Online Supplementary Data

Appendix 1. Search terms used in Embase, PubMed, and Web of Science databases.

Embase	Web of Science	Pubmed	
Wearables and smartphone	Wearables and smartphone	Wearables and smartphone	
<pre>('wearable electronic devices'/exp OR 'wearable electronic devices' OR wearable* OR smartwatch * OR (('smart'/exp OR 'smart') AND watch*) OR (('smart'/exp OR smart) AND band*) OR (('smart'/exp OR smart) AND bracelet*) OR 'smartphone'/exp OR 'smartphone' OR smartphone*)</pre>	ALL FIELDS: (wearable* OR smartwatch* OR "smart watch" OR "smart watches" OR smartphone* OR (smart AND band*) OR (smart AND bracelet*))	("Wearable Electronic Devices"[Mesh] OR wearable* OR smartwatch* OR (smart AND watch*) OR (smart AND band*) OR (smart AND bracelet*) OR "Smartphone"[Mesh] OR smartphone*)	
Outcome	Outcome	Outcome	
AND (step*)	AND (step*)	AND (step*)	
Study design	Study design	Study design	
AND ('reproducibility of results'/exp OR 'reproducibility of results' OR 'validity'/exp OR 'validity' OR 'validation'/exp OR 'validation' OR validate OR 'compa rison'/exp OR 'comparison' OR 'reliability'/exp OR 'reliability' OR reliable)	AND (validity OR validation OR validate OR comparison OR reliability OR reliable)	AND ("Reproducibility of Results"[Mesh] OR validity OR validation OR validate OR comparison OR reliability OR reliable)	

Appendix 2. QUADAS-2 methodology, criteria for the risk of bias assessment, and the percentage of studies meeting these criteria.

As advised by the QUADAS-2 guidelines, a series of signalling questions were developed by the consortium members. The risk of bias assessment was conducted by three authors whereby each author independently rated two-thirds of the papers using a cross-over methodology to ensure each paper was reviewed by two authors. Any discrepancies were resolved by arbitration with the third author. Once a consensus was agreed upon, each study was given a risk of bias rating (high, low, or unclear) for each of the four headings (patient selection, index measure, criterion measure, and study flow and timing). If all signalling questions for a domain were answered "yes" then risk of bias was deemed to be "low". If any signalling question was answered "no", then risk of bias was deemed to be 'high'. The "unclear" category was only used when insufficient data were reported to permit a judgment¹.

Criteria items	N stud	lies meeting c	riterion
	Laboratory (N=57)	Semi-free (N=9)	Free-living (N=30)
Domain 1: Patient Selection			
1. Did the study avoid inappropriate exclusions?	42 (74%)	9 (100%)	24 (80%)
Domain 2: Index measure			
2. Was the wearable/ smartphone used in its ecological context?	47 (82%)	8 (89%)	28 (93%)
Domain 3: Criterion measure			
3. Is the reference standard a 'Gold standard'?	29 (51%)	4 (44%)	1 (3%)
Domain 4: Flow and timing			
4. Did they provide adequate information about data synchronization?	16 (28%)	3 (33%)	8 (27%)
5. Did all participants receive the same reference standard?	53 (93%)	9 (100%)	29 (97%)
6. Were all participants included in the analysis or appropriate exclusion reasons were provided?	45 (79%)	9 (100%)	21 (70%)

N°	Author	Population N (age ± SD or range; % girls)	Testing Protocol	Criterion Measure	Index Measure; Placement	Data Synchro.	Statistics
1	Åkerberg et al. 2016 ²	Healthy adults 20 (30-61; 55%)	Walking in sloping and flat surfaces, and climbing stairs	Visual observation	Smartphone; Special vest to hold the phone	Data collected simultaneously	Hypo. and relative error
2	Alsubheen et al. 2016 ³	Healthy adults 13 (40.0 ± 11.9; 38%)	Treadmill walking	Video	Activity tracker; Wrist	Data collected simultaneously	Нуро.
3	An et al. 2017 ⁴	Healthy adults 35 (31.0 ± 11.8; 51%)	Treadmill walking and running	Visual observation	Activity trackers; Arm, wrist or waist	Data collected simultaneously	B&A, equivelance test, corr. and MAPE
4	Arch et al. 2017 ⁵	Unilateral transtibial amputation 50 (58.1 ± 10.5; 28%)	Overground walking tests	Visual observation	Activity tracker; Attached to prosthesis	ND	RR, corr., regr. and APE
5	Ata et al 2018 ⁶	Peripheral Artery Disease 182 (69.5 ± 13.1; 23%)	6 minute walk test	Visual observation	Smartphone; Hand, pocket and purse/bag	ND	B&A and regr.
6	Balmain et al 2019 ⁷	Healthy adults 36 (21.0 ± 1.0; 53%)	Treadmill and overground walking	Video	Smartphone & smart clothing; Right hip and feet	ND	B&A and regr.
7	Balto et al 2016 ⁸	Multiple sclerosis 45 (47.7 ± 10.0; ND)	Treadmill walking	Visual observation with ≥2 observers	Smartphones & activity trackers; Pocket and wrist	ND	Corr. and MPE
8	Beltrán-Carrillo et al 2019 ⁹	Healthy adults 16 (28.8 ± 8.9; 50%)	Overground walking on straight track	Video	Smartphones; Waist, arm and hand	Wear time and/or task time considered	B&A, hypo., corr. RMSE and RB
9	Block et al 2019 ¹⁰	Multiple Sclerosis 61 (50.0 ± 14.2; 72%)	2 min walk test	Visual observation	Activity trackers; Non-dominant wrist	ND	B&A, hypo., RR and regr.
10	Brodie et al 2018 ¹¹	Healthy adults 48 (28.8 ± 8.9; 58%)	Overground walking	Visual observation	Smartphone; Phone fixed at the posterior hip	ND	Hypo. and APE
11	Buckinx et al 2017 ¹²	Healthy adults $24 (46.3 \pm 3.6; 50\%)$	Treadmill walking	Video	Activity trackers; Right ankle and right hip	ND	RR
12	Bunn et al 2019 ¹³	Healthy adults 24 (26.5 ± 11.5; 50%)	Treadmill walking	Video with ≥2 observers	Activity trackers; Manufacturers' guidance	Data collected simultaneously	Hypo., Equiv., MPE
13	Burton et al 2018 ¹⁴	Healthy adults 31 (74.2 ± 5.8; 65%)	Overground walking	Video with ≥2 observers	Activity trackers; Wrist	ND	Hypo. and RR

Appendix 3. Summary of the validation methodologies used in the laboratory-condition studies (N = 57). Criterion

14	Chandrasekar et al 2018 ¹⁵	Polymyalgia rheumatica 31 (69.2 ± 8.8; 89%)	Overground walking	Video with ≥2 observers	Activity trackers; Right hip and midline of the shirt	Wear time and/or task time considered	B&A, corr. and MAPE
15	Clay et al 2019 ¹⁶	Stroke patients 21 (65.6 ± 8.2; 58%)	Overground walking	Video with ≥2 observers	Activity tracker; Waist band of non-paretic side	ND	B&A, RR, corr. and regr.
16	De Ridder et al 2019 ¹⁷	Crutch walking 30 (24.9 ± 5.3; 50%)	Overground walking	Visual observation with ≥2 observers	Activity trackers; Both wrists and waist	ND	B&A, hypo., RR and % bias
17	Duncan et al 2018 ¹⁸	Healthy adults 33 (25.9 ± 9.4; 67%)	Treadmill walking	Video with ≥2 observers	Smartphones; ND	Wear time and/or task time considered	B&A, hypo., RR and regr.
18	Ebara et al 2017 ¹⁹	Healthy adults 5 (31.2 ± 8.5; 0%)	Overground walking	Visual observation	Smartphones; Bust strap around chest	ND	B&A, hypo., RR and corr.
19	Floegel et al 2017 ²⁰	Adults with different fitness level $99 (78.9 \pm 8.6; 71\%)$	Overground walking	Video with ≥2 observers	Activity trackers; Non-dominant hip and wrist	Wear time and/or task time considered	B&A, Equiv., RR, MAPE and MPE
20	Fokkema et al 2017 ²¹	Healthy adults 31 (32.0 ± 12.0; 48%)	Treadmill walking	Video	Activity trackers and smartphone; Wrist, hip and pocket	Data collected simultaneously	B&A, RR and regr.
21	Gaz et al 2018 ²²	Healthy adults 32 (35.8 ± 7.8; 48%)	Treadmill walking	Visual observation with ≥2 observers	Activity trackers; Dominant wrist and hip	Data collected simultaneously	GLMM
22	Hernández- Belmonte et al 2019 ²³	Healthy adults 10 (ND; 0%)	Overground walking, jogging and running	Video	Activity tracker; Upper back	Data collected simultaneously	B&A, RR and corr.
23	Höchsmann et al 2018 ²⁴	Healthy adults 20 (18-70; 70%)	Treadmill and overground walking and running with different inclinations and stairs	Video	Activity trackers and smartphones; Non-dominant wrist, pocket and strapped in the arm	Data collected simultaneously	MAPE
24	Huang et al 2016 ²⁵	Healthy adults 40 (23.6 ± 2.1; 25%)	Treadmill and overground walking and stair test	Video with ≥2 observers	Activity trackers; Both wrists	Data collected simultaneously	B&A, hypo. and MAPE
25	Hurt et al 2018 ²⁶	Healthy adults 57 (28.3 ± 9.9; 46%)	Overground walking	Visual observation	Smartphones; Frontal pocket	Data collected simultaneously	Corr. and GLMM
26	Johnson et al 2016 ²⁷	Healthy adults 29 (21.7 ± 1.6; 52%)	Overground walking	Research grade wearable device	Smartphones; Held in the hand and right pocket	Task time considered	B&A, hypo. and corr.

