli	71/90	7.1/0.32	Pretest=53%	Pretest=53%	Moderate/	Low			
(2015) ⁴⁵			Posttest=89%	Posttest=26%	Small				
(MRI)									
FEAR Index (5	⁰)								
Wyatt	78/80	3.9/0.27	Pretest=80%	Pretest=80%	Small for	Low			
(2017) ⁴⁶			Posttest=94%	Posttest=51%	both				
(AP Pelvis									
radiograph									
and MRA)									

SN, sensitivity; SP, specificity; LR: likelihood ratio; NPV/PPV: negative and positive predictive value; NR= not reported; CI, confidence interval; FEAR, femoro-epiphyseal acetabular roof; AP, anteroposterior; MRI, magnetic resonance imaging; MRA, magnetic resonance arthrography; (+), positive; (-), negative;

- Imaging has greater capability to help rule in acetabular dysplasia than rule it out.
- The Shenton line and iliofemoral line signs have the strongest diagnostic utility, with high magnitude and precision.
 - As all included studies were of low quality, we suggest exercising caution when interpreting their clinical utility until findings are replicated in high quality studies.

Box 4. Literature consensus regarding clinical utility of *diagnostic imaging* for the determination of *acetabular dysplasia* presence/absence.⁴⁰

SUMMARY: LABRAL CONDITIONS

Definition

The anterior and superior portions of the acetabular labrum are the most innervated portions, producing deep hip-related pain and pressure sensation.⁴⁷ The labrum functions as a sensitive shock absorber, joint lubricator, seal to improve stability and pressure distributor, resisting motion of the femoral head within the acetabulum.⁴⁷ These motions potentially disrupt the labrum, which may destabilize the hip joint.^{48 49} Labral lesions are classified according to their location, morphology, etiology and histological analysis of cadaveric specimens.⁴⁷

9

Epidemiology

Labral pathology (often incidental findings) include tears, degeneration, and hypertrophy and are common in people with hip pain [62%, 95% CI (47% to 75%)] and without hip pain [54%, 95% CI (41% to 66%)].⁴ Low quality of evidence, lack of direct comparison between asymptomatic and symptomatic groups, and large confidence intervals reduce the certainty of these estimates. Labral pathology was present in 79% of patient hips in post FAI syndrome-surgical outcome studies.¹⁷ Labral pathology can exist in isolation, but commonly co-exist with both FAI syndrome and acetabular dysplasia and/or hip instability.

Diagnosis – symptoms

Mechanical symptoms such as groin pain with clicking or locking may indicate labral pathology/are common in patients with labral pathology.¹⁷

The clinical utility (ability of a particular symptom to shift pre- to post-test probability) is currently unknown despite widespread acceptance and recommendation of use for pathology existence/non-existence.

Box 5. Literature consensus regarding clinical utility of *symptoms* for the determination of *labral findings* presence/absence.

Diagnosis – clinical signs

The same clinical special tests that are used to diagnose FAI syndrome are commonly used to diagnose labral conditions, as these conditions often co-exist. The FADIR and flexion-internal rotation tests can be useful to rule out a labral condition (high sensitivity), however high pretest probability due to populations studied, and low study quality limits confidence.⁹ Future high quality studies in non-surgical cohorts are necessary. Refer to Figure 1 for magnitude and precision of Thomas test (patient supine on the examination table and holds the knee of the uninvolved limb to their chest, while allowing the involved limb to lie flat).

• The Thomas test has strong diagnostic utility, especially with a positive test result (recommended).

 Single study examination in a surgical setting may limit its clinical utility and we suggest further investigation of this test to determine actual clinical utility.

Box 6. Literature consensus regarding clinical utility of *clinical signs* for the determination of *labral conditions* presence/absence.

