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Abstract 

Aim: Several physiological compensatory mechanisms have enabled Tibetans to live and 

work at high altitude, including increased ventilation and pulmonary diffusion capacity, both 

of which serve to increase oxygen transport in the blood. The aim of the present study was to 

compare exercise capacity (maximal power output) and selected physiological factors 

(arterial oxygen saturation and heart rate at rest and during maximal exercise, resting 

hemoglobin concentration and forced vital capacity) in groups of native Tibetan children 

living at different residential altitudes (3,700 vs. 4,300 m above sea level) and across ancestry 

(native Tibetan vs. Han Chinese children living at the same altitude of 3,700 m).  

Methods: A total of 430 9-10-year-old native Tibetan children from Tingri (4,300 m) and 406 

native Tibetan- and 406 Han Chinese immigrants (77% lowland-born and 33% highland-born) 

from Lhasa (3,700 m) participated in two cross-sectional studies. The maximal power output 

(Wmax) was assessed using an ergometer cycle.  

Results: Lhasa Tibetan children had a 20% higher maximal power output (watts/kg) than 

Tingri Tibetan and 4% higher than Lhasa Han Chinese. Maximal heart rate, arterial oxygen 

saturation at rest, lung volume and arterial oxygen saturation were significantly associated 

with exercise capacity at a given altitude, but could not  fully account for the differences in 

exercise capacity observed between ancestry groups or altitudes.  

Conclusions: The superior exercise capacity in native Tibetans vs. Han Chinese may reflect a 

better adaptation to life at high altitude. Tibetans at the lower residential altitude of 3,700 m 

demonstrated a better exercise capacity than residents at a higher altitude of 4,300 m when 

measured at their respective residential altitudes but such altitude- or ancestry-related 

difference could not be fully attributed to the physiological factors measured. 

Key words 

high altitude, adaptation, maximal exercise, arterial oxygen saturation, hemoglobin 
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INTRODUCTION 

Approximately 17 million of the world’s population lives at altitudes higher than 3,500 m 

above sea level (Huddleston et al., 2003). In the Tibet Autonomous Region (TAR) of China, 

more than 2.8 million people (2009) live at similar altitudes, of whom 92% are native 

Tibetans and 8% are Han immigrants from lowland China (Han Chinese). Native Tibetans 

have the longest history of living at high altitude among world populations, approximately 

22,000 years (approximately 1100 generations) (Aldenderfer, 2003; Niermeyer et al., 2001), 

as compared with Han Chinese immigrants, who have lived at high altitude in Tibet for 1-3 

generations only.  

Most previous studies have shown that native Tibetan adults (Groves et al., 1993; Sun et al., 

1990; Zhuang et al., 1996; Zhuang et al., 1993) and adolescents (Chen et al., 1997) achieve a 

superior exercise capacity compared to Han Chinese immigrants. However, a few studies 

have shown that native Tibetan adults attained a higher exercise capacity, but a similar (Niu et 

al., 1995) or lower (Ge et al.,1994) peak oxygen uptake ( peak 2OV ). peak 2OV is considered the 

best single measure of cardio respiratory fitness (Astrand and Rodahl, 1986), which provides 

a good index of the integrated function of the oxygen transport system in both children and 

adults. peak 2OV can be estimated from maximal power output (Wmax) (Andersen, 1995; 

Andersen et al., 1987; Arngrimsson et al., 2008; Bianba et al., 2010; Hansen et al., 1989; 

Woynarowska,1980), and has been used in the evaluation of the adaptation to live and work 

at high altitude (Ge et al.,1994; Grover et al.,1967; Wu and Kayser, 2006).  

A person who moves from sea level to Lhasa (3,700m) will acclimatize after some days, but 

even after decades he or she will not reach a sea level performance of exercise or work. A 

person arriving in Lhasa from sea level can expect to reach an exercise performance or work 

that is approximately 70% of his or her performance at sea level, which will increase to 80% 

after a few weeks of acclimatization (Moore et al., 1994). Similar to the immigrant Han 
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Chinese in Tibet, if a person stays at 3,700 m for years, there may be a further small increase 

to nearly 85% of the initial sea level value (Moore et al., 1994). After generations of 

residence, Tibetans at 3,700m have an exercise performance or work that is 92% of sea level 

values for sedentary populations (Moore et al., 1994). 

