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Standard clinical assessments of mild traumatic brain injury are inadequate to detect

subtle abnormalities that can be revealed by sophisticated diagnostic technology.

An association has been observed between sport-related concussion (SRC) and

subsequent musculoskeletal injury, but the underlying neurophysiological mechanism

is not currently understood. A cohort of 16 elite athletes (10 male, 6 female), which

included nine individuals who reported a history of SRC (5 male, 4 female) that occurred

between 4 months and 8 years earlier, volunteered to participate in a 12-session

program for assessment and training of perceptual-motor efficiency. Performance

metrics derived from single- and dual-task whole-body lateral and diagonal reactive

movements to virtual reality targets in left and right directions were analyzed separately

and combined in various ways to create composite representations of global function.

Intra-individual variability across performance domains demonstrated very good SRC

history classification accuracy for the earliest 3-session phase of the program (Reaction

Time Dispersion AUC = 0.841; Deceleration Dispersion AUC = 0.810; Reaction Time

Discrepancy AUC = 0.825, Deceleration Discrepancy AUC = 0.794). Good earliest

phase discrimination was also found for Composite Asymmetry between left and right

movement directions (AUC= 0.778) and Excursion Average distance beyond theminimal

body displacement necessary for virtual target deactivation (AUC = 0.730). Sensitivity

derived from Youden’s Index for the 6 global factors ranged from 67 to 89% and an

identical specificity value of 86% for all of them. Median values demonstrated substantial

improvement from the first 3-session phase to the last 3-session phase for Composite

Asymmetry and Excursion Average. The results suggest that a Composite Asymmetry

value ≥ 0.15 and an Excursion Average value ≥ 7 m, provide reasonable qualitative

approximations for clinical identification of suboptimal perceptual-motor performance.

Despite acknowledged study limitations, the findings support a hypothesized relationship

between whole-body reactive agility performance and functional connectivity among

brain networks subserving sensory perception, cognitive decision-making, and motor
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execution. A complex systems approach appears to perform better than traditional

data analysis methods for detection of subtle perceptual-motor impairment, which

has the potential to advance both clinical management of SRC and training for

performance enhancement.

Keywords: sport-related concussion, mild traumatic brain injury, reactive agility, musculoskeletal injury, intra-

individual variability, asymmetry, neuromechanics

INTRODUCTION

At all ages and levels of competitive sports, athletes are exposed
to the potential for injuries that can result in performance
impairment (Bahr, 2014), progressive disability (Maffulli et al.,
2010), and reduced health-related quality of life (Filbay et al.,
2019). Sport-related concussion (SRC) specifically refers to a
single head impact that produces symptoms of a mild traumatic
brain injury (mTBI), but the cumulative effects of multiple head
impacts that do not elicit symptoms may ultimately produce
similar long-term effects (Montenigro et al., 2017; Hirad et al.,
2019; Hunter et al., 2019). Numerous recent studies have
documented a substantial increase in musculoskeletal injury
incidence following SRC occurrence (McPherson et al., 2018),
but the neurophysiological mechanism that elevates such risk is
not understood (Brown et al., 2015; Lynall et al., 2017; Howell
et al., 2018; Buckley et al., 2020). Additionally, the likelihood
for a subsequent SRC is great (Brett et al., 2018, 2020), and
a history of multiple SRCs appears to further elevate risk for
musculoskeletal injury (Houston et al., 2018; Harada et al., 2019).
Current clinical guidelines for return to sport following SRC rely
on self-reported symptom resolution (Baker and Cinelli, 2014;
Harmon et al., 2019), but an asymptomatic neuroinflammatory
response may persist for months or years beyond the point
of return to normal activity (Ezza and Khadrawyb, 2014;
Tremblay et al., 2014; Churchill et al., 2017; Shahim et al.,
2017; Yanuck, 2019; Brett et al., 2020). Improved clinical
assessment methods are needed to identify subtle alterations
in brain function that could elevate risk for musculoskeletal
injury, occurrence of a subsequent SRC, or development of a
neurodegenerative disorder.

Relatively recent technological advances in neuroimaging and
neurophysiological testing have generated a dramatic increase
in understanding of neural information processing by brain
networks (Bressler and Menon, 2010; van den Heuvel and Pol,
2010). Regardless of measurement method, temporal variability
derived from a combination of excitatory and inhibitory neural
signals appears to be an inherent property of brain function
(Garrett et al., 2013). The term heterostasis refers to the
phenomenon of variability in one neural system producing
consistency in the output of a related system (Williams et al.,
2016). Conversely, behavioral performance variability appears
to result from unstable flow of electrochemical signals across
damaged white matter tracts in the superior longitudinal
fasciculus and corpus callosum (Fjell et al., 2011). Brain executive
function is an inclusive term that refers to the set of neural
processes that support goal-directed behaviors, which includes
the core processes of working memory, inhibitory control,

and cognitive flexibility (Diamond, 2013). Rapid and flexible
responses to uncertainty in a changing environment reflects an
ability to switch between brain states, which appears to depend
on variability in global synchronization of neural activity (Garrett
et al., 2013; Hellyer et al., 2015; Deco et al., 2017; Grady and
Garrett, 2018).

Assessment of Perceptual-Motor
Efficiency
Impaired information processing efficiency following SRC may
be a clinically measurable factor that is highly relevant to
future injury risk (Fino et al., 2017), as well as long-term
brain health. The term neuromechanics has been defined
as “the interaction between the nervous system and the
mechanical properties of the body” (Enoka, 2002), and the term
neuromechanical responsiveness has been used to refer to the
ability to optimally integrate neurocognitive and neuromuscular
processes to generate forces that will meet the demands of rapidly
changing environmental challenges (Wilkerson et al., 2017, 2018,
2020). Separate brain networks have been identified that process
information specific to visual attention, cognition, and motor
functions in a somewhat independent manner, but the respective
processes are integrated within specific areas of the thalamus and
basal ganglia (Greene et al., 2020). Although sensory perception,
cognitive decision-making, andmotor execution are often viewed
as distinct processes, references to perceptual-cognitive function
(Wang et al., 2017; Hadlow et al., 2018; Wilke et al., 2020;
Cardoso Fd et al., 2021) and cognitive-motor function (Brown
et al., 2015; Hurtubise et al., 2016; Leone et al., 2017) reflect the
high degree of interrelated neural processing that is necessary
for successful performance of goal-directed actions. Perception
involves awareness of sensory inputs and their inferred causes
(Adams et al., 2013), and motor activation occurs before a
decision-making process has been completed (Selen et al., 2012;
Gallivan, 2014). Brain metastability refers to the capacity for
rapid and flexible integration of information across large-scale
networks, which may be differentially affected by the specific
locations ofmicrostructural damage induced by a traumatic brain
injury (Hellyer et al., 2015). We use the term perceptual-motor
efficiency to refer to optimal processing of neural information
that can be quantified by neuromechanical responsiveness to
environmental stimuli (Wilkerson et al., 2021a).

Reaction time (RT) provides a unique behavioral measure
that has been directly related to connectivity between key brain
networks (Erickson et al., 2005; Niogi S. et al., 2008; Mennes
et al., 2011; Jilka et al., 2014; Churchill et al., 2021; Urban
et al., 2021), which validates the use of RT as an index of brain
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information processing efficiency (Jensen, 2006; Marmolejo-
Ramos et al., 2015). The nature of the presented stimulus
and the required response for a given testing procedure can
produce an extremely wide range of RT values among different
populations, which can range from ∼150ms for initiation of a
horizontal eye saccade in response to a visual stimulus among
healthy young adults (Danna-Dos-Santos et al., 2018) to more
than 800ms for a stimulus-response compatibility button-press
task among older adults (McAuley et al., 2006). Simple RT
refers to speed of response to appearance of a stimulus that
does not change, whereas Choice RT requires a decision about
whether or not to respond to binary stimuli (i.e., go vs. no-go
decision). Discrimination RT involves cognitive interpretation of
complex stimuli that determine a correct vs. incorrect response,
which prolongs the process of completing the proper response
(Jensen, 2006). The Eriksen “flanker test” imposes a visual-
cognitive processing demand for interference control that has
been recognized as “one of the most important experimental
tasks in the history of cognitive psychology” (Ridderinkhof et al.,
2021). The task involves determination of the direction indicated
by a central arrow that is flanked by pairs of arrows that are
either congruent (i.e., <<<<< or >>>>>) or incongruent
(<<><< or >><>>). The ability to restrain incorrect
responses to the distraction imposed by incongruent flanking
arrows provides a measure of executive function (Themanson
and Rosen, 2015) that has been related to various aspects of
brain structure and function with functional magnetic resonance
imaging (Erickson et al., 2005; Fan et al., 2005; Kelly et al., 2008;
Mennes et al., 2010, 2011; Zhu et al., 2010), diffusion tensor
imaging (Niogi S. et al., 2008; Niogi S. N. et al., 2008; FitzGerald
and Crosson, 2011; Fjell et al., 2011), and electroencephalography
(De Beaumont et al., 2009; Pontifex et al., 2009;Moore et al., 2014,
2015; Parks et al., 2015; Themanson and Rosen, 2015;Wang et al.,
2017; Guth et al., 2018).

