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Abstract

Background Knowledge of age-related DNA methylation changes in skeletal muscle is limited, yet this tissue is se-
verely affected by ageing in humans.
Methods We conducted a large-scale epigenome-wide association study meta-analysis of age in human skeletal
muscle from 10 studies (total n ¼ 908 muscle methylomes from men and women aged 18–89 years old). We explored
the genomic context of age-related DNA methylation changes in chromatin states, CpG islands, and transcription factor
binding sites and performed gene set enrichment analysis. We then integrated the DNA methylation data with known
transcriptomic and proteomic age-related changes in skeletal muscle. Finally, we updated our recently developed
muscle epigenetic clock (https://bioconductor.org/packages/release/bioc/html/MEAT.html).
Results We identified 6710 differentially methylated regions at a stringent false discovery rate<0.005, spanning 6367
unique genes, many of which related to skeletal muscle structure and development. We found a strong increase in DNA
methylation at Polycomb target genes and bivalent chromatin domains and a concomitant decrease in DNA methylation
at enhancers. Most differentially methylated genes were not altered at the mRNA or protein level, but they were none-
theless strongly enriched for genes showing age-related differential mRNA and protein expression. After adding a sub-
stantial number of samples from five datasets (+371), the updated version of the muscle clock (MEAT 2.0, total
n ¼ 1053 samples) performed similarly to the original version of the muscle clock (median of 4.4 vs. 4.6 years in
age prediction error), suggesting that the original version of the muscle clock was very accurate.
Conclusions We provide here the most comprehensive picture of DNA methylation ageing in human skeletal muscle
and reveal widespread alterations of genes involved in skeletal muscle structure, development, and differentiation.
We have made our results available as an open-access, user-friendly, web-based tool called MetaMeth (https://sarah-
voisin.shinyapps.io/MetaMeth/).
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Background

While human lifespan (i.e. the number of years alive) has
increased by ~3.5 years per decade since 1900,1 healthspan
(i.e. number of years spent in good health) has not in-
creased to the same extent. In 2015, people lived 5 years
longer than in 2000, but only 4.6 years longer in good
health.2 Ageing leads to the progressive loss of muscle mass
and strength, resulting in a disorder termed sarcopenia.
Sarcopenia is a serious condition leading to an increased risk
of many conditions including cancer, type 2 diabetes (T2D),
and cardiovascular diseases.3 This process is driven by a host
of adverse molecular changes in skeletal muscle with ad-
vancing age. Unravelling the molecular changes caused by
ageing in skeletal muscle is the basic foundation for the
development of drugs and targeted health-related
interventions to help prevent sarcopenia and maximize
healthspan.

Epigenetics are modifications of DNA that confer on the cell
the ability to remember a past event.4 Epigenetic changes are
one of the primary hallmarks of ageing, leading to dysregu-
lated nutrient sensing, mitochondrial dysfunction, and cellular
senescence, which ultimately results in stem cell exhaustion
and altered intercellular communication.5 The best character-
ized epigenetic modification in the context of ageing is DNA
methylation. DNA methylation occurs at millions of CpG dinu-
cleotides in the genome and changes considerably with age in
various human tissues,6 including skeletal muscle.7–9

Age-related DNA methylation changes in skeletal muscle
may be one of the molecular mechanisms underlying
sarcopenia, but the full picture is fragmentary. To date, four
epigenome-wide association studies (EWASs)7,8,10,11 have
probed age-related DNA methylation changes in the muscle
methylome, and all relied on relatively small sample sizes
(n ¼ 10–50). Studies relying on a small sample size fail to de-
tect small effect sizes and can be prone to large error, so larger
initiatives are needed to identify the comprehensive list of
CpG loci that change in methylation with age in human skele-
tal muscle. Meta-analyses significantly increase statistical
power and are more likely to identify robust age-related
methylation sites.12 Current understanding of epigenetic age-
ing in skeletal muscle also remains incomplete as insight into
the functional consequences of age-related epigenetic
changes remains poorly understood. Whether age-related
changes in DNA methylation in muscle cause or stem from
changes in mRNA and protein expression is currently
unknown.

To address these gaps, we performed a large-scale bioin-
formatics analysis of DNA methylation, and mRNA and pro-
tein changes with age in human skeletal muscle. We

integrated original DNA methylation data from our laboratory
(the Gene SMART cohort) with available open-access data
from multiple repositories and published studies. Firstly, we
aimed to identify robust age-related CpGs in skeletal muscle
in an EWAS meta-analysis of age, combining n ¼ 908 samples
from 10 datasets. Second, we performed enrichment analy-
ses to unravel the potential functional consequences of these
robust age-related DNA methylation changes. Thirdly, we in-
tegrated age-related methylome changes with transcriptome
and proteome changes in skeletal muscle using two external,
large-scale studies. Finally, we updated our skeletal muscle
epigenetic clock9 with an additional 371 samples, reaching a
total of 1053 human skeletal muscle methylomes from 16
datasets. Importantly, we have made the results of our anal-
ysis available as an open-access, user-friendly, interactive
web-based tool, MetaMeth (https://sarah-voisin.shinyapps.
io/MetaMeth/), enabling users to look at age-related changes
in any gene of interest across the muscle methylome,
transcriptome, and proteome.