In relation to both a decrease in arterial oxygen content and a limitation in maximal cardiac 

output, moving lowlanders to higher altitudes is associated with a decreased aerobic exercise 

capacity (Fulco et al., 1998), while a higher pre-exposure residential altitude modulates the 

negative effect (Fulco et al., 1998). High altitude populations are continuously challenged in 

an environment of hypobaric hypoxia with a low ambient partial pressure of oxygen, thus 

influencing the capacity for work and exercise. Moreover, the capacity is reduced with an 

increasing residential altitude (Fulco et al., 1998). However, if high altitude natives move to a 

lower altitude, they will exhibit a better exercise capacity than natives living at the same, 

lower altitude, as demonstrated by Curran et al. (Curran et al., 1998). The relatively better 

maximal exercise capacity in high altitude natives may primarily be due to their exposure to a 

high altitude environment during childhood (Frisancho et al., 1973). Independent of being a 

child or an adult, or of a low or high socioeconomic status, everyone is exposed to the same 

ambient hypoxia at a given altitude. As reviewed by Simonsen et al. (2012), native highland 

populations have genetic adaptations that enable them to live at high altitudes. Three out of 

several genes associated with natural selection among Tibetans, EPAS1, EGLN1 and PPARA, 

are associated with their relatively low hemoglobin concentration (Simonson et al., 2012).  

In a review by Wu and Kayser (2006), they concluded that among adults, Tibetans were 

better adapted than other populations to live and work at high altitudes. In addition to a lower 

Hb concentration, as compared with lowlanders and Andeans living at the same altitude, 

several other physiological factors contributed to this adaptation, including: maintaining a 

higher arterial oxygen saturation at rest and during exercise, less loss of aerobic performance 
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with an increasing altitude, a greater hypoxic and hypercapnic ventilatory responsiveness, 

larger lungs, a better lung function and a greater lung diffusing capacity than lowlanders (Wu 

and Kayser, 2006). Lastly, Tibetans develop only minimal hypoxic pulmonary hypertension 

(Groves et al., 1993), and have higher levels of exhaled nitric oxide than lowlanders or 

Andeans (Wu and Kayser, 2006). Studies of physiological aspects of Tibetan children’s 

capacity to work and live at high altitude are scarce, although differences similar to those 

seen in adults may be expected to occur. Children living at altitudes higher than 3,000 m 

above sea level show several adaptive mechanisms in the uptake of oxygen in terms of 

increased ventilation and pulmonary diffusion capacity (de Meer et al., 1995). The latter 

depends on the diffusion rate per unit of the surface area and the total surface area in the 

lungs available for diffusion of oxygen, which is reflected in part by total lung capacity (de 

Meer et al., 1995). Oxygen transportation in the blood is highly dependent on blood flow, 

hemoglobin concentration ([Hb]) and arterial oxygen saturation (SaO2) (Astrand, 1986). 

The objectives of the present study were to compare exercise capacity (maximal power 

output) and selected physiological factors (arterial oxygen saturation and heart rate at rest and 

during maximal exercise, resting hemoglobin concentration and forced vital capacity) in 

groups of high altitude native Tibetan children across residential altitudes (3,700 vs. 4,300 m 

above sea level) and across ancestry (native Tibetan vs. Han Chinese children living at the 

same altitude of 3,700 m). We also aimed to investigate the association of residential altitude 

and ancestry with exercise capacity, and the possible impact of selected physiological factors 

on this association.  

Materials and Methods 

Nine primary schools out of 20 were randomly selected from Lhasa City (3,700 m), the 

capital of TAR, while all five primary schools were included from the rural Tingri district 

(4,300 m) located under the North Face of Mt. Everest. An identical procedure for selecting 
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participants was applied in both areas, and all 9-10-year-old children, 817 children from 

Lhasa and 460 children from Tingri, were invited. In Lhasa, one child refused to participate 

and four children on the list were excluded due to respiratory health problems, yielding 812 

eligible children, which gave a participation rate of 99%. A total of 406 native Lhasa Tibetan 

children (207 boys and 199 girls) and 406 Lhasa Han Chinese children (235 boys and 171 

girls) participated in the urban area. Among the Han Chinese, 313 (77%) were born at low 

altitude (lowland-born Han Chinese) and then migrated to Lhasa with their parents, while the 

remaining 93 (23%) were born in Lhasa (highland-born Han Chinese). In Tingri, 16 did not 

go to school on the days of the data collection and, four children refused to participate, 

whereas 10 children participated but did not give permission to use their data for publication, 

thus yielding a response rate of 93%. A total of 215 girls and 215 boys participated from 

Tingri. 