Testing of RT has often been done as a single-task assessment
that requires a relatively simple motor response (e.g., keyboard
tap, mouse click, or button press), which appears to have limited
value for identification of a performance deficiency following
SRC (Urban et al., 2021). Functional RT assessment involves
a whole-body response to visual or auditory stimulus during
dynamic activities, such as walking gait, jump landing, single-leg
hopping, anticipated cutting, and unanticipated cutting (Lempke
et al., 2020; Lynall et al., 2021). Lack of strong correlation
between functional RT measures with RT measures derived from
a simple motor response in a stationary position suggests that
the latter may have lesser relevance to performance of sport-
specific movement patterns (Lempke et al., 2020). Whole-body
reactive agility (WBRA) involves rapid changes of movement
velocity or direction in response to a stimulus (Sheppard et al.,
2006). If the nature of a test stimulus does not require a
substantial amount of cognitive effort to produce a rapid whole-
body movement response, a measure of RT derived from such
a test could be described as a representation of WBRA Simple
RT. Other neuromechanical performance measures derived from
initiation of a stimulus response to whole-body displacement
over a specified distance could include speed, acceleration and
deceleration (Wilkerson et al., 2018, 2020, 2021a).

Dual-task assessment that requires decision-making during
performance of whole-body movements may provide an
optimal means to quantify subtle neuromechanical performance
deficiencies (Baker and Cinelli, 2014; Brown et al., 2015; Leone
et al., 2017; Howell et al., 2018; Kung et al., 2020; Urban et al.,
2021). The imposition of simultaneous cognitive and motor
demands of sufficient complexity may challenge finite neural
resources beyond a point that allows compensatory mechanisms
to sustain a given level of single-task performance. Dual-task
WBRA can be decomposed into two somewhat distinct tasks:
(1) stimulus perception and cognitive interpretation, and (2)
generation of a rapid motor response that changes the velocity
or direction of body movement (McGinnis et al., 2017). Because
finite neural resources require selective prioritization of visual
inputs that are most relevant to a behavioral goal (Buschman
and Kastner, 2015), identification of a subtle impairment of
perceptual-cognitive function requires a task that will challenge
detection of salient stimuli (Churchill et al., 2021). The
incongruent stimuli of the flanker test impose such a demand
for focused attention, as well as a requirement for resolution of
stimulus-response conflict that prolongs neural processing time
(Moore et al., 2015; Servant and Logan, 2019). In terms of dual-
task motor response, bradykinesia (i.e., slowing of movement)
has been documented among individuals with a history of SRC
(Ozolins et al., 2016; Fueger andHuddleston, 2018). Thus, a dual-
task WBRA assessment that incorporates the flanker test appears
to provide a good method for quantification of perceptual-
motor efficiency (Supplementary Figure).

Potential for Improved Risk Screening and
Individualized Interventions
Considering the differing specialized functions of the two
brain hemispheres (Serrien et al., 2006; Takeuchi et al., 2012),
along with documented microstructural disruption within the
connecting white matter tracts following SRC (Niogi S. et al.,
2008; Fjell et al., 2011; Womack et al., 2017; Yin et al., 2019),
asymmetrical bradykinesia could be an indirect indicator of a
subtle impairment of brain function. The majority of studies
included in a recent systematic review of literature provided some
amount of evidence that lower extremity asymmetry contributes
to injury risk, which could be due to a constraint on an athlete’s
repertoire of movement options (Helme et al., 2021). Previous
research that has utilized a Simple WBRA testing protocol
has documented greater movement direction performance
asymmetries among elite athletes who self-reported a history of
SRC compared to those who denied ever having sustained such
an injury (Wilkerson et al., 2018, 2020, 2021a). A key factor that
differentiates WBRA asymmetry from prior limb performance
asymmetry research is the simultaneous engagement of both
extremities in generation of body displacements in a given
direction (Wilkerson et al., 2021a). The collective research
results derived from multiple small-scale projects suggest that
poor perceptual-motor performance prospectively associates
with musculoskeletal injury occurrences among college football
players (Wilkerson et al., 2017), which raises a question about the
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potential for injury prevention through reduction of performance
asymmetries (e.g., RT, speed, acceleration, or deceleration).

Appropriate screening test design, along with proper
interpretation of results, offers the potential to identify
individuals who would derive greatest benefit from targeted
interventions that can reduce risk for a future adverse outcome
(Hirad et al., 2019; Stern et al., 2020). However, some experts
consider the majority of available evidence inadequate to support
the use of sport injury risk screening results in making clinical
decisions (Hegedus and Cook, 2015; Bahr, 2016). Other experts
believe reductionist study designs and data analyses should be
replaced with a complex systems approach for development of
injury prevention strategies (Quatman et al., 2009; Bittencourt
et al., 2016; Kenzie et al., 2017; Fonseca et al., 2020). A
reductionist approach involves a search for isolated risk factors
that cause injury (Bittencourt et al., 2016), whereas a complex
systems approach involves a search for high-order variables that
represent the collective function of multiple interacting system
elements that lead to the emergence of injury susceptibility
(Fonseca et al., 2020). For example, a Composite Asymmetry
value derived from multiple WBRA performance metrics has
been shown to provide better SRC history discrimination than
any single asymmetry metric (Wilkerson et al., 2020, 2021a).
Excursion (i.e., body displacement beyond that required to
reach a target) represents a possible cumulative indicator
of suboptimal sensorimotor integration. Other composite
performance variables, such as a Global Index derived from
multiple standardized test scores, may provide a sufficiently
sensitive means to identify a subtle deficiency in neural
processing efficiency (Roalf et al., 2016).

An extensive body of literature pertaining to change in
cognitive performance attributable to the aging process and
neurodegenerative conditions has documented greater value of
intra-individual (i.e., within-person) variability measures than
between-group comparisons of mean values for early detection
of impairment (Costa et al., 2019). Intra-individual variability
(IIV) is believed to reflect endogenous and exogenous influences
on the efficiency of executive control processes, rather than
being due to random error or lack of measurement reliability
(MacDonald et al., 2009). Different types of IIV include the
following: (1) Inconsistency, which can refer to either trial-to-
trial variability during a single measurement session or variability
in performance across measurement sessions conducted on
different days (Holtzer et al., 2008; MacDonald et al., 2009;
Costa et al., 2019), (2) Dispersion, which refers to variability in
an individual’s standardized scores across multiple performance
domains (Holtzer et al., 2008; MacDonald et al., 2009; Roalf et al.,
2016; Costa et al., 2019), and (3) Discrepancy, which refers to the
difference between the maximum and minimum standardized
scores from a set of measures representing multiple performance
domains (Schretlen et al., 2003). Because neural processing
efficiency may be affected by multiple transient factors that are
difficult to control (e.g., motivation, fatigue, stress, emotions, or
pain), measurements acquired over multiple days are likely to
provide a better performance index than measurements acquired
on a single occasion Furthermore, transient exogenous factors
may have differential effect magnitudes on the neural processing

efficiency of individuals who experience persisting adverse effects
from a prior SRC.