Methods

Epigenome-wide association study meta-analysis
of age in skeletal muscle

We combined four datasets of genome-wide DNA methyla-
tion in skeletal muscle [the Gene Skeletal Muscle Adaptive
Response to Training (SMART),13 the Limb Immobilisation
and Transcriptional/Epigenetic Responses (LITER) study,9

the Biological Atlas of Severe Obesity (ABOS) study,14 and
the Epigenetica & Kracht (EPIK) study10], with five datasets
from the open-access Gene Expression Omnibus platform
(GSE49908,8 GSE50498,7 GSE114763,15 GSE38291,16 and
GSE13506317), and the Finland-United States Investigation
of NIDDM Genetics (FUSION) study18 (phs000867.v1.p1).
These summed up to a total of n ¼ 908 skeletal muscle
samples collected from men and women across the lifespan
(age range 18–89 years old, Supporting Information, Figure
S1 and Table S1). Samples were 98% Caucasian and 71%
male (Table S1). We excluded cohorts from our recently
published paper9 with a narrow age range (age standard
deviation <5 years) as age-related differences in DNA
methylation cannot be detected if age is invariant; we also
excluded datasets with a limited number of samples
(n < 20) for robustness. Samples from the Gene SMART
cohort (n ¼ 234) include two batches, and our recently
published paper9 only includes the first batch of 75 samples
available on the Gene Expression Omnibus platform
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(GSE151407). The additional 159 samples from the second
batch include both men and women, before and after exer-
cise intervention.

Different preprocessing pipelines may result in DNA meth-
ylation differences between studies. To overcome this issue,
we downloaded and preprocessed the data using the same
pipeline for 9/10 datasets whose raw data were available
(Table S1). Details on the preprocessing steps can be found
elsewhere.9 We have also filtered out additional probes that
have been identified as cross-hybridizing by Pidsley et al.19

We did not preprocess all datasets together because age dis-
tributions varied widely between datasets (Figure S1). As age
was confounded with dataset, normalizing datasets together
may overcorrect/under-correct DNA methylation profiles and
artificially introduced noise. Therefore, we analysed each
dataset separately and only then perform a meta-analysis,
which preserves each dataset’s specificity while combining
results across datasets. We conducted independent EWAS
of age in skeletal muscle in each dataset, using linear models
and moderated Bayesian statistics as implemented in
limma20; to isolate the contribution of age to DNA methyla-
tion variability, we regressed DNA methylation level against
age and adjusted, when the dataset included these covari-
ates, for sex, body mass index (BMI), diabetes status, batch,
and time point (baseline/post-intervention or training); we
also added, when the dataset included repeated measures
on the same individuals or related individuals, a random in-
tercept using the duplicateCorrelation function to account
for repeated measures from the same individuals or to
account for twinship. We adjusted each EWAS for bias and
inflation using the empirical null distribution as implemented
in bacon (Figure S2).21 Inflation and bias in EWAS are caused
by unmeasured technical and biological confounding, such
as population substructure, batch effects, and cellular
heterogeneity.22 The inflation factor is higher when the ex-
pected number of true associations is high (as it is for age);
it is also greater for studies with higher statistical power.21

The figures we found (Figure S2) were consistent with the
inflation factors and biases reported in an EWAS of age in
blood.21

Results from the independent EWAS were combined using
an inverse variance weighted meta-analysis with METAL.12

We used METAL because it does not require all DNA
methylation datasets to include every CpG site on the
HumanMethylation arrays. Different sets of CpGs may be
filtered out during preprocessing of each individual dataset,
which means the overlap between the datasets is imperfect
and a given CpG may only be present in five out of 10
datasets or eight out of 10 datasets. For robustness, we only
included CpGs present in at least six of the 10 cohorts
(649 250 CpGs). We used a fixed effects (as opposed to ran-
dom effects) meta-analysis, assuming one true effect size of
age on DNA methylation, which is shared by all the included
studies. Nevertheless, Cochran’s Q-test for heterogeneity was

performed to test whether effect sizes were homogeneous
between studies [a heterogeneity index (I2) >50% reflects
heterogeneity between studies]. The CpGs associated with
age at a stringent meta-analysis false discovery rate (FDR)
<0.005 were considered differentially methylated positions
(DMPs). We then identified differentially methylated regions
(DMRs) (i.e. clusters of DMPs with consistent DNA methyla-
tion change with age) using the dmrcate package, at a
Fisher’s multiple comparison statistic <0.005, a Stouffer
score <0.005, and a harmonic mean of the individual
component FDRs <0.005.23 dmrcate works by smoothing
the test statistic of CpGs separated by a maximum of
1000 bp using a Gaussian kernel; then, it models the
smoothed test statistics, computes and corrects P-values,
and finally aggregates adjacent CpGs that are significant and
within 1000 bp of each other. We focused on the DMRs for
all downstream analyses, as DMRs remove spatial redun-
dancy (CpG sites within ~500 bp are typically highly
correlated24), and they may provide more robust and func-
tionally important information than DMPs.25,26

Enrichment of differentially methylated regions in
functional regions of the genome

We used a χ2 test to compare the distribution of
hypermethylated and hypomethylated DMRs with that of
non-DMRs (i) at different positions with respect to CpG
islands, (ii) in different skeletal muscle chromatin states from
the Roadmap Epigenomics Project,27 and (iii) in CCCTC-bind-
ing factor (CTCF) and enhancer of zeste homologue 2 (EZH2)
transcription factors binding sites in HSMMtube from the EN-
CODE project. CTCF is a multifunctional protein involved in
gene regulation and chromatin organization,28 while EZH2 is
the functional enzymatic component of the Polycomb repres-
sive complex 2 (PRC2).29 A P-value <0.005 was deemed
significant.