27	Jones et al 2018 ²⁸	Healthy adults 30 (33.0 ± 8.0; 60%)	Treadmill jogging and running	Video	Activity trackers; Both wrists	Data collected simultaneously	RR, MAPE and standard error
28	Kendall et al 2019 ²⁹	Healthy adults 50 (25.8 ± 8.1; 50%)	Maximal treadmill test	Visual observation	Activity trackers; Both wrists and right hip	Data collected simultaneously	Hypo. and RR
29	Lamont et al 2018 ³⁰	Mild- moderate Parkison's Disease 33 (69.0 ± 8.1; 50%)	Walking in different surfaces	Research grade wearable device	Activity trackers; Both wrists	Data collected simultaneously	B&A, hypo., RR and MAPE
30	Lebleu et al 2020 ³¹	Healthy adults 60 (23.4 ± 1.3; 48%)	Overground walking circuit	Research grade wearable device	Smartphone; Both wrists and non-dominant hip	Data collected simultaneously	B&A, RR and MAPE
31	Leong et al 2017 ³²	Healthy adults 48 (19-25; 73%)	Treadmill walking	Visual observation	Smartphone; Right pocket	Data collected simultaneously	RR, corr. and MAPE
32	Liew et al 2020 ³³	Healthy adults 24 (23-30; 50%)	Overground walking	Visual observation	Activity tracker; Wrist	Data collected simultaneously	RR, corr. and MAPE
33	Lu et al 2017 ³⁴	ND	Overground walking in different directions	Visual observation	Smartphone; Waist holder, pocket, backpack or hands	Data collected simultaneously	MAPE
34	Magistro et al 2018 ³⁵	Healthy older adults 60 (75.0 ± 7.0; 50%)	Overground walking and stairs test	Video	Activity trackers; Both wrists	Data collected simultaneously	B&A, RR and APE
35	Major et al 2016 ³⁶	Healthy adults 20 (28.0 ± 5.0; 50%)	Overground walking	Video	Smartphone; Right pocket	Data collected simultaneously	B&A, RR and corr.
36	Massouh et al 2019 ³⁷	Cesarean delivery patients 48 (32.0 ± 6.0; 100%)	Overground walking	Visual observation	Activity trackers; Non-dominant wrist	Data collected simultaneously	B&A, RR and corr.
37	Montes et al 2018 ³⁸	ND 49 (23.4 ± 6.7; 48%)	Treadmill walking	Visual observation	Smart shirt; Worn as normal	Data collected simultaneously	RR and corr.
38	Montoye et al 2017 ³⁹	Healthy adults 32 (23.5 ± 1.3; 44%)	Treadmill walking and running, lying, standing, sitting and cycling	Research grade wearable device	Smart shirt and activity tracker; Shirt worn as normal and tracker on non- dominant wrist	Synchro. issues mentioned but not discussed	B&A, hypo., corr. and MAPE
39	Munck et al 2018 ⁴⁰	Healthy adults 22 (27.0 ± 7.3; 50%)	Treadmill walking	ND	Activity trackers; Wrist	ND	MPE
40	Orr et al 2015 ⁴¹	ND 29 (27.1 ± 8.3; ND)	Overground and treadmill walking	Video and participant counted their own steps	Smartphones; Held in participants' hands	ND	Нуро.

BMJ Publishing Group Limited (BMJ) disclaims all liability and responsibility arising from any reliance placed on this supplemental material which has been supplied by the author(s)

41	Pepa et al 2017 ⁴²	Healthy adults 22 (22-30; 27%)	Overground walking	Research grade wearable device	Smartphone; Lateral side of the hip and posterior pelvis	Jump used as synchro.	Hypo. and corr.
42	Polese et al 2019 ⁴³	Stroke patients 37 (62.0 ± 11.0; 24%)	Overground walking	Video	Smartphone; Front pockets of the participants' paretic leg	ND	Corr.
43	Presset et al 2018 ⁴⁴	ND 37 (30-60; 35%)	Treadmill walking	Research grade wearable device	Smartphone; Attached to the belt, the biceps and a jacket	ND	B&A
44	Psaltos et al 2019 ⁴⁵	Healthy adults 40 (34.8 ± 10.2; 53%)	Overground walking	Research grade wearable device	Activity trackers and smartphones; Trackers: wrist, phones: attached to 4 th lumbar vertebrae	ND	B&A and corr.
45	Rüdiger et al 2019 ⁴⁶	Healthy adults 32 (74.8 ± 5.9; 56%)	Overground walking	Visual observation and research grade wearable device	Activity tracker; Non-dominant arm	ND	B&A and corr.
46	Schaffer et al 2017 ⁴⁷	Stroke patients 24 (54.0 ± 13.4; 42%)	Overground walking	Video	Activity trackers; Wrists of both paretic and non-paretic arms	ND	B&A and hypo.
47	Schmal et al 2018 ⁴⁸	Post- operative patients 22 (81.0 ± 8.0; 50%)	ND	Video	Activity trackers; Wrist and ankle	ND	Corr.
48	Smith et al 2019 ⁴⁹	Lower-limb prosthesis users 32 (49.7 ± 14.0; 34%)	Overground walking	Visual observation	Activity trackers; Both wrists	Wear and task time considered	Нуро.
49	Tam et al 2018 ⁵⁰	Healthy adults $30 (32.1 \pm 8.7; 50\%)$	Treadmill walking	Video with ≥2 observers	Activity trackers; Non-dominant wrist	ND	Corr.
50	Tedesco et al 2019 ⁵¹	Healthy older people 18 (69.0 ± 3.2; 61%)	Treadmill walking	Video	Activity trackers; Both wrists	Synchro. issues mentioned but not discussed	MAPE, MPE, RMSE, AME, MAD
51	Thorup et al 2017 ⁵²	Healthy adults and cardiac patients 44 (53.0 ± 7.4; 27%)	Treadmill walking	Research grade wearable device	Activity tracker; Elastic belts, two at the heart level and two at the waist	ND	RB
52	Tophøj et al 2018 ⁵³	Healthy adults $20 (25.6 \pm 2.0; 50\%)$	Treadmill walking	Visual observation	Activity trackers; Non-dominant wrist	ND	MAPE and MAD

53	Van Oeveren et al 2018 ⁵⁴	Healthy adults 22 (28.0 ± 2.9; 41%)	Overground walking	Video	Smartphones; Pocket, strapped to the arm and the back waist	Jump used as synchro.	Нуро.
54	Veerabhadrappa et al 2018 ⁵⁵	Healthy adults 71 (18-55; 34%)	Treadmill walking	Video	Activity tracker; Left wrist	Wear and task time considered	Corr.
55	Wahl et al 2017 ⁵⁶	Healthy adults 20 (26.1 ± 2.8; 50%)	Treadmill and overground walking	Research grade wearable device	Activity trackers; Armband and backside of the pelvis. Other trackers ND	ND	B&A, RR, MAPE and TE
56	Wong et al 2018 ⁵⁷	Healthy adults 25 (25.0 ± 6.7; 48%)	Treadmill walking	Video	Activity tracker; Right hip	Wear and task time considered	Нуро.
57	Xie et al 2018 ⁵⁸	Healthy adults 44 (22.2 ± 2.2; 48%)	Overground walking and running	Video	Activity trackers and smartphones; Both wrists and pocket	Synchro. issues mentioned but not discussed	Corr. and MAPE

Abbreviations. Synchro.: synchronization; ND: Not disclosed; SD: standard deviation.

Statistics code. B&A: Bland & Altman; Hypo.: hypothesis test; Equiv.: equivalence test; RR: relative reliability; Corr.: correlation; Regr.: regression; MAPE: mean absolute percentage error; APE: absolute percentage error; MPE: mean percentage error; RMSE: root-mean-square deviation; RB: relative bias; AME: absolute mean error; %bias: percentage of bias; GLMM: generalized linear mixed model; MAD: median absolute difference; SEM: standard error of measurement; TE: typical error.

N°	Author	Population N (age ± SD or range; % girls)	Testing Protocol	Criterion Measure	Index Measure; placement	Data Synchro.	Statistics
1	Bai et al 2018 ⁵⁹	Healthy adults 41 (32.0 ± 11.0; 38%)	Sedentary activities, aerobic exercise and household activities	Research grade wearable device	Activity trackers; Left wrist	ND	B&A, Equiv., corr., MAPE, MPE and RMSE and
2	Bort-Roig et al 2018 ⁶⁰	Healthy adults 17 (26.0 ± 3.0; 59%)	Overground walking, stairs and work simulation	Research grade wearable device	Smartphone; Pouch in the mid-to-front point of the thigh	ND	RR and AME
3	Genovese et al 2017 ⁶¹	Healthy adults 8 (38.5 ± 11.8; 38%)	Sedentary activities, ambulatory and household activities	Visual observation	Activity trackers; Non-dominant wrist and waist	Data collected simultaneously	RMSE and AME
4	Imboden et al 2018 ⁶²	Healthy adults 30 (69.5 ± 13.1; 23%)	Sedentary, household and ambulatory activities	Visual observation	Activity trackers; Left hip and non-dominant wrist	Data collected simultaneously	B&A, hypo., corr. and MAPE
5	Nelson et al 2016 ⁶³	Healthy adults 30 (48.9 ± 19.4; 50%)	Sedentary, household and ambulatory activities	Visual observation	Activity trackers; Left hip and non-dominant wrist	Data collected simultaneously	Hypo., MAPE, RMSE and MAE
6	O'Connell et al 2017 ⁶⁴	Healthy adults 37 (39.0 ± 13.9; 68%)	Work simulation, vehicles, household and fitness activities	Video	Activity trackers; Both hips, right wrist and chest	Wear and task time considered	Regr.
7	Tedesco et al 2019 ⁶⁵	Healthy older adults 18 (69.3 ± 2.8; 61%)	Daily life activities	Video	Activity trackers; Both wrists	Synchro. issues mentioned but not discussed	MAPE, MPE, RMSE, AME and MAD
8	Ummels et al 2018 ⁶⁶	Several diseases 130 (61.5 ± 11.1; 58%)	Daily life activities	Video	Activity trackers and smartphones; Pocket and wrist	ND	B&A, 2 and 5
9	Wendel et al 2018 ⁶⁷	Parkinson's disease 33 (65.5 ± 9.4; 42%)	Daily life activities	Video	Activity trackers; Left wrist and left hip	ND	B&A, 4, 7

. ٦. 1 0 с л 1: 1. . $\mathbf{0}$

Abbreviations. Synchro.: synchronization; ND: Not disclosed; SD: standard deviation.

Statistics code. B&A: Bland & Altman; Hypo.: hypothesis test; Equiv.: equivalence test; RR: relative reliability; Corr.: correlation; Regr.: regression; MAPE: mean absolute percentage error; APE: absolute percentage error; MPE: mean percentage error; RMSE: root-mean-square deviation; RB: relative bias; AME: absolute mean error; %bias: percentage of bias; GLMM: generalized linear mixed model; MAD: median absolute difference; SEM: standard error of measurement; TE: typical error.

