Cardiorespiratory fitness assessment using risk-stratified exercise testing and dose-response relationships with disease outcomes

Tomas I. Gonzales¹, Kate Westgate¹, Tessa Strain¹, Stefanie Hollidge¹, Justin Jeon^{1,2}, Dirk L. Christensen^{1,3}, Jorgen Jensen^{1,4}, Nicholas J. Wareham¹, Søren Brage¹

- 1. MRC Epidemiology Unit, University of Cambridge, Cambridge, United Kingdom
- 2. Yonsei University, Republic of Korea
- 3. University of Copenhagen, Denmark
- 4. Department Physical Performance, Norwegian School of Sport Sciences, Norway

SUPPLEMENTAL MATERIALS

Supplemental Methods

HR response feature extraction for multilevel framework

To extract features from WR and HR response data, we applied different analysis techniques to phases within each flat, ramp, and steady-state test. Data were denoted as the t^{th} observation in the p^{th} exercise protocol from the i^{th} individual participant. For ramp phase data (denoted p[UKB]), we used a simple linear regression model to describe the relationship between instantaneous WR and HR under ramped conditions:

$$WR_{tp[UKB]i} = b_{0_{p[UKB]i}} + b_{1_{p[UKB]i}} \cdot HR_{tp[UKB]i}$$

where $b_{0_{p[UKB]i}}$ and $b_{1_{p[UKB]i}}$ are intercept and slope parameters. If an anticipatory HR response at the flat-to-ramp phase transition was detected (defined as the difference between the median HR for the last 30s of flat phase and median HR for the initial 30s of the ramp phase exceeding 10 BPM), slope and intercept parameters were derived after excluding the initial 30s of ramp phase data.

HR dynamics during the recovery-phase were modelled using an exponential decay function:

$$HR_{tp[UKB]i} = HR_{rest_{i}} + e^{\mu_{0_{p[UKB]i}}} - \left(HR_{rest_{i}} + e^{\mu_{0_{p[UKB]i}}} - \mu_{1_{p[UKB]i}}\right) \cdot e^{-t/\mu_{2_{p[UKB]i}}}$$

where HR_{rest_i} is resting HR for participant *i*, *t* is post-exercise recovery time in seconds, and $\mu_{0_{p[UKB]i}}, \mu_{1_{p[UKB]i}}$, and $\mu_{2_{p[UKB]i}}$ are model parameter estimates defining HR recovery dynamics for the *p*th exercise protocol from the *i*th participant. Recovery models were solved at *t* = 0s and 45s to estimate HR values at the start of recovery $(HR_{rec0_{p[UKB]i}})$ and at 45s post-recovery ($HR_{rec45_{p[UKB]i}})$. Recovery HR dynamics were also characterised using a quadratic model for comparative purposes. Flat-phase data were analysed by computing the median HR value over the last minute of the test phase $(HR_{flat_{p[UKB]i}})$. For steady-state test data (denoted as p[ss]) we used a simple linear regression model to describe the relationship between WR and HR under steady-state conditions:

$$WR_{tp[ss]i} = b_{0_{p[ss]i}} + b_{1_{p[ss]i}} \cdot HR_{tp[ss]i}$$

To account for delay in the achievement of a steady-state HR at each WR increment, only HR and WR data from the last minute of each increment were used to estimate $b_{0_{p[ss]i}}$ and $b_{1_{p[ss]i}}$.

Next, in a two-step procedure, we used features extracted from WR and HR response data to estimate coefficients for a WR prediction model and several nested submodels. In the first step, intercept and slope parameters estimated from each *i*th participant's steady-state test ($b_{0_{p[ss]i}}$ and $b_{1_{p[ss]i}}$) were used to estimate simulated WR values that would be achieved at a set of simulated steady-state HR values ($HR_{tp[sim]i}$):

$$WR_{tp[sim]i} = b_{0_{p[ss]i}} + b_{1_{p[ss]i}} \cdot HR_{tp[sim]i}$$

where,

$$HR_{tp[sim]i} = \{80, 120, 140, 160\}$$

Thus, $WR_{tp[sim]i}$ defines a set of simulated WR values achieved under steady-state test conditions for the *i*th participant.

In the second step, we combined ramp-phase linear regression parameters ($b_{0_{p[UKB]i}}$ and $b_{1_{p[UKB]i}}$), HR recovery values ($HR_{rec0_{p[UKB]i}}$ and $HR_{rec45_{p[UKB]i}}$), and flat-phase median HR values ($HR_{flat_{p[UKB]i}}$) with test ramp rate ($RR_{p[UKB]i}$), participant resting HR (HR_{rest_i}) and sex (Sex_i) to construct the multilevel CRF estimation framework for predicting each participant's set of simulated steady-state WR values ($WR_{tn[sim]i}$):

Level 1 (base-stage equating steady-state test HR response with UKB CRF flat, low ramped, and high ramped HR response):

$$WR_{tp[sim]i} = \beta_{0_{p[UKB]i}} + \beta_{1_{p[UKB]i}} \cdot HR_{tp[sim]i} + r_i$$

Level 2 (HR-response and protocol features extracted from flat and ramped UKB CRF tests):

$$\beta_{0_{p[UKB]i}} = \gamma_{00_{i}} + \gamma_{01_{i}} \cdot b_{0_{p[UKB]i}} + \gamma_{02_{i}} \cdot HR_{rec0_{p[UKB]i}} + \gamma_{03_{i}} \cdot HR_{rec45_{p[UKB]i}} + \gamma_{04_{i}} \cdot HR_{flat_{p[UKB]i}} + \gamma_{05_{i}} \cdot RR_{p[UKB]i}$$

$$\beta_{1_{p[UKB]i}} = \gamma_{10_{i}} + \gamma_{11_{i}} \cdot b_{1_{p[UKB]i}} + \gamma_{12_{i}} \cdot HR_{rec0_{p[UKB]i}} + \gamma_{13_{i}} \cdot HR_{rec45_{p[UKB]i}} + \gamma_{14_{i}} \cdot HR_{flat_{p[UKB]i}} + \gamma_{15_{i}} \cdot RR_{p[UKB]i}$$

Level 3 (pretest participant characteristics):

$$\begin{aligned} \gamma_{00_i} &= \delta_{000} + \delta_{001} \cdot HR_{rest_i} + \delta_{002} \cdot Sex_i \\ \gamma_{10_i} &= \delta_{100} + \delta_{101} \cdot HR_{rest_i} + \delta_{102} \cdot Sex_i \end{aligned}$$

where r_i is a random intercept to control for clustering of observations within participants. Features were removed in a stepwise fashion to estimate coefficients for five estimation models, each designed to accommodate different data availability scenarios. Features were also removed to maximise explained variance with the fewest degrees of freedom.