Diagnosis – imaging

TABLE 5: Diagnostic accuracy (meta-analyses) investigating diagnostic imaging for diagnosis of acetabular labral tear (data from Reiman et al. 2017²⁰) (All studies were of High quality)¹¹ and with reference standard of surgery

Measure	SN/SP +LR/-LR	Post-test probability shift with a (+) test result	Post-test probability shift with a (-) test result	(+)/(-) probability shift ¹⁰
MRI	0.71/0.60/	Pretest=90%	Pretest=90%	Very small for
(1.5T)	1.18/0.78	Posttest=95%	Posttest=81%	both
MRI	0.72/0.76/	Pretest=76%	Pretest=76%	Small/
(3.0T)	2.03/0.51	Posttest=90%	Posttest=54%	Very small
MRA	0.88/0.59/	Pretest=76%	Pretest=76%	Very small/
(1.5T)	1.91/0.20	Posttest=88%	Posttest=39%	Small
MRA	0.89/0.79/	Pretest=75%	Pretest=75%	Small/
(3.0T)	3.21/0.15	Posttest=93%	Posttest=71%	Moderate
CTA	0.91/0.89/	Pretest=70%	Pretest=70%	Moderate for
	6.3/0.11	Posttest=95%	Posttest=20%	both
US	0.66/0.65/	Pretest=67%	Pretest=67%	Very small for
	1.86/0.56	Posttest=79%	Posttest=48%	both

SN, sensitivity; SP, specificity; (+)LR, positive likelihood ratio; -LR, negative likelihood ratio; T, tesla; CI, confidence interval; MRI, magnetic resonance imaging; MRA, magnetic resonance arthrography; CTA, computed tomography arthrogram; US, ultrasound; (+), positive; (-), negative

 All included studies examining imaging for labral conditions were of high quality and were limited to surgical populations.²⁰

Box 7. Literature consensus regarding clinical utility of *imaging* for the determination

of *labral conditions* presence/absence.

SUMMARY: CHONDRAL CONDITIONS

Definition

The femoral head and acetabular articular surfaces are covered by a thin layer of hyaline cartilage that provides a low friction environment for hip joint movement.⁵⁰ Chondral pathology refers to lesions in the intra-articular cartilage lining of the acetabulum and/or the femoral head.

Epidemiology

Chondral pathology are common findings in patients undergoing surgery for hip-related pain. However, the prevalence has been variable ranging from 37% to 88%.^{17 51 52} Chondral pathology are more prevalent in individuals with hip pain [64%, 95%CI (59% to 69%)] compared to those without pain [12%, 95%CI (7% to 21%)],⁴ suggesting a relationship between pain and chondral pathology. Little is known of the relationship between chondral pathology and future development of hip osteoarthritis (OA).

Diagnosis – symptoms

- The relationship between symptoms and isolated chondral pathology is unclear.
- The clinical utility (ability of a particular symptom to shift pre- to post-test probability) is currently unknown for determining the existence / non-existence of chondral pathology.
- Current knowledge relates to FAI syndrome with co-existing chondral pathology, where symptoms are similar to that of isolated FAI syndrome (hip and groin pain with possible mechanical symptoms).

Box 8. Literature consensus regarding clinical utility of *symptoms* for the determination of *chondral conditions* presence/absence.

Diagnosis – clinical signs

 The relationship between clinical signs and chondral pathology is also unclear, but is likely to reflect that of FAI syndrome and labral pathologies as these conditions often co-exist.^{17 51 52}

Box 9. Literature consensus regarding clinical utility of *clinical signs* for the determination of *chondral conditions* presence/absence.

Diagnosis – imaging

TABLE 6: Diagnostic accuracy (meta-analyses) investigating diagnostic imaging for diagnosis of chondral findings (data from Saied et al. 2017⁵³)

Measure (Referenc e Standard)	SN/SP		+LR/-LR	Post-test probability shift with a (+) test result	Post-test probability shift with a (-) test result	(+)/(-) probability shift ¹⁰	Risk of bias⁵ ₄
Direct	0.75	(0.69-	3.6/0.32	Pretest=54	Pretest=54	Small for both	High
MRA	0.80)/0	.79(0.7		%	%		
(Surgery)	3-0.85)			Posttest=81	Posttest=27		
				%	%		
Indirect	0.72	(0.47-	9.0/0.30	Pretest=60	Pretest=60	Moderate/sm	High
MRA	0.90)/0	.92		%	%	all	
(Surgery)	(0.62-1	.00)		Posttest=93	Posttest=31		
				%	%		
MRI	0.76	(0.65-	2.71/0.3	Pretest=64	Pretest=64	Small for both	High
(Surgery)	0.85)/0	.72	3	%	%		
	(0.57-0	.84)		Posttest=87	Posttest=37		
				%	%		

- There are semi-quantitative methods of measuring chondral pathology for research purposes, using MRI.^{55 56}
- The diagnostic accuracy of MRI and MRA has been examined in a single metaanalysis including high risk of bias studies.
- The diagnostic utility of imaging for the determination chondral findings relative to pathology is limited.⁵³

• Similar to previous disease entities discussed, these studies were conducted in high prevalence populations.