Nº	Author	Population N (age ± SD or range; % girls)	Testing Protocol	Criterion Measure	Index Measure; placement	Data Synchro.	Statistics
1	Amagasa et al 2019 ⁶⁸	Healthy adults $54 (31.0 \pm 10.0; 52\%)$	At home	Research grade wearable device	Smartphone; Carried as usual	Data collected simultaneously	B&A, hypo., RR, corr. and regr.
2	An et al 2017 ⁴	Healthy adults 35 (31.0 ± 11.8; 51%)	24h of free-living	Research grade wearable device	Activity trackers; Upper arm, wrist and waist	Data collected simultaneously	B&A, equiv., corr. and MAPE
3	Arch et al 2018 ⁵	Unilateral transtibial amputation $50 (58.1 \pm 10.5; 28\%)$	7 days of free-living	Research grade wearable device	Activity tracker; Attached to the prosthesis	ND	RR, corr., regr. and APE
4	Block et al 2019 ¹⁰	Multiple Sclerosis $61 (54.0 \pm 11.4; 72\%)$	7 days of free-living	Research grade wearable device	Activity trackers; Non-dominant wrist	Wear time considered	B&A, hypo., RR and regr.
5	Bort-Roig et al 2018 ⁶⁰	Healthy adults 17 (26.0 ± 3.0; 59%)	2h of free- living	Research grade wearable device	Smartphone; Pouch in the mid-to-front point of the thigh	ND	RR and B&Aequiv.
6	Burton et al 2018 ¹⁴	Healthy adults 31 (74.2 ± 5.8; 65%)	14 days of free-living	Research grade wearable device	Activity tracker; Wrist	ND	Hypo. and RR
7	Chu et al 2017 ⁶⁹	Healthy adults 107 (26-42; 66%)	At least 4 days of free-living	Research grade wearable device	Activity tracker; Non-dominant wrist	Synchro. issues mentioned but not discussed	B&A, hypo., RR, corr. and MAPE
8	Collins et al 2019 ⁷⁰	Knee osteoarthritis patients 15 (68.0 ± 8.0; 67%)	7 days of free-living	Research grade wearable device	Activity tracker; Non-dominant wrist	ND	RR and B&ARR
9	Degroote et al 2018 ⁷¹	Healthy adults $36 (39.4 \pm 17.8; 50\%)$	2 days of free-living	Research grade wearable device	Activity trackers; Non-dominant wrist	Wear time considered	B&A, RR and corr.
10	Dominick et al 2016 ⁷²	Healthy adults 19 (19-37; 79%)	14 days of free-living	Research grade wearable device	Activity tracker; Dominant wrist	Wear time considered	Hypo., corr. and B&Acorr.
11	Douma et al 2018 ⁷³	Cancer patients 89 (63.0 ± 11.5; 38%)	7 days of free-living	Research grade wearable device	Smartphone; Pocket or attached to a belt	Wear time considered	B&A, RR and regr.
12	Duncan et al 2018 ¹⁸	Healthy adults 33 (25.9 ± 9.4; 67%)	7 days of free-living	Research grade wearable device	Smartphone; ND	Wear time considered	B&A, hypo., RR and regr.

13	Ferguson et al 2015 ⁷⁴	Healthy adults 21 (32.8 ± 10.2; 52%)	2 days of free-living	Research grade wearable device	Activity trackers; Left wrist and right hip	Wear time considered	B&A, corr. and B&Aregr.
14	Gill et al 2018 ⁷⁵	Healthy adults 21 (30-65; 0%)	7 days of free-living	Research grade wearable device	Activity tracker; Pocket	Wear time considered	B&A, corr. and B&Aequiv.
15	Gomersall et al 2016 ⁷⁶	Healthy adults 32 (39.6 ± 11.0; 90%)	7 days of free-living	Research grade wearable device	Activity trackers; Belt, pocket and both wrists	Data collected simultaneously	B&A and corr.
16	Höchsmann et al 2020 ⁷⁷	Healthy adults 30 (23-32; 62%)	3 days of free-living	Research grade wearable device	Activity trackers and smartphones; Non-dominant wrist, both hips and pocket	Data collected simultaneously	B&A, RR and MAPE
17	Hartwig et al 2019 ⁷⁸	Healthy children and adolescents $592 (13.5 \pm 0.5; 49\%)$	Physical education classes	Research grade wearable device	Activity tracker; Hip	Data collected simultaneously	B&A, corr. and regr.
18	Lebleu et al 2020 ³¹	Healthy adults $60 (39.4 \pm 12.0; 0\%)$	24h of free-living	Research grade wearable device	Smartphones; Both wrists and hip on non-dominant side	Data collected simultaneously	B&A, RR and MAPE
19	Leong et al 2017 ³²	Healthy adults 48 (19-25; 73%)	7 days of free-living	Research grade wearable device	Smartphone; Pocket, right tight and left arm	Data collected simultaneously	RR, corr. and MAPE
20	Liew et al 2020 ³³	Healthy adults 40 (23-30; 50%)	At least 4 days of free-living	Research grade wearable device	Activity tracker; Wrist	Data collected simultaneously	RR, corr. and B&Aregr.
21	Middelweerd et al 2017 ⁷⁹	Healthy adults 34 (23.9 ± 3.9; 68%)	7 days of free-living	Research grade wearable device	Activity tracker; Right hip with a waist belt	Data collected simultaneously and wear time considered	B&A, RR, APE and B&Acorr.
22	Mooses et al 2018 ⁸⁰	Healthy children 147 (9-10; 50%)	School ground	Research grade wearable device	Activity tracker; Hip	Data collected simultaneously	B&A, hypo. and corr.
23	Orr et al 2015 ⁴¹	ND 29 (27.1 ± 8.3; ND)	3 days of free-living	Research grade wearable device	Smartphones; Held in participant hands	Wear time considered	Нуро.
24	Rosenberger et al 2016 ⁸¹	ND 40 (21-876; 53%)	24h of free-living	Research grade wearable device	Activity trackers; Right wrist	Wear time considered	MAPE
25	Rozanski et al 2018 ⁸²	Stroke patients 37 64.4 ± 15.9; 53%)	2 separated days of free-living	Research grade wearable device	Activity trackers; Wrist	ND	Hypo. and corr.

26	Stamatelopoulou et al 2018 ⁸³	ND 21 (ND;ND)	7 days of free-living	Research grade wearable device	Activity tracker and smartphone; Wrist and pocket or bag	ND	Corr.
27	Tedesco et al 2019 ⁶⁵	Healthy older adults 20 (70.6 ± 3.0; 55%)	1 days of free-living	Research grade wearable device	Activity trackers; Non-dominant wrist	ND	RR
28	Toth et al 2018 ⁸⁴	Healthy adults 12 (35.0 ± 13.0; 50%)	24h of free-living	Video with ≥2 observers	Activity trackers; Random wrist and left hip	Wear time considered	Hypo. and MAPE
29	Voss et al 2017 ⁸⁵	Congenital heart disease $40 (13.0 \pm 2.2; 53\%)$	7 days of free-living	Research grade wearable device	Activity tracker; Manufactured guidelines	Wear time considered	B&A and RR
30	Yang et al 2019 ⁸⁶	Healthy adults 120 (13.0 ± 2.5; 52%)	7 days of free-living	Research grade wearable device	Activity tracker; Non-dominant wrist	ND	B&A, RR and corr.

Abbreviations. Synchro.: synchronization; ND: Not disclosed; SD: standard deviation.

Statistics code. B&A: Bland & Altman; Hypo.: hypothesis test; Equiv.: equivalence test; RR: relative reliability; Corr.: correlation; Regr.: regression; MAPE: mean absolute percentage error; APE: absolute percentage error; MPE: mean percentage error; RMSE: root-mean-square deviation; RB: relative bias; AME: absolute mean error; %bias: percentage of bias; GLMM: generalized linear mixed model; MAD: median absolute difference; SEM: standard error of measurement; TE: typical error.