Prediction of VO₂max using multilevel framework

To predict VO₂max, work rate values were estimated using the top estimation model for a given data availability scenario (see Supplemental Figure 12) by substituting $HR_{i[ss]}$ with age-predicted maximal HR:

$$HR_{max} = 208 - 0.7 \cdot Participant age (years)$$

Then, estimated work rate values were converted to VO₂ values using the American College of Sports Medicine metabolic equation for cycle ergometry:

$$VO_2 = 1.8 \cdot 6.12 \cdot \frac{Predicted work rate}{Participant weight (kg)} + 7$$

Prediction of VO₂max using alternative methods

 VO_2 max values were also estimated using three alternative methods. The first method, a simple linear regression approach, was applied to "low" and "high" ramp tests completed by participants:

$$WR_{pi} = b_{0_{pi}} + b_{1_{pi}} \cdot HR_{max_i}$$

where $b_{0_{pi}}$ and $b_{1_{pi}}$ are intercept and slope parameters described previously in the ramp phase test analysis and HR_{max_i} is age-predicted maximal HR. Next, a two-point approach, is similar to simple linear regression but simplifies this approach by using participant resting HR (HR_{rest_i}) and the highest ramp phase HR value (HR_{rest_i}) and work rate value ($WR_{ramp_{pi}}$):

$$WR_{pi} = \frac{WR_{ramp_{pi}}}{HR_{ramp_{pi}} - HR_{rest_{i}}} \cdot \left(HR_{max_{i}} - HR_{rest_{i}}\right)$$

The last method was applied to flat tests:

$$WR_{pi} = \frac{WR_{flat_{p}}}{HR_{flat_{pi}} - HR_{rest_{i}}} \cdot \left(HR_{max_{i}} - HR_{rest_{i}}\right)$$

where W_{flat_p} is the test steady-state work rate (30W for females; 40W for males). Work rate values were converted to predicted VO₂max values using the ACSM metabolic equation for cycle ergometry.

Supplemental Figure 1

Validation study participant characteristics across each validity subanalysis.

RHR: Resting heart rate, WR: Work rate, LT: Lactate threshold, RCP: Respiratory compensation point,

WRmax: Measured maximal work rate, HRmax: Measured maximal heart rate, VO2max: Maximal oxygen consumption

Scatterplots and Bland-Altman plots demonstrating agreement between directly measured VO_2max and VO_2max estimated from the flat test, low-ramp test, and high-ramp test using: A. simple linear regression; and B. 2-point estimation method. r: Pearson's correlation coefficient, rho: Spearman's rank correlation coefficient. RMSE: Root-mean-square error.

Left panel: Flow diagram showing the number of participants included and excluded in the UKB cohort analysis (characteristics of included sample in Supplementary Table 8), as well as the allocation of multilevel framework estimation models (see Supplemental Figure 12 for an explanation of this process). HR responses for UKB participants were recorded as either raw ECG or "Trend" data. "Trend" data represents instantaneous HR values computed using a proprietary algorithm in the software used to record data (Cardiosoft); in some tests sessions, this is the only data available (no raw ECG). Top right panel: Differences between the subsample of UKB participants with and without a bike test and stratified by eligibility, using VO₂max estimated from resting HR within the bike test sample (VO₂max = -0.28 RHR + 6 male sex + 44, R² = 0.45, RMSE = 4.9 ml O₂/min/kg). Histograms represent frequency of target work rates for UKB CRF tests in the subsample only across risk strata. Bottom-right panel: Sensitivity analysis comparing predicted values from ECG and "Trend" data across estimation equations and within-participant, demonstrating no differences between data capture methods. ECG data were chosen preferentially over "Trend" data when both data sources were available.

Hazard ratios and 95% confidence intervals (CI) for prospective log-linear associations between fatal and non-fatal outcomes in the UK Biobank with cardiorespiratory fitness in metabolic equivalents (METs, per 3.5 ml $O_2 \cdot kg^{-1} \cdot min^{-1}$), stratified by obesity status in UKB participants. Event-rate per 100,000 person years. AF - atrial fibrillation; COPD: chronic obstructive pulmonary disease; CVD: cardiovascular disease; IHD: ischaemic heart disease; RD- respiratory disease. COPD incidence mostly represents severe COPD since only ~25% of cases end up in hospital. CRF was computed using the multilevel framework.

	Outcome	Total(n)	Events(n)	Person-years	Event-rate		Hazard ratio (95% CI)	
-	Non-obese							
	All-cause	62505	1928	582607	331	+	0.93 (0.90, 0.96)	
	All-CVD	62505	555	582607	95		0.94 (0.88, 1.00)	
	All-RD	62505	470	582607	81	—	0.88 (0.81, 0.94)	
rtality	All-cancer	62505	1242	582607	213	*	0.92 (0.88, 0.96)	
Mo	Obese							
	All-cause	17476	742	163770	453	-	0.87 (0.81, 0.93)	
	All-CVD	17476	299	163770	183	_	0.85 (0.76, 0.95)	
	All-RD	17476	176	163770	107 (→	0.76 (0.66, 0.88)	
	All-cancer	17476	446	163770	272	_	0.88 (0.81, 0.97)	
	Non-obese							
	Heart-failure	59893	218	382942	57		0.90 (0.81, 1.00)	
	Stroke	59847	287	382548	75	—	1.00 (0.91, 1.09)	
	IHD	59523	1238	378321	327	+	1.00 (0.96, 1.05)	
	AF	59696	789	380562	207	-	1.09 (1.03, 1.15)	
dence	COPD	59819	455	381927	119	-	0.91 (0.84, 0.97)	
nció	Obese							
_	Heart-failure	16207	132	104824	126		0.92 (0.78, 1.08)	
	Stroke	16202	105	104834	100	—	0.88 (0.73, 1.06)	
	IHD	16029	554	102697	539	-+-	0.94 (0.86, 1.02)	
	AF	16129	388	103837	374	—	1.00 (0.90, 1.11)	
	COPD	16191	177	104608	169		0.84 (0.73, 0.98)	
-								
						.8 1 1.25		

Hazard ratios and 95% confidence intervals (CI) for nonlinear (cubic spline) associations between fatal and non-fatal outcomes in the UK Biobank with cardiorespiratory fitness in metabolic equivalents (METs, per 3.5 ml O2·kg⁻¹·min⁻¹), stratified by obesity status in UKB participants. Hazard ratios were computed relative to a fitness reference point of 8.0 METs. AF: atrial fibrillation; COPD: chronic obstructive pulmonary disease; CVD: cardiovascular disease; IHD: ischaemic heart disease; RD: respiratory disease. CRF was computed using the multilevel framework.

Sample-matched hazard ratios and 95% confidence intervals (CI) for prospective log-linear associations between fatal and non-fatal outcomes in the UK Biobank with cardiorespiratory fitness in metabolic equivalents (METs, per 3.5 ml $O_2 \cdot kg^{-1} \cdot min^{-1}$) computed from the multilevel framework and simple linear regression methods. Event rate per 100,000 person-years. AF - atrial fibrillation; COPD: chronic obstructive pulmonary disease; CVD: cardiovascular disease; IHD: ischaemic heart disease; RD- respiratory disease. COPD incidence mostly represents severe COPD since only ~25% of cases end up in hospital. For these analyses, the analytical sample was matched between fitness estimation methods.