Multicomponent training for improved movement control
has been shown to reduce the incidence of both musculoskeletal
injury and SRC among rugby players (Hislop et al., 2017;
Attwood et al., 2018), and we have documented improvement
of WBRA performance following upper extremity perceptual-
motor training among elite athletes who self-reported a history of
SRC (Wilkerson et al., 2021a). Thus, the overall goal of this study
was to develop a method for accurate identification of athletes
who may possess a subtle and potentially modifiable impairment
in perceptual-motor processing efficiency, which might be used
to guide training for simultaneously enhancement of sport
performance capabilities and reduction of risk for future injury.
Specifically, the purposes of this exploratory study included:
(1) Assessment of the reliability of various WBRA performance
metrics across the entire training period, (2) Assessment of the
discriminatory power of each WBRA performance metric for
identification of athletes who self-reported a history of SRC, (3)
Identification of any differences in WBRA performance metrics
between early and late phases of training, including any effect
attributable to self-reported history of SRC, and (4) Comparison
of the classification accuracy provided by Composite Asymmetry
and Excursion values to that of Dispersion and Discrepancy
values derived from different WBRA performance metrics.

MATERIALS AND METHODS

A cohort of 16 elite athletes at a residential training center
volunteered to participate in a 12-session WBRA training
program (Table 1). Any athlete receiving treatment for any
acute injury or illness was excluded from participation. The
Institutional Review Board of the University of Tennessee
at Chattanooga approved all study procedures. Surveys
administered prior to initiation of the first training session
included the Sports Fitness Index (Wilkerson et al., 2016),
the Overall Wellness Index (Wilkerson et al., 2021b), and the
Depression, Anxiety, and Stress Scale (Edmed and Sullivan,
2012), which were used to confirm greater frequency of self-
reported problems among the athletes who affirmed a history of
at least one SRC (HxSRC).

Assessment and Training Procedures
Each athlete was provided with verbal instructions and the
opportunity to perform each of 4 different WBRA task
modes during a familiarization session that preceded the first
training session. Each training session involved completion of
8 movement sequences (i.e., repetitions) for each of 4 WBRA
task modes, which required a total of only 3–4min per session.
To accommodate differing schedules for sport-specific activities,
the time intervals between sessions were not identical for each
participant. Each athlete completed 2–4 WBRA training sessions
per week for a total of 12 sessions that were each separated by a
period of 24–72 h.

The WBRA task modes involved either Lateral or Diagonal
whole-body movements in response to visual targets displayed
on a 48 X 86 cm monitor located 1.83m in front of the athlete.
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TABLE 1 | Cohort characteristics; height and mass: mean ± standard deviation; age and survey scores: median (range).

History of sport-related concussion No history of sport-related concussion

N 9 7

Age (years) 25 (21–44) 20 (19–30)

Sex Male Female Male Female

5 (56%) 4 (44%) 5 (71%) 2 (29%)

Height (cm) 168.7 ± 8.3 157.5 ± 3.7 177.7 ± 8.3 165.7 ± 0.0

Mass (kg) 65.6 ± 8.7 58.3 ± 6.9 80.2 ± 11.2 80.1 ± 9.8

Sport:

Figure skating 1 1

Gymnastics 2 0

Marathon 1 0

Shooting 0 5

Wrestling 5 1

Sport Fitness Index (0–100) 50 (40–72) 76 (44–88)

Overall Wellness Index (0–100) 60 (28–86) 84 (48–94) s

DASS-21* (63-0) 12 (31-4) 9 (18-0)

*Depression, Anxiety, and Stress Scale (21-Item Version; low core represents optimal status).

FIGURE 1 | Whole-body reactive agility test modes: (A) Lateral Single-Task, (B) Diagonal Single-Task, (C) Lateral Dual-Task, and (D) Diagonal Dual-Task.

The system used to administer the task (TRAZER R© Sports
Stimulator, Traq Global Ltd; Westlake, OH) has been shown
to provide good test-retest measurement reliability and a valid
representation of movement precision in deactivation of virtual
targets (Hogg et al., 2021). From a central starting position, each
reactive movement in a left or right direction was performed

with the goal to quickly deactivate a virtual target on the monitor
by moving the body core to a corresponding 2-dimensional X-
Y spatial coordinate within the performance space (Figure 1).
Immediately after virtual target deactivation, the athlete reversed
the movement direction to rapidly return to the original central
position for the start of another trial. A single-task (ST) mode
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presented a single target on either the left side (4 repetitions) or
right side (4 repetitions) of the monitor, which served as a simple
visual cue for a reactive movement in the correct direction.
Lateral movement, direction reversal, and return to the central
position required a minimum body displacement of 1.83m for
each of 4 left and 4 right targets presented in a random order.
Diagonal movement, direction reversal, and return to the central
position required a minimum body displacement of 2.59m for
each of 4 back-left and 4 back-right targets presented in random
order. A dual-task (DT) mode simultaneously presented targets
on both the left and right sides of the monitor, with a central
display of flanker test arrows in either a congruent configuration
(4 repetitions) or incongruent configuration (4 repetitions) for
500ms. The direction indicated by the center arrow of the flanker
test display served as the cue for the movement direction in
a randomly determined left or right direction, which added a
cognitive challenge to the task (Supplementary Materials). This
study used an early version of the DT mode, which required
25% greater lateral displacement and 13% greater diagonal
displacement than the ST task mode.

Performance Metrics
Reaction Time was defined as the average amount of time that
elapsed between visual target appearance on the monitor and
20 cm of body core displacement in the correct movement
direction for the 8 repetitions of the Lateral-ST and Diagonal-
ST task modes. The Lateral-DT and Diagonal-DT task modes
defined RT as the time that elapsed between the appearance
of a flanker test arrow set on the monitor and 15 cm of body
core displacement in the correct movement direction. Other
WBRA performance metrics, including Speed, Acceleration,
and Deceleration, were derived from the average of body
core displacement values for each movement sequence (i.e.,
central starting position to target and back to central starting
position). With the exception of Excursion (i.e., total distance
covered in excess of the minimum distance required to
deactivate 8 targets for a given task mode), the motion analysis
system provided average performance values for left vs. right
movement directions. Asymmetry for RT, Speed, Acceleration,
and Deceleration was defined as the ratio of the absolute
difference between performance values for the two directions to
the better of the two performance values.

Data Analyses
Assessment of any group differences in survey scores utilized
non-parametricMann-Whitney tests. Analysis of theWBRA data
was initially focused on basic time and distance performance
metrics derived from each of the four task modes. Procedures
corresponding to the 4 purposes of the study were as follows:

Measurement Reliability
The intraclass correlation coefficient (ICC) was calculated using
a 2-way mixed-effects and average of measures (3, K) method for
consistency across the 12 training sessions. Reliability values were
calculated separately for left and right movement directions, the
Average of left and right movement directions, and Asymmetry in
left and right movement directions. Qualitative interpretation of

ICC3,K values were as follows: <0.50 poor; 0.50–0.74 moderate;
0.75–0.89 good; ≥0.90 excellent (Lynall et al., 2021).

Discriminatory Power
Classification accuracy for differentiation of HxSRC vs. no self-
report of prior SRC (NoSRC) was represented by a receiver
operating characteristic area under curve (AUC) value for each of
4 phases of the 12-session training program (i.e., Phase 1: sessions
1–3; Phase 2: sessions 4–6; Phase 3: sessions 7–9; Phase 4: sessions
10–12). Qualitative interpretation of the AUC value derived from
the 3-session average for a given performance metric were as
follows: <0.60 poor discrimination; 0.60–0.74 possibly helpful
discrimination;≥0.75 clearly useful discrimination (Hosmer and
Lemeshow, 2000; Alba et al., 2017).

Pre- to Post-training Change
Parametric analysis of the WBRA data used repeated measures
analysis of variance (ANOVA) to assess difference between Phase
1 and Phase 4, difference between Groups (i.e., HxSRC and
NoSRC), and Phase X Group interaction for each performance
metric, as well as Asymmetry for each one that provided
direction-specific data. The distribution normality of each
variable was assessed by the Shapiro-Wilk test, with P < 0.05
deemed non-normal. In such cases, logarithmic, square root, and
reciprocal transformations of the data were done to identify the
best means to achieve a more normal distribution. Statistical
significance was defined as P < 0.05 for all test results. Because
of the study’s exploratory purpose, no adjustment was made for
multiple comparisons (Rothman, 1990; Cao and Zhang, 2014).