1Akerberg et al. 2016 2 LowLowHighLow2Alsabheen et al. 2016 3 LowLowLowLowHigh3An et al. 2017 4 LowLowLowHighHigh4Arch et al. 2017 4 HighHighHighHighHigh5Alt at al 2018 6 LowLowLowHighHigh6Balmain et al 2019 7 LowLowLowHighHigh7Balo et al 2016 5 LowLowLowHighHigh9Block et al 2019 10 LowLowLowHighHigh9Block et al 2019 10 LowLowLowHighHigh11Buckinx et al 2017 12 LowLowLowHighHigh12Bunn et al 2018 14 LowLowLowLowHigh13Burton et al 2018 14 LowLowLowLowLow14Chadrasekar et al 2018 14 LowLowLowLowHigh15Clay et al 2019 19 LowLowLowHighHigh16De Ridder et al 2018 14 LowLowLowLowHigh17Duncan et al 2018 14 LowLowLowHow18Ebar et al 2017 19 LowLowLowHow19Floegel et al 2017 19 LowLowLowHigh19Fl	Article Number	Author	Patient Selection	Index measure	Criterion measure	Flow & Timing
3An et al. 20174LowLowHighHighHighHighHighHigh4Arch et al. 20175HighHighHighHighLowHighHigh5Ata et al 20189LowLowLowHighHighHigh6Balmain et al 20197LowLowHighHighHigh7Balto et al 20184LowHighLowHighHigh9Biock et al 201910LowLowHighHighHigh10Brodie et al 201814LowLowLowHighHigh11Buckinx et al 201712LowLowLowHighHigh12Bunn et al 201814LowLowLowLowHigh13Burton et al 201814LowLowLowLowLow14Chandraschar et al 201815LowLowLowHigh15Clay et al 201814LowLowLowHigh16De Ridder et al 201815LowLowLowHigh17Duncan et al 201814LowLowHighHigh18Ehara et al 201729LowLowLowHigh20Fokkema et al 201721LowLowLowHigh21Hender-Bellomot et al 201824LowLowLowHigh22Hernández-Bellomot et al 201929LowLowLowHigh23Höchsman et al 201824LowLow <td< td=""><td>1</td><td>Åkerberg et al. 2016²</td><td>Low</td><td>Low</td><td>High</td><td>Low</td></td<>	1	Åkerberg et al. 2016 ²	Low	Low	High	Low
4Arch et al. 20175HighHighHighHighHighHigh5Ata et al 20189LowLowLowMayHighLow6Balmain et al 20191LowLowLowHighHighHigh7Balto et al 20163LowLowHighHighHigh8Beltrán-Carillo et al 201910LowLowHighHighHigh9Block et al 201712LowLowLowHighHigh10Brodie et al 201814LowLowLowHighHigh11Buckinx et al 201712LowLowLowHighHigh12Burn et al 201814LowLowLowLowHigh13Burton et al 201814LowLowLowHighHigh14Chandrasekar et al 201815LowLowLowHighHigh15Clay et al 201916LowLowLowHighHigh16De Ridder et al 201814LowLowHighHighHigh17Duncan et al 201814LowLowHighHighHigh18Ehara et al 201729LowLowLowHighHigh20Fokkema et al 201729LowLowLowHighHigh21Gaz et al 201824LowLowLowHighHigh23Höchsmann et al 201824LowLowLowHighHigh24	2	Alsubheen et al. 2016 ³	Low	Low	Low	High
5Ata et al 2018°LowLowLowHighLow6Balmain et al 2019 ⁷ LowLowLowHighHigh7Balto et al 2016 ⁸ LowLowHighHigh8Beltrán-Carillo et al 2019 ⁰⁰ LowLowHighHigh9Block et al 2019 ¹⁰ LowLowHighHigh10Brodie et al 2018 ¹¹ LowLowLowHigh11Buckinx et al 2017 ¹² LowLowLowHigh12Burn et al 2018 ¹⁴ LowLowLowHigh13Burton et al 2018 ¹⁵ LowLowLowHigh14Chandrasekar et al 2018 ¹⁵ LowLowLowHigh15Clay et al 2019 ¹⁷ HighHighHighHigh16De Ridder et al 2018 ¹⁸ LowLowLowHigh17Duncan et al 2018 ¹³ LowLowLowHigh18Ehara et al 2017 ¹⁰ LowLowLowHigh20Fokkema et al 2017 ²¹ LowLowLowHigh21Gaz et al 2018 ²⁴ LowLowLowHighHigh23Höchsmann et al 2018 ³⁴ LowLowLowHighHigh24Huang et al 2016 ³⁷ LowLowLowHighHigh25Hurt et al 2018 ³⁶ LowLowLowHighHigh26Johnson et al 2018 ³⁶ LowLowHi	3	An et al. 2017 ⁴	Low	Low	High	Low
6Balmain et al 2019 ⁷ LowLowLowMighHigh7Balto et al 2016 ⁴ LowLowMighMighHigh8Beltrán-Carrillo et al 2019 ¹⁰ LowLowMighMighHigh9Block et al 2019 ¹⁰ LowLowMighHighHigh10Brodie et al 2018 ¹¹ LowLowLowMighHigh11Buckinx et al 2017 ¹² LowLowLowMighHigh12Bunn et al 2019 ¹³ LowLowLowMighHigh13Burto et al 2018 ¹⁴ LowLowLowMighHigh14Chandrasekar et al 2018 ¹⁵ LowLowLowMighHigh15Clay et al 2019 ¹⁷ HighMighHighHighHigh16De Ridder et al 2017 ¹⁹ ClowLowLowMighHigh17Duncan et al 2018 ¹⁴ LowLowLowMighHigh18Ebara et al 2017 ¹⁹ HighHighHighHigh19Floegel et al 2017 ²¹ ClowLowLowMighLow21Gaz et al 2018 ²² LowLowLowLowHighHigh23Hichsmann et al 2018 ³ LowLowLowLowHighHigh24Huang et al 2016 ³ LowLowLowLowLowHighHigh25Hurt et al 2018 ³ LowLowLowLo	4	Arch et al. 2017 ⁵	High	High	High	High
7Balto et al 2016 ⁴ LowLowHighHigh8Beltrán-Carrillo et al 2019 ¹⁰ LowHighLowHighHigh9Block et al 2019 ¹⁰ LowLowHighHighHigh10Brodie et al 2017 ¹² LowLowLowHighHigh11Buckinx et al 2017 ¹² LowLowLowMoreHigh12Bunn et al 2019 ¹³ LowLowLowMoreHigh13Burton et al 2018 ¹⁴ LowLowLowHighHigh14Chandrasekar et al 2018 ¹⁵ LowLowLowHighHigh15Clay et al 2019 ¹⁶ LowLowLowHighHigh16De Ridder et al 2018 ¹⁸ LowLowLowHighHigh17Duncan et al 2017 ¹⁹ HighHighHighHigh18Ebara et al 2017 ¹⁹ LowLowLowHighHigh19Floegel et al 2017 ²¹ UnclearLowLowHighHigh21Gaz et al 2018 ²² LowLowLowHighHigh23Höchsmann et al 2018 ³⁴ LowLowLowHighHigh24Huang et al 2016 ³⁴ LowLowLowHighHigh25Hurt et al 2018 ³⁶ LowLowLowLowHighHigh26Johnson et al 2018 ³⁶ LowLowLowLowHighHigh <t< td=""><td>5</td><td>Ata et al 2018⁶</td><td>Low</td><td>Low</td><td>High</td><td>Low</td></t<>	5	Ata et al 2018 ⁶	Low	Low	High	Low
8Beltrán-Carrillo et al 2019 ⁹ LowHighLowHigh9Block et al 2019 ¹⁰ LowLowMighHigh10Brodie et al 2018 ¹¹ LowHighHighHigh11Buckinx et al 2017 ¹² LowLowLowMighHigh12Bunn et al 2019 ¹³ LowLowLowHowHigh13Burton et al 2018 ¹⁴ LowLowLowHowHigh14Chandrasckar et al 2018 ¹³ LowLowLowHighHigh15Clay et al 2019 ¹⁶ LowLowLowHighHigh16De Ridder et al 2019 ¹⁷ HighLowLowHighHigh17Duncan et al 2017 ¹⁹ HighHighHighHigh18Ebara et al 2017 ²⁰ LowLowLowHighHigh19Floegel et al 2017 ²¹ ClowLowLowHighLow20Fokkema et al 2018 ²² LowLowLowHighHigh21Gaz et al 2018 ²⁴ LowLowLowHighHigh23Höchsmann et al 2016 ²⁷ LowLowLowHighHigh24Huang et al 2018 ³⁶ LowLowLowHighHigh25Hurt et al 2018 ³⁶ LowLowLowHighHigh26Johnson et al 2018 ³⁰ LowLowLowHighHigh28Kendall et al 2019 ³⁰ Low <td>6</td> <td>Balmain et al 2019⁷</td> <td>Low</td> <td>Low</td> <td>Low</td> <td>High</td>	6	Balmain et al 2019 ⁷	Low	Low	Low	High
9Block et al 201910LowLowHighHigh10Brodie et al 201811LowHighHighHigh11Buckinx et al 201712LowLowLowMain12Bunn et al 201913LowLowLowMain13Burton et al 201814LowLowLowMain14Chandrasckar et al 201815LowLowLowHigh15Clay et al 201916LowLowMighHigh16De Ridder et al 201917HighLowLowHigh17Duncan et al 201818LowLowLowHigh18Ebara et al 201719HighHighHighHigh19Floegel et al 201720LowLowLowHigh20Fokkema et al 201822LowLowLowHighHigh21Gaz et al 20182LowLowLowHighHigh23Höchsmann et al 201824LowLowLowHighHigh24Huang et al 201625LowLowLowLowHighHigh25Hurt et al 201824LowLowLowLowHighHigh26Johnson et al 201824LowLowLowHighHigh27Jones et al 201824LowLowLowHighHigh28Kendall et al 201924LowLowLowHighHigh29Lamont et al 201826Low <t< td=""><td>7</td><td>Balto et al 2016⁸</td><td>Low</td><td>Low</td><td>High</td><td>High</td></t<>	7	Balto et al 2016 ⁸	Low	Low	High	High
10Brodic et al 2018 ¹¹ LowHighHighHigh11Buckinx et al 2017 ¹² LowLowLowMowHigh12Bunn et al 2019 ¹³ LowLowLowMowHigh13Burton et al 2018 ¹⁴ LowLowLowMowHigh14Chandrasekar et al 2018 ¹⁵ LowLowLowMowHigh15Clay et al 2019 ¹⁶ LowLowMowHighHigh16De Ridder et al 2019 ¹⁷ HighLowLowMighHigh17Duncan et al 2018 ¹⁸ LowLowLowHighHigh18Ebara et al 2017 ²⁰ HighHighHighHigh20Fokkema et al 2017 ²⁰ LowLowLowHigh21Gaz et al 2018 ²² LowLowLowHigh22Hernández-Belmonte et al 2019 ²³ LowLowLowHigh23Höchsmann et al 2016 ²⁵ LowLowLowLowHigh24Huag et al 2016 ²⁵ LowLowLowLowHigh25Hurt et al 2018 ²⁸ LowLowLowHighHigh29Lamont et al 2018 ²⁹ LowLowLowHighHigh29Lamont et al 2018 ²⁰ LowLowLowHighHigh30Lebleu et al 200 ¹¹ LowLowLowHighHigh31Leong et al 2017 ³¹ LowLowLo	8	Beltrán-Carrillo et al 20199	Low	High	Low	High
IBuckinx et al 201712LowLowLowMu12Bunn et al 201913LowLowLowMigh13Burton et al 201814LowLowLowMigh14Chandrasekar et al 201815LowLowLowMigh15Clay et al 201916LowLowMighHigh16De Ridder et al 201917HighLowLowMigh17Duncan et al 201818LowLowLowMigh18Ebara et al 201720HighHighHighHigh19Floegel et al 201720LowLowLowMigh20Fokkema et al 201721UnclearLowMighHigh21Gaz et al 201823LowLowLowHighHigh23Höchsmann et al 201824LowLowLowMighHigh24Huang et al 201625LowLowLowLowHighHigh25Hurt et al 201625LowLowLowLowLowHighHigh26Johnson et al 201625LowLowLowLowMighHigh27Jones et al 201826LowLowLowHighHigh28Kendall et al 201929LowLowLowHighHigh29Lamont et al 201830LowLowLowHighHigh30Lebleu et al 2001132LowLowLowHighHigh31<	9	Block et al 2019 ¹⁰	Low	Low	High	High
12Bunn et al 201913LowLowLowMay13Burton et al 201814LowLowLowMigh14Chandrasekar et al 201815LowLowLowMigh15Clay et al 201916LowLowMighHigh16De Ridder et al 201917HighLowLowHigh17Duncan et al 201818LowLowLowHigh18Ebara et al 201719HighHighHighHigh19Floegel et al 201720LowLowLowHigh20Fokkema et al 201721UnclearLowUnclearHigh21Gaz et al 201822LowLowLowHigh23Höchsmann et al 201824LowLowHighHigh24Huang et al 201625LowLowLowHigh25Hurt et al 201824LowLowLowHigh26Johnson et al 201824LowLowLowHigh27Jones et al 201824LowLowLowHigh28Kendall et al 201924LowLowLowHigh29Lamont et al 201824LowLowHighHigh30Lebleu et al 202034LowLowLowHighHigh31Leong et al 201732LowLowLowHighHigh32Liew et al 202034LowLowHighHigh	10	Brodie et al 2018 ¹¹	Low	High	High	High