Ethical Considerations 

The Health and Education Office and the Tibet University Medical College in TAR 

approved the study, and information and consent forms were given to parents through the 

school leaders. Information about the study procedure was also given to the children, 

participation was voluntary and the children could withdraw from the study for any reason at 

any time with no negative consequences.  

Data Collection and Variables  

Data were collected through a questionnaire, a clinical examination and a maximal 

exercise test, and the same research team and methods were used in the studies in Lhasa and 

Tingri. The data collections were performed in a classroom at each school from August to 

November 2005 in Lhasa, and from September to October 2007 in Tingri. In addition, there 

was no vigorous physical activity the day before the test, no food was consumed less than 

two hours prior to the test and no feast meals were eaten less than four hours before each test.  
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Study Group 

“Study group” is a variable that combines ancestry and residential altitude, which includes 

Tingri Tibetans, Lhasa Tibetans and Lhasa Han Chinese. It is a measure of the effect of 

altitude when comparing Lhasa Tibetans (3,700 m) and Tingri Tibetans (4,300 m), and a 

measure of ancestry effect when comparing Lhasa Tibetans and Lhasa Han Chinese. Lhasa 

Han Chinese were further divided into lowland- and highland-born for selected analyses. 

Maximal Power Output and Heart Rate 

Maximal power output (Wmax) was assessed using an electronically braked cycle ergometer 

(Monark Ergomedic 839, Varberg, Sweden) and presented as exercise capacity according to a 

previously validated protocol (Hansen et al., 1989). We lack data on 350 children from the 

cycle ergometer test: 279 children could not fully reach the pedals, 49 children could not 

complete the test and for 22 no reason was given.  

Children were requested to have five minutes of practice on the ergometer cycle before the 

test to ensure that all inexperienced children had some cycling practice. A variable “owning a 

bicycle,” with answers of yes or no, was used to distinguish between experienced and 

inexperienced cyclists. Heart rate (Polar Electro OY, Kempele, Finland) was measured 

throughout the test, and recorded at the end of each step in the progressive cycle test. We 

applied methods similar to previous studies in children (Aandstad et al., 2006; Riddoch et al., 

2005), and more details regarding the procedures and test criteria can be found elsewhere 

(Bianba et al., 2010). The children cycled at a pedaling rate of 70-80 revolutions per minute 

(rpm), and the power output was increased by 20 W (weight < 30 kg) or 25 W (weight > 30 

kg) every third minute. The test was stopped when the child could no longer continue with a 

pedaling rate above 30 rpm. 

Wmax was determined as the number of watts in the last fully completed step (Wl), plus the 

increment in watts (Wd) of the last step, multiplied by the number of seconds completed at 

8 
                



9                                                                         BIANBA ET AL. 
 

the last step (t) and then divided by 180 seconds (Hansen et al., 1989): Wmax = Wl +(Wd · t 

/180). The absolute Wmax and Wmax relative to body mass (Wmax/body mass) are presented.   

Arterial Oxygen Saturation  

Arterial oxygen saturation at rest (SaO2rest) was recorded after supine rest for 2-3 minutes 

using a hand-held pulse oximeter (Nellcor NPB-40) (California, USA). An OXI-P/I OxiBand 

sensor was applied for children of less than 40 kg and a DURASENSOR DS-100A sensor for 

children above 40 kg, respectively. Furthermore, SaO2 was recorded at the last 30 seconds of 

each power output during the cycling and at maximal exercise (SaO2peak).  

Hemoglobin Concentration  

A HemoCue Hb 201+ analyzer (Ängelholm, Sweden) was applied to measure [Hb] in 

capillary blood, and we calibrated the analyzer every testing day using a HemoCue 

Hemoglobin Calibrator (12.0±0.2 g•dL-1). 

Lung Volume 

As a measure of total lung capacity, forced vital capacity (FVC) was measured using 

maximal expiratory flow volume maneuvers with Spiro USB (Micro Medical Limited, 

Rochester, Kent, UK), according to standardized international guidelines (Miller et al., 2005). 

The highest of the recorded FVC values was reported in the present study.  