Comparisons of Derived Metrics
To assess IIV, each bilateral performance metric was converted
into a standardized t-score (mean = 50; standard deviation =

10) for each athlete. Because a high value for RT represents
poor performance, it was multiplied by −1 in the process of
mathematical conversion to a t-score. Thus, a t-score > 50
represented superior performance for RT, Speed, Acceleration,
and Deceleration. Dispersion was calculated as the standard
deviation of 8 t-scores for a given performance metric and
training session (i.e., 2 movement directions X 4 task modes).
Discrepancy was calculated as the difference between the
maximum and minimum t-scores for a given performance
metric and training session. Both representations of IIV were
averaged over the 3 consecutive sessions that defined a Phase
of the training program. Because the motion analysis system
did not provide data for each repetition of a given task
mode, within-session inconsistency for the performance metrics
could not be quantified. However, the Asymmetry metric does
capture inconsistency of performance in left vs. right movement
directions, which is derived from an average of 4 repetitions
in either direction. Thus, Asymmetry for the 4 task modes
was averaged over the 3 sessions of a given training Phase for
comparison to Dispersion and Discrepancy values. Excursion
average for the four task modes was also evaluated as a
possible indicator of imprecise visuospatial guidance of whole-
body movements.
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To assess the discriminatory power of Dispersion,
Discrepancy, Asymmetry, and Excursion for identification
of HxSRC, and the relative value of each as a potential Global
Index of perceptual-motor efficiency, receiver operating
characteristic analysis was performed for each of the 4 bilateral
performance metrics, a Composite Dispersion value that
represented the standard deviation of 16 t-scores (i.e., 2
movement directions × 4 task modes × 4 metrics), a Composite
Discrepancy value that represented the difference between
the maximum and minimum of the 16 t-scores, a Composite
Asymmetry value derived from the average for the 4 bilateral
performance metrics, and Excursion average for the 4 test
modes. Results that yielded a Phase 1 AUC value > 0.75 were
compared to Phase 4 results for the corresponding predictor to
assess a possible differential influence of the training program
on performance for HxSRC and NoSRC athletes. Logistic
regression analysis was used to assess a possible effect of sex
on the results for Phase 1 or Phase 4. Youden’s Index was
used to identify the Phase 1 cut point that provided maximum
classification accuracy, which was compared to that for Phase
4. Global values that provided good discrimination were
further assessed by non-parametric tests. The Wilcoxon Signed-
Ranks test was used to assess Phase 1 to Phase 4 change and
the Mann-Whitney test was used to identify any significant
Group differences.

RESULTS

Self-reported HxSRC at 3.0 ± 2.2 years prior to testing (range: 4
months−8 years) represented 56% of the cohort (9/16; 5 males, 4
females). The number of prior SRCs ranged from 1 to 3, with 44%
(4/9) reporting a single SRC and 56% (5/9) reporting 2 or more
SRCs. All 3 survey scores demonstrated poorer values for HxSRC
athletes compared to NoSRC athletes, with the most significant
difference found for the Sport Fitness Index (P = 0.031). Non-
significant differences in survey scores were found for the Overall
Wellness Index (P = 0.142) and the Depression, Anxiety, and
Stress Survey (P = 0.408).

The majority of WBRA performance metrics demonstrated
excellent reliability for each task mode, whereas Asymmetry
ICC values were generally quite poor (Table 2; statistically
significant results identified by bold font). Excursion for the
Lateral-DT task mode was the only performance metric that
demonstrated clearly useful Phase 1 discrimination, which was
also potentially useful for the Diagonal-ST and Diagonal-DT
task modes (Table 3; statistically significant results identified by
bold font). Repeated measures ANOVA failed to identify any
statistically significant effects for any performance metric derived
from the Lateral-ST or Diagonal-ST task modes (Table 4).
Conversely, use of the flanker test to specify the correct WBRA
movement direction resulted in statistically significant change
from Phase 1 to Phase 4 for 3 Lateral-DT performance metrics
and all 5 of the performance metrics for the Diagonal-DT task
mode (Table 5; statistically significant P-values identified by bold
font). Excursion for the Lateral-DT task mode was the only

performance metric that demonstrated a significant Phase X
Group interaction effect.

Analyses of WBRA Asymmetry in left vs. right movement
directions generally demonstrated better Phase 1 discrimination
(Table 6; statistically significant P-values identified by bold font)
and greater Phase 1 to Phase 4 change for the Composite metric
than values specific to RT, Speed, Acceleration, and Deceleration
(Tables 7, 8; statistically significant P-values identified by bold
font). Asymmetry values were generally lower for both the
HxSRC and NoSRC groups in Phase 4 compared to Phase
1. A Composite Asymmetry metric representing averaged
values across the 4 task modes demonstrated clearly useful
Phase 1 discrimination, but IIV measures (i.e., Dispersion
and Discrepancy) demonstrated greater levels of Phase
1 discrimination for both RT and Deceleration (Table 9;
statistically significant results identified by bold font). A graphic
comparison of Phase 1 and Phase 4 discrimination for RT
Dispersion and Deceleration Dispersion demonstrates lesser
Phase 4 discrimination and poorer Phase 4 values at the
same sensitivity level defining optimal Phase 1 discrimination
(Figure 2). Similar results were found for RT Discrepancy and
Deceleration Discrepancy (Figure 3), as well as Composite
Asymmetry and Excursion 4-Mode Average (Figure 4). Despite
Composite Asymmetry having demonstrated substantial Phase 4
discrimination, the Youden’s index value providing an optimal
balance of sensitivity and specificity was substantially smaller
than the corresponding Phase 1 value. Sex did not demonstrate
a significant effect on any Global Index association with HxSRC.
Analysis of median values demonstrated greatest Phase 1
differences between the HxSRC and NoSRC groups for the RT
and Deceleration IIV measures (Table 10; statistically significant
P-values identified by bold font). Greatest Phase 1 to Phase 4
change in median values was evident for Composite Asymmetry
and Excursion 4-Mode Average.

DISCUSSION

Intra-Individual Variability Association With
History of Sport-Related Concussion
Dispersion of standardized scores representing different aspects
of neurocognition has been used as a Global Index of executive
function, which has identified subtle early-stage alteration
of neural processing among older adults diagnosed with
mild cognitive impairment, dementia, and Alzheimer’s disease
(Holtzer et al., 2008; MacDonald et al., 2009; Roalf et al., 2016;
Costa et al., 2019). Discrepancy between the largest and smallest
standardized scores for various measures of cognitive function
has been shown to increase with age (Schretlen et al., 2003),
which is clearly associated with a decline of mental capabilities
that varies among individuals (Wahl et al., 2021). Although
utilization of such IIV analysis methods has been advocated
for identification of subtle impairment of neural processing in
different clinical populations (Costa et al., 2019), our study
is the first to demonstrate the potential value of Dispersion
and Discrepancy measures for assessment of perceptual-motor
efficiency among elite athletes. RT Dispersion demonstrated the
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TABLE 2 | Intraclass Correlation Coefficient (3, K) values for consistency of measurements across 12 training sessions.

Mode Metric Left Right Average Asymmetry

Lateral Single-Task Reaction Time 0.732 0.810 0.832 0.335

Speed 0.968 0.964 0.968 0.150

Acceleration 0.915 0.929 0.943 0.175

Deceleration 0.917 0.923 0.945 0.315

Excursion 0.868

Lateral Dual-Task Reaction Time 0.732 0.639 0.811 0.128

Speed 0.973 0.948 0.967 0.385

Acceleration 0.932 0.935 0.956 *

Deceleration 0.917 0.923 0.945 *

Excursion 0.873

Diagonal Single-Task Reaction Time 0.839 0.870 0.851 *

Speed 0.951 0.962 0.970 0.123

Acceleration 0.599 0.812 0.910 0.047

Deceleration 0.766 0.876 0.889 0.141

Excursion 0.882

Diagonal Dual-Task Reaction Time 0.876 0.878 0.928 0.603

Speed 0.942 0.947 0.965 0.579

Acceleration 0.871 0.908 0.951 *

Deceleration 0.928 0.903 0.964 *

Excursion 0.907

*Value ≤ 0.000. Excellent consistency identified by bold font.

TABLE 3 | Receiver operating characteristic area under curve values for Average* of performance metrics for each task mode.