We performed gene ontology (GO), KEGG, and Reactome
enrichment on the age-related DMRs using all tested CpGs
as the background (i.e. the 649 250 CpGs included in the
meta-analysis), thanks to the goregion function from the
missMethyl package.30 We used our own improved
annotation of the epigenome and largely based on the
comprehensive annotation of Zhou et al. of Illumina
HumanMethylation arrays31 as well as the chromatin states
in skeletal muscle from the Roadmap Epigenomics
Project,27 and the latest GeneHancer information.32 The
goregion function accounts for the biased distribution of
CpGs in genes.33 All GO, KEGG, and Reactome terms with
FDR < 0.005 were deemed significant.34,35 To make sense
of the many GO terms obtained as output, we used
REVIGO36 that clusters GO terms according to semantic
similarity.
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Integration of methylome, transcriptome, and
proteome changes with age

Each gene with at least one DMR annotated to it was consid-
ered a differentially methylated gene (DMG). To gain insights
into the functional consequences of DNA methylation
changes with age in skeletal muscle, we compared DMGs
with known differentially expressed genes at the
transcriptomic37 and proteomic38 levels with advancing age.
A transcriptomic meta-analysis in skeletal muscle was re-
cently published,39 but it focused on exercise-induced
changes instead of age-related changes. Thus, we used the
transcriptomic meta-analysis of age by Su et al. that com-
bined 2852 public gene expression arrays in skeletal muscle
and identified 957 genes whose mRNA levels changed with
age.37 Ubaida-Mohien et al. performed a large-scale proteo-
mics analysis of human skeletal muscle and identified 1265
genes whose protein levels were altered with age.38 We used
a χ2 test to see whether a disproportionate number of DMGs
were also differentially expressed at the mRNA or protein
level, and a P-value <0.005 was deemed significant.

Update of the muscle epigenetic clock (MEAT 2.0)

Since the development of the original muscle clock that used
682 samples from 12 datasets to predict age from DNA meth-
ylation data,9 we gathered additional 371 samples from five
datasets (+159 from Gene SMART, +65 from ABOS, +42 from
LITER, +57 from GSE135063, and +48 from EPIK). We there-
fore updated the clock with these new samples, using
the same algorithm and methodology.9 Briefly, we first
preprocessed each dataset separately (i.e. probe/sample fil-
tering, adjustment of type I and type II probes, and correction
for batch effects); then, we reduced each dataset to all the
CpGs that were common between them (18 747 CpGs). To

obtain DNA methylation profiles that were comparable be-
tween datasets, we calibrated each dataset to GSE50498
using an adapted version of the BMIQ algorithm.9 We then
used elastic net regression on a transformed version of age
to create the new muscle clock (MEAT 2.0).9 Finally, given
the limited number of datasets and the biased age distribu-
tion in each dataset, we estimated the accuracy of the new
muscle clock in an unbiased manner using a leave-one-
dataset-out cross-validation procedure, as described in our
original paper.9

Results

Widespread age-related DNA methylation changes
at genes involved in skeletal muscle structure,
development, and function

We first conducted an EWAS meta-analysis of age in skeletal
muscle using 10 datasets (total n ¼ 908 samples from 601 in-
dividuals, Table 1) and uncovered a small, widespread effect
of ageing on the skeletal muscle epigenome. Six per cent of
all tested CpGs were associated with age in skeletal muscle
(40 479 DMPs corresponding to 6710 DMRs, both at
FDR < 0.005, Figure 1A and Tables S2 and S3). We found
slightly more hypomethylated than hypermethylated DMPs
(57% hypo-DMPs and 43% hyper-DMPs, Table S2). The magni-
tude of age-related DNA methylation changes was small and
similar for both hypo-DMPs and hyper-DMPs: hypo-DMPs
lost an average of ~0.8% in methylation per decade of life,
and hyper-DMPs gained an average of ~0.6% in methylation
per decade of life (Figure 1B).

Each dataset had a unique study design that required
adjustment for factors that are known to affect DNA meth-
ylation levels, such as sex,40 BMI,41 and T2D.42 We adjusted

Table 1 Characteristics of the 10 cohorts included in the EWAS meta-analysis of age

Dataset ID Array

Number of
unique

individuals
Number of
samples

Health
status

Age
(mean ± SD)

Age range
(min–max) % male Ethnicity

FUSION HMEPIC 282 282 Healthy/T2D 59.4 ± 7.9 20–77 54% Caucasian
Gene SMART HMEPIC 66 234 Healthy 32 ± 8.1 18–45 80% Caucasian + one mixed

Aboriginal/Caucasian
ABOS HM450 65 65 Lean/obese/obese

with T2D
44 ± 8.2 23–61 0% Caucasian

LITER HMEPIC 21 63 Healthy 26.0 ± 5.9 20–39 100% 75% Caucasian,
16% Asian, 8% mixed

GSE135063 HMEPIC 24 57 Healthy/obese 38.9 ± 10 23–58 100% Caucasian
GSE49908 HM27 51 51 Healthy 50 ± 17 21–77 100% Caucasian
GSE50498 HM450 48 48 Healthy 47 ± 26 18–89 100% Caucasian
EPIK HMEPIC 14 48 Healthy 45.4 ± 22.3 20–71 100% Caucasian
GSE114763 HMEPIC 8 38 Healthy 29 ± 6 19–39 100% Caucasian
GSE38291 HM27 22 22 Healthy/T2D (twins) 68 ± 8 53–80 45% Caucasian