Anthropometrics  

The body mass of the children was measured to the nearest 0.1 kg (without shoes and 

wearing light clothes) using an Electronic Scale (OMRON, HN-281, Shanghai, China), while 

height was measured to the nearest 0.5 cm using a stadiometer (TZG, Shanghai, China). Chest 

and waist circumferences were measured to the nearest 0.5 cm with children standing and 

breathing normally, and the average value both before and after expiration was recorded. The 
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Body Mass Index (BMI) was calculated as the body mass (in kg) divided by the height 

squared (in meters). 

Statistical Methods 

Data are reported as the mean plus or minus one standard deviation or as the mean with a 

95% confidence interval. Differences in mean values between groups were tested using a 

one-way ANOVA. Three linear regression models were constructed for determining the 

relationship between the outcome variable (maximal power output) and the selected 

covariates. The association between the “study group” (i.e. residential altitude and ancestry) 

and Wmax was estimated in Model 1, with adjustment for sex, body mass and having a 

bicycle. In Model 2, we estimated the association between physiological covariates ([Hb], 

SaO2, HR and FVC) with Wmax, adjusting for sex, body mass and having a bicycle. Model 3 

was created to investigate whether the physiological covariates from Model 2 had any impact 

on the associations between “study group” and Wmax. Similar analyses (Models 1, 2, 3) were 

conducted with a change in the “study group” variable. The group Lhasa Han Chinese was 

further sub-divided into two groups: those born at high altitude (highland-born Han Chinese) 

vs. those born at low altitude (lowland-born Han Chinese). The assumptions of the models 

were tested by plotting residuals vs. predicted values, no deviations from linearity were 

detected and the residual variance was close to constant. Points with a high influence were 

looked for by plotting leverage vs. squared residuals, and no high influential points were 

found. No interactions between altitude and ancestry and physiological factors that distorted 

the main findings were identified. SPSS version 16.0 and Stata SE 9.0 were used. The level 

of statistical significance was set at p<0.05. 

Results 

The sex-specific descriptive data of Tingri Tibetan, Lhasa Tibetan and Lhasa Han Chinese 

children are presented in Table1. On average, the Lhasa Tibetans were 32% and 7% heavier 
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than Tingri Tibetans and Lhasa Han Chinese, respectively. Furthermore, they were 10% and 

1% taller, and had 8% and 4% larger chest circumferences than Tingri Tibetans and Lhasa 

Han Chinese, respectively.  

Physiological Factors  

The [Hb] was 5% higher in Lhasa Han Chinese compared with Lhasa Tibetans, and 4% 

higher in Lhasa Tibetans than in Tingri Tibetans. The lung volume (FVC) and peak heart rate 

(HRpeak) were higher in Lhasa Tibetans than both Lhasa Han Chinese and Tingri Tibetans. 

Lhasa Tibetan achieved 46% and 10% higher levels of absolute Wmax (W) than Tingri Tibetan 

and Lhasa Han Chinese , respectively, and 20% (21.8% in boys and 18.5% in girls) and 4% 

(5.8% in boys and 2.1% in girls) higher levels of relative Wmax (W/kg), respectively (Table 

1).  

There was no difference in arterial oxygen saturation at rest (SaO2rest) between Lhasa 

Tibetans and Lhasa Han Chinese (i.e. no difference by ancestry), although a difference was 

found by residential altitude (Tingri vs. Lhasa) (Figure 1). At rest, Lhasa Tibetan boys had a 

higher SaO2rest (91% ±2.7%) than Tingri Tibetan boys (87% ±3.5%, p<0.001), while Lhasa 

Tibetan girls had a higher SaO2rest (91% ±2.6%) than both Tingri Tibetan girls (88% ±3.2%, 

p<0.001) and Lhasa Han Chinese girls (90% ±3.3%, p=0.013) (not shown in table). The 

oxygen saturation gradually decreased with an increasing power output for all three groups of 

children (Figure 1), and at maximal power output, Lhasa Tibetan children had a significantly 

higher arterial oxygen saturation (SaO2peak) than both Tingri Tibetans (boys: 88% ±3.7% vs. 

82% ±6.3%, p<0.001; girls: 88% ±3.6% vs. 82% ±6.7%, p<0.001) and Lhasa Han Chinese 

(boys: 88% ±3.7% vs. 85% ±4.8 %, p<0.001; girls: 88% ±3.6% vs. 85% ±4.8%, p<0.001). 