Outcome	Total(n)	Events(n)	Person-years	Event-rat	e	Hazard ratio (95% Cl
CRF estima	ation fram	ework				
All-cause	74618	2364	697492	339	-	0.92 (0.89, 0.96)
All-CVD	74618	749	697492	107		0.95 (0.89, 1.01)
All-RD	74618	542	697492	78	_	0.87 (0.81, 0.94)
All-cancer	74618	1519	697492	218	-	0.92 (0.88, 0.96)
Simple line	ar regress	sion				
All-cause	74618	2364	697492	339	+	0.97 (0.95, 0.99)
All-CVD	74618	749	697492	107	-	0.96 (0.92, 0.99)
All-RD	74618	542	697492	78	-	0.95 (0.91, 0.98)
All-cancer	74618	1519	697492	218	-	0.97 (0.95, 1.00)
CRF estima	ation fram	ework				
Heart-failur	e71087	305	456456	67	← →	0.87 (0.79, 0.97)
Stroke	71032	352	456035	77	+	0.98 (0.89, 1.08)
IHD	70570	1644	450136	365		0.97 (0.93, 1.01)
AF	70847	1057	453428	233	_	1.06 (1.00, 1.12)
COPD	71007	557	455353	122	—	0.88 (0.82, 0.95)
Simple line	ar regress	sion				
Heart-failur	e71087	305	456456	67	—	0.92 (0.87, 0.97)
Stroke	71032	352	456035	77	-+-	0.97 (0.93, 1.02)
IHD	70570	1644	450136	365	+	0.97 (0.95, 1.00)
AF	70847	1057	453428	233	-	0.99 (0.96, 1.02)
COPD	71007	557	455353	122	-	0.93 (0.89, 0.97)
					.8 1	1.25

Mortality

Sample-matched hazard ratios and 95% confidence intervals (CI) for nonlinear associations (cubic splines, Cox regression) between fatal and non-fatal outcomes in the UK Biobank with cardiorespiratory fitness in metabolic equivalents (METs, per 3.5 ml O2·kg⁻¹·min⁻¹) computed from the multilevel framework and simple linear regression. Hazard ratios were computed relative to a fitness reference point of 8.0 METs. AF: atrial fibrillation; COPD: chronic obstructive pulmonary disease; CVD: cardiovascular disease; IHD: ischaemic heart disease; RD: respiratory disease. For these analyses, the analytical sample was matched between fitness estimation methods (exposure distributions shown by event status in superimposed histograms).

Hazard ratios and 95% confidence intervals (CI) for prospective log-linear associations between fatal and non-fatal outcomes in the UK Biobank with cardiorespiratory fitness in metabolic equivalents (METs, per 3.5 ml $O_2 \cdot kg^{-1} \cdot min^{-1}$) computed when restricting the multilevel framework to a single estimation model. For these analyses, the analytical sample was restricted to those who completed a ramp test. CRF estimates from estimation model M4 were not computed since that level is specific to those who completed a flat test Event rate per 100,000 person-years. AF - atrial fibrillation; COPD: chronic obstructive pulmonary disease; CVD: cardiovascular disease; IHD: ischaemic heart disease; RD- respiratory disease. COPD incidence mostly represents severe COPD since only ~25% of cases end up in hospital.

	Model	Total(n)	Events(n)	Person-years	Event-rate		Hazard ratio (95% CI)
	All-cause M1 M2 M3 M5	62373 62373 62373 62373 62373	1766 1766 1766 1766	584308 584308 584308 584308 584308	302 302 302 302 302	+++++	0.93 (0.89, 0.98) 0.95 (0.91, 0.99) 0.94 (0.89, 0.98) 0.96 (0.92, 1.00)
ality	All-CVD M1 M2 M3 M5	62373 62373 62373 62373	517 517 517 517 517	584308 584308 584308 584308 584308	88 88 88 88		0.97 (0.89, 1.06) 0.98 (0.91, 1.07) 0.98 (0.90, 1.08) 1.01 (0.93, 1.10)
Mort	All-RD M1 M2 M3 M5	62373 62373 62373 62373	375 375 375 375	584308 584308 584308 584308 584308	64 64 64 64		0.90 (0.81, 0.99) 0.92 (0.84, 1.02) 0.92 (0.83, 1.03) 0.96 (0.87, 1.05)
	All-cance M1 M2 M3 M5	er 62373 62373 62373 62373 62373	1170 1170 1170 1170	584308 584308 584308 584308 584308	200 200 200 200	++++	0.91 (0.86, 0.97) 0.93 (0.88, 0.98) 0.90 (0.84, 0.96) 0.93 (0.88, 0.98)
	Heart-fail M1 M2 M3 M5	ure 59912 59912 59912 59912 59912	224 224 224 224 224	385404 385404 385404 385404 385404	58 58 58 58		0.87 (0.76, 1.00) 0.89 (0.79, 1.01) 0.87 (0.75, 1.01) 0.89 (0.79, 1.01)
	Stroke M1 M2 M3 M5	59872 59872 59872 59872	271 271 271 271 271	385075 385075 385075 385075 385075	70 70 70 70		1.00 (0.89, 1.13) 1.01 (0.91, 1.12) 0.99 (0.87, 1.13) 1.00 (0.90, 1.11)
Incidence	IHD M1 M2 M3 M5	59528 59528 59528 59528	1308 1308 1308 1308 1308	380472 380472 380472 380472 380472	344 344 344 344	+++++++++++++++++++++++++++++++++++++++	0.95 (0.90, 1.00) 0.97 (0.92, 1.02) 0.95 (0.90, 1.01) 1.02 (0.97, 1.07)
	AF M1 M2 M3 M5	59719 59719 59719 59719	832 832 832 832	382957 382957 382957 382957 382957	217 217 217 217	+++	1.13 (1.06, 1.21) 1.18 (1.11, 1.26) 1.14 (1.06, 1.22) 1.19 (1.11, 1.27)
	COPD M1 M2 M3 M5	59869 59869 59869 59869	378 378 378 378 378	384771 384771 384771 384771	98 98 98 98		0.82 (0.74, 0.92) 0.85 (0.77, 0.93) 0.85 (0.75, 0.96) 0.91 (0.83, 1.00)
						8 1 12	5

Hazard ratios and 95% confidence intervals (CI) for nonlinear (cubic spline) associations between fatal and non-fatal outcomes in the UK Biobank with cardiorespiratory fitness in metabolic equivalents (METs, per $3.5 \text{ ml O}_2 \cdot \text{kg}^{-1} \cdot \text{min}^{-1}$) computed when restricting the multilevel framework to a single estimation model. For these analyses, the analytical sample was restricted to those who completed a ramp test (exposure distributions shown by event status in superimposed histograms). CRF estimates from estimation model M4 were not computed since that level is specific to those who completed a flat test. Hazard ratios were computed relative to a fitness reference point of 8.0 METs. AF: atrial fibrillation; COPD: chronic obstructive pulmonary disease; CVD: cardiovascular disease; IHD: ischaemic heart disease; RD: respiratory disease.

Hazard ratios and 95% confidence intervals (CI) for prospective log-linear associations between fatal and non-fatal outcomes in the UK Biobank with cardiorespiratory fitness in metabolic equivalents (METs, per $3.5 \text{ ml O}_2 \cdot \text{kg}^{-1} \cdot \text{min}^{-1}$) computed when restricting the multilevel framework to a single estimation model. For these analyses, the analytical sample was restricted to those who completed a flat test. Event rate per 100,000 person-years. AF atrial fibrillation; COPD: chronic obstructive pulmonary disease; CVD: cardiovascular disease; IHD: ischaemic heart disease; RD- respiratory disease. COPD incidence mostly represents severe COPD since only ~25% of cases end up in hospital.