EWAS, epigenome-wide association study; SD, standard deviation; T2D, type 2 diabetes.
The number of samples can differ from the number of unique individuals if the same individuals have been profiled for DNA methylation
patterns multiple times, such as before and after exercise training.
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each dataset for these factors, but we noted that age was
associated with BMI or T2D in some datasets (Table S1).
For example, older individuals from the GSE50498 dataset
had a higher BMI than younger individuals (4.1 kg/m2

heavier, P ¼ 0.0011), so it is possible that the age-related
signal captured in this dataset was partially confounded
by BMI. We repeated the meta-analysis without
GSE50498, but results were largely unchanged (Figure
S3a). We also repeated the meta-analysis excluding T2D pa-
tients from the FUSION, ABOS, and GSE38291 datasets, but
results remained unchanged (Figure S3b). We also repeated
the meta-analysis without the ABOS dataset whose muscle
of origin differed from that of the other datasets (rectus
abdominis vs. vastus lateralis muscle). However, results
remained unchanged (Figure S3c). Finally, we repeated the
meta-analysis omitting eight non-Caucasian individuals from
the Gene SMART and LITER cohorts. However, results
remained unchanged (Figure S3d). This confirms that our
results are not confounded by BMI, T2D, the type of skele-
tal muscle, or the presence of a few ethnically diverse
individuals.

We then focused on the DMRs for all downstream
analyses, as DMRs remove spatial redundancy (CpG sites
within ~500 bp are typically highly correlated24), and they
may provide more robust and functionally important
information than DMPs.25,26 As with DMPs, we found
slightly more hypomethylated than hypermethylated DMRs
(61% hypo-DMRs and 39% hyper-DMRs, Table S3).
DMRs’ distribution in chromatin states was different from
that of all tested CpGs (χ2 test P-value <2.2 × 10�16,
Figure 2). DMRs were strongly under-represented in quies-
cent regions, while over-represented at enhancers and
around active transcription start sites (TSSs). However,
hypo-DMRs were more strongly over-represented in genic
enhancers and around active TSSs; conversely, only
hyper-DMRs showed over-representation in and around bi-
valent enhancers and promoters, and in regions actively re-
pressed by PolyComb proteins. The distribution of
hyper-DMRs and hypo-DMRs also varied with respect to
CpG islands: both were under-represented in open seas
and over-represented in CpGs island shores, but only
hyper-DMRs were over-represented in CpG islands

Figure 1 Age-related DNA methylation loci in human skeletal muscle. (A) Meta-analysis effect size (x-axis) and meta-analysis significance (y-axis) for
the 649 250 tested CpGs. Hypomethylated (blue) and hypermethylated (red) points represent differentially methylated position (DMPs) at a false dis-
covery rate (FDR) <0.005. (B) Distribution of age-related DNA methylation change at hypo-DMPs and hyper-DMPs. (C) Forest plots of the top
hypomethylated and hypermethylated DMPs, showing sample size, effect size, P-value, and FDR for each individual study as well as their meta-analysis.
Studies with missing information (‘NA’) mean that this CpG was not analysed in the dataset.

1068 S. Voisin et al.

Journal of Cachexia, Sarcopenia and Muscle 2021; 12: 1064–1078
DOI: 10.1002/jcsm.12741



(χ2 test P-value <2.2 × 10�16, Figure 2). Finally, both
hypo-DMRs and hyper-DMRs were under-represented in
CTCF binding sites in differentiated skeletal muscle
myotubes, but only hyper-DMRs were strongly
over-represented in EZH2 binding sites (Figure 2).

Next, we integrated a comprehensive annotation of
Illumina HumanMethylation arrays31 with chromatin states
from the Roadmap Epigenomics Project27 and the latest
GeneHancer information32 to map the DMRs to genes (Table
S3). Including non-coding genes, there were 6367 genes that
harboured at least one DMR, hereinafter referred to as

DMGs. A pathway enrichment on the DMRs revealed that
DMGs were enriched for 48 GO terms (Table S4), all of which
related to skeletal muscle structure development, muscle
contraction, and calcium transporter regulation (Figure 3).
In agreement with this, we also found enrichment for
the KEGG term ‘cardiac muscle contraction’ (FDR ¼ 0.0038)
and for the Reactome term ‘muscle contraction’
(FDR ¼ 0.00020). Of note, a GSEA enrichment restricted
to the hypomethylated DMGs yielded very similar results
(Table S5), but no significant enrichment was found for
hypermethylated DMGs.

Figure 2 Distribution of hypomethylated and hypermethylated differentially methylated regions (DMRs) and non-DMRs in functional regions of the
genome. (A) Distribution in chromatin states from male skeletal muscle from the Roadmap Epigenomics Project27; (B) distribution with respect to
CpG islands, shore ¼ ±2 kb from the CpG island, shelf ¼ ±2–4 kb from the CpG island, and open sea ≥4 kb from a CpG island; and (C) distribution
in CCCTC-binding factor (CTCF) and enhancer of zeste homologue 2 (EZH2) binding sites in skeletal muscle myotubes differentiated from the HSMM
cell line (HSMMtube) from the ENCODE project. The grids under the figures represent the residuals from the χ2 test, with the size of the circles being
proportional to the cell’s contribution; red indicates an enrichment of the DMR category in the functional region, while blue indicates a depletion of
the DMR category in the functional region.