Mode Metric Phase 1 Phase 2 Phase 3 Phase 4

Lateral Single-Task Reaction Time 0.429 0.349 0.524 0.571

Speed 0.333 0.476 0.524 0.556

Acceleration 0.524 0.381 0.429 0.476

Deceleration 0.349 0.365 0.460 0.492

Excursion 0.540 0.440 0.508 0.444

Diagonal Single-Task Reaction Time 0.317 0.571 0.476 0.365

Speed 0.444 0.492 0.556 0.540

Acceleration 0.333 0.413 0.365 0.460

Deceleration 0.270 0.413 0.365 0.460

Excursion 0.667 0.413 0.492 0.444

Lateral Dual-Task Reaction Time 0.587 0.810 0.810 0.667

Speed 0.397 0.492 0.556 0.508

Acceleration 0.381 0.381 0.492 0.556

Deceleration 0.397 0.444 0.476 0.460

Excursion 0.810 0.492 0.603 0.508

Diagonal Dual-Task Reaction Time 0.667 0.508 0.603 0.587

Speed 0.413 0.397 0.476 0.508

Acceleration 0.317 0.302 0.333 0.429

Deceleration 0.317 0.349 0.286 0.429

Excursion 0.651 0.556 0.492 0.603

*Performance values for Left and Right movement directions included in average. Statistically significant results identified by bold font.

greatest HxSRC discriminatory power, with 89% sensitivity and
86% specificity. In terms of clinical utility, a major limitation
is the need for normative data from an appropriate reference

population to calculate an individual’s standardized scores, as
well as the need to calculate the standard deviation among them
or the difference between largest and smallest values.
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TABLE 4 | Group mean ± standard deviation for Single-Task performance.

Mode Metric Units Group Phase 1 Phase 4 Change PPh PGr PPhXGr

Lateral Single-Task Reaction Time ms HxSRC 569 ± 107 608 ± 110 −39 ± 95 0.422 0.980 0.626

NoSRC 585 ± 58 595 ± 130 −10 ± 144

Speed m·s−1 HxSRC 1.03 ± 0.18 1.01 ± 0.19 −0.02 ± 0.09 0.386 0.655 0.133

NoSRC 0.95 ± 0.13 1.02 ± 0.17 0.07 ± 0.13

Acceleration m·s−2 HxSRC 3.61 ± 0.95 4.01 ± 1.06 0.45 ± 0.82 0.126 0.978 0.859

NoSRC 3.66 ± 0.62 4.02 ± 0.92 0.36 ± 1.16

Deceleration m·s−2 HxSRC 3.22 ± 0.71 3.13 ± 0.71 −0.09 ± 0.50 0.846 0.493 0.456

NoSRC 2.90 ± 0.48 3.05 ± 0.67 0.15 ± 0.77

Excursion m HxSRC 3.61 ± 2.07 2.00 ± 1.77 −1.61 ± 2.13 0.064 0.999 0.566

NoSRC 3.24 ± 1.45 2.37 ± 2.19 −0.87 ± 2.81

Diagonal Single-Task Reaction Time ms HxSRC 819 ± 126 836 ± 158 −17 ± 84 0.427 0.559 0.985

NoSRC 853 ± 79 869 ± 68 −16 ± 78

Speed m·s−1 HxSRC 1.03 ± 0.20 1.02 ± 0.19 −0.01 ± 0.10 0.518 0.881 0.283

NoSRC 1.01 ± 0.16 1.06 ± 0.14 0.05 ± 0.14

Acceleration m·s−2 HxSRC 3.33 ± 0.68 3.14 ± 0.70 −0.19 ± 0.82 0.634 0.817 0.295

NoSRC 2.91 ± 0.63 3.41 ± 1.47 0.49 ± 1.64

Deceleration m·s−2 HxSRC 3.00 ± 0.54 3.07 ± 0.69 0.70 ± 0.53 0.204 0.325 0.361

NoSRC 2.57 ± 0.59 2.98 ± 0.65 0.41 ± 0.90

Excursion m HxSRC 3.81 ± 2.77 2.36 ± 1.65 −1.46 ± 2.06 0.173 0.614 0.233

NoSRC 2.70 ± 1.74 2.60 ± 1.36 −0.10 ± 2.28

HxSRC, History of Sport-Related Concussion; NoSRC, No History of Sport-Related Concussion; PPh, Phase Difference; PGr , Group Difference; PPhXGr , Phase X Group Interaction.

TABLE 5 | Group mean ± standard deviation for Dual-Task performance.

Mode Metric Units Group Phase 1 Phase 4 Change PPh PGr PPhXGr

Lateral Dual-Task Reaction Time ms HxSRC 1,157 ± 223 887 ± 84 270 ± 194 <0.001 0.328 0.742

NoSRC 1,074 ± 182 835 ± 113 239 ± 172

Speed m·s−1 HxSRC 0.74 ± 0.14 0.79 ± 0.12 0.05 ± 0.12 0.010 0.855 0.345

NoSRC 0.71 ± 0.14 0.81 ± 0.13 0.10 ± 0.07

Acceleration m·s−2 HxSRC 3.11 ± 0.71 3.26 ± 0.58 0.15 ± 0.63 0.074 0.629 0.368

NoSRC 2.83 ± 0.60 3.26 ± 0.92 0.43 ± 0.56

Deceleration m·s−2 HxSRC 2.98 ± 0.66 3.21 ± 0.44 0.23 ± 0.61 0.058 0.573 0.665

NoSRC 2.77 ± 0.57 3.12 ± 0.61 0.35 ± 0.46

Excursion m HxSRC 10.71 ± 3.41 5.69 ± 2.29 −5.02 ± 2.28 <0.001 0.173 0.017

NoSRC 7.57 ± 1.93 5.76 ± 1.11 −1.81 ± 2.42

Diagonal Dual-Task Reaction Time ms HxSRC 1,050 ± 163 898 ± 91 152 ± 124 0.001 0.239 0.145

NoSRC 950 ± 46 877 ± 91 73 ± 60

Speed m·s−1 HxSRC 0.82 ± 0.15 0.87 ± 0.16 0.05 ± 0.11 0.007 0.931 0.277

NoSRC 0.78 ± 0.09 0.89 ± 0.09 0.11 ± 0.09

Acceleration m·s−2 HxSRC 3.00 ± 0.64 3.14 ± 0.58 0.14 ± 0.46 0.017 0.257 0.177

NoSRC 2.56 ± 0.35 3.02 ± 0.34 0.46 ± 0.41

Deceleration m·s−2 HxSRC 3.11 ± 0.69 3.18 ± 0.72 0.07 ± 0.39 0.046 0.259 0.172

NoSRC 2.65 ± 0.34 2.99 ± 0.38 0.34 ± 0.35

Excursion m HxSRC 12.15 ± 4.09 7.37 ± 2.99 −4.78 ± 2.91 <0.001 0.342 0.524

NoSRC 10.33 ± 4.79 6.41 ± 1.51 −3.62 ± 4.23

HxSRC, History of Sport-Related Concussion; NoSRC, No History of Sport-Related Concussion; PPh, Phase Difference; PGr , Group Difference; PPhXGr , Phase X Group Interaction.

Statistically significant P-values identified by bold font.

Because our Dispersion and Discrepancy measures
incorporated neuromechanical performance metrics that
were calculated separately for left and right movement

directions, some amount of the discriminatory power of
these IIV measures probably overlap substantially with that
of the Composite Asymmetry metric. Although Excursion
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TABLE 6 | Receiver operating characteristic area under curve values for Asymmetry of Left and Right performance metrics for each task mode.

Mode Metric Phase 1 Phase 2 Phase 3 Phase 4

Lateral Single-Task Reaction Time 0.698 0.476 0.619 0.746

Speed 0.587 0.778 0.595 0.302

Acceleration 0.476 0.635 0.532 0.675

Deceleration 0.492 0.317 0.468 0.587

Composite* 0.794 0.444 0.667 0.762

Diagonal Single-Task Reaction Time 0.667 0.405 0.500 0.460

Speed 0.627 0.444 0.698 0.175

Acceleration 0.476 0.397 0.429 0.373

Deceleration 0.587 0.690 0.627 0.468

Composite* 0.667 0.460 0.484 0.444

Lateral Dual-Task Reaction Time 0.270 0.325 0.500 0.524

Speed 0.537 0.574 0.315 0.713

Acceleration 0.349 0.714 0.325 0.683

Deceleration 0.540 0.365 0.619 0.460

Composite* 0.370 0.426 0.426 0.576

Diagonal Dual-Task Reaction Time 0.563 0.667 0.524 0.397

Speed 0.310 0.317 0.556 0.476

Acceleration 0.476 0.635 0.365 0.714

Deceleration 0.460 0.540 0.683 0.643

Composite* 0.444 0.556 0.429 0.508

*Average of Asymmetry values for Reaction Time, Speed, Acceleration, and Deceleration. Statistically significant P-values identified by bold font.