13Burton et al 2018^{14} LowLowLowModel14Chandrasekar et al 2018^{15} LowLowLowLowMigh15Clay et al 2019^{16} LowLowMighHigh16De Ridder et al 2019^{17} HighLowMighHigh17Duncan et al 2018^{18} LowLowLowHigh18Ebara et al 2017^{19} HighHighHighHigh19Floegel et al 2017^{20} LowLowUnclearHigh20Fokkema et al 2017^{21} UnclearLowUnclearHigh21Gaz et al 2018^{22} LowLowLowHigh23Hernández-Belmonte et al 2019^{23} LowLowLowHigh24Huang et al 2016^{24} LowLowLowHigh25Hurt et al 2018^{28} LowLowLowHigh26Johnson et al 2018^{28} LowLowLowHigh27Jones et al 2018^{28} LowLowMighHigh28Kendall et al 2019^{29} LowLowLowHighHigh29Lamont et al 2018^{30} LowLowLowHighHigh30Lebleu et al 2020^{31} LowLowLowHighHigh31Leong et al 2017^{32} LowLowHighHigh32Liew et al 2020^{31} LowLowHighHigh<	11	Buckinx et al 2017 ¹²	Low	Low	Low	High
14Chandrasekar et al 2018LowLowLowLow15Clay et al 2019LowLowLowHigh16De Ridder et al 2019HighLowLowHigh17Duncan et al 2018LowLowLowHigh18Ebara et al 2017HighHighHighHigh19Floegel et al 201720LowLowLowHigh20Fokkema et al 201721UnclearLowUnclearHigh21Gaz et al 201822LowLowLowHigh23Hörshann et al 201824LowLowHighHigh24Huang et al 201625LowLowLowHigh25Hurt et al 201828LowLowHighHigh26Johnson et al 201828LowLowLowHigh27Jones et al 201828LowLowLowHigh28Kendall et al 201929UnclearHighHighHigh29Lamont et al 201828LowLowLowHighHigh29Lamont et al 201828LowLowLowHighHigh30Lebleu et al 202031LowLowLowHighHigh31Leong et al 201732LowLowLowHighHigh32Liew et al 202033LowLowLowHighHigh	12	Bunn et al 2019 ¹³	Low	Low	Low	High
15Clay et al 201916LowLowLowHigh16De Ridder et al 201917HighLowHighHigh17Duncan et al 201818LowLowLowHigh18Ebara et al 201719HighHighHighHigh19Floegel et al 201720LowLowLowHigh20Fokkema et al 201721UnclearLowUnclearHigh21Gaz et al 201822LowLowLowHigh23Höchsmann et al 201824LowLowLowHigh24Huang et al 201625LowLowLowHigh25Hurt et al 201826LowLowHighHigh26Johnson et al 201627LowLowLowHigh28Kendall et al 201929LowLowLowHigh29Lamont et al 201830LowLowHighHigh30Lebleu et al 20031LowLowHighHigh31Leong et al 201732LowLowLowHighHigh32Liew et al 20033LowLowLowHighHigh	13	Burton et al 2018 ¹⁴	Low	Low	Low	High
16De Ridder et al 201917HighLowHighHigh17Duncan et al 201818LowLowLowLowHigh18Ebara et al 201719HighHighHighHigh19Floegel et al 201720LowLowLowHigh20Fokkema et al 201721UnclearLowUnclearHigh21Gaz et al 201822LowLowLowHigh23Höchsmann et al 201824LowLowLowHigh24Huang et al 201625LowLowLowHigh25Hurt et al 201826LowLowHighHigh26Johnson et al 201627LowLowLowHigh28Kendall et al 201929LowLowLowHigh29Lamont et al 201830LowLowLowHigh30Lebleu et al 20031LowLowLowHigh31Leong et al 201732LowLowLowHigh32Liew et al 202031LowLowLowHigh	14	Chandrasekar et al 2018 ¹⁵	Low	Low	Low	Low
17Duncan et al 2018 ¹⁸ LowLowLowHigh18Ebara et al 2017 ¹⁹ HighHighHighHigh19Floegel et al 2017 ²⁰ LowLowLowMigh20Fokkema et al 2017 ²¹ UnclearLowUnclearHigh21Gaz et al 2018 ²² LowLowLowHigh23Höchsmann et al 2019 ²³ LowLowLowHigh24Huang et al 2016 ²⁵ LowLowLowHigh25Hurt et al 2018 ²⁶ LowLowMighHigh26Johnson et al 2016 ²⁷ LowLowLowHigh27Jones et al 2018 ²⁸ LowLowHighHigh28Kendall et al 2019 ²⁹ UnclearHighHighHigh30Lebleu et al 2020 ³¹ LowLowLowHighHigh31Leong et al 2017 ³² LowLowLowHighHigh32Liew et al 2020 ³³ LowLowLowHighHigh	15	Clay et al 2019 ¹⁶	Low	Low	Low	High
18Ebara et al 201719HighHighHighHighHigh19Floegel et al 201720LowLowLowHigh20Fokkema et al 201721UnclearLowUnclearHigh21Gaz et al 201822LowLowHighLow22Hemández-Belmonte et al 201923LowLowLowHigh23Höchsmann et al 2018 24LowLowLowHigh24Huang et al 201625LowLowLowHigh25Hurt et al 201627LowLowHighHigh26Johnson et al 201828LowLowLowHigh28Kendall et al 201829UnclearHighHighHigh30Lebleu et al 202031LowLowLowHighHigh31Leong et al 201732LowLowLowHighHigh32Liew et al 202033LowLowLowHighHigh	16	De Ridder et al 2019 ¹⁷	High	Low	High	High
19Floegel et al 201720LowLowLowLowHigh20Fokkema et al 201721UnclearLowUnclearHigh21Gaz et al 201822LowLowLowHigh22Hernández-Belmonte et al 201923LowLowLowHigh23Höchsmann et al 2018 24LowLowLowHigh24Huang et al 201625LowLowLowHigh25Hurt et al 201826LowLowHighHigh26Johnson et al 201627LowLowLowHigh28Kendall et al 201828LowLowLowHigh29Lamont et al 201830LowLowHighHigh30Lebleu et al 202031LowLowLowHighHigh31Leong et al 201732LowLowLowHighHigh32Liew et al 202033LowLowLowHighHigh	17	Duncan et al 2018 ¹⁸	Low	Low	Low	High
20Fokkema et al 2017 ²¹ UnclearLowUnclearMigh21Gaz et al 2018 ²² LowLowMighLow22Hernández-Belmonte et al 2019 ²³ LowLowLowMigh23Höchsmann et al 2018 ²⁴ LowLowLowMigh24Huang et al 2016 ²⁵ LowLowLowMigh25Hurt et al 2018 ²⁶ LowLowMighHigh26Johnson et al 2016 ²⁷ LowLowLowHigh28Kendall et al 2019 ²⁹ UnclearHighHigh29Lamont et al 2018 ³⁰ LowLowHighHigh30Lebleu et al 2020 ³¹ LowLowMighHigh31Leong et al 2017 ³² LowLowLowHighHigh32Liew et al 2020 ³³ LowLowLowHighHigh	18	Ebara et al 2017 ¹⁹	High	High	High	High
21Gaz et al 201822LowLowHighLow22Hernández-Belmonte et al 201923LowLowLowMage23Höchsmann et al 2018 24LowLowLowHowHigh24Huang et al 201625LowLowLowMage25Hurt et al 201826LowLowHighHigh26Johnson et al 201627LowLowLowHigh27Jones et al 201828LowLowLowHigh28Kendall et al 201929UnclearHighHighHigh29Lamont et al 20131LowLowHighHigh31Leong et al 201732LowLowLowHighHigh32Liew et al 202031LowLowLowHighHigh	19	Floegel et al 2017 ²⁰	Low	Low	Low	High
22Hernández-Belmonte et al 201923LowLowLowHow23Höchsmann et al 2018 24LowLowLowMowHigh24Huang et al 201625LowLowLowMowHigh25Hurt et al 201826LowLowMighHigh26Johnson et al 201627LowLowLowHigh27Jones et al 201828LowLowMighHigh28Kendall et al 201929UnclearHighHighHigh29Lamont et al 201830LowLowHighHigh30Lebleu et al 202031LowLowLowHighHigh31Leong et al 201732LowLowLowHighHigh32Liew et al 202033LowLowLowHighHigh	20	Fokkema et al 2017 ²¹	Unclear	Low	Unclear	High
23Höchsmann et al 201824LowLowLowHigh24Huang et al 201625LowLowLowMigh25Hurt et al 201826LowLowMighHigh26Johnson et al 201627LowLowMighLow27Jones et al 201828LowLowLowHigh28Kendall et al 201929UnclearHighHighHigh29Lamont et al 201830LowLowLowHighHigh30Lebleu et al 202031LowLowLowHighHigh31Leong et al 201732LowLowLowHighHigh32Liew et al 202031LowLowHighHigh	21	Gaz et al 2018 ²²	Low	Low	High	Low
24Huang et al 201625LowLowLowHigh25Hurt et al 201826LowLowHighHigh26Johnson et al 201627LowLowLowHigh27Jones et al 201828LowLowLowHigh28Kendall et al 201929UnclearHighHigh29Lamont et al 201830LowLowHighHigh30Lebleu et al 202031LowLowHighHigh31Leong et al 201732LowLowHighHigh32Liew et al 202033LowLowHighHigh	22	Hernández-Belmonte et al 2019 ²³	Low	Low	Low	High
25Hurt et al 201826LowLowHighHigh26Johnson et al 201627LowLowLowLow27Jones et al 201828LowLowLowHigh28Kendall et al 201929UnclearHighHighHigh29Lamont et al 201830LowLowHighHigh30Lebleu et al 202031LowLowHighHigh31Leong et al 201732LowLowHighHigh32Liew et al 202033LowLowHighHigh	23	Höchsmann et al 2018 ²⁴	Low	Low	Low	High
26Johnson et al 201627LowLowHighLow27Jones et al 201828LowLowMighHigh28Kendall et al 201929UnclearHighHighHigh29Lamont et al 201830LowLowMighHigh30Lebleu et al 202031LowLowHighHigh31Leong et al 201732LowLowHighHigh32Liew et al 202033LowLowHighHigh	24	Huang et al 2016 ²⁵	Low	Low	Low	High
27Jones et al 201828LowLowLowHigh28Kendall et al 201929UnclearHighHighHigh29Lamont et al 201830LowLowHighHigh30Lebleu et al 202031LowLowHighHigh31Leong et al 201732LowLowHighHigh32Liew et al 202033LowLowHighHigh	25	Hurt et al 2018 ²⁶	Low	Low	High	High
28Kendall et al 201929UnclearHighHigh29Lamont et al 201830LowLowHighHigh30Lebleu et al 202031LowLowHighHigh31Leong et al 201732LowLowHighHigh32Liew et al 202033LowLowHighHigh	26	Johnson et al 2016 ²⁷	Low	Low	High	Low
29Lamont et al 201830LowLowHighHigh30Lebleu et al 202031LowLowHighHigh31Leong et al 201732LowLowHighHigh32Liew et al 202033LowLowHighHigh	27	Jones et al 2018 ²⁸	Low	Low	Low	High
30Lebleu et al 202031LowLowHighHigh31Leong et al 201732LowLowHighHigh32Liew et al 202033LowLowHighHigh	28	Kendall et al 2019 ²⁹	Unclear	High	High	High
31Leong et al 2017 ³² LowLowHigh32Liew et al 2020 ³³ LowLowHigh	29	Lamont et al 2018 ³⁰	Low	Low	High	High
32 Liew et al 2020 ³³ Low Low High High	30	Lebleu et al 2020 ³¹	Low	Low	High	High
	31	Leong et al 2017 ³²	Low	Low	High	High
33Lu et al 2017 ³⁴ HighHighHigh	32	Liew et al 2020 ³³	Low	Low	High	High
	33	Lu et al 2017 ³⁴	High	High	High	High