Figure 3 Gene set enrichment analysis of the differentially methylated genes. This treemap shows the clustering of the 48 significant gene ontology
(GO) terms belonging to the ‘biological processes’ category. The 48 GO terms were clustered based on semantic similarity measures using REVIGO,

36

with each rectangle corresponding to a single cluster representative. The representatives are joined into ‘superclusters’ of loosely related terms, visu-
alized with different colours. The size of the rectangles is proportional to the –log10(P-value) of the GO term.
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Differentially methylated genes are enriched for
genes showing age-related changes at the mRNA
and protein levels

We investigated the potential downstream effects of these
age-related DNA methylation changes on mRNA and protein

expression in muscle. We utilized two external published
studies: a transcriptomic meta-analysis of age that combined
2852 public gene expression arrays in skeletal muscle37 and a
large-scale proteomic analysis of age in skeletal muscle from
58 healthy individuals aged 20–87 years.38 Su et al.37 identi-
fied 957 genes whose mRNA levels change with age, and

Figure 4 Integration of DNA methylation, and mRNA and protein changes with age in human skeletal muscle. (A) Overlap between genes that change
with age at the DNA methylation level (yellow, present study), mRNA level (green, Su et al.37), and protein level (purple, Ubaida-Mohien et al.38). On
each side of the Venn diagram, we showed the distribution of differentially expressed genes among the differentially methylated genes (DMGs) and
the non-differentially methylated genes (non-DMGs). *χ2 test P-value <0.005. (B) Relationship between age-related DNA methylation changes and
mRNA changes (right) or protein changes (left): ‘negative relationship’ means that a gene that was up-regulated with age at the gene expression level
showed lower DNA methylation with age in the present study, and a gene that was down-regulated with age at the gene expression level showed
higher DNA methylation with age in the present study. As the relationship between DNA methylation and gene expression differs depending on
the genomic context, we further split the age-related DNA methylation changes between those located in regions of active transcription and those
located in other regions. (C) Scatter plot showing the change in mRNA (x-axis) and protein (y-axis) per year of age for the 57 genes altered at all three
omics levels. Each gene was coloured according to the number of DMRs annotated to it, from 1–3 DMRs for most genes all the way up to 9 DMRs.
Naturally, longer genes (e.g. NXN and ABLIM2) have a greater propensity to have more DMRs given their high numbers of CpGs.
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Ubaida-Mohien et al.38 identified 1265 genes whose protein
levels change with age. Forty-one per cent of the genes
whose mRNA levels change with age were also altered at
the DNA methylation level, and 42% of the genes whose pro-
tein levels change with age were also altered at the DNA
methylation level (Figure 4A). Furthermore, the DMGs
included proportionally many more differentially expressed
genes than the non-DMGs (χ2 test P-value <2.2 × 10�16,
Figure 4A), indicating that such a large overlap between
differential DNA methylation and differential gene expression
with age cannot be attributed to chance alone.

Next, we investigated in more details the relationship be-
tween DNA methylation and mRNA or protein expression.
This relationship is complex and depends on the genomic
context, particularly the underlying chromatin state43; an in-
crease in DNA methylation is usually associated with a
down-regulation of gene expression, but the opposite pat-
tern is observed in gene bodies of actively transcribed genes.
We found that the relationship between DNA methylation
and mRNA expression was negative in only 63% of cases,
regardless of whether the DMR was in a gene body or not,
and the relationship between DNA methylation and protein
expression did not show any predominant pattern
(Figure 4B). Fifty-seven genes were altered at all three omic
levels (Table S6, Figure 4C). There was a high concordance
between the transcriptomic and proteomic studies: an
age-related increase in mRNA level was most often mirrored
by an age-related increase in protein level and vice versa
(Figure 4C).

We also looked at age-related DNA methylation changes in
light of age-related physiological changes in muscle, namely,
muscle atrophy,44 alterations in lipid metabolism,45 and in-
crease in the proportion of hybrid muscle fibres (type IIx).46

We focused on DNA methylation, mRNA expression, and pro-
tein expression changes at genes known to promote muscle
atrophy (FBXO32, TRIM63, MYOG, HDAC4, and HDAC5),47 in-
volved in fatty acid metabolism in muscle (CD36, GOT2,
CPT1A, HADH, LPL, SLC27A1, SLC27A4, and UCP3),48–51 and
encoding myosin light and heavy chains that discriminate
type I, type IIa, and type IIx fibres (MYH6, MYH7, MYH1,
MYL3, and MYH2).52 While only three lipid metabolism
genes were DMGs, with no corresponding changes in gene
expression, all genes promoting muscle atrophy were
hypomethylated with increased age. In particular, HDAC4
was mostly hypomethylated, and there was a corresponding
increase in mRNA levels (Table 2), and atrogin-1 was also
hypomethylated, with a corresponding increase in protein
levels (Table 2). Nearly all genes encoding the myosin chains
were hypomethylated, but no gene expression changes were
detected (Table 2).