Box 10. Literature consensus regarding clinical utility of *imaging* for the determination of *chondral conditions* presence/absence.

SUMMARY: LIGAMENTUM TERES CONDITIONS

Definition

The ligamentum teres is an intra-articular pyramidal-shaped ligament with unknown nociceptive capacity.^{57 58}

Epidemiology

Limited evidence suggests ligamentum teres pathology are more prevalent in those with pain than those without, with half of patients undergoing arthroscopy for hip-related pain having ligamentum teres pathology as an incidental finding.⁴

Diagnosis – symptoms

- The clinical utility of a particular symptom is currently unknown for determination of ligamentum teres conditions existence/non-existence.
- Limited evidence suggests pain and mechanical symptoms (popping, locking, catching and occasional giving way) are present in those with ligamentum teres tears.⁴

Box 11. Literature consensus regarding clinical utility of *symptoms* for the determination of *ligamentum teres conditions* presence/absence.

Diagnosis – clinical signs

TABLE 7: Diagnostic accuracy (single study) investigating diagnostic imaging for diagnosis of

 ligamentum teres tear

Measure (Reference Standard)	SN/SP	+LR/-LR	Post-test probability shift with a (+) test result	Post-test probability shift with a (-) test result	(+)/(-) probability shift ¹⁰		Study Quality ¹¹
Ligamentum	teres tes	t					
O'Donnell	90/ 85	6.5/0.11	Pretest=47%	Pretest=47%	Moderate	for	High
(2014) ⁵⁹			Posttest=83	Posttest=9%	both		
(Surgery)			%				

SN, sensitivity; SP, specificity; (+)LR, positive likelihood ratio; -LR, negative likelihood ratio; (+), positive; (-), negative

• A positive and negative ligamentum teres (LT) test are both useful to rule in and

rule out the presence of pathology; albeit limited to moderate magnitude.

 \circ $\;$ These results were from a single, high quality study.

Box 12. Literature consensus regarding clinical utility of *clinical signs* for the determination of *ligamentum teres conditions tear* presence/absence."⁵⁹

Diagnosis – imaging

TABLE 8: Diagnostic accuracy (meta-analyses) investigating diagnostic imaging for diagnosisof ligamentum teres tear (data from Shakoor et al. 2018)⁶⁰

Measure (Referenc e Standard)	SN/SP	+LR/-LR	Post-test probability shift with a (+) test result	Post-test probability shift with a (-) test result	(+)/(-) probabilit y shift	Risk of bias⁵ ₄
MRI (surgery)	0.55-0.57/0.34- 0.75	1.0- 2.23/0.6 -1.0	Pretest=26- 71% Posttest=44- 71%	Pretest=26- 71% Posttest=17 - 71%	Very small to small/very small	High
MRA (surgery)	0.88 (0.77- 0.94)/0.91(0.82 -0.96)	9.8/0.13	Pretest=19% Posttest=70 %	Pretest=19 % Posttest=3 %	Moderate for both	High

SN, sensitivity; SP, specificity; (+)LR, positive likelihood ratio; -LR, negative likelihood ratio; MRI, magnetic resonance imaging; MRA, magnetic resonance arthrography; CI, confidence interval; (+), positive; (-), negative;

• Currently, there are no imaging measures or modalities recommended for determining the presence/absence of ligamentum teres condition.

Box 13 Literature consensus regarding clinical utility of *diagnostic imaging* for the determination of *ligamentum teres conditions* presence/absence.⁶⁰

References:

- 1. Ganz R, Parvizi J, Beck M, et al. Femoroacetabular impingement: a cause for osteoarthritis of the hip. Clin Orthop Relat Res 2003(417):112-20.
- 2. Reiman MP, Thorborg K. Femoroacetabular impingement surgery: are we moving too fast and too far beyond the evidence? Br J Sports Med 2015;**49**(12):782-4.
- Griffin DR, Dickenson EJ, O'Donnell J, et al. The Warwick Agreement on femoroacetabular impingement syndrome (FAI syndrome): an international consensus statement. Br J Sports Med 2016;50(19):1169-76.
- 4. Heerey JJ, Kemp JL, Mosler AB, et al. What is the prevalence of imaging-defined intra-articular hip pathologies in people with and without pain? A systematic review and meta-analysis. Br J Sports Med 2018;52(9):581-93.
- Frank JM, Harris JD, Erickson BJ, et al. Prevalence of Femoroacetabular Impingement Imaging Findings in Asymptomatic Volunteers: A Systematic Review. Arthroscopy 2015;31(6):1199-204.
- Mascarenhas VV, Rego P, Dantas P, et al. Imaging prevalence of femoroacetabular impingement in symptomatic patients, athletes, and asymptomatic individuals: A systematic review. European journal of radiology 2016;85(1):73-95.
- Griffin DR, Dickenson EJ, O'Donnell J, et al. The Warwick Agreement on femoroacetabular impingement syndrome (FAI syndrome): an international consensus statement. British Journal of Sports Medicine 2016;50(19):1169-76.
- 8. Clohisy JC, Knaus ER, Hunt DM, et al. Clinical presentation of patients with symptomatic anterior hip impingement. Clin Orthop 2009;**467**(3):638-44.
- Reiman MP, Goode AP, Cook CE, et al. Diagnostic accuracy of clinical tests for the diagnosis of hip femoroacetabular impingement/labral tear: a systematic review with meta-analysis. Br J Sports Med 2015;49(12):811.
- 10. Jaeschke R, Guyatt GH, Sackett DL. Users' guides to the medical literature. III. How to use an article about a diagnostic test. B. What are the results and will they help me in caring for my patients? The Evidence-Based Medicine Working Group. JAMA 1994;**271**(9):703-7.
- 11. Whiting P, Rutjes AW, Reitsma JB, et al. The development of QUADAS: a tool for the quality assessment of studies of diagnostic accuracy included in systematic reviews. BMC Med Res Methodol 2003;**3**:25.
- Ayeni O, Chu R, Hetaimish B, et al. A painful squat test provides limited diagnostic utility in CAMtype femoroacetabular impingement. Knee Surg Sports Traumatol Arthrosc 2014;22(4):806-11.
- Martin RL, Irrgang JJ, Sekiya JK. The Diagnostic Accuracy of a Clinical Examination in Determining Intra-articular Hip Pain for Potential Hip Arthroscopy Candidates. Arthroscopy - Journal of Arthroscopic and Related Surgery 2008;24(9):1013-18.
- 14. McCarthy JC, Busconi B. The role of hip arthroscopy in the diagnosis and treatment of hip disease. Orthopedics 1995;**18**(8):753-6.