	Model	Total(n)	Events(n)	Person-years	Event-rate	ŀ	lazard ratio (95%CI)
_	All-caus M4 M5	se 2333 2333	113 113	21664 21664	522 522	+	1.01 (0.89, 1.15) 1.02 (0.90, 1.16)
tality	All-CVE M4 M5) 2333 2333	55 55	21664 21664	254 254	-	0.96 (0.79, 1.17) 1.01 (0.84, 1.23)
Mort	All-RD M4 M5	2333 2333	34 34	21664 21664	157 157	+	1.03 (0.82, 1.29) 1.04 (0.84, 1.30)
	All-cano M4 M5	cer 2333 2333	67 67	21664 21664	309 309		0.94 (0.79, 1.12) 0.94 (0.80, 1.11)
	Heart-fa M4 M5	ailure 1895 1895	15 15	12121 12121	124 124		1.03 (0.70, 1.50) 1.04 (0.72, 1.49)
ence	Stroke M4 M5	1889 1889	15 15	12084 12084	124 124	+	→ 1.21 (0.81, 1.81) → 1.20 (0.82, 1.74)
Incid	IHD M4 M5	1832 1832	110 110	11503 11503	956 956	+	1.06 (0.92, 1.21) 1.05 (0.92, 1.19)
	AF M4 M5	1880 1880	55 55	11956 11956	460 460	+	1.06 (0.86, 1.30) 1.12 (0.91, 1.36)
	COPD M4 M5	1885 1885	41 41	11989 11989	342 342	+	1.14 (0.91, 1.42) 1.10 (0.91, 1.33)
-						.8 1 1.25	

Exemplar respiratory exchange data from the ramped maximal exercise test. Work rates corresponding to the lactate threshold (LT) and respiratory compensation point (RCP) were determined by visual inspection of data representing the ventilatory equivalent of oxygen (VE / VO2, lower panel blue dot plot), ventilatory equivalent of carbon dioxide (VE / VCO2, lower panel red dot plot), end-tidal pressure of oxygen (PETO2, upper panel blue dot plot), and end-tidal pressure of carbon dioxide (PETCO2, upper panel red dot plot).

Data quality decision diagram for the allocation of multilevel framework estimation models to UKB participants. HR predictions from the ramp phase linear model were solved at the target WR of the UKB CRF test protocol. HR predictions from recovery phase models were solved at T=0s and T=45s. Slope and intercept parameters were defined using the ramp phase linear model. Recovery phase data from the flat protocol (corresponding to equation M4) is not comparable with recovery phase data from ramped protocols (corresponding to equations M1 and M3).

Supplemental Table 1

Descriptions and coefficients for work rate estimation equations at each level of the multilevel framework used to infer cardiorespiratory fitness. The framework has five estimation models (notated as M1-M5), where the top level models (M1) utilises all derived HR features from all stages, while lower level models use progressively fewer features. Thus, the multilevel framework can be adapted to different data availability scenarios. The source of information at each estimation model indicates the UKB CRF test phases used to compute HR features included as predictors at that level. All validation sample participants contributed submaximal exercise test data to the derivation of estimation models. Standard error values for parameter estimates are provided in Supplemental Table 12.

Estimation model	Source of information from UKB CRF test	Work rate estimation equation
M1	Ramp & recovery phases	$-52.8 + 1.44 \cdot HR_{rec45} + 0.562 \cdot b_0 + 14.2 \cdot RR^{0.5} - 1.23 \cdot HR_{rest} - 8.67 \cdot sex + HR_{max} \cdot (1.09 - 0.0132 \cdot HR_{rec45} + 0.436 \cdot b_1 - 0.117 \cdot RR^{0.5} + 0.00762 \cdot HR_{rest} + 0.298 \cdot 100762 $
M2	Recovery phase	$-70.7 + 0.463 \cdot HR_{rec45} + 2.49 \cdot HR_{rec0} - 274 \cdot RR^{0.5} - 3.33 \cdot HR_{rest} - 7.84 \cdot sex + HR_{max} \cdot (2.17 - 0.0054 \cdot HR_{rec45} - 0.0249 \cdot HR_{rec0} + 2.78 \cdot RR^{0.5} + 0.0185 \cdot HR_{rest} + 0.3)$
M3	Ramp phase	$-53.1 + 0.621 \cdot b_{0} + 87.5 \cdot RR^{0.5} + 0.262 \cdot HR_{rest} - 13.2 \cdot sex + HR_{max} \cdot (1.01 + 0.483 \cdot b_{1} - 0.791 \cdot RR^{0.5} - 0.00492 \cdot HR_{rest} + 0.327 \cdot sex)$
M4	Flat & recovery phases	$-19.5 - 1.31 \cdot HR_{rec45} + 0.434 \cdot HR_{flat} - 44.4 \cdot sex + HR_{max} \cdot (2.33 + 0.0151 \cdot HR_{rec45} - 0.0251 \cdot HR_{flat} + 0.674 \cdot sex)$
M5	Flat phase	$ -10.6 - 0.932 \cdot HR_{rest} - 0.0947 \cdot HR_{flat} - 46.1 \cdot sex + HR_{max} \cdot (2.22 + 0.0113 \cdot HR_{rest} - 0.0193 \cdot HR_{flat} + 0.693 \cdot sex) $

 HR_{max} : Maximal HR (either age-predicted or directly measured), HR_{rest} : Resting HR, HR_{rec45} : Recovery HR at 45s post-exercise, HR_{rec0} : Recovery HR at 0s post-exercise, b_0 : Intercept from the ramp phase linear regression model, b_1 : Slope from the ramp phase linear regression model, HR_{flat} : Median HR computed for the flat phase, $RR^{0.5}$: Square root of test ramp rate (W · min⁻¹), *sex*: "0" women, "1" men

Agreement between work rates measured at the respiratory compensation point (RCP, see Supplemental Figure 11) in the maximal exercise test and work rates computed from flat, low, and high ramp exercise tests using the multilevel framework. M1 results are shown in Figure 2.

Estimation	Comparator with				Work rate estin	nation bias (mear	$n \pm SD$, Watts)
model	work rate at RCP	RMSE	r	rho	Pooled	Females	Males
		20.5	0.04	0.07			0.7 + 0.5 0
M1	Estimated WR _{low}	30.5	0.84	0.87	0.6 ± 30.6	2.2 ± 22.0	-0.7 ± 35.8
	Estimated WR _{high}	29.4	0.86	0.87	-1.4 ± 29.4	-1.9 ± 20.7	-1.0 ± 34.7
M2	Estimated WR _{low}	29.3	0.85	0.86	0.3 ± 29.4	3.8 ± 23.0	-2.5 ± 33.4
1112	Estimated WR _{high}	32.6	0.82	0.83	1.1 ± 32.7	2.2 ± 32.9	0.1 ± 32.7
M2	Estimated WR _{low}	30.8	0.84	0.87	0.4 ± 30.9	1.7 ± 21.3	-0.5 ± 36.6
IVI 5	Estimated WR _{high}	29.3	0.85	0.87	-0.8 ± 29.4	-0.3 ± 19.4	-1.1 ± 35.2
M4	Estimated WR _{flat}	32.3	0.82	0.83	-3.6 ± 32.2	-1.5 ± 26.5	-5.2 ± 36.1
	Estimated WR _{flat}	32.9	0.82	0.82	-2.9 ± 32.8	-1.7 ± 27.3	-3.9 ± 36.8
M5	Estimated WR _{low}	33.6	0.81	0.82	0.2 ± 33.7	2.5 ± 29.6	-1.6 ± 36.6
	Estimated WR	31.7	0.83	0.84	-3.6 ± 31.6	-3.7 ± 25.3	-3.6 ± 36.1
		- ••					