We also compared our DMPs with CpGs associated with
age in two of the individual studies used in our meta-
analysis7,8 to confirm and validate genes and regions. We
found that half of the DMPs discovered by Zykovich et al.7

and 60% of the DMPs discovered by Day et al.8 were vali-
dated by our meta-analysis. For instance, we confirmed the
widespread intragenic hypermethylation of TBCD7 and
NFATC1.7 Such a large overlap is not surprising given that

Table 2 Age-related epigenetic, transcriptomic, and proteomic changes at candidate genes involved in skeletal muscle atrophy, lipid metabolism, and
fibre-type specification

Gene name
Gene
symbol

Number
of DMRs

DNA methylation
change with age

Gene expression
change with age

Muscle atrophy Atrogin-1 FBXO32 2 Hypomethylation Increased protein expression
MuRF1 TRIM63 3 Hypomethylation
Myogenin MYOG 1 Hypomethylation
Histone deacetylase 4 HDAC4 19 Hypo and

hypermethylation
Increased mRNA expression

Histone deacetylase 5 HDAC5 2 Hypomethylation
Fatty acid metabolism Fatty acid translocase CD36 0

Plasma membrane fatty
acid binding protein

GOT2 0 Decreased mRNA and
protein expression

Carnitine palmitoyltransferase I CPT1A 0
β-Hydroxyacyl-CoA dehydrogenase HADH 2 Hypomethylation
Lipoprotein lipase LPL 1 Hypomethylation
Long-chain fatty acid
transport protein 1

SLC27A1 0

Long-chain fatty acid
transport protein 4

SLC27A4 0 Decreased protein expression

Uncoupling protein 3 UCP3 1 Hypomethylation
Fibre type-specific genes Myosin heavy chain 2 MYH2 1 Hypomethylation

Myosin heavy chain 1 MYH1 0
Myosin light chain 3 MYL3 2 Hypomethylation
Myosin heavy chain 6 MYH6 1 Hypomethylation
Myosin heavy chain 7 MYH7 5 Hypomethylation

DMR, differentially methylated region.
DNA methylation changes are from the present EWAS meta-analysis, mRNA changes are from Su et al.,37 and protein changes are from
Ubaida-Mohien et al.38
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both studies were included in the meta-analysis. For unbi-
ased replication, we compared our DMPs with CpGs associ-
ated with age in a recent, independent study.11 Only 7% of
the DMPs identified by Turner et al.11 were replicated in
our meta-analysis, but 99% of them were consistently
hypomethylated or hypermethylated with age. As reported
by Turner et al.,11 we also found a systematic alteration
of all HOX gene clusters (HOXA, HOXB, HOXC, and HOXD),
but not necessarily the same HOX genes or in the same
direction.11 We detected nine DMRs in the HOXA cluster
that were nearly all hypomethylated, one hypermethylated
DMR at HOXB2/HOXB-AS1, four hypermethylated DMRs in
the HOXC cluster, and two hypermethylated DMRs in the
HOXD cluster (Figure 5).

MetaMeth: an online tool to visualize the ageing
profile of human skeletal muscle

We have made the results of the EWAS meta-analysis of age in
skeletal muscle available as an online webtool called
MetaMeth (https://sarah-voisin.shinyapps.io/MetaMeth/).
The home page of the website provides a detailed list of
instructions on how to visualize results and focus on specific
CpGs, genes, or genomic regions of interest in a user-
friendly, interactive manner. To obtain forest plots for
individual CpGs, users can enter the name of their CpG of
interest (e.g. ‘cg11109027’) in the ‘Forest Plot’ tab, and the
corresponding graph will appear, with the possibility to down-
load the plot in jpg, png, or tif formats and at any resolution.
To help with choosing CpGs to display, users can filter the list
of CpGs based on their genomic location (e.g. genomic region,
annotated gene, position with respect to CpG islands, chroma-
tin states in male and female skeletal muscle, and TF binding).
To download summary statistics for DMPs or DMRs in a table
format, users can go to the ‘Summary Tables’ tab and down-
load the data as an excel or csv file, after optionally filtering
data based on genomic location and statistics. Finally, we have
also displayed the scatter plot of genes showing methylation,
and mRNA and protein changes with age as an interactive

graph: users simply need to hover their mouse on one point
of the graph to be shown the name of the gene and the num-
ber of DMRs annotated to it. The code used to produce the
website is available in open access on Sarah Voisin’s GitHub
account (https://github.com/sarah-voisin/MetaMeth).

More samples in the muscle epigenetic clock do
not change age prediction accuracy

The present EWAS meta-analysis of age utilized all of the
datasets included in the original muscle epigenetic clock
(MEAT) that we recently published, with the exception of
datasets that were invariant in age and the datasets that
were too small (n < 20) (see Methods).9 The present study
included an additional 371 samples from five datasets. Using
the same algorithm and methodology, we updated the mus-
cle clock with these new samples, reaching a total of
n ¼ 1053 human skeletal muscle samples from 16 datasets.
The updated version of the clock (MEAT 2.0) uses DNA
methylation at 156 CpGs to predict age, 73 of which were
in common with MEAT (Figure 6A). We found that MEAT
2.0 only slightly outperforms MEAT, with an average Pearson
correlation coefficient of 0.69 across datasets (vs. 0.62 for
MEAT9) and a median error of only 4.4 years across datasets
(vs. 4.6 years for MEAT9) (Figure 6B).