- 15. Ranawat AS, Gaudiani MA, Slullitel PA, et al. Foot Progression Angle Walking Test: A Dynamic Diagnostic Assessment for Femoroacetabular Impingement and Hip Instability. Orthop J Sports Med 2017;5(1):2325967116679641.
- 16. Peters S, Laing A, Emerson C, et al. Surgical criteria for femoroacetabular impingement syndrome: a scoping review. Br J Sports Med 2017;**51**(22):1605-10.
- 17. Reiman MP, Peters S, Sylvain J, et al. Prevalence and Consistency in Surgical Outcome Reporting for Femoroacetabular Impingement Syndrome: A Scoping Review. Arthroscopy 2018.
- 18. Agricola R, Waarsing JH, Thomas GE, et al. Cam impingement: defining the presence of a cam deformity by the alpha angle: data from the CHECK cohort and Chingford cohort. Osteoarthritis Cartilage 2014;22(2):218-25.
- Mascarenhas VV, Rego P, Dantas P, et al. Can We Discriminate Symptomatic Hip Patients From Asymptomatic Volunteers Based on Anatomic Predictors? A 3-Dimensional Magnetic Resonance Study on Cam, Pincer, and Spinopelvic Parameters. Am J Sports Med 2018;46(13):3097-110.
- 20. Reiman MP, Thorborg K, Goode AP, et al. Diagnostic Accuracy of Imaging Modalities and Injection Techniques for the Diagnosis of Femoroacetabular Impingement/Labral Tear: A Systematic Review With Meta-analysis. Am J Sports Med 2017;45(11):2665-77.
- Yamamoto Y, Hiejima Y. Usefulness of cross-table lateral view radiograph for the diagnosis of cam-type femoroacetabular impingement. Eur J Orthop Surg Traumatol 2014;24(3):365-9.
- 22. Aprato A, Masse A, Faletti C, et al. Magnetic resonance arthrography for femoroacetabular impingement surgery: is it reliable? J Orthop Traumatol 2013;**14**(3):201-6.
- 23. Gonzalez Gil AB, Llombart Blanco R, Diaz de Rada P. Validity of magnetic resonance arthrography as a diagnostic tool in femoroacetabular impingement syndrome. Rev Esp Cir Ortop Traumatol 2015.
- 24. Wassilew GI, Janz V, Heller MO, et al. Real time visualization of femoroacetabular impingement and subluxation using 320-slice computed tomography. J Orthop Res 2013;**31**(2):275-81.
- 25. Wilkin GP, Ibrahim MM, Smit KM, et al. A Contemporary Definition of Hip Dysplasia and Structural Instability: Toward a Comprehensive Classification for Acetabular Dysplasia. J Arthroplasty 2017;**32**(9s):S20-s27.
- 26. Genda E, Iwasaki N, Li G, et al. Normal hip joint contact pressure distribution in single-leg standing--effect of gender and anatomic parameters. J Biomech 2001;**34**(7):895-905.
- Henak CR, Abraham CL, Anderson AE, et al. Patient-specific analysis of cartilage and labrum mechanics in human hips with acetabular dysplasia. Osteoarthritis Cartilage 2014;22(2):210-7.
- Shu B, Safran MR. Hip Instability: Anatomic and Clinical Considerations of Traumatic and Atraumatic Instability. Clin Sports Med 2011;30(2):349-67.
- 29. Dangin A, Tardy N, Wettstein M, et al. Microinstability of the hip: A review. Orthop Traumatol Surg Res 2016;**102**(8S):S301-S09.
- 30. Kalisvaart MM, Safran MR. Microinstability of the hip-it does exist: etiology, diagnosis and treatment. J Hip Preserv Surg 2015;**2**(2):123-35.
- 31. Kraeutler MJ, Garabekyan T, Pascual-Garrido C, et al. Hip instability: a review of hip dysplasia and other contributing factors. Muscles Ligaments Tendons J 2016;**6**(3):343-53.
- 32. Pun S. Hip dysplasia in the young adult caused by residual childhood and adolescent-onset dysplasia. Curr Rev Musculoskelet Med 2016;**9**(4):427-34.
- 33. Gosvig KK, Jacobsen S, Sonne-Holm S, et al. Prevalence of malformations of the hip joint and their relationship to sex, groin pain, and risk of osteoarthritis: a population-based survey. J Bone Joint Surg Am 2010;92(5):1162-9.
- 34. Engesaeter IO, Laborie LB, Lehmann TG, et al. Prevalence of radiographic findings associated with hip dysplasia in a population-based cohort of 2081 19-year-old Norwegians. Bone and Joint Journal 2013;**95B**(2):279-85.