RCP: Respiratory compensation point, WR_{low} : Work rate computed with features from "low" ramp test, WR_{high} : Work rate computed with features from "high" ramp test, WR_{flat} : Work rate computed with features from "flat" constant-phase test, RMSE: Root-mean-square error, r: Pearson's correlation coefficient, rho: Spearman's rank correlation coefficient, SD: standard deviation, * p < 0.05 for one-sample t-test from zero mean bias

Agreement between work rates measured at the lactate threshold (LT, see Supplemental Figure 11) in the maximal exercise test and work rates computed from flat, low, and high ramp exercise tests using the multilevel framework.

Estimation	Comparator with				Work rate estin	mation bias (mean	$n \pm SD$, Watts)
model	work rate at LT	RMSE	r	rho	Pooled	Females	Males
M1	Estimated WR _{low}	58.0	0.83	0.86	$49.8 \pm 29.9*$	$37.1 \pm 19.7*$	$60.5 \pm 32.8*$
1 V1 1	Estimated WR _{high}	55.9	0.86	0.88	$47.4 \pm 29.8*$	$32.6 \pm 20.0*$	$60.0 \pm 31.0*$
MO	Estimated WR _{low}	59.4	0.80	0.82	$50.4 \pm 31.4*$	$40.7 \pm 32.5*$	$59.2 \pm 27.9^*$
1 V1 2	Estimated WR _{high}	62.2	0.77	0.79	$50.7 \pm 36.1*$	$39.2 \pm 41.0*$	$61.3 \pm 27.1*$
М3	Estimated WR _{low}	57.6	0.84	0.86	$49.7 \pm 29.1*$	$36.9 \pm 18.1*$	$60.6 \pm 32.2*$
IVIS	Estimated WR _{high}	55.5	0.86	0.88	$48.3 \pm 27.5*$	$34.7 \pm 16.2*$	$59.9 \pm 29.9*$
M4	Estimated WR _{flat}	56.2	0.83	0.84	$47.8 \pm 29.5^{*}$	$36.0 \pm 24.2*$	$58.5 \pm 30.0*$
	Estimated WR _{flat}	56.1	0.83	0.83	$47.9 \pm 29.2*$	$36.2 \pm 23.9*$	$58.5 \pm 29.7*$
M5	Estimated WR _{low}	58.9	0.82	0.83	$51.0 \pm 29.5^{*}$	$39.3 \pm 26.1*$	$61.3 \pm 28.6*$
	Estimated WR _{high}	55.5	0.84	0.85	$47.5 \pm 28.8*$	$34.1 \pm 22.8*$	$59.6 \pm 28.4*$

LT: lactate threshold, WR_{low}: Work rate computed with features from "low" ramp test, WR_{high}: Work rate computed with features from "high" ramp test, WR_{flat}: Work rate computed with features from "flat" constant-phase test, RMSE: Root-mean-square error, r: Pearson's correlation coefficient, *rho*: Spearman's rank correlation coefficient, SD: standard deviation, * p < 0.05 for one-sample t-test from zero mean bias

Agreement between work rates measured at VO_2max in the maximal exercise test and work rates computed from flat, low, and high ramp exercise tests using the multilevel framework.

Estimation	Comparator with				Work rate estir	nation bias (mea	$n \pm SD$, Watts)
model	work rate at exhaustion	RMSE	r	rho	Pooled	Females	Males
		15.0		0.04		15.0 . 04.04	2 0 5 · 10 2*
M1	Estimated WR _{low}	47.3	0.79	0.84	-24.3 ± 40.7 *	$-17.3 \pm 24.0^*$	$-29.7 \pm 49.3^*$
1111	Estimated WR _{high}	47.8	0.80	0.84	$-26.7 \pm 39.8*$	$-21.9 \pm 22.5*$	$-30.4 \pm 49.1*$
142	Estimated WR _{low}	48.5	0.76	0.81	$-23.3 \pm 42.7*$	$-14.0 \pm 34.1*$	$-30.9 \pm 47.4^*$
M2	Estimated WR _{high}	50.9	0.73	0.77	$-22.8 \pm 45.6^{*}$	$-15.9 \pm 42.5^{*}$	$-28.6 \pm 47.5^{*}$
	ingn						
N42	Estimated WR _{low}	47.6	0.78	0.83	$-24.3 \pm 41.1*$	$-17.6 \pm 23.8*$	$-29.3 \pm 50.1*$
IVI 3	Estimated WR _{high}	47.4	0.80	0.84	$-25.6 \pm 40.0*$	$-20.1 \pm 21.7*$	-30.0 ± 49.4 *
M4	Estimated WR _{flat}	49.1	0.77	0.80	$-25.5 \pm 42.1*$	$-18.8 \pm 28.4*$	$-30.9 \pm 50.1*$
	Hat						
	Estimated WR _{flat}	49.3	0.76	0.79	$-25.5 \pm 42.4*$	$-18.8 \pm 28.5*$	$-31.0 \pm 50.4*$
M5	Estimated WR _{low}	49.2	0.75	0.78	$-22.4 \pm 43.9*$	$-15.2 \pm 30.3^{*}$	$-28.1 \pm 51.7*$
	Estimated WR	49.1	0.77	0.81	$-26.2 \pm 41.7*$	$-20.8 \pm 26.2*$	$-30.5 \pm 50.8*$
M3 M4 M5	Estimated WR _{low} Estimated WR _{high} Estimated WR _{flat} Estimated WR _{flat} Estimated WR _{low} Estimated WR _{high}	47.6 47.4 49.1 49.3 49.2 49.1	0.78 0.80 0.77 0.76 0.75 0.77	0.83 0.84 0.80 0.79 0.78 0.81	$\begin{array}{c} -24.3 \pm 41.1^{*} \\ -25.6 \pm 40.0^{*} \\ -25.5 \pm 42.1^{*} \\ -25.5 \pm 42.4^{*} \\ -22.4 \pm 43.9^{*} \\ -26.2 \pm 41.7^{*} \end{array}$	$-17.6 \pm 23.8^{*}$ $-20.1 \pm 21.7^{*}$ $-18.8 \pm 28.4^{*}$ $-18.8 \pm 28.5^{*}$ $-15.2 \pm 30.3^{*}$ $-20.8 \pm 26.2^{*}$	$-29.3 \pm 50. \\ -30.0 \pm 49. \\ -30.9 \pm 50. \\ -31.0 \pm 50. \\ -28.1 \pm 51. \\ -30.5 \pm 50. \\ \end{array}$

WR_{low}: Work rate computed with features from "low" ramp test, WR_{high}: Work rate computed with features from "high" ramp test, WR_{flat}: Work rate computed with features from "flat" constant-phase test, RMSE: Root-mean-square error, r: Pearson's correlation coefficient, *rho*: Spearman's rank correlation coefficient, SD: standard deviation, * p < 0.05 for one-sample t-test from zero mean bias

Agreement between directly measured at VO₂max and VO₂max values computed from different exercise tests and multilevel framework estimation models, using age-predicted maximal HR. M1 results are shown in Figure 3.