Discussion

To paint a comprehensive picture of age-related DNA methyl-
ation changes in human skeletal muscle, we conducted an
EWAS meta-analysis of age in human muscle across the
lifespan, combining 908 samples from 10 independent
datasets. In this study, we were able to demonstrate a pro-
found effect of age on the muscle methylome. Additionally,
we have provided a detailed account of the genomic context
of age-affected regions, reported putatively affected path-
ways, and integrated methylome changes with known

Figure 5 Genome browser view (hg38) of differential DNA methylation at the four HOX gene clusters. Tracks, from top to bottom, correspond to
hypermethylated and hypomethylated DMRs in the present meta-analysis, CpG islands, genes from RefSeq, and GeneHancer regulatory elements
and interactions.
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Figure 6 Original and new version of the muscle clock (MEAT). (A) Original (left, MEAT) and new version (right, MEAT 2.0) of the muscle clock.
9
The

Venn diagram represents the number of CpGs included in each clock and the number of CpGs in common between the two clocks. The graphs show
predicted (y-axis) against actual (x-axis) age for each sample in the 16 datasets used to build the clocks. A leave-one-dataset-out cross-validation
(LOOCV) procedure was used to obtain predicted age for a given dataset in an unbiased manner (16 LOOCV were performed, one per dataset). The
summary statistics reported on the left-hand side are the average correlation between actual and predicted age across datasets, the median absolute
error in age prediction across datasets, and the number of CpGs automatically selected by the algorithm to build the clock. (B) Error in age prediction
either as the difference between predicted and actual age (left panel) or as the residuals from a linear model of predicted against actual age (right
panel). Note that both panels are on different scales.
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transcriptome and proteome changes in muscle. To maximize
the usefulness of this large-scale EWAS meta-analysis to
the scientific community, we created a website named
MetaMeth (https://sarah-voisin.shinyapps.io/MetaMeth/),
which allows researchers to visualize results in an interactive
and user-friendly manner. Finally, we updated our muscle
clock9 with 371 newly acquired DNA methylation samples
and found that the original version of the clock was already
at optimal prediction accuracy.

Previous studies on the overall pattern of age-related DNA
methylation changes in muscle showed mixed results, three
reporting more hypermethylation with age7,8,11 and one find-
ing slightly more hypomethylation with age.10 We included
three of these studies (GSE49908, GSE50498, and EPIK) in
our meta-analysis and found balanced amounts of hypome-
thylation and hypermethylation. Differences in coverage
between studies are unlikely to explain the discrepancy in
results, because the three HumanMethylation arrays were
represented in these studies (27k, 450k, and 850k). It is more
likely that the overall direction of age-related DNA methyla-
tion change became more nuanced once these small-scale
studies were combined with the other nine datasets. This
highlights the advantage of the meta-analysis approach we
utilized in identifying robust ageing-related CpG sites across
multiple, potentially conflicting studies. We detected thou-
sands of age-related DMRs, likely thanks to the unprece-
dented power achieved with 908 human muscle samples.
We found limited but highly consistent overlap between
age-related changes identified in our meta-analysis and those
recently identified in a small, independent study.11 In
particular, we validated age-related changes in all HOX gene
clusters. This is intriguing as epigenetic and transcriptomic
alterations of all HOX clusters were recently reported in a
mouse model of accelerated ageing,53 suggesting that a
dysregulation of developmental genes controlling cell
identity underpins mammalian ageing. Additionally, we found
hypomethylation at genes promoting muscle atrophy,
mirrored by an increase in gene expression for HDAC4 and
an increase in protein expression for atrogin-1.

Age-affected regions were not randomly spread across the
genome and were particularly abundant around active TSS
regions and in enhancers. Furthermore, hypomethylated
and hypermethylated regions showed a distinct distribution
largely consistent with previous reports on ageing; during
ageing, DNA methylation tends to increase at Polycomb
target genes54,55 and bivalent chromatin domains,55,56 while
decreasing at enhancers in both mice and humans.54,55 To ex-
plain the age-related hypermethylation of Polycomb target
genes, Jung and Pfeifer proposed a mechanism involving
competition between Polycomb complexes and DNA methyl-
transferase 3 (DNMT3)57: the ability of the Polycomb machin-
ery to target unmethylated CpG-rich target sequences erodes
with age, leaving room for DNMT3 to bind and slowly meth-
ylate Polycomb target genes over time, potentially leading to

reduced plasticity of the hypermethylated genes. This was
entirely consistent with our findings: hypermethylated DMRs
were strongly enriched in CpG islands and EZH2 binding sites
(EZH2 is the enzymatic subunit of the Polycomb complex).
Polycomb target genes and bivalent chromatin domains are
linked to developmental and differentiation processes,54

which corroborated the pathway enrichment showing nu-
merous GO terms related to muscle cell differentiation and
skeletal muscle development. Neither the root nor the func-
tional consequences of enhancer hypomethylation are
known, but it may stem from altered DNMT and TET enzymes
activity and might lead to activation of cryptic transcripts or
disrupt enhancer–gene interactions.54 Taken together, our
findings indicate a widespread effect of age on DNA methyl-
ation levels in skeletal muscle at genes fundamental for
skeletal muscle development, structure, and differentiation.