TABLE 7 | Group mean ± standard deviation for Single-Task asymmetry.

Mode Metric Group Phase 1 Phase 4 Change PPh PGr PPhXGr

Lateral Single-Task Reaction Time HxSRC 0.373 ± 0.268 0.203 ± 0.093 0.171 ± 0.342 0.080 0.008 0.852

Asymmetrya NoSRC 0.199 ± 0.095 0.124 ± 0.089 0.074 ± 0.154

Speed HxSRC 0.059 ± 0.023 0.040 ± 0.024 0.019 ± 0.024 0.070 0.353 0.119

Asymmetrya NoSRC 0.057 ± 0.022 0.054 ± 0.021 0.002 ± 0.033

Acceleration HxSRC 0.116 ± 0.037 0.116 ± 0.037 −0.007 ± 0.052 0.713 0.761 0.842

Asymmetry NoSRC 0.107 ± 0.050 0.104 ± 0.066 0.003 ± 0.081

Deceleration HxSRC 0.103 ± 0.057 0.127 ± 0.051 −0.023 ± 0.072 0.630 0.469 0.390

Asymmetry NoSRC 0.098 ± 0.034 0.104 ± 0.053 −0.007 ± 0.059

Composite HxSRC 0.161 ± 0.062 0.121 ± 0.024 0.039 ± 0.080 0.126 0.003 0.724

Asymmetrya NoSRC 0.115 ± 0.043 0.097 ± 0.026 0.018 ± 0.055

Diagonal Single-Task Reaction Time HxSRC 0.342 ± 0.246 0.190 ± 0.128 0.152 ± 0.213 0.025 0.962 0.155

Asymmetryb NoSRC 0.216 ± 0.113 0.171 ± 0.056 0.045 ± 0.087

Speed HxSRC 0.117 ± 0.101 0.061 ± 0.029 0.056 ± 0.093 0.416 0.869 0.056

Asymmetry NoSRC 0.073 ± 0.031 0.097 ± 0.033 −0.024 ± 0.045

Acceleration HxSRC 0.199 ± 0.088 0.230 ± 0.066 0.004 ± 0.109 0.493 0.705 0.596

Asymmetry NoSRC 0.195 ± 0.084 0.227 ± 0.043 −0.031 ± 0.087

Deceleration HxSRC 0.153 ± 0.042 0.124 ± 0.042 0.029 ± 0.060 0.350 0.961 0.661

Asymmetry NoSRC 0.143 ± 0.047 0.133 ± 0.057 0.010 ± 0.101

Composite HxSRC 0.203 ± 0.075 0.144 ± 0.041 0.058 ± 0.056 0.046 0.458 0.047

Asymmetry NoSRC 0.157 ± 0.037 0.157 ± 0.027 0.011 ± 0.054

HxSRC, History of Sport-Related Concussion; NoSRC, No History of Sport-Related Concussion; PPh, Phase Difference; PGr , Group Difference; PPhXGr , Phase X Group Interaction.
aLog10x transformation of data; means and standard deviations correspond to raw values.
bReciprocal (1/x) transformation of data; means and standard deviations correspond to raw values. Statistically significant P-values identified by bold font.
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TABLE 8 | Group mean ± standard deviation for Dual-Task asymmetry.

Mode Metric Group Phase 1 Phase 4 Change PPh PGr PPhXGr

Lateral Dual-Task Reaction Time HxSRC 0.288 ± 0.242 0.139 ± 0.074 0.149 ± 0.220 0.002 0.189 0.150

Asymmetry NoSRC 0.497 ± 0.301 0.143 ± 0.124 0.353 ± 0.319

Speed HxSRC 0.092 ± 0.046 0.089 ± 0.041 0.003 ± 0.063 0.431 0.449 0.407

Asymmetrya NoSRC 0.082 ± 0.042 0.068 ± 0.029 0.014 ± 0.029

Acceleration HxSRC 0.120 ± 0.064 0.103 ± 0.046 0.017 ± 0.033 <0.001 0.624 0.025

Asymmetry NoSRC 0.128 ± 0.012 0.073 ± 0.026 0.055 ± 0.025

Deceleration HxSRC 0.127 ± 0.051 0.112 ± 0.045 0.015 ± 0.072 0.626 0.867 0.798

Asymmetry NoSRC 0.124 ± 0.037 0.120 ± 0.069 0.005 ± 0.089

Composite HxSRC 0.157 ± 0.067 0.111 ± 0.029 0.046 ± 0.070 <0.001 0.351 0.120

Asymmetry NoSRC 0.208 ± 0.077 0.104 ± 0.043 0.107 ± 0.077

Diagonal Dual-Task Reaction Time HxSRC 0.201 ± 0.145 0.172 ± 0.142 0.029 ± 0.134 0.954 0.646 0.704

Asymmetry NoSRC 0.163 ± 0.068 0.170 ± 0.044 −0.007 ± 0.067

Speed HxSRC 0.090 ± 0.034 0.085 ± 0.050 0.006 ± 0.061 0.631 0.426 0.952

Asymmetry NoSRC 0.102 ± 0.015 0.095 ± 0.038 0.007 ± 0.033

Acceleration HxSRC 0.122 ± 0.068 0.203 ± 0.064 −0.081 ± 0.105 0.046 0.248 0.253

Asymmetry NoSRC 0.130 ± 0.030 0.154 ± 0.059 −0.042 ± 0.079

Deceleration HxSRC 0.163 ± 0.078 0.168 ± 0.055 −0.004 ± 0.111 0.654 0.832 0.551

Asymmetry NoSRC 0.177 ± 0.083 0.146 ± 0.062 0.031 ± 0.120

Composite HxSRC 0.144 ± 0.055 0.157 ± 0.062 −0.013 ± 0.060 0.639 0.862 0.533

Asymmetryb NoSRC 0.143 ± 0.030 0.141 ± 0.026 0.002 ± 0.041

HxSRC, History of Sport-Related Concussion; NoSRC, No History of Sport-Related Concussion; PPh, Phase Difference; PGr , Group Difference; PPhXGr , Phase X Group Interaction.
aLog10x transformation of data; means and standard deviations correspond to raw values.
bReciprocal (1/x) transformation of data; means and standard deviations correspond to raw values. Statistically significant P-values identified by bold font.

TABLE 9 | Receiver operating characteristic area under curve values for intra-individual variability measures (Dispersion and Discrepancy of t-scores for 2 movement

directions and 4 task modes), Asymmetry (differences between movement directions averaged for task modes), and Excursion (distances averaged for task modes).

Global factor Metric Phase 1 Phase 2 Phase 3 Phase 4

Dispersion Reaction Time 0.841 0.619 0.587 0.603

Speed 0.683 0.667 0.540 0.476

Acceleration 0.635 0.635 0.476 0.603

Deceleration 0.810 0.508 0.619 0.508

Composite* 0.651 0.524 0.587 0.524

Discrepancy Reaction Time 0.825 0.619 0.619 0.571

Speed 0.683 0.683 0.492 0.444

Acceleration 0.587 0.714 0.508 0.619

Deceleration 0.794 0.508 0.619 0.635

Composite* 0.619 0.534 0.635 0.492

Asymmetry Reaction Time 0.683 0.349 0.587 0.619

Speed 0.556 0.452 0.460 0.341

Acceleration 0.429 0.643 0.413 0.635

Deceleration 0.500 0.476 0.619 0.595

Composite* 0.778 0.397 0.508 0.683

Excursion 4-Mode Average 0.730 0.476 0.540 0.540

*Composite Dispersion: Average of 16 t-scores for 2 movement directions × 4 task modes × 4 metrics.