Appendix 6. QUADAS-2 risk of bias for the laboratory based studies.

34	Magistro et al 2018 ³⁵	Low	Low	Low	Low
35	Major et al 2016 ³⁶	Low	Low	Low	Low
36	Massouh et al 2019 ³⁷	Low	Low	High	High
37	Montes et al 2018 ³⁸	Unclear	Low	High	High
38	Montoye et al 2017 ³⁹	Low	Low	High	High
39	Munck et al 2018 ⁴⁰	Low	Low	High	High
40	Orr et al 2015 ⁴¹	Unclear	Low	Low	Low
41	Pepa et al 2017 ⁴²	Unclear	High	Low	High
42	Polese et al 2019 ⁴³	Low	Low	Low	High
43	Presset et al 2018 ⁴⁴	Unclear	Low	Low	High
44	Psaltos et al 2019 ⁴⁵	Unclear	High	Low	High
45	Rüdiger et al 2019 ⁴⁶	Low	Low	High	High
46	Schaffer et al 2017 ⁴⁷	Low	Low	Low	High
47	Schmal et al 2018 ⁴⁸	Low	Low	Low	High
48	Smith et al 2019 ⁴⁹	Low	Low	High	High
49	Tam et al 2018 ⁵⁰	Low	Low	Low	High
50	Tedesco et al 2019 ⁵¹	Low	Low	Low	Low
51	Thorup et al 2017 ⁵²	Low	Low	High	High
52	Tophøj et al 2018 ⁵³	Unclear	Low	High	High
53	Van Oeveren et al 2018 ⁵⁴	Unclear	Low	Low	Low
54	Veerabhadrappa et al 2018 ⁵⁵	Low	Low	Low	Low
55	Wahl et al 2017 ⁵⁶	Unclear	High	Low	High
56	Wong et al 2018 ⁵⁷	Low	Low	Low	Low
57	Xie et al 2018 ⁵⁸	Low	Low	Low	High
	High/unclear Risk of Bias Count		9	26	44
	% High Risk of Bias		16%	46%	77%

Johnston W, et al. Br J Sports Med 2020;0:1-14. doi: 10.1136/bjsports-2020-103147

Appendix 7. QUADAS-2 risk of bias for the semi-free-living studies.

Article Number	Author	Patient Selection	Index measure	Criterion measure	Flow & Timing
1	Bai et al 2018 ⁵⁹	Low	Low	High	High
2	Bort-Roig et al 2018 ⁶⁰	Low	High	High	High
3	Genovese et al 2017 ⁶¹	Low	Low	High	High
4	Imboden et al 2018 ⁶²	Low	Low	High	High
5	Nelson et al 2016 ⁶³	Low	Low	High	Low
6	O'Connell et al 2017 ⁸⁷	Low	Low	Low	Low
7	Tedesco et al 201965	Low	Low	Low	Low
8	Ummels et al 2018 ⁶⁶	Low	Low	Low	High
9	Wendel et al 2018 ⁶⁷	Low	Low	Low	High
Hig	High/unclear Risk of Bias Count		1	5	6
	% High Risk of Bias	0%	11%	56%	67%

Article Number	Author	Patient Selection	Index measure	Criterion measure	Flow & Timing
1	Amagasa et al 201968	Low	Low	High	High
2	An et al 2017 ⁴	Low	Low	High	High
3	Arch et al 2018 ⁵	High	High	High	High
4	Block et al 2019 ¹⁰	High	Low	High	High
5	Bort-Roig et al 2018 ⁶⁰	Low	High	High	High
6	Burton et al 2018 ¹⁴	Low	Low	High	High
7	Chu et al 2017 ⁶⁹	Low	Low	High	High
8	Collins et al 2019 ⁷⁰	Low	Low	High	High
9	Degroote et al 2018 ⁷¹	Low	Low	High	High
10	Dominick et al 2016 ⁷²	Low	Low	High	Low
11	Douma et al 2018 ⁷³	Low	Low	High	High
12	Duncan et al 2018 ¹⁸	Low	Low	High	High
13	Ferguson et al 2015 ⁷⁴	Low	Low	High	High
14	Gill et al 2018 ⁷⁵	Low	Low	High	Low
15	Gomersall et al 2016 ⁷⁶	Low	Low	High	High
16	Höchsmann et al 202077	Low	Low	High	High
17	Hartwig et al 201978	Unclear	Low	High	High
18	Lebleu et al 2020 ³¹	Low	Low	High	High
19	Leong et al 2017 ³²	Low	Low	High	High
20	Liew et al 2020 ³³	Low	Low	High	High
21	Middelweerd et al 201779	Low	Low	High	Low
22	Mooses et al 201880	High	High	High	Low
23	Orr et al 2015 ⁴¹	Low	Low	High	Low
24	Rosenberger et al 2016 ⁸¹	Unclear	Low	High	High
25	Rozanski et al 2018 ⁸²	Low	Low	High	High
26	Stamatelopoulou et al 201883	Unclear	Low	High	High
27	Tedesco et al 201965	Low	Low	High	High
28	Toth et al 2018 ⁸⁴	Low	Low	Low	Low
29	Voss et al 2017 ⁸⁵	Low	Low	High	Low
30	Yang et al 2019 ⁸⁶	Low	Low	High	High
Hi	High Risk of Bias Count		3	29	23
Q	% High Risk of Bias	20%	10%	97%	77%

Appendix 8. QUADAS-2 risk of bias for the free-living studies.

Supplemental Data Reference List

- 1. Whiting PF, Rutjes AW, Westwood ME, et al. QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. *Annals of internal medicine* 2011;155(8):529-36. doi: 10.7326/0003-4819-155-8-201110180-00009 [published Online First: 2011/10/19]
- Åkerberg A, Söderlund A, Lindén M. Investigation of the validity and reliability of a smartphone pedometer application. *European Journal of Physiotherapy* 2016;18(3):185-93. doi: 10.3109/21679169.2016.1174297
- Alsubheen SA, George AM, Baker A, et al. Accuracy of the vivofit activity tracker. Journal of medical engineering & technology 2016;40(6):298-306. doi: 10.1080/03091902.2016.1193238
- 4. An HS, Jones GC, Kang SK, et al. How valid are wearable physical activity trackers for measuring steps? *European journal of sport science* 2017;17(3):360-68. doi: 10.1080/17461391.2016.1255261
- 5. Arch ES, Sions JM, Horne J, et al. Step count accuracy of StepWatch and FitBit One[™] among individuals with a unilateral transtibial amputation. *Prosthetics and orthotics international* 2018;42(5):518-26. doi: 10.1177/0309364618767138
- 6. Ata R, Gandhi N, Rasmussen H, et al. Clinical validation of smartphone-based activity tracking in peripheral artery disease patients. *npj Digital Medicine* 2018;1(1) doi: 10.1038/s41746-018-0073-x
- 7. Balmain BN, Tuttle N, Bailey J, et al. Using Smart Socks to Detect Step-count at Slow Walking Speeds in Healthy Adults. *International journal of sports medicine* 2019;40(2):133-38. doi: 10.1055/a-0732-5621
- Balto JM, Kinnett-Hopkins DL, Motl RW. Accuracy and precision of smartphone applications and commercially available motion sensors in multiple sclerosis. *Multiple Sclerosis Journal -Experimental, Translational and Clinical* 2016;2((Balto J.M.; Kinnett-Hopkins D.L.; Motl R.W., robmotl@illinois.edu) Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, United States) doi: 10.1177/2055217316634754
- 9. Beltrán-Carrillo VJ, Jiménez-Loaisa A, Alarcón-López M, et al. Validity of the "Samsung Health" application to measure steps: A study with two different samsung smartphones. *Journal of sports sciences* 2019;37(7):788-94. doi: 10.1080/02640414.2018.1527199
- Block VJ, Zhao C, Hollenbach JA, et al. Validation of a consumer-grade activity monitor for continuous daily activity monitoring in individuals with multiple sclerosis. *Multiple Sclerosis Journal - Experimental, Translational and Clinical* 2019;5(4) doi: 10.1177/2055217319888660
- Brodie MA, Pliner EM, Ho A, et al. Big data vs accurate data in health research: Large-scale physical activity monitoring, smartphones, wearable devices and risk of unconscious bias. *Medical Hypotheses* 2018;119((Gandevia S.C.; Lord S.R.) School of Medicine, University of New South Wales, Australia):32-36. doi: 10.1016/j.mehy.2018.07.015
- Buckinx F, Mouton A, Reginster JY, et al. Relationship between ambulatory physical activity assessed by activity trackers and physical frailty among nursing home residents. *Gait and Posture* 2017;54((Appelboom G.) Byers Center for Biodesign, Stanford University, 318 Campus Drive E100, Stanford, CA, United States):56-61. doi: 10.1016/j.gaitpost.2017.02.010
- Bunn JA, Jones C, Oliviera A, et al. Assessment of step accuracy using the Consumer Technology Association standard. *Journal of Sports Sciences* 2019;37(3):244-48. doi: 10.1080/02640414.2018.1491941
- 14. Burton E, Hill KD, Lautenschlager NT, et al. Reliability and validity of two fitness tracker devices in the laboratory and home environment for older community-dwelling people. *BMC geriatrics* 2018;18(1):103. doi: 10.1186/s12877-018-0793-4
- 15. Chandrasekar A, Hensor EMA, Mackie SL, et al. Preliminary concurrent validity of the Fitbit-Zip and ActiGraph activity monitors for measuring steps in people with polymyalgia rheumatica. *Gait and Posture* 2018;61((Harris E., E.Harris@hud.ac.uk) School of Human and Health Sciences, University of Huddersfield, Huddersfield, United Kingdom):339-45. doi: 10.1016/j.gaitpost.2018.01.035