It is challenging to speculate regarding the consequences
of DNA methylation changes on gene expression, as both hy-
pomethylation and hypermethylation have been associated
with increased gene expression,58–60 likely depending on
the genomic context (i.e. CpG density, location with respect
to promoter/first exon/gene body/enhancer). In addition,
~8% of DMGs harboured both hypermethylated and
hypomethylated DMRs, further complicating the interpreta-
tion of DNA methylation changes. We suggest that DNA
methylation changes likely reflect changes in gene activity,
but the directionality is unclear. This is consistent with our
integration of the present EWAS meta-analysis of age with
two large, published transcriptomic and proteomic studies
of age in human skeletal muscle.37,38 Genes altered at the
DNA methylation level were much more likely to be altered
at the transcriptomic and proteomic levels. However, the re-
lationship between DNA methylation and gene expression
was negative only ~50–60% of the time. We could not assess
whether age-related DNA methylation changes are a cause or
a consequence of age-related gene expression changes, but
the two scenarios are not mutually exclusive. We also noted
that age-related mRNA and protein changes in skeletal
muscle were highly consistent, as there was a strong positive
correlation between mRNA and protein changes with age in
human skeletal muscle. This reinforces the utility of large-
scale studies, including meta-analyses, to produce robust,
replicable results identifying DNA methylation targets. Future
studies should explore the origin and functional conse-
quences of these age-related omic changes in human skeletal
muscle and investigate whether the cause of the ageing
processes is similar across tissues. As changes in the epige-
netic landscape are one of the primary hallmarks of ageing,
understanding its origin would narrow down our focus on pu-
tative genetic or/and epigenetic regions, with the ultimate
goal of targeting them with lifestyle or pharmacological inter-
ventions to slow down the ageing process at the molecular
level. Future studies should aim to find interventions easily
accessible to a wide range of people, such as exercise training
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or dietary interventions, to slow down, or perhaps even
reverse, age-related epigenetic changes in skeletal muscle.

Recently, we established an epigenetic clock for human
skeletal muscle, using 682 samples from 12 datasets.9 Here
we updated this clock (MEAT 2.0) by using 1053 samples
from 16 datasets, particularly adding more female and
middle-aged individuals that were under-represented in
MEAT. MEAT 2.0 automatically selected 205 CpGs for age
prediction, only 98 of which were in common with the CpGs
selected by MEAT. While such a small overlap may seem sur-
prising, it likely stems from the machine learning algorithm
underlying the clocks: tens of thousands of CpGs change with
age, but only a handful of CpGs are selected by the elastic net
model, so this group of CpGs is only one of the many possible
combinations of CpGs that can predict age with high
accuracy.6 We tested whether the accuracy of the muscle
clock is improved by feeding more samples to the machine
learning algorithm. Surprisingly, the accuracy of the new
version of the clock barely improved, from 0.62 to 0.66 in
average correlation between predicted and actual age and
from 4.6 to 4.5 years in median error in age prediction. This
suggests that the original muscle clock was already suffi-
ciently accurate for age prediction in human skeletal muscle
using the Illumina HumanMethylation array technology. We
have however updated the R package MEAT on Bioconductor
with this new clock, providing users the possibility to choose
between the original version (MEAT) and updated version
(MEAT 2.0) of the clock for their analyses.

The age-related changes in the muscle methylome uncov-
ered herein and the epigenetic age calculated from the MEAT
clock reflect both intracellular changes in methylation levels
and age-related changes in muscle cell-type composition.
Older muscle tends to have a greater proportion of type IIx
(hybrid) muscle fibres,46 shows fat61 and macrophage62 infil-
tration, and displays lower numbers of satellite cells,63 which
can alter the methylome of bulk muscle tissue. However, we
adjusted the analyses for bias and inflation21 to account for
unmeasured factors such as population substructure, batch
effects, and cellular heterogeneity.22 Uncovering the intracel-
lular changes of different muscle cell types with age was be-
yond the scope of this study, and we did not have
information on individual cellular profiles to answer this
question. Nevertheless, the results shown here, along with
the epigenetic clock and open-access search engine we devel-
oped, may still be highly valuable to ageing researchers
whose focus is unrelated to cell type-specific ageing. It should
also be noted that the conclusions of this study may not
apply to the human population as a whole, as 98% of the
samples were of Caucasian origin and 71% were from male
subjects. Future studies should make efforts to profile the
methylomes of under-represented groups to provide a
picture of ageing that reflects the world population.

To provide the scientific community with a tool to assess
DNA methylation changes with age in skeletal muscle, we

have created a user-friendly, interactive, and transparent
way to explore our results. We built a web-based tool called
MetaMeth (https://sarah-voisin.shinyapps.io/MetaMeth/),
largely inspired by the MetaMex tool developed by Pillon
et al. for transcriptomic meta-analysis of exercise training
and inactivity in human skeletal muscle.39 Users are able to
explore DMPs, DMRs, forest plots, and omics integration
and to filter and download the results. This freely available
website is likely to advance the field of ageing science as a
whole.
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Figure S1. Age distribution in each of the 10 datasets
included in the EWAS metahyphen;analysis, and database of
origin. dbGAP = database of Genotypes and Phenotypes;
GEO = Gene Expression Omnibus.

Figure S2. Quantile-quantile plot of �log10 transformed
P-values for each of the 10 datasets included in the EWAS
meta-analysis. Right panel using uncorrected P-values and
left panel using bacon bias- and inflation-corrected P-values.

Figure S3. Comparison of results from the full meta-analysis
and from a meta-analysis excluding GSE50498 (a), type 2 dia-
betes (T2D) patients (b), the ABOS cohort (c), or
non-Caucasian individuals (d). Each point is one of the
40,479 differentially methylated positions (DMPs) discovered
in the full meta-analysis. To compare results from the full and
partial meta-analyses, we plotted the effect size in the full
meta-analysis (x-axis), against the effect size in the partial
meta-analysis (y-axis). To show whether DMPs remained sig-
nificant in the partial meta-analysis, we coloured points ac-
cording to the false discovery rate (FDR) in the partial
meta-analysis.
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