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Cross-validation of a machine learning algorithm that determines anterior cruciate ligament 

rehabilitation status and evaluation of its ability to predict future injury. 

Abstract 

Classification algorithms determine the similarity of an observation to defined classes, e.g., injured 

or healthy athletes, and can highlight treatment targets or assess progress of a treatment. The 

primary aim was to cross-validate a previously developed classification algorithm to identify 

rehabilitation status [Richter et al. (2019)] using a different sample [Krosshaug et al. (2016)], while 

a secondary aim was to examine its ability to predict future ACL injuries. The examined outcome 

measure was “healthy-limb” class membership probability, which was compared between a cohort 

of athletes without previous or future (No Injury), previous (PACL) and future ACL injury 

(FACL). The No Injury group had significantly higher probabilities than the PACL (p<0.001; 

medium effect) and FACL group (p≤0.045; small effect). The ability to predict group membership 

was poor for the PACL (area under curve [AUC]; 0.61<AUC<0.62) and FACL group 

(0.57<AUC<0.59). The ACL injury incidence proportion was highest in athletes with probabilities 

below 0.20 (9.4%; +2.7% to baseline). Athletes with probabilities between 0.20 and 0.80 had an 

incidence proportion of 6.5% (-0.2%), while athletes with probabilities above 0.80 had an 

incidence proportion of 4.1% (-2.6%). While findings that a low probability might represent an 

increase in injury risk on a group level, it is not sensitive enough for injury screening to predict a 

future injury on the individual level.  



 

 

Introduction 

Classification algorithms determine the similarity of an observation to defined classes, e.g., injured 

or healthy athletes. These algorithms have a big impact on medical practice (Hannun et al., 2019) 

and help health care practitioners by highlighting treatment targets or assessing progress with 

treatment (Barton, Hawken, Scott, & Schwartz, 2012). In medical imaging, classification 

algorithms have outperformed practitioners in detecting disease (Hannun et al., 2019), and in gait 

analysis, algorithms have been reported to objectively describe the deviation of an individual's 

movement from normality (Barton et al., 2012). Another example is a recent study on male field 

sport athletes, by Richter et al. (2019) that presented a classification algorithm that was trained to 

distinguish athletes with anterior cruciate ligament (ACL) reconstruction from uninjured athletes 

using biomechanical features extracted from the vertical drop jump data (healthy males from a 

variety of multidirectional field sports and males who had an ACL reconstruction approximately 

9 months before testing). The classification algorithm was judged to be able to estimate 

rehabilitation status because it was able to accurately differentiate between healthy, operated, and 

limbs contralateral of an operated limb (area under the curve, AUC: 0.94, measure was generated 

post-publication by the study authors). Such feedback could be beneficial to coaches, 

physiotherapists and other medical professionals in order to determine the player’s rehabilitation 

state, i.e., whether or not he/she is ready to return to sport. Furthermore, such a classification 

algorithm might even be able to objectively estimate ACL injury risk because athletes with 

previous ACL injury have an up to 15 times higher risk for a (second) ACL injury (Paterno, Rauh, 

Schmitt, Ford, & Hewett, 2014; Wiggins et al., 2016), which may be mediated, at least partly, by 

altered movement patterns. However, it is unclear how the classification algorithm developed by 

Richter et al. (2019) would perform in other cohorts and if athletes with a low similarity to the 

“healthy limb” class have a greater risk for sustaining a future ACL. 

Therefore, the primary aim of this investigation was to cross-validate the classification algorithm 

by Richter et al. (2019) in its ability to assess ACL rehabilitation status, using a cohort of female 

handball and football players. A secondary aim was to assess the classification algorithm’s ability 

to predict future risk of ACL injury. We hypothesized a healthy individual will have higher 

probabilities to belong to the control class than previously injured individuals and individuals that 

will suffer an injury in the future. 

 



 

 

Methods 

This study used kinematic and kinetic measures of a double leg drop vertical jump from two 

previously published studies - Richter et al. (2019) and Krosshaug et al. (2016). Analyses were 

performed in three steps: 1) Building the classification algorithm, 2) Classification (using the 

classification algorithm), and 3) Statistical analyses (testing the classification algorithm). When 

building the classification algorithm, double leg drop vertical drop jump data without an arm-

swing from 218 males from the Richter et al. (2019) study were used, while double leg drop 

vertical drop jump data with an arm swing from 822 females from the Krosshaug et al. (2016) 

study were used for the cross-validation of the classification algorithm and the future injury 

prediction analysis. 