Estimation	Comparator with				VO ₂ max es	stimation bias (motion $O_2 \cdot kg^{-1} \cdot min^{-1}$)	$ean \pm SD, ml$
model	measured VO_2 max	RMSE	r	rho	Pooled	Females	Males
M1	Estimated VO ₂ max _{low}	4.9	0.70	0.74	0.1 ± 4.9	-0.1 ± 4.4	0.2 ± 5.3
1 v1 1	Estimated VO ₂ max _{high}	4.8	0.72	0.74	-0.2 ± 4.8	-0.6 ± 4.4	0.0 ± 5.1
MO	Estimated VO ₂ max _{low}	4.5	0.74	0.74	-0.1 ± 4.6	-0.1 ± 4.6	-0.1 ± 4.5
IVIZ	Estimated VO ₂ max _{high}	4.7	0.73	0.72	-0.2 ± 4.7	-0.8 ± 4.8	0.2 ± 4.6
M3	Estimated VO ₂ max _{low}	5.0	0.68	0.74	0.0 ± 5.0	-0.3 ± 4.4	0.3 ± 5.5
1413	Estimated VO ₂ max _{high}	4.8	0.70	0.73	-0.1 ± 4.8	-0.5 ± 4.4	0.1 ± 5.2
M4	Estimated VO ₂ max _{flat}	5.0	0.68	0.68	-0.3 ± 5.0	-0.4 ± 5.1	-0.2 ± 4.9
	Estimated VO ₂ max _{low}	4.9	0.69	0.68	-0.3 ± 4.9	-0.3 ± 5.0	-0.3 ± 4.9
M5	Estimated VO ₂ max _{high}	4.8	0.70	0.70	0.2 ± 4.9	0.4 ± 4.9	-0.1 ± 4.9
	Estimated VO ₂ max _{flat}	4.8	0.71	0.70	-0.3 ± 4.8	-0.2 ± 4.8	-0.3 ± 4.8

VO₂max: Maximal oxygen consumption, VO₂max_{low}: VO₂max computed with features from "low" ramp test, VO₂max_{high}: VO₂max computed with features from "high" ramp test, VO₂max_{flat}: VO₂max computed with features from "flat" constant-phase test, RMSE: Root-mean-square error, r: Pearson's correlation coefficient, *rho*: Spearman's rank correlation coefficient, SD: standard deviation, * p < 0.05 for one-sample t-test from zero mean bias

Agreement between directly measured at VO₂max and VO₂max values estimated from different exercise tests and multilevel framework estimation models, using directly measured maximal HR.

Estimation	Comparator with				VO ₂ max e	stimation bias (m O ₂ ·kg ⁻¹ ·min ⁻¹)	tean \pm SD, ml
model	measured VO ₂ max	RMS E	r	rho	Pooled	Females	Males
M1	Estimated VO ₂ max _{low} Estimated VO ₂ max _{high}	4.8 4.4	0.71 0.75	0.74 0.75	0.3 ± 4.8 -0.1 ± 4.5	0.3 ± 4.2 - 0.2 ± 4.3	0.3 ± 5.2 0.0 ± 4.6
M2	Estimated VO_2max_{low} Estimated VO_2max_{high}	4.8 4.7	0.70 0.72	0.69 0.70	0.2 ± 4.8 -0.1 ± 4.7	0.3 ± 4.5 - 0.5 ± 4.5	0.1 ± 5.1 0.3 ± 4.8
M3	Estimated VO_2max_{low} Estimated VO_2max_{high}	4.9 4.5	0.69 0.74	0.71 0.74	$\begin{array}{c} 0.3\pm4.9\\ 0.1\pm4.6\end{array}$	0.1 ± 4.2 - 0.1 ± 4.3	0.4 ± 5.4 0.2 ± 4.8
M4	Estimated VO ₂ max _{flat}	4.9	0.69	0.67	0.0 ± 4.9	0.0 ± 4.8	0.0 ± 5.1
M5	Estimated VO ₂ max _{low} Estimated VO ₂ max _{high} Estimated VO ₂ max _{flat}	4.9 5.0 5.0	0.69 0.68 0.68	0.67 0.68 0.67	0.0 ± 4.9 0.5 ± 5.0 0.0 ± 5.0	0.1 ± 4.7 0.9 ± 4.7 0.2 ± 4.7	0.0 ± 5.1 0.1 ± 5.3 -0.1 ± 5.3

VO₂max: Maximal oxygen consumption, VO₂max_{low}: VO₂max computed with features from "low" ramp test, VO₂max_{high}: VO₂max computed with features from "high" ramp test, VO₂max_{flat}: VO₂max computed with features from "flat" constant-phase test, RMSE: Root-mean-square error, r: Pearson's correlation coefficient, *rho*: Spearman's rank correlation coefficient, SD: standard deviation, * p < 0.05 for one-sample t-test from zero mean bias

Internal agreement between VO_2 max estimated within each level of the multilevel framework. M1-M3 and M5 were compared when using features computed from ramp tests, and M4 and M5 were compared when using features computed from flat tests. Bias values were computed as the difference between the first and second comparators.

					VO ₂ max es	timation bias (nl O ₂ ·kg ⁻¹ ·min	$(\text{mean} \pm \text{SD}, -1)$
First comparator	Second comparator	RMSE	r	rho	Pooled	Females	Males
VO ₂ max _{high} from M1	VO ₂ max _{low} from M1	2.2	0.94	0.94	$-0.4 \pm 2.2*$	-0.5 ± 2.3	-0.2 ± 1.9
VO ₂ max _{high} from M2	VO_2max_{low} from M2	3.1	0.96	0.96	0.0 ± 3.1	$-0.7 \pm 2.0*$	0.2 ± 1.1
VO_2max_{high} from M3	VO_2max_{low} from M3	1.9	0.94	0.95	-0.2 ± 1.9	-0.2 ± 1.8	-0.2 ± 1.9
VO ₂ max _{flat} from M4	VO_2max_{flat} from M5	0.9	0.99	0.99	$\textbf{-0.0}\pm0.9$	-0.1 ± 0.8	0.0 ± 0.9
VO ₂ max _{flat} from M4	VO_2max_{low} from M1	2.7	0.91	0.92	-0.2 ± 2.7	-0.3 ± 2.4	-0.2 ± 2.8
VO ₂ max _{flat} from M4	VO ₂ max _{high} from M1	2.5	0.92	0.92	0.2 ± 2.5	0.5 ± 2.6	0.0 ± 2.4
VO ₂ max _{high} from M5	VO_2max_{low} from M5	1.9	0.98	0.98	$-0.6 \pm 1.8*$	$-0.6 \pm 1.0*$	$\textbf{-0.3} \pm 0.9 \textbf{*}$