- Clay L, Webb M, Hargest C, et al. Gait quality and velocity influences activity tracker accuracy in individuals post-stroke. *Topics in Stroke Rehabilitation* 2019;26(6):412-17. doi: 10.1080/10749357.2019.1623474
- De Ridder R, De Blaiser C. Activity trackers are not valid for step count registration when walking with crutches. *Gait and Posture* 2019;70((De Ridder R., Roel.DeRidder@ugent.be; De Blaiser C.) Department of Rehabilitation Sciences and Physiotherapy, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium):30-32. doi: 10.1016/j.gaitpost.2019.02.009
- Duncan MJ, Wunderlich K, Zhao Y, et al. Walk this way: validity evidence of iphone health application step count in laboratory and free-living conditions. *Journal of sports sciences* 2018;36(15):1695-704. doi: 10.1080/02640414.2017.1409855
- 19. Ebara T, Azuma R, Shoji N, et al. Reliability of smartphone-based gait measurements for quantification of physical activity/inactivity levels. *Journal of occupational health* 2017;59(6):506-12. doi: 10.1539/joh.17-0101-OA
- 20. Floegel TA, Florez-Pregonero A, Hekler EB, et al. Validation of Consumer-Based Hip and Wrist Activity Monitors in Older Adults With Varied Ambulatory Abilities. *The journals of gerontology Series A, Biological sciences and medical sciences* 2017;72(2):229-36. doi: 10.1093/gerona/glw098
- 21. Fokkema T, Kooiman TJ, Krijnen WP, et al. Reliability and Validity of Ten Consumer Activity Trackers Depend on Walking Speed. *Medicine and science in sports and exercise* 2017;49(4):793-800. doi: 10.1249/MSS.00000000001146
- 22. Gaz DV, Rieck TM, Peterson NW, et al. Determining the Validity and Accuracy of Multiple Activity-Tracking Devices in Controlled and Free-Walking Conditions. *American journal of health promotion : AJHP* 2018;32(8):1671-78. doi: 10.1177/0890117118763273
- 23. Hernández-Belmonte A, Bastida-Castillo A, Gómez-Carmona CD, et al. Validity and reliability of an inertial device (WIMU PROTM) to quantify physical activity level through steps measurement. *The Journal of sports medicine and physical fitness* 2019;59(4):587-92. doi: 10.23736/S0022-4707.18.08059-3
- 24. Höchsmann C, Knaier R, Eymann J, et al. Validity of activity trackers, smartphones, and phone applications to measure steps in various walking conditions. *Scandinavian journal of medicine & science in sports* 2018;28(7):1818-27. doi: 10.1111/sms.13074
- 25. Huang Y, Xu J, Yu B, et al. Validity of FitBit, Jawbone UP, Nike+ and other wearable devices for level and stair walking. *Gait and Posture* 2016;48((Huang Y.; Xu J.; Yu B.; Shull P.B., pshull@sjtu.edu.cn) State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China):36-41. doi: 10.1016/j.gaitpost.2016.04.025
- 26. Hurt CP, Lein DH, Smith CR, et al. Assessing a novel way to measure step count while walking using a custom mobile phone application. *PLoS ONE* 2018;13(11) doi: 10.1371/journal.pone.0206828
- 27. Johnson M, Turek J, Dornfeld C, et al. Validity of the Samsung Phone S Health application for assessing steps and energy expenditure during walking and running: Does phone placement matter? *Digital health*;2:2055207616652747. doi: 10.1177/2055207616652747
- 28. Jones D, Crossley K, Dascombe B, et al. Validity and Reliability of the Fitbit Flex (Tm) and Actigraph Gt3x+ at Jogging and Running Speeds. International Journal of Sports Physical Therapy 2018;13(5):860-70. doi: 10.26603/ijspt20180860
- 29. Kendall B, Bellovary B, Gothe NP. Validity of wearable activity monitors for tracking steps and estimating energy expenditure during a graded maximal treadmill test. *Journal of sports sciences* 2019;37(1):42-49. doi: 10.1080/02640414.2018.1481723
- 30. Lamont RM, Daniel HL, Payne CL, et al. Accuracy of wearable physical activity trackers in people with Parkinson's disease. *Gait & posture* 2018;63:104-08. doi: 10.1016/j.gaitpost.2018.04.034

- Lebleu J, Detrembleur C, Guebels C, et al. Concurrent validity of Nokia Go activity tracker in walking and free-living conditions. *Journal of Evaluation in Clinical Practice* 2020;26(1):223-28. doi: 10.1111/jep.13125
- 32. Leong JY, Wong JE. Accuracy of three Android-based pedometer applications in laboratory and free-living settings. *Journal of sports sciences* 2017;35(1):14-21.
- 33. Liew SJ, Gorny AW, Tan CS, et al. A Mobile Health Team Challenge to Promote Stepping and Stair Climbing Activities: Exploratory Feasibility Study. JMIR mHealth and uHealth 2020;8(2):e12665. doi: 10.2196/12665
- 34. Lu YT, Velipasalar S. Autonomous Footstep Counting and Traveled Distance Calculation by Mobile Devices Incorporating Camera and Accelerometer Data. *Ieee Sensors Journal* 2017;17(21):7157-66. doi: 10.1109/JSEN.2017.2752960
- 35. Magistro D, Brustio PR, Ivaldi M, et al. Validation of the ADAMO Care Watch for step counting in older adults. *PLoS ONE* 2018;13(2) doi: 10.1371/journal.pone.0190753
- 36. Major MJ, Alford M. Validity of the iPhone M7 motion co-processor as a pedometer for ablebodied ambulation. *Journal of sports sciences* 2016;34(23):2160-64.
- Massouh F, Martin R, Chan B, et al. Is Activity Tracker-Measured Ambulation an Accurate and Reliable Determinant of Postoperative Quality of Recovery? A Prospective Cohort Validation Study. *Anesthesia and analgesia* 2019;129(4):1144-52. doi: 10.1213/ANE.00000000003913
- Montes J, Young JC, Tandy R, et al. Reliability and Validation of the Hexoskin Wearable Bio-Collection Device During Walking Conditions. *International journal of exercise science* 2018;11(7):806-16.
- 39. Montoye AHK, Mitrzyk JR, Molesky MJ. Comparative Accuracy of a Wrist-Worn Activity Tracker and a Smart Shirt for Physical Activity Assessment. *Measurement in Physical Education and Exercise Science* 2017;21(4):201-11. doi: 10.1080/1091367X.2017.1331166
- 40. Munck K, Christensen MH, Tahhan A, et al. Evaluation of Self-Trackers for Use in Telerehabilitation. *Journal of Usability Studies* 2018;13(3):125-37.
- 41. Orr K, Howe HS, Omran J, et al. Validity of smartphone pedometer applications. BMC research notes 2015;8((Faulkner G., guy.faulkner@ubc.ca) School of Kinesiology, University of British Columbia, Vancouver, Canada):733. doi: 10.1186/s13104-015-1705-8
- 42. Pepa L, Verdini F, Spalazzi L. Gait parameter and event estimation using smartphones. *Gait & posture* 2017;57:217-23. doi: 10.1016/j.gaitpost.2017.06.011
- 43. Polese JC, e Faria GS, Ribeiro-Samora GA, et al. Google fit smartphone application or Gt3X Actigraph: Which is better for detecting the stepping activity of individuals with stroke? A validity study. *Journal of Bodywork and Movement Therapies* 2019;23(3):461-65. doi: 10.1016/j.jbmt.2019.01.011
- 44. Presset B, Laurenczy B, Malatesta D, et al. Accuracy of a smartphone pedometer application according to different speeds and mobile phone locations in a laboratory context. *Journal of Exercise Science & Fitness* 2018;16(2):43-48. doi: 10.1016/j.jesf.2018.05.001
- 45. Psaltos D, Chappie K, Karahanoglu FI, et al. Multimodal Wearable Sensors to Measure Gait and Voice. *Digital Biomarkers* 2019;3(3):133-44. doi: 10.1159/000503282
- 46. Rüdiger S, Stuckenschneider T, Abeln V, et al. Validation of a widely used heart rate monitor to track steps in older adults. *The Journal of sports medicine and physical fitness* 2019;59(10):1622-27. doi: 10.23736/S0022-4707.19.09830-X
- Schaffer SD, Holzapfel SD, Fulk G, et al. Step count accuracy and reliability of two activity tracking devices in people after stroke. *Physiotherapy theory and practice* 2017;33(10):788-96. doi: 10.1080/09593985.2017.1354412
- 48. Schmal H, Holsgaard-Larsen A, Izadpanah K, et al. Validation of Activity Tracking Procedures in Elderly Patients after Operative Treatment of Proximal Femur Fractures. *Rehabilitation Research and Practice* 2018;2018((Brønd J.C., jbrond@health.sdu.dk) Institute of Biomechanics and Sports Sciences, University of Southern Denmark, Denmark) doi: 10.1155/2018/3521271