Composite Discrepancy: Difference between maximum and minimum values for 16 t-scores.

Composite Asymmetry: Average of asymmetry values for Reaction Time, Speed, Acceleration, and Deceleration. Statistically significant P-values identified by bold font.

did not incorporate separate measures for left and right
movement directions, the 4-Mode Average can be viewed
as another Global Index of neuromechanical function. In

fact, the Phase 1 Youden’s Index identified the identical 86%
specificity value for RT Dispersion, Deceleration Dispersion, RT
Discrepancy, Deceleration Discrepancy, Composite Asymmetry,
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FIGURE 2 | Receiver operating characteristic curves identifying History of Sport-Related Concussion cases in early phase (red solid line; sessions 1–3) and late phase

(blue dashed line; sessions 10–12) of 12-session whole-body reactive agility training program on the basis of Dispersion (standard deviation of t-scores for 2

movement directions and 4 task modes): (A) Reaction Time Dispersion, (B) Deceleration Dispersion.

FIGURE 3 | Receiver operating characteristic curves identifying History of Sport-Related Concussion cases in early phase (red solid line; sessions 1–3) and late phase

(blue dashed line; sessions 10–12) of 12-session whole-body reactive agility training program on the basis of Discrepancy (maximum–minimum difference) among

t-scores for 2 movement directions and 4 task modes: (A) Reaction Time Discrepancy, (B) Deceleration Discrepancy.

and Excursion 4-Mode Average. Conversion of Excursion
distances (m) to standardized T-scores resulted in a Youden’s
Index cut point corresponding to an Excursion T-Score 4-Mode

Average of 50, with the median for the entire cohort closely
approximating a value of 50. The Excursion metric demonstrated
good to excellent test-retest reliability for each of the task modes,
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FIGURE 4 | Receiver operating characteristic curves identifying History of Sport-Related Concussion cases in early phase (red solid line; sessions 1–3) and late phase

(blue dashed line; sessions 10–12) of 12-session whole-body reactive agility training program: (A) Composite Asymmetry (average for 4 task modes and 4

performance metrics), (B) Excursion (average for 4 task modes).

TABLE 10 | Median values for potential high-order indicators of perceptual-motor efficiency.

Global factor Group Phase 1 Phase 4 PPh

Reaction Time Dispersion (T-score Standard Deviation) HxSRC 9.95 8.22 0.139

NoSRC 7.17 7.76 0.398

PGr 0.023 0.536

Deceleration Dispersion (T-score Standard Deviation) HxSRC 6.99 6.61 0.767

NoSRC 5.44 6.43 0.128

PGr 0.042 1.000

Reaction Time Discrepancy (T-score Max-Min Difference) HxSRC 27.35 23.10 0.173

NoSRC 20.65 22.22 0.310

PGr 0.031 0.681

Deceleration Discrepancy (T-score Max-Min Difference) HxSRC 19.89 20.05 0.594

NoSRC 16.57 18.98 0.128

PGr 0.055 0.408

Composite Asymmetry (4-Metric & 4-Mode Average) HxSRC 0.172 0.135 0.008

NoSRC 0.152 0.123 0.018

PGr 0.071 0.252

Excursion (4-Mode Average; m) HxSRC 7.20 4.99 0.011

NoSRC 6.20 4.44 0.128

PGr 0.142 0.837

HxSRC, History of Sport-Related Concussion; NoSRC, No History of Sport-Related Concussion; PPh, Wilcoxon Signed Ranks test result for Phase Difference; PGr , Mann-Whitney test

result for Group Difference. Statistically significant P-values identified by bold font.

whereas Asymmetry was highly inconsistent for almost all
of the other WBRA performance metrics (Table 2). Despite
poor test-retest reliability for Composite Asymmetry, Youden’s
Index corresponded to 78% sensitivity, which was substantially

greater than the 67% sensitivity for Excursion 4-Mode Average.
Furthermore, the Composite Asymmetry cut point of ≥0.159
identified by Youden’s Index and the median value of 0.157 for
the entire cohort strongly support the clinical relevance of a
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prior finding of Composite Asymmetry ≥0.15 as a potentially
good standard for identification of persisting SRC effects on
neuromechanical function (Wilkerson et al., 2020). Although
clinical utilization of classification cut points for risk factors has
been criticized for having poor generalizability (Bahr, 2016),
composite values are believed to have greater stability than the
individual measurements from which they were derived (Costa
et al., 2019; Churchill et al., 2021).

Neural Basis for Inconsistency of
Perceptual-Motor Performance
Inconsistency among successive RT measurements acquired
within a relatively short time period represents the most
commonly investigated type of IIV. A substantial body of
literature identifies RT inconsistency (RTI) as a good indicator
of inefficient neural processing, which is believed to primarily
depend on attentional control (Jackson et al., 2012; Garrett et al.,
2013; Johnson et al., 2015; Wawrzyniak et al., 2016; Grady
and Garrett, 2018; Stawski et al., 2019a,b; Shen et al., 2020).
The default mode network (DMN) is defined by spontaneous
neural activity among widespread areas of the brain mid-line
in the absence of external task engagement (Mennes et al.,
2010, 2011). Detection of goal-relevant external stimuli by the
salience network (SN) simultaneously suppresses DMN activity
and activates the ventral attention network (VAN) and the dorsal
attention network (DAN), both of which have bidirectional
connections with areas in the thalamus, basal ganglia and
brainstem that control the rate and locations of saccadic eye
movements (Corbetta et al., 2008; Parr and Friston, 2017;
Taghdiri et al., 2018). Concurrent SN activation of the executive
control network (ECN), which overlaps dorsolateral prefrontal
and superior parietal areas of the DAN, exhibits an inverse
relationship to the level of DMN activation when attention is
externally focused (Seeley et al., 2007; Kelly et al., 2008; Jilka
et al., 2014). Key nodes of the SN include the anterior cingulate
cortex and the anterior insula, which together play a central role
in response inhibition, conflict resolution, and motor planning
(Seeley et al., 2007; Kelly et al., 2008; Sridharan et al., 2008;
Jilka et al., 2014; Johnson et al., 2015). Numerous studies of RTI
have utilized the flanker test to provide a cognitive challenge that
requires more extensive brain activation and network integration
than simpler visual stimuli (Kelly et al., 2008; Mennes et al.,
2010, 2011; Fjell et al., 2011; Parks et al., 2015; Williams et al.,
2016; Wang et al., 2017; Olson et al., 2018; McGowan et al.,
2019). Disrupted neural communication within and between
the DMN, SN, VAN, DAN, and ECN has been documented
among individuals who have sustained brain injury (He et al.,
2007; Jilka et al., 2014; Churchill et al., 2021), which may
slow information processing and cause lapses in attention (i.e.,
inattentional blindness) that perturb perception (Kenzie et al.,
2017). Thus, RTI appears to offer a better index of top-down
control of attention than an individual’s average RT (Johnson
et al., 2015).

Studies of RTI have almost exclusively defined the end of
each measurement interval by a simple motor response from
a seated position (e.g., keyboard tap, mouse click, button

press), which requires minimal integration of visual attention
and cognitive decision-making with sensorimotor processes.
Although RTI may provide the best representation of inefficiency
in the performance of extremely fast perceptual processes,
Dispersion and Discrepancy values may nonetheless provide
unique information about neural processes. Performance metrics
like Speed, Acceleration, and Deceleration only have relevance
in the context of goal-directed whole-body movements that
closely replicate sport-related maneuvers. Combining a cognitive
challenge with execution of a sufficiently complex motor activity
can clearly reveal performance deficiencies that are not apparent
when the respective tasks are done separately, which is believed
to be due to finite neural processing resources (Leone et al.,
2017). The cerebellum appears to be particularly important for
efficient performance of simultaneous cognitive-motor activity,
which broadens the volume of information processing that
needs to be integrated among spatially separated brain areas
(Wu et al., 2013). Additionally, WBRA movements presumably
require complex interhemispheric interactions for coordination
of bilateral muscle activation patterns (Serrien et al., 2006;
Takeuchi et al., 2012; Davidson and Tremblay, 2016). Individuals
differ in terms of the locations of neural circuit integration
zones (Greene et al., 2020), and probably many other aspects
of connectivity among brain networks as well, which makes
some amount of IIV across differing assessments of interrelated
performance capabilities highly likely (Schretlen et al., 2003;
Holtzer et al., 2008; MacDonald et al., 2009; Roalf et al., 2016).
Thus, small Dispersion and Discrepancy values may index
optimal neural efficiency, whereas excessively large values may be
useful clinical indicators of impaired network connectivity (Costa
et al., 2019).