VO₂max: Maximal oxygen consumption, VO₂max_{low}: VO₂max computed with features from "low" ramp test, VO₂max_{high}: VO₂max computed with features from "high" ramp test, VO₂max_{flat}: VO₂max computed with features from "flat" constant-phase test, RMSE: Root-mean-square error, r: Pearson's correlation coefficient, *rho*: Spearman's rank correlation coefficient, SD: standard deviation, * p < 0.05 for one-sample t-test from zero mean bias

Characteristics	Women (42,535)	Men (37,746)
Ethnicity % (N)		
White	92% (39.048)	93% (34 705)
Mixed, Asian, and Black	8% (3.263)	7% (2.787)
Employment, % (N)		
Unemployed	43% (18.015)	39% (14.482)
Employed	57% (24.300)	61% (23.031)
Townsend deprivation index	-1.3 ± 2.9	-1.3 ± 3.0
Smoking, % (N)		
Never	61% (25,999)	51% (19,290)
Previous	31% (13,287)	38% (14,376)
Current	7% (3,053)	10% (3,872)
Mixed, Asian, and Black	8% (3,263)	7% (2,787)
Alcohol consumption, % (N)		
Never	5% (2,294)	3% (1,059)
Previous	3% (1,274)	3% (1,139)
Current	53% (22,306)	42% (15,677)
Current, three or more per week	39% (16,556)	53% (19,770)
Red or processed meat intake (days/week)	0.8 ± 0.5	1.0 ± 0.6
Weight (kg)	70 ± 13	85 ± 14
Obesity prevalence (BMI > $30 \text{kg} \cdot \text{m}^{-2}$), % (N)	20% (8694)	23% (8845)
Disease prevalence at baseline, % (N)		
Hypertension	45% (18,966)	59% (22,249)
Diabetes	3% (1,362)	6% (2,397)
All-cause cancer	15% (6,271)	10% (3,639)
Heart-failure	≤1% (41)	≤1% (159)
Ischaemic heart disease	2% (668)	5% (1958)
Stroke	≤1% (152)	≤1% (258)
Atrial fibrillation	≤1% (229)	2% (660)
Chronic obstructive pulmonary disease	≤1% (132)	≤1% (175)
Medication use, % (N)		
Beta blockers	4% (1,897)	7% (2,647)
Calcium channel blockers	5% (2,146)	9% (3,553)
ACE inhibitors	9% (3,965)	17% (6,490)
Diuretics	6% (2,713)	7% (2,478)
Bronchodilators	7% (2,993)	6% (2,289)
Lipid-lowering agents	12% (5,073)	24% (8,911)
Iron deficiency agents	≤1% (631)	≤1% (323)

Characteristics of UK Biobank participants in the subsample with cycle ergometer data. Percentages were calculated relative to totals for each sex separately.

UKB participant characteristics by tertile of cardiorespiratory fitness when computed from the multilevel framework.

Sex		Women		Men				
CRF Tertiles	Lower	Middle	Higher	Lower	Middle	Higher		
	N VO ₂ max	N VO ₂ max	N VO ₂ max	N VO ₂ max	N VO ₂ max	N VO ₂ max		
Age group(y)								
Younger than 50	$3,029 21.2 \pm 3.1$	3,030 27.1 ± 1.3	3,029 33.6 ± 3.4	$2,541$ 27.9 ± 2.7	2,542 33.9 ± 1.5	$2,541$ 40.6 ± 3.4		
50-54	$2,176$ 20.5 ± 3.0	$2,178$ 26.1 ± 1.3	$2,176$ 32.3 ± 3.4	$1,686 26.9 \pm 2.7$	$1,687$ 32.8 ± 1.4	$1,686$ 39.7 ± 3.4		
55-59	$2,536 20.0 \pm 2.9$	$2,537$ 25.2 ± 1.2	2,536 31.1 ± 3.3	$2,001$ 26.2 ± 2.7	$2,002$ 32.1 ± 1.4	$2,001$ 38.6 ± 3.6		
60-64	$3,487$ 19.1 ± 3.0	$3,489 24.1 \pm 1.1$	$3,487$ 29.6 ± 3.2	$3,091$ 25.6 ± 2.5	$3,093$ 31.2 ± 1.3	$3,091$ 37.4 ± 3.4		
65 and older	2,887 18.2 ± 3.0	2,887 23.2 ± 1.0	2,887 28.3 ± 3.0	3,229 24.8 ± 2.6	$3,230$ 30.0 ± 1.3	3,229 36.1 ± 3.4		
Combined across age groups	<u>14,115 19.8 ± 3.2</u>	14,121 25.1 ± 1.8	14,115 30.9 ± 3.8	<u>12,548</u> 26.1 ± 2.9	12,554 31.8 ± 2.0	12,548 38.2 ± 3.8		
Age (y)	57 ± 8	57 ± 8	57 ± 8	58 ± 8	58 ± 8	58 ± 8		
Height (cm)	163 ± 6	163 ± 6	163 ± 6	176 ± 7	176 ± 7	175 ± 7		
Weight (kg)	80 ± 15	70 ± 10	63 ± 8	94 ± 14	85 ± 11	77 ± 10		
Body mass index (kg·m ⁻²)	30.1 ± 5.3	26.2 ± 3.4	23.5 ± 2.8	30.4 ± 4.1	27.3 ± 2.9	25.1 ± 2.7		
Fat-free mass (kg)	46 ± 5	44 ± 4	43 ± 4	67 ± 8	63 ± 7	60 ± 7		
VO_2max per kg fat-free mass $(ml \cdot kg^{-1} \cdot min^{-1})$	33.7 ± 5.7	39.6 ± 3.7	45.3 ± 5.1	36.8 ± 3.9	42.6 ± 3.1	48.8 ± 4.5		
Resting blood pressure (mmHg)								
Systolic	135 ± 17	130 ± 17	125 ± 17	139 ± 16	136 ± 15	132 ± 15		
Diastolic	82 ± 9	78 ± 9	74 ± 9	84 ± 9	81 ± 9	78 ± 9		
Resting HR (bpm)	73 ± 10	66 ± 8	62 ± 8	73 ± 11	64 ± 9	59 ± 8		
FVC (L)	3.0 ± 0.6	3.2 ± 0.6	3.3 ± 0.6	4.2 ± 1.0	4.4 ± 0.9	4.5 ± 0.9		
FEV1 (L)	2.3 ± 0.5	2.4 ± 0.5	2.5 ± 0.5	3.2 ± 0.7	3.3 ± 0.7	3.4 ± 0.7		
PEF (L/min)	335 ± 84	342 ± 81	343 ± 82	480 ± 123	492 ± 122	496 ± 118		
Smoking status, % (N)								
Never	64% (8,947)	61% (8,603)	59% (8,330)	48% (5,977)	51% (6,318)	55% (6,932)		
Previously	29% (4,119)	32% (4,441)	33% (4,675)	41% (5,163)	39% (4,853)	35% (4,333)		
Currently	7% (967)	7% (1,010)	8% (1,063)	11% (1,319)	10% (1,317)	10% (1,230)		
Health self-rating, % (N)								
Excellent	9% (1,228)	16% (2,272)	25% (3,487)	8% (989)	14% (1,731)	23% (2,929)		
Good	60% (8,493)	66% (9,241)	63% (8,866)	53% (6,671)	62% (7,814)	61% (7,695)		
Fair	27% (3,727)	16% (2,288)	11% (1,538)	33% (4,150)	21% (2,626)	14% (1,700)		
Door	40/ (572)	20/ (257)	10/ (100)	(0/ ((50))	20/ (210)	00((100)		

Values are means \pm standard deviations, unless otherwise indicated. CRF: Cardiorespiratory fitness, VO₂max: Maximal oxygen consumption (ml·kg⁻¹·min⁻¹), HR: Heart rate, FVC: Forced vital capacity, FEV1: Forced expiratory volume (1s), PEF: Peak expiratory flow

Sampling strata for validation study participants. Participants were selected using a stratified random sampling procedure for which the strata were sex, age (40-49y, 50-59y, 60-69y), and BMI. The range of each BMI strata covered at least the 25th and 75th percentile in the equivalent age/sex strata in the UKB sample, aiming to ensure that the validation study sample was broadly representative of fitness levels across strata in the UKB cohort.