- 49. Smith JD, Guerra G, Burkholder BG. The validity and accuracy of wrist-worn activity monitors in lower-limb prosthesis users. *Disability and rehabilitation* 2019((Guerra G.) Sirindhorn School of Prosthetics and Orthotics, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand):1-7. doi: 10.1080/09638288.2019.1587792
- 50. Tam KM, Cheung SY. Validation of Electronic Activity Monitor Devices During Treadmill Walking. Telemedicine journal and e-health : the official journal of the American Telemedicine Association 2018;24(10):782-89. doi: 10.1089/tmj.2017.0263
- 51. Tedesco S, Sica M, Ancillao A, et al. Accuracy of consumer-level and research-grade activity trackers in ambulatory settings in older adults. *PLoS ONE* 2019;14(5) doi: 10.1371/journal.pone.0216891
- 52. Thorup CB, Andreasen JJ, Sørensen EE, et al. Accuracy of a step counter during treadmill and daily life walking by healthy adults and patients with cardiac disease. *BMJ Open* 2017;7(3) doi: 10.1136/bmjopen-2016-011742
- 53. Tophøj KH, Petersen MG, Sæbye C, et al. Validity and Reliability Evaluation of Four Commercial Activity Trackers' Step Counting Performance. *Telemedicine journal and e-health : the official journal of the American Telemedicine Association* 2018;24(9):669-77. doi: 10.1089/tmj.2017.0264
- 54. van Oeveren BT, de Ruiter CJ, Beek PJ, et al. An adaptive, real-time cadence algorithm for unconstrained sensor placement. *Medical Engineering & Physics* 2018;52:49-58. doi: 10.1016/j.medengphy.2017.12.007
- 55. Veerabhadrappa P, Moran MD, Renninger MD, et al. Tracking Steps on Apple Watch at Different Walking Speeds. *Journal of general internal medicine* 2018;33(6):795-96. doi: 10.1007/s11606-018-4332-y
- 56. Wahl Y, Düking P, Droszez A, et al. Criterion-validity of commercially available physical activity tracker to estimate step count, covered distance and energy expenditure during sports conditions. *Frontiers in Physiology* 2017;8(SEP) doi: 10.3389/fphys.2017.00725
- 57. Wong CK, Mentis HM, Kuber R. The bit doesn't fit: Evaluation of a commercial activity-tracker at slower walking speeds. *Gait & posture* 2018;59:177-81. doi: 10.1016/j.gaitpost.2017.10.010
- 58. Xie JQ, Wen D, Liang LZ, et al. Evaluating the Validity of Current Mainstream Wearable Devices in Fitness Tracking Under Various Physical Activities: Comparative Study. *Jmir Mhealth and Uhealth* 2018;6(4) doi: 10.2196/mhealth.9754
- 59. Bai Y, Hibbing P, Mantis C, et al. Comparative evaluation of heart rate-based monitors: Apple Watch vs Fitbit Charge HR. *Journal of sports sciences* 2018;36(15):1734-41. doi: 10.1080/02640414.2017.1412235
- 60. Bort-Roig J, Puig-Ribera A, Contreras RS, et al. Monitoring sedentary patterns in office employees: validity of an m-health tool (Walk@Work-App) for occupational health. *Gaceta sanitaria* 2018;32(6):563-66. doi: 10.1016/j.gaceta.2017.05.004
- 61. Genovese V, Mannini A, Sabatini AM. A Smartwatch Step Counter for Slow and Intermittent Ambulation. *Ieee Access* 2017;5:13028-37. doi: 10.1109/ACCESS.2017.2702066
- 62. Imboden MT, Nelson MB, Kaminsky LA, et al. Comparison of four Fitbit and Jawbone activity monitors with a research-grade ActiGraph accelerometer for estimating physical activity and energy expenditure. *British journal of sports medicine* 2018;52(13):844-50. doi: 10.1136/bjsports-2016-096990
- 63. Nelson MB, Kaminsky LA, Dickin DC, et al. Validity of Consumer-Based Physical Activity Monitors for Specific Activity Types. *Medicine and science in sports and exercise* 2016;48(8):1619-28. doi: 10.1249/MSS.00000000000933
- 64. O'Connell S, G OL, Quinlan LR. When a Step Is Not a Step! Specificity Analysis of Five Physical Activity Monitors. *PLoS One* 2017;12(1):e0169616. doi: 10.1371/journal.pone.0169616 [published Online First: 2017/01/14]
- 65. Tedesco S, Sica M, Ancillao A, et al. Validity Evaluation of the Fitbit Charge2 and the Garmin vivosmart HR plus in Free-Living Environments in an Older Adult Cohort. *Jmir Mhealth and Uhealth* 2019;7(6) doi: 10.2196/13084

66. Ummels D, Beekman E, Theunissen K, et al. Counting Steps in Activities of Daily Living in People With a Chronic Disease Using Nine Commercially Available Fitness Trackers: Cross-Sectional Validity Study. JMIR mHealth and uHealth 2018;6(4):e70. doi: 10.2196/mhealth.8524

- 67. Wendel N, Macpherson CE, Webber K, et al. Accuracy of Activity Trackers in Parkinson Disease: Should We Prescribe Them? *Physical therapy* 2018;98(8):705-14. doi: 10.1093/ptj/pzy054
- 68. Amagasa S, Kamada M, Sasai H, et al. How Well iPhones Measure Steps in Free-Living Conditions: Cross-Sectional Validation Study. JMIR mHealth and uHealth 2019;7(1):e10418. doi: 10.2196/10418
- 69. Chu AHY, Ng SHX, Paknezhad M, et al. Comparison of wrist-worn Fitbit Flex and waist-worn ActiGraph for measuring steps in free-living adults. *Plos One* 2017;12(2) doi: 10.1371/journal.pone.0172535
- 70. Collins JE, Yang HY, Trentadue TP, et al. Validation of the Fitbit Charge 2 compared to the ActiGraph GT3X+ in older adults with knee osteoarthritis in free-living conditions. *PloS one* 2019;14(1):e0211231. doi: 10.1371/journal.pone.0211231
- 71. Degroote L, De Bourdeaudhuij I, Verloigne M, et al. The Accuracy of Smart Devices for Measuring Physical Activity in Daily Life: Validation Study. JMIR mHealth and uHealth 2018;6(12):e10972. doi: 10.2196/10972
- 72. Dominick GM, Winfree KN, Pohlig RT, et al. Physical Activity Assessment Between Consumer- and Research-Grade Accelerometers: A Comparative Study in Free-Living Conditions. *Jmir Mhealth and Uhealth* 2016;4(3) doi: 10.2196/mhealth.6281
- 73. Douma JAJ, Verheul HMW, Buffart LM. Feasibility, validity and reliability of objective smartphone measurements of physical activity and fitness in patients with cancer. BMC Cancer 2018;18(1) doi: 10.1186/s12885-018-4983-4
- 74. Ferguson T, Rowlands AV, Olds T, et al. The validity of consumer-level, activity monitors in healthy adults worn in free-living conditions: A cross-sectional study. *International Journal of Behavioral Nutrition and Physical Activity* 2015;12(1) doi: 10.1186/s12966-015-0201-9
- 75. Gill JMR, Hawari NSA, Maxwell DJ, et al. Validation of a Novel Device to Measure and Provide Feedback on Sedentary Behavior. *Medicine and science in sports and exercise* 2018;50(3):525-32. doi: 10.1249/MSS.00000000001458
- 76. Gomersall SR, Ng N, Burton NW, et al. Estimating Physical Activity and Sedentary Behavior in a Free-Living Context: A Pragmatic Comparison of Consumer-Based Activity Trackers and ActiGraph Accelerometry. *Journal of medical Internet research* 2016;18(9):e239. doi: 10.2196/jmir.5531
- 77. Höchsmann C, Knaier R, Infanger D, et al. Validity of smartphones and activity trackers to measure steps in a free-living setting over three consecutive days. *Physiological measurement* 2020;41(1):015001. doi: 10.1088/1361-6579/ab635f
- 78. Hartwig TB, Del Pozo-Cruz B, White RL, et al. A monitoring system to provide feedback on student physical activity during physical education lessons. *Scandinavian journal of medicine* & science in sports 2019;29(9):1305-12. doi: 10.1111/sms.13438
- 79. Middelweerd A, H.P VDP, A VANH, et al. A Validation Study of the Fitbit One in Daily Life Using Different Time Intervals. *Medicine and science in sports and exercise* 2017;49(6):1270-79. doi: 10.1249/MSS.00000000001225
- Mooses K, Oja M, Reisberg S, et al. Validating Fitbit Zip for monitoring physical activity of children in school: a cross-sectional study. *BMC public health* 2018;18(1):858. doi: 10.1186/s12889-018-5752-7
- 81. Rosenberger ME, Buman MP, Haskell WL, et al. Twenty-four Hours of Sleep, Sedentary Behavior, and Physical Activity with Nine Wearable Devices. *Medicine and science in sports and exercise* 2016;48(3):457-65. doi: 10.1249/MSS.00000000000778
- Rozanski GM, Aqui A, Sivakumaran S, et al. Consumer Wearable Devices for Activity Monitoring Among Individuals After a Stroke: A Prospective Comparison. *JMIR cardio* 2018;2(1):e1. doi: 10.2196/cardio.8199

- 83. Stamatelopoulou A, Chapizanis D, Karakitsios S, et al. Assessing and enhancing the utility of lowcost activity and location sensors for exposure studies. *Environmental Monitoring and Assessment* 2018;190(3) doi: 10.1007/s10661-018-6537-2
- 84. Toth LP, Park S, Springer CM, et al. Video-Recorded Validation of Wearable Step Counters under Free-living Conditions. *Medicine and science in sports and exercise* 2018;50(6):1315-22. doi: 10.1249/MSS.00000000001569
- Voss C, Gardner RF, Dean PH, et al. Validity of Commercial Activity Trackers in Children With Congenital Heart Disease. *Canadian Journal of Cardiology* 2017;33(6):799-805. doi: 10.1016/j.cjca.2016.11.024
- 86. Yang X, Jago R, Zhang Q, et al. Validity and Reliability of the Wristband Activity Monitor in Freeliving Children Aged 10-17 Years. *Biomedical and Environmental Sciences* 2019;32(11):812-22. doi: 10.3967/bes2019.103
- 87. O'Connell S, Ólaighin G, Quinlan LR. When a step is not a step! Specificity analysis of five physical activity monitors. *PLoS ONE* 2017;12(1) doi: 10.1371/journal.pone.0169616