Traditional reductionistic study designs, combined with
parametric data analyses that treat IIV as measurement error,
have probably limited the ability of many prior investigations
to detect subtle and heterogenous impairments that could
explain the association of SRC with elevated musculoskeletal
injury incidence (Quatman et al., 2009; Kenzie et al., 2017).
Reductionism refers to an attempt to reduce a complex problem
into components that can purportedly be studied separately
for attainment of an understanding of the whole phenomenon
(Quatman et al., 2009; Bittencourt et al., 2016), whereas a
complex systems approach involves a search for high-order
composite variables that represent the collective function of
multiple interacting elements (Kenzie et al., 2017; Fonseca et al.,
2020). Rather than seeking to identify isolated risk factors
that may be a primary cause of subsequent injury, a complex
systems approach involves identification of patterns among
interacting factors that lead to the emergence of elevated injury
susceptibility (Bittencourt et al., 2016). A single assessment
(e.g., pre-participation physical examination) is incompatible
with a complex systems approach, which requires data from
multiple time points to obtain a better representation of global
behavior (Fonseca et al., 2020). With regard to assessment of
within-session IIV, the data derived from a single measurement
session could be affected by factors that vary over time, such
as motivation, fatigue, stress, emotions, or pain. Thus, a single
measurement may reflect a temporary state, whereas an average
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of measurements obtained over multiple assessment sessions is
more likely to represent a stable trait (Stawski et al., 2019a).

Limitations and Future Directions
A major limitation of this study was the small cohort size,
which was based on the available number of elite athletes
who were willing to voluntarily commit to completion of the
training program. A related limitation was the small number
of female participants (6/16), which may have influenced our
finding of no sex influence on the discriminatory power of
the composite predictor variables. The lack of a sex effect
could have been due to use of relative, rather than absolute,
performance metrics to create Global Index values. Although
WBRA Asymmetry metrics exhibited poor test-retest reliability,
the corresponding performance metrics for the left and right
movements from which they were derived demonstrated good
to excellent reliability. The inconsistency of Asymmetry values
across training sessions might be an indicator of inefficient
perceptual-motor processes, which might explain the strong
association of the Composite Asymmetry metric with HxSRC.
Our use of the same motion analysis system for assessment and
training of perceptual-motor efficiency precluded investigation
of a transfer of training effect to some other ecologically valid
measurement of dynamic sport performance capability, and the
limited availability of the participants precluded investigation
of the extent to which benefits were retained beyond the end
of the training period. Future research with a motion analysis
system that will provide data for each successive task repetition
should compare the discriminatory power of IIV Inconsistency
to that provided by Dispersion and Discrepancy calculated
from the same dataset. Because a minimum of 7 measurements
are recommended for assessment of IIV (MacDonald et al.,
2009), lack of separate body displacement measurements for
left and right movement directions limited our analysis of
averaged WBRA Excursion values for the 4 task modes.
The possible relevance of Excursion to visuospatial calibration
between egocentric and allocentric coordinates makes it another
neuromechanical performance metric that may contribute to a
high-order representation of perceptual-motor efficiency (van
der Ham et al., 2014; van Andel et al., 2017). A future means to
acquire separate measurements for congruent and incongruent
trials of the flanker test used for the DT mode might provide
further insights relevant to inhibitory control.

Despite a lack of neuroimaging or electrophysiological data
that directly relate our WBRA results to neural correlates
within the same individuals, a strong theoretical basis exists
for the premise that the Dispersion, Discrepancy, Composite
Asymmetry, and Excursion Average differences we demonstrated
between HxSRC and NoSRC athletes may represent high-
order evidence of impaired connectivity among brain networks.
Reduced SN deactivation of the DMN among individuals
who have sustained traumatic brain injury has been shown
to adversely affect detection of salient stimuli and integrated
neural processing of visuospatial information (Jilka et al.,
2014; Antonakakis et al., 2016; Churchill et al., 2021). Our
interpretations of the study results are based on 3 interrelated
assumptions: (1) Self-reported HxSRC greatly increases the

likelihood that microstructural damage to white matter tracts
has had long-term adverse effects on perceptual-motor efficiency,
(2) A Global Index derived from multiple WBRA task modes,
performance metrics, and measurement sessions provides
a better representation of perceptual-motor efficiency than
traditional group-level central tendency statistics or any single
performance metric derived from a single measurement session,
and (3) Change in Global Index cut points and median values
between early and late phases of a training program provide
evidence of improvements in perceptual-motor efficiency that
are probably attributable to improved functional connectivity
within and between brain networks. To the extent that
these assumptions are valid, our findings may have profound
implications for clinical management of SRC and training
for both injury risk reduction and enhancement of sport
performance capabilities. More research is clearly needed to
validate our findings in larger cohorts representing different
populations, and to prospectively assess a possible effect of
WBRA training on the incidence of sport-related injury.

The potential long-term consequences of SRC and repetitive
“subconcussive” head impacts make early detection of any
impairment of brain function an important consideration for
protection of an athlete’s performance capabilities and health-
related quality of life (Hirad et al., 2019). However, the
clinically silent nature of the underlying pathophysiological
process, combined with the reluctance of some athletes to
report persistent SRC symptoms, may result in an unrecognized
vulnerability to repetitive injury and progressive dysfunction
(Brett et al., 2020; Ledreux et al., 2020). The ability to rapidly
generate appropriate responses to visual cues may facilitate
collision avoidance and impact preparation, thereby preventing
injury (Kung et al., 2020). Multi-modal neuromuscular training
has been shown to reduce the incidence of both musculoskeletal
injury and SRC among rugby players (Hislop et al., 2017;
Attwood et al., 2018), and there is evidence from prior
studies indicating that WBRA performance can be improved
through training (Serpell et al., 2011; Wilkerson et al.,
2021a). Furthermore, the findings of studies that have utilized
the flanker test to assess the perceptual-cognitive skills of
athletes suggest that long-term training for enhancement of
sport-specific skills requiring both inhibitory control and
rapid responses may induce beneficial neuroplastic adaptations
(Wang et al., 2017; Wylie et al., 2018). Lacking any known
adverse effects, our methods for assessment and training
of perceptual-motor efficiency appear to offer a novel and
potentially beneficial approach to injury risk reduction and
performance enhancement.

CONCLUSIONS

Intra-individual variability represented as Dispersion among
standardized neuromechanical performance metrics, as well as
Discrepancy between maximum and minimum standardized
scores, provided exceptionally good discrimination between elite
athletes who either affirmed or denied a history of sport-related
concussion. Composite Asymmetry and Excursion 4-Mode

Frontiers in Sports and Active Living | www.frontiersin.org 15 October 2021 | Volume 3 | Article 729729

https://www.frontiersin.org/journals/sports-and-active-living
https://www.frontiersin.org
https://www.frontiersin.org/journals/sports-and-active-living#articles


Wilkerson et al. Perceptual-Motor Efficiency of Elite Athletes

Average also provided good discrimination, both of which offer
the advantage of easy calculation from performance metrics
provided by the system used for assessment and training of
perceptual-motor efficiency. Reaction time, deceleration, and
precise control of whole-body movements directed to rapid
deactivation of virtual reality targets appear to collectively
differentiate elite athletes on the basis of whether or not
a sport-related concussion has been sustained at any point
in the past. Composite Asymmetry ≥0.15 and Excursion 4-
Mode Average ≥ 7m (or T-score Average < 50) appear to be
reasonable qualitative approximations for clinical identification
of suboptimal perceptual-motor performance. Although more
research is needed to document the potential value of whole-
body perceptual-motor training for injury risk reduction, athlete
participation in a relatively small number of brief training
sessions resulted in substantial performance improvements. Our
findings clearly support the potential for improved prevention
and management of sport-related injuries through a complex
systems approach that identifies high-order composite variables
representing the collective function of multiple interacting
perceptual and motor processes.
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