- 35. Jacobsen S, Sonne-Holm S. Hip dysplasia: a significant risk factor for the development of hip osteoarthritis. A cross-sectional survey. Rheumatology (Oxford) 2005;**44**(2):211-8.
- 36. Jacobsen S, Sonne-Holm S, Soballe K, et al. Hip dysplasia and osteoarthrosis: a survey of 4151 subjects from the Osteoarthrosis Substudy of the Copenhagen City Heart Study. Acta Orthop 2005;76(2):149-58.
- 37. Ortiz-Neira CL, Paolucci EO, Donnon T. A meta-analysis of common risk factors associated with the diagnosis of developmental dysplasia of the hip in newborns. Eur J Radiol 2012;81(3):e344-51.
- 38. Nunley RM, Prather H, Hunt D, et al. Clinical presentation of symptomatic acetabular dysplasia in skeletally mature patients. J Bone Joint Surg Am 2011;**93 Suppl 2**:17-21.
- Hoppe DJ, Truntzer JN, Shapiro LM, et al. Diagnostic Accuracy of 3 Physical Examination Tests in the Assessment of Hip Microinstability. Orthop J Sports Med 2017;5(11):2325967117740121.
- Reiman MP, Decary S, Mathew B, et al. Accuracy of Clinical and Imaging Tests for the Diagnosis of Hip Dysplasia and Instability: A Systematic Review. J Orthop Sports Phys Ther 2019;49(2):87-97.
- 41. Reiman MP, Decary S, Mathew B, et al. Accuracy of Clinical and Imaging Tests for the Diagnosis of Hip Dysplasia and Instability: A Systematic Review. J Orthop Sports Phys Ther 2018:1-36.
- 42. Bellaiche L, Lequesne M, Gedouin JE, et al. Imaging data in a prospective series of adult hip pain in under-50 year-olds. Orthop Traumatol Surg Res 2010;**96**(8 Suppl):S44-52.
- 43. Kraeutler MJ, Ashwell ZR, Garabekyan T, et al. The Iliofemoral Line: A Radiographic Sign of Acetabular Dysplasia in the Adult Hip. Am J Sports Med 2017;**45**(11):2493-500.
- 44. Rhee PC, Woodcock JA, Clohisy JC, et al. The Shenton line in the diagnosis of acetabular dysplasia in the skeletally mature patient. J Bone Joint Surg Am 2011;**93 Suppl 2**:35-9.
- 45. Haefeli PC, Steppacher SD, Babst D, et al. An increased iliocapsularis-to-rectus-femoris ratio is suggestive for instability in borderline hips. Clin Orthop Relat Res 2015;**473**(12):3725-34.
- 46. Wyatt M, Weidner J, Pfluger D, et al. The Femoro-Epiphyseal Acetabular Roof (FEAR) Index: A New Measurement Associated With Instability in Borderline Hip Dysplasia? Clin Orthop Relat Res 2017;475(3):861-69.
- 47. Groh MM, Herrera J. A comprehensive review of hip labral tears. Current Reviews in Musculoskeletal Medicine 2009;**2**(2):105-17.
- 48. Lewis CL, Sahrmann SA. Acetabular labral tears. Physical Therapy 2006;86(1):110-21.
- 49. McCarthy J, Noble P, Aluisio FV, et al. Anatomy, pathologic features, and treatment of acetabular labral tears. Clin Orthop Relat Res 2003(406):38-47.
- 50. Houard X, Goldring MB, Berenbaum F. Homeostatic Mechanisms in Articular Cartilage and Role of Inflammation in Osteoarthritis. Current Rheumatology Reports 2013;**15**(11):375.
- 51. Kemp JL, Makdissi M, Schache AG, et al. Hip chondropathy at arthroscopy: prevalence and relationship to labral pathology, femoroacetabular impingement and patient-reported outcomes. Br J Sports Med 2014.
- 52. Lund B, Nielsen TG, Lind M. Cartilage status in FAI patients results from the Danish Hip Arthroscopy Registry (DHAR). Sicot-j 2017;**3**:44.
- 53. Saied AM, Redant C, El-Batouty M, et al. Accuracy of magnetic resonance studies in the detection of chondral and labral lesions in femoroacetabular impingement: systematic review and meta-analysis. BMC Musculoskelet Disord 2017;**18**(1):83.
- 54. Whiting PF, Rutjes AW, Westwood ME, et al. QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med 2011;**155**(8):529-36.
- 55. Roemer FW, Hunter DJ, Winterstein A, et al. Hip Osteoarthritis MRI Scoring System (HOAMS): reliability and associations with radiographic and clinical findings. Osteoarthritis and cartilage / OARS, Osteoarthritis Research Society 2011;19(8):946-62.

- 56. Lee S, Nardo L, Kumar D, et al. Scoring hip osteoarthritis with MRI (SHOMRI): A whole joint osteoarthritis evaluation system. Journal of magnetic resonance imaging : JMRI 2015;41(6):1549-57.
- 57. Byrd JW, Jones KS. Traumatic rupture of the ligamentum teres as a source of hip pain. Arthroscopy 2004;**20**(4):385-91.
- 58. Martin HD, Hatem MA, Kivlan BR, et al. Function of the Ligamentum Teres in Limiting Hip Rotation: A Cadaveric Study. Arthroscopy: The Journal of Arthroscopic & Related Surgery 2014;**30**(9):1085-91.
- 59. O'Donnell J, Economopoulos K, Singh P, et al. The ligamentum teres test: a novel and effective test in diagnosing tears of the ligamentum teres. Am J Sports Med 2014;**42**(1):138-43.
- 60. Shakoor D, Farahani SJ, Hafezi-Nejad N, et al. Lesions of Ligamentum Teres: Diagnostic Performance of MRI and MR Arthrography-A Systematic Review and Meta-Analysis. AJR Am J Roentgenol 2018:W1-w12.