Age range (y)	40-	-49	50-	-59	60-69		
Sex	F	М	F	М	F	М	
BMI group 1	20.5-23.9	22.0-25.4	21.0-23.9	22.5-25.4	21.5-24.4	22.9-25.8	
BMI group 2	24.0-27.4	25.5-28.4	24.0-27.4	25.5-28.9	24.5-28.4	25.9-28.9	
BMI group 3	27.5-35.0	28.5-33.5	27.5-35.0	29.0-34.0	28.5-34.5	29.0-33.5	

F: Female, M: Male, BMI: Body mass index (kg·m⁻²)

Overview of tests completed by validation study participants; tests were parameterised according to the participant's individualised UKB protocol. For example, a male participant with UKB test "M100" completed a flat test at 40W, two ramped tests with target WR values of 100W and 130W, a steady-state test, and a ramped VO2max test. Flat tests consisted of one steady-state work rate for 6 minutes. Ramped tests consisted of an initial steady-state WR for 2 minutes and incremented at a rate equal to RR for 4 minutes until the target WR was reached. Steady-state tests consisted of four consecutive steady-state work rates (WR1-4) at 4 minutes each. Maximal ramped tests consisted of an initial WR and incremented at a rate equal to RR until exhaustion.

UVD	Flat test	Low ramped test		High ramped test		Steady-state test			Ramped VO ₂ max test				
allocation	WR	Initial WR	Target WR	RR	Initial WR	Target WR	RR	WR 1	WR 2	WR 3	WR 4	Initial WR	RR
F30	30	30	50	5	30	80	12.5	45	55	65	75	65	15
F40	30	30	50	5	30	80	12.5	45	55	65	75	65	15
F50	30	30	50	5	30	80	12.5	45	55	65	75	65	15
F60	30	30	60	7.5	30	90	15	45	55	65	75	65	15
F70	30	30	70	10	30	100	17.5	45	55	65	75	65	15
F80	30	30	80	12.5	30	100	17.5	45	55	65	75	65	15
	20	20	(0)		20				60				20
F90	30	30	60	7.5	30	90	15	45	60	75	90	75	20
F100	30	30	70	10	30	100	17.5	45	60	75	90	75	20
F110	30	30	70	10	30	110	17.5	45	60	75	90	75	20
F120	30	30	70	10	30	110	20	45	60	75	90	75	20
F130	30	30	70	10	30	110	20	45	60	75	90	75	20
M40	40	40	70	75	40	110	17.5	60	75	00	105	00	20
M40 M50	40	40	70	7.5	40	110	17.5	60	75	90	105	90	20
M50 M60	40	40	70	7.5	40	110	17.5	60	75	90	105	90	20
M70	40	40	70	7.5	40	110	17.5	60	75	90	105	90	20
M80	40	40	80	10	40	120	20	60	75	90	105	90	20
MQO	40	40	00	12.5	40	120	20	60	75	90	105	90	20
M100	40	40	100	12.5	40	130	22.5	60	75	90	105	90	20
	40	40	100	15	40	150	22.5	00	15	90	105	90	20
M110	40	40	80	10	40	110	17.5	60	80	100	120	100	30
M120	40	40	90	12.5	40	120	20	60	80	100	120	100	30
M130	40	40	100	15	40	130	22.5	60	80	100	120	100	30
M140	40	40	100	15	40	140	25	60	80	100	120	100	30
			100			1.0		00		100		100	20

UKB: UK Biobank, F: Female, M: Male, WR: Work rate (W), RR: Ramp rate (W·min⁻¹)

	Estimation Model									
	M1	M2	M3	M4	M5					
Model Parameter										
HR _{ss}	1.09** (0.10)	2.17** (0.10)	1.01** (0.10)	2.33** (0.15)	2.22** (0.15)					
Intercept	-52.8** (14.4)	-70.7** (16.5)	-53.1** (14.8)	-19.5 (22.0)	-10.6 (21.4)					
b ₀	0.562** (0.023)		0.621** (0.024)							
$b_1 \cdot HR_{ss}$	0.436** (0.015)		0.483** (0.015)							
$RR^{0.5}$	14.2 (18.0)	-274** (24)	87.5** (17.3)							
$RR^{0.5} \cdot HR_{ss}$	-0.117 (0.144)	2.78** (0.18)	-0.791** (0.139)							
HR _{rec0}		2.49** (0.18)								
$HR_{rec0} \cdot HR_{ss}$		-0.0249** (0.0013)								
HR _{rec45}	1.44** (0.15)	0.463* (0.18)		-1.31 (0.58)						
$HR_{rec45} \cdot HR_{ss}$	-0.0132** (0.0011)	-0.0054** (0.0014)		0.0151** (0.0039)						
HR _{flat}				0.434 (0.596)	-0.0947 (0.411)					
$HR_{flat} \cdot HR_{ss}$				-0.0251** (0.0040)	-0.0193** (0.0028)					
HR _{rest}	-1.23** (0.24)	-3.33** (0.26)	0.262 (0.19)		-0.932 (0.441)					
$HR_{rest} \cdot HR_{ss}$	0.00762** (0.00146)	0.0185** (0.0016)	-0.00492** (0.00108)		0.0113** (0.0030)					
sex	-8.67* (3.71)	-7.84 (4.61)	-13.2** (3.7)	-44.4** (5.2)	-46.1** (5.0)					
$sex \cdot HR_{ss}$	0.298** (0.024)	0.363** (0.026)	0.327** (0.025)	0.674** (0.035)	0.693** (0.034)					

Model parameters, parameter estimates, and standard error values for each estimation model (notated as M1-M5) of the multilevel framework.

Values are model coefficients (standard error). HR_{ss} : Steady-state HR (Note that maximal HR may be substituted for HR_{ss} to estimate VO₂max), HR_{rest} : Resting HR, HR_{rec45} : Recovery HR at 45s post-exercise, HR_{rec0} : Recovery HR at 0s post-exercise, b_0 : Intercept from the ramp phase linear regression model, b_1 : Slope from the ramp phase linear regression model, HR_{flat} : Median HR computed for the flat phase, $RR^{0.5}$: Square root of test ramp rate (W · min⁻¹), *sex*: "0" women,"1" men, *Intercept*: Model intercept, *: p < 0.05, **: p < 0.01