Relationship between Maximal Power Output (Wmax) and Selected Physiological Factors 

Coefficients from linear regression analyses are presented in Table 2, and in Model 1, Wmax 
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for Lhasa Tibetans was 86 W (95% confidence interval: 83.2, 88.2). The effect of residential 

altitude on expected Wmax was estimated by contrasting the two study groups, Tingri vs. 

Lhasa Tibetans, yielding a 16 (-18.8, -14.0) W lower Wmax in Tingri Tibetans. The effect of 

ancestry was estimated by contrasting Lhasa Han Chinese vs. Lhasa Tibetans, yielding a 5 

(-6.4, -2.9) W lower Wmax in Lhasa Han Chinese. These results indicate that Tibetans living at 

a higher altitude had a lower Wmax, and Han Chinese had a lower Wmax than the Tibetans at 

the same altitude. Model 2 shows that all the included physiological variables were associated 

with Wmax. For example, for every increase in maximal heart rate of one beat per minute, the 

exercise capacity (maximal power output, Wmax) increased by 0.4 W, and for a one liter 

increase in lung volume (FVC) the Wmax increased by 13.2W, whereas a one kg body mass 

increase was associated with a 1 W increase in Wmax (Table 2, Model 2). Girls had an 8.8 W 

lower Wmax than boys (Table 2, Model 2), and the explained variance (R2) of Model 2 was 

54%. The estimated Wmax was 79 W when the following were set as a reference: a boy with a 

body mass=27 kg; [Hb]=14.6 g/L; HRpeak=195 beats/min; SaO2rest=90%; SaO2peak=86% and 

FVC=2.00 (Table 2, Model 2). Model 3 shows that the “study group” (i.e. contrasting both 

Tingri vs. Lhasa Tibetans and Lhasa Han Chinese vs. Lhasa Tibetans) was significantly 

associated with Wmax after an adjustment for the explanatory physiological variables in 

Model 2, indicating that the effects of residential altitude and ancestry on Wmax were not due 

to the effects of these intermediate variables. Compared to Lhasa Tibetan, Tingri Tibetan and 

Lhasa Han Chinese had an 18.1 W and 4.1 W lower maximal power output, respectively. 

Maximal heart rate, arterial oxygen saturation at rest and at maximal exercise, and lung 

volume were associated with exercise capacity (maximal power output, Wmax). The explained 

variance in Model 3 was 63%, indicating that the combination of physiological variables, 

ancestry and residential altitude increased the explained variance by 9% points compared 

with Model 2, which did not include ancestry and residential altitude. We conducted an 
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additional analysis in which the “study group” included Tingri Tibetans, Lhasa Tibetans and 

Lhasa Han Chinese Highland-born- and Lhasa Han Chinese Lowland-born children (not 

presented in table). Compared to Lhasa Tibetan, Tingri Tibetan had an 18.1 W lower maximal 

power output, while highland-born- and lowland-born Han Chinese had a 5.3 W and 3.7 W, 

respectively, lower maximal power output. Maximal heart rate, arterial oxygen saturation at 

rest and at maximal exercise, and lung volume did not affect the associations between “study 

group,” i.e. residential altitude and ancestry, with exercise capacity (maximal power output, 

Wmax) (not shown in table). 
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Discussion 

In the present study we have shown that native Lhasa Tibetan 9-10-year-old children presented 

a higher exercise capacity than both native Tingri Tibetans and Lhasa Han Chinese when 

measured at their respective residential altitudes. [Hb], SaO2rest, SaO2peak, HRpeak and FVC were all 

associated with exercise capacity, but did not significantly impact on the associations between 

residential altitude and ancestry with exercise capacity (maximal power output, Wmax). Moreover, 

native Tibetans exhibited a lower [Hb] and higher SaO2rest than Han Chinese living at the same 

altitude, whereas native Tibetans at 4,300 m had a lower [Hb] than native Tibetans at 3,700 m. 

Compared to Lhasa Tibetan children living at 3,700 m, the lower maximal power output in 

native Tingri Tibetans living at 4,300 m may be due to the reduction in the inspired partial 

pressure of oxygen (PiO2). Furthermore, children’s growth and development are closely 

correlated with their work and exercise performance, as well as altitude adaptation (Frisancho 

et al., 1975; Frisancho et al., 1985). The present study reveals that Tingri Tibetan children 

were shorter and lighter than Tibetan children from Lhasa of the same age, and such findings 

are consistent with a previous comparative study of Tibetan children and adolescents aged 

7-18 years living at various altitudes from 2,261 m to 4,040 m in Qinghai-Tibet. The children 

from the highest altitude (4,040 m) presented a slower growth (stature), lagging behind their 

counterparts at 2,261 m by approximately two years. It was also indicated that hypoxia may 

be the main agent responsible for this delayed growth (Zhang et al., 1985), and Greksa et al. 

(1984) suggested that socioeconomic factors slowed the growth of high-altitude children 

(Greksa et al., 1984). In the present study, we have no valid information on socio-economic 

status (SES). It is a challenge to identify an indicator of SES that is valid for both Lhasa and 

Tingri. For example, in Tingri, parents generally have a low or no education and no income, 

but they may have many Yak or sheep, thus indicating a high SES. In contrast, in Lhasa, 

parents seldom own animals, and most males have an education, as well as income. 
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We speculate that the present finding of a lower [Hb] among Tingri Tibetan children 

compared with Lhasa Tibetan children, which stands in contrast to previous reports of an 

increase in [Hb] with an increasing altitude (Wu et al., 2005), may be due to poor nutrition, 

including less iron-rich foods at high altitude. 

The present finding of a higher maximal power output in native Tibetan- compared to Han 

Chinese children at the same altitude may be due to a better oxygen transport system. The 

difference in oxygen concentration between arterial- and mixed-venous blood is a measure of 

tissue oxygen extraction, which can be inferred from [Hb] and the difference between the 

oxygen saturation in arterial- and mixed-venous blood (SaO2 - SvO2) (de Meer et al., 1995). In 

comparison with Han Chinese, a lower [Hb] in adult native Tibetans has previously been 

reported (Beall et al., 1998; Curran et al., 1997; Garruto et al., 2003; Moore, 2000; Wu et al., 

2005). Additionally, the lower [Hb] in Tibetan subjects has been suggested to be a result of 

adaptation over many generations (Wu et al., 2005; Simonson et al., 2012), which has further 

been suggested to be more favorable than Andeans, who are characterized by a raised [Hb] 

(Stuber and Scherrer, 2010). Recent genetic studies identified genetic variants in native 

Tibetans living between 3,200 and 4,300 m compared with Han Chinese lowlanders (Beall et 

al., 2010; Bigham et al., 2010; Peng et al.,2011; Simonson et al.,2010; Xiang et al.,2013; Yi et 

al.,2010). Three genes, EPAS1, EGLN1 and PPARA, have been shown to be associated with 

hemoglobin concentration (Simonson et al., 2012), while no associations were found with 

EPAS1 and EGLN1 in Andeans (Bigham et al., 2013). Hence, genetic factors may explain the 

lower [Hb] in Lhasa Tibetans compared with Han Chinese in the present study. 

Although the present Lhasa Tibetan children also had a lower [Hb] than Han Chinese, they 

sustained a higher SaO2 during maximal exercise than Lhasa Han Chinese children. This 

phenomenon could be explained by better maintained ventilation and/or a regulated 

production of [Hb] (Niermeyer et al., 2001). According to Moore et al. (1992), it is not likely 
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that a leftward shift in the oxyhemoglobin dissociation curve in Lhasa Tibetans could help 

explain the present finding. As with other high altitude populations, they reported that the 

position of the Hb-O2 dissociation curve in Tibetans was the same as that seen in sea level 

populations (Moore et al., 1992). We suppose that the higher SaO2 across the entire range of 

exercise intensities in Lhasa Tibetan children may indirectly reflect their smaller 

alveolar-arterial O2 gradients ((A-a) DiffO2), thereby indicating a larger diffusion capacity. If 

this assumption is correct for children, they may better maintain oxygen saturation during 

exercise compared to Han Chinese children (Wu and Kayser, 2006; Zhuang et al., 1996). It 

has been suggested that diffusion capacity could be a decisive factor for oxygen transport 

during maximal exercise at high altitude (Chen et al., 1997), and De Meer et al. summarized 

that an increase in pulmonary diffusion capacity facilitates oxygen delivery to the tissues in 

both children and adults living at higher altitudes (de Meer et al., 1995). As shown in several 

studies, an increased lung volume is also accompanied by an increased pulmonary diffusion 

capacity (Armstrong and Welsman, 1994; Cerny et al., 1973; DeGraff et al., 1970; Guleria et 

al., 1971; Johnson et al., 1985; Sun et al., 1990). Moreover, large lung volumes and chest 

circumferences have been reported among schoolchildren and adolescents who are native to 

high altitude (Beall et al., 1977; Frisancho, 1969), though not in immigrants acclimatized to 

high altitude (Frisancho et al., 1973). In the present study, native Lhasa Tibetan children had 

a significantly larger FVC and chest circumference than Lhasa Han Chinese children, even 

after adjusting for body mass and stature (data not shown).  

A large sample size and high participation rates are strengths of the present study, while a 

weakness is that the study could have underestimated the exercise capacity for children who 

were less accustomed to cycling. However, the adjustment by the variable “owning a bicycle” 

in Models 1-3 may have partly compensated for differential cycling practices across the three 

groups of children. A selection of healthier children for the schools in rural Tingri may have 
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taken place because of the need to be sufficiently physically healthy to walk the long way to 

school, and to live at the school dormitory for long periods. This is in contrast to urban Lhasa 

children, who are staying with their families, and have short travel distances. As a result, this 

possible selection would most likely have distorted the results towards a smaller difference 

between Tingri- and Lhasa children. 

Conclusion 

The superior exercise capacity in native Tibetan children vs. Han Chinese immigrant 

children living at the same altitude of 3,700 m may reflect a better adaptation to life at high 

altitude. The lower exercise capacity at a higher altitude in native Tibetans may partially be 

attributed to residential altitude differences. In addition to residential altitude and ancestry, 

selected physiological parameters explained some of the variance in exercise capacity, 

including higher arterial oxygen saturation and a higher forced vital capacity, but these 

physiological factors did not fully account for the associations between residential altitude 

and ancestry with a maximal power output. Future studies comparing Tibetan and Han 

Chinese children living at the same altitude should also take genetic factors into account, in 

addition to potentially unmeasured confounders such as SES and food habits. These 

confounders should also be included in future studies comparing native Tibetans living at 

different altitudes.  
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Table 1. Descriptive data of 9- to 10-year-old Lhasa Tibetan, Lhasa Han Chinese, and Tingri Tibetan children 

 Boys  Girls 

 Tingri Tibetan  Lhasa Tibetan  Lhasa Han Chinese  Tingri Tibetan  Lhasa Tibetan  Lhasa Han Chinese 

 N Mean (SD)  N Mean (SD)  N Mean (SD)  N Mean (SD)  N Mean (SD)  N Mean (SD) 

Body mass (kg) 203 22.5 (2.56) **  207 29.7 (5.28) □□     235 27.8 (5.13) ##  195 22.4 (2.85) **  198 29.4 (5.15) □□  169 27.6 (5.23) ## 

Stature (cm) 203 122.2 (5.41) **  207 134.8 (5.45) □   234 133.5 (6.43) ##  195 122.8 (6.31) **  198 135.9 (6.68) □  169 133.7 (6.58) ##  

Chest circ. (cm) 203 59.8 (2.61) **  206 64.7 (4.74) □□  234 61.8 (4.26) ##  195 58.9 (2.88) **  198 63.7 (4.61) □□  169 61.3 (4.47) ## 

Waist circ. cm) 203 53.5 (2.44) **  206 57.6 (6.06) □□  234 54.9 (5.38) #  195 53.0 (2.51) **  198 56.0 (5.09) □□  169 53.4 (5.24)  

BMI (kg/m2) 203 15.0 (1.02) ) **  207  16.3 (2.12) □□  234 15.5 (1.79) #  195 14.8 (1.07) **  198 15.8 (1.81) □  169 15.4 (1.94) # 

[Hb] (g/dl) 201 13.9 (1.25) **  206 14.6 (1.33) □□  233 15.3 (1.20) ##  192 14.0 (1.37) **  199 14.6 (1.15) □□  169 15.4 (1.20) ## 

FVCpeak (L) 190 1.94 (0.30) **  204 2.22 (0.29) □□  233 2.04 (0.30) #  197 1.82 (0.29) **  193 2.06 (0.33)  164 1.89 (0.26) ## 

HRpeak (beats/min) 87 192 (13) **  201 198 (10) □  216 194 (8)  64 192 (10) **  182 198 (9) □  141 195 (8) 

Crude Wmax (W) 87 57 (17) **  201  85 (12) □□  216 76 (14) ##  64 51 (11) **  182 72 (15) □  142 67 (12) ## 

Relative Wmax (W/kg) 87 2.38 (0.62) **  201 2.90 (0.44) □□  216 2.74 (0.47) ##  64 2.05 (0.40) **  181 2.43 (0.41) □  142 2.38 (0.40) ## 

 N (%; 95% CI)  N (%; 95% CI)  N (%; 95% CI)  N (%; 95% CI)  N  (%; 95% CI)       N (%; 95% CI) 

Own a bicycle                  

No 120 (56.9; 50.1-63.6)  63 (30.9; 24.5-37.3)  93 (40.1; 33.7-46.4)  145 (69.1; 62.7-75.4)  75 (38.7; 31.7,45.6)  91 (53.5;46.0,61.1) 

Yes                                           91 (43.1; 36.4-49.9)  141 (69.1; 62.7-75.5)  139 (59.9; 53.6-66.3)  65 (31.0; 24.6-37.3)  119 (61.3; 54.4,68.3)  79 (46.5;38.9,54.0) 

* p < 0. 05 Tingri Tibetans vs. Lhasa Tibetans, ** p < 0. 001 Tingri Tibetans vs. Lhasa Tibetans.  
# p < 0. 05 Tingri Tibetans vs. Lhasa Chinese, ## p < 0. 001 Tingri Tibetans vs. Lhasa Chinese.  
□ p < 0. 05 Lhasa Tibetans vs. Lhasa Chinese, □□ p < 0. 001 Lhasa Tibetans vs. Lhasa Chinese. 
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Table 2. Coefficients of maximal power output from three models, based on data from 9-10-year-old native Tibetan 
and Han Chinese children living in Lhasa at 3,700 m and native Tibetan children living in Tingri at 4,300 m above 
sea level # 
Wmax  Coef. 95% confidence interval 

Model 1 Constant 85.7**   83.2 – 88.2 

 Lhasa Tibetan 0   

 Tingri Tibetan -16.4**     -18.8 – -14.0  

 Lhasa Han Chinese -4.7**    -6.4 – -2.9 

 Sex  -10.6** -12.2 – -9.1    

 Body mass 1.5**     1.3 – 1.6    

 Owning bicycle▲ -4.5** -6.1 – -2.9   

Model 2※ Constant△ 78.9** 76.4 – 81.4   

 Sex  -8.7** -10.4 – -7.1    

 Body mass 1.3**     1.1 – 1.5    

 Owning bicycle▲ -4.4** -6.0– -2.8 

 [Hb] .9* .3 – 1.5      

 HRpeak .4** .3 –.4 

 SaO2rest .8** .5 – 1.0   

 SaO2peak -.3*    -.4 – -.1  

 FVC 13.2** 9.8 – 16.5      

Model 3※※ Constant△ 82.5** 80.1 – 84.9   

 Lhasa Tibetan 0   

 Tingri Tibetan -18.1** -20.6 – -15.5 

 Lhasa Han Chinese -4.1** -5.8 – -2.4 

 Sex -8.4** -9.9 – -6.9   

 Body mass .9** .7 – 1.0   

 Owning bicycle▲ -3.5** -5.0 – -2.0 

 [Hb] .3 -.3 – .9    

 HRpeak .2** .2 – .3  

 SaO2rest .4*  .1 – .6   

 SaO2peak -.6**   -.7 – -.4 

 FVC 16.2** 13.1 – 19.3   
#  No bivariate association was found between HRrest and a maximal power output, thus not included in Models; 
▲ Own a bicycle (vs. no bicycle) was set as reference; 
△ When boy is set as reference and body mass=27 kg, [Hb]=14.6g/L, HRpeak=195beats/min, SaO2rest=90%,  
SaO2peak=86%, FVC=2.00;  
* 0.001<p<0.01; ** p<0.001; 
※ The explained variance (R2) is 54%; 
※※ The explained variance (R2) is 63%. 
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Figure 1. Alterations in arterial oxygen saturation (SaO2) from rest to maximal exercise based on the cycle 
ergometer test in 9-10-year-old Tingri Tibetan, Lhasa Tibetan and Lhasa Han Chinese children. Values are 
presented as means (95% CI) (y-axis: % SaO2; x-axis: % of maximal power output (Wmax)) 
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