Building the Classification Algorithm 

The used classification algorithm was built by following three steps: feature extraction (data driven 

extraction), machine learning technique selection (identification of the technique that is most 

suitable for the classification task using all extracted features) and identification of the most 

meaningful features (to generate an interpretable classification model). Richter et al. (2019) 

describe in detail how prediction features were extracted, how kinematic measures were obtained 

and why a pattern recognition network was used. To generate the classification algorithm, a pattern 

recognition network was trained to classify an input matrix (training matrix; 3 variables [features] 

x 468 observations) into 3 target classes (healthy, ACL operated and contralateral limb) utilizing 

only data, features and processes described in Richter et al. (2019). The class “healthy” was 

represented by the left and right limb of athletes with no ACL injury. The class “ACL operated” 

was represented by the limb with a reconstructed ACL. The class “contralateral” was represented 

by the contralateral limb of athletes with reconstructed ACL. In contrast to the Richter et al. (2019) 

study, the sample size of the healthy limb class was artificially increased by 32 (increasing the 

sample size of observations in the input matrix to 500 observations) to balance the number of 

observations across the classes and thereby eliminate effects of unbalanced sample sizes during 

the fitting process. This was done by using synthetic minority over-sampling technique. During 

the synthetic minority over-sampling, only observations that were never misclassified across 100 

simulations were used to increase the sample of the healthy class (this information was taken from 

unpublished findings of Richter et al., 2019) to purify the class characteristics that separated the 

healthy limb class from the ACL operated and contralateral limb class. Consequently, the 



 

 

classification algorithm was generated utilizing 156 observations for the healthy class (62 male 

athletes [124 limbs] and 32 synthetically engineered limbs) and 156 observations for the ACL 

operated and contralateral classes (156 athletes who underwent primary ACL reconstruction 

approximately 9 months before the biomechanical assessment). Features used in the training 

matrix were: the average magnitude of the vertical ground reaction force asymmetry from 80 to 

86 % of the movement cycle (feature: vGRF asymmetry), the average magnitude of the resultant 

centre of mass velocity from 80 to 84 % of the movement cycle (feature: CoM velocity) and the 

average knee flexion angular velocity asymmetry from 74 to 81 % of the movement cycle (feature: 

knee velocity asymmetry). The asymmetry features (vGRF asymmetry and knee velocity 

asymmetry) were computed as reported in equation 1. 

𝑎symmetry feature = {
𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑙𝑒𝑓𝑡 − 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑟𝑖𝑔ℎ𝑡;    𝑖𝑓 𝑠𝑖𝑑𝑒 = 𝑙𝑒𝑓𝑡

𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑟𝑖𝑔ℎ𝑡 − 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑙𝑒𝑓𝑡;   𝑖𝑓 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

equation 1 

Before model fitting, all 3 features were transformed into z-scores by dividing the centred 

scores (score–pooled mean of whole matrix) by its pooled standard deviation. 

Applying the Classification Algorithm to a New Dataset 

The classification algorithm was applied to data previously published in Krosshaug et al. (2016), 

which describes in detail how data was collected and processed. After the classification algorithm 

was built using the data of Richter et al. (2019), it was used to classify the data from the Krosshaug 

et al. (2016) study. These data consisted of vertical drop jump with arm-swing recorded from 822 

female athletes. Athletes were assigned to the following cohorts: no previous or future ACL injury 

(No Injury; n = 693), previous ACL injury (PACL; n = 74) and future ACL injury (FACL; n = 55, 

which can be sub-grouped into 1st ACL injury [n = 43] and 2nd ACL injury [n = 12]). A subject 

was assigned 2nd ACL injury class in the case of either an ACL graft rupture or a contralateral 

ACL injury. Before extracting the required features from the data, a selection of kinematic and 

kinetic measures was screened for errors using a custom-written graphical user interface to ensure 

the same processing flow as the dataset used to build the classification algorithm. Subsequently, a 

3x4932 input matrix (testing matrix; 4932 observations = 3 trials x 2 body sides x 822 subjects) 

was built. Only one limb was randomly selected for each athlete in the no previous or future ACL 

injury class. This testing matrix was then normalized using the mean and standard deviation 

observed during the model generation and fed into the classification algorithm, which computed 



 

 

class probability scores for each observation within the testing matrix. Only the probability of 

belonging to the healthy limb class (healthy score) was used for further analysis. 

Cross-Validation / Score Analysis 

To examine if there were differences in the magnitude of the healthy score between the defined 

cohorts, a one-sided Mann-Whitney-Wilcoxon test, treating the scores as non-parametric and 

unpaired, was performed on the healthy scores. As each athlete performed multiple vertical drop 

jumps and the selection of a specific trial could impact the results, the score analysis was performed 

using 1) the average healthy score across trials, 2) the maximal trial (highest jump) or 3) a random 

healthy score from one of the three trials. For the No Injury cohort, we defined the average healthy 

score as the average of all performed trials from a random side (left or right). For the other cohorts, 

only the side that suffered or had previously suffered an ACL injury was used. We used the same 

approach to analyse the maximal trial, using only the vertical drop jump trial with the highest jump 

height. For the random healthy score analysis, 100 random analyses (shuffle splits) were 

performed. For each shuffle split, a random trial was chosen from a random side (for the No Injury 

group) or of the side that suffered the ACL injury (for other groups). To judge the effect size of 

the difference, we computed Cohens D from the Mann-Whitney-Wilcoxon U2 score (Borenstein, 

Hedges, Higgins, & Rothstein, 2009; Kerby, 2014) and classified the effect as large (d > 0.80), 

medium (0.80 > d ≥ 0.50), small (0.50 > d ≥ 0.20) and negligible (d < .20; Cohen, 1988). 

To examine the predictive ability of the classification model, a receiver-operating curve (ROC) 

was computed. The area under the curve (AUC) was used to classify the combined sensitivity and 

specificity as outstanding (0.90 ≥ AUC < 1.00), excellent (0.80 ≥ AUC < 0.90), acceptable (0.70 

≥ AUC < 0.80), poor (0.50 ≥ AUC < 0.80) and no discrimination (AUC < 0.50; Hosmer et al., 

2013). The receiver-operating curve (ROC) was computed for comparisons between the defined 

cohorts: No Injury and PACL, and No Injury and FACL [1st and 2nd ACL injury]. Average positive 

predictive value (precision) was computed and used as a measure of the ability of the healthy 

scores to classify PACL from No Injury as well as FACL from No Injury. Sensitivity and 

specificity measures were reported at the optimal operating point of the ROC curve, which was 

defined as the point where the Youden’s index was maximized (Youden, 1950). 

The alpha level of this study was set to 0.05. No adjustments for multiple comparisons were made 

(Rothman, 1990). No classification of sensitivity, specificity or precision was given as 



 

 

corresponding thresholds are dependent on the “use” case, which includes the individual appraisal 

of costs/benefits. All analyses were performed with MATLAB 2018a. 

Results 

The defined subgroups of the Richter et al. (2019) and Krosshaug et al. (2016) data demonstrated 

some differences in respect to the extracted features: vGRF asymmetry, knee velocity asymmetry 

and CoM velocity (table 1). Compared to the testing matrix, the training matrix had larger vGRF 

asymmetry, larger standard deviations in the knee velocity asymmetry and higher CoM velocity. 

Table 1. Mean (standard deviation) values of the three classification features (vertical ground 

reaction force asymmetry [vGRF asymmetry], resultant centre of mass velocity [CoM 

velocity] and knee flexion angular velocity symmetry [knee velocity asymmetry]) in athletes 

with no previous or future ACL injury (No Injury), previous ACL injury (PACL), future 

ACL injury (FACL). 

The No Injury group had, on a group-level, significantly higher healthy scores than the PACL 

group (average analysis: p < 0.001; d = 0.53, maximal analysis: p < 0.001: d = 0.45; 100 of 100 

shuffle splits [d = 0.44 to 0.45]; figure 1; table 2). The ability to predict group membership was 

poor (average analysis: AUC = 0.62; maximal analysis: AUC = 0.61), with the average precision 

being over baseline (average analysis: +3%; maximal analysis: +4%). The sensitivity was 0.59 in 

the average and 0.61 in the maximal analysis, while specificity was 0.58 and 0.61, respectively. 

Table 2. Median (interquartile range [IQR]) of healthy score magnitudes and findings when 

comparing the no previous or future ACL injury (No Injury) and previous ACL injury 

(PACL) group. The measure: “n split” refers to the number of differences observed during 

the shuffle split analysis. 

Figure 1. On the left Illustration for the maximal healthy scores in athletes with no previous or 

future ACL injury (No Injury), previous ACL injury (PACL), future first ACL injury (1st 

ACL injury) and future second ACL injury (2nd ACL injury). On the right illustration of 

ACL injury / arbitrary proportion across selected ranges of the healthy score, computed using 

bootstrap samplings. The ’*’ symbol indicates a significant difference (p < .001) of the 

observed incidence proportion to the baseline incidence proportion based on the average p 

value resulting of 100 sign-tests utilizing bootstrap samplings (bootstraps = sample size of 

the athletes included within the range). 



 

 

No significant differences were found on a group level between the No Injury and 1st ACL cohort 

for the average scores (p = 0.181; d = 0.16; figure 1), while the No Injury cohort had significantly 

higher healthy scores in the maximal analysis (p = 0.045; d = 0.30: figure 1) and some shuffle 

splits (3 of 100; d = 0.18 to 0.19; table 3). When comparing the No Injury group and FACL [1st 

and 2nd ACL injury], healthy scores were significantly higher in the No Injury group (average 

analysis: p = 0.045; d = 0.28: maximal analysis: p = 0.011; d = 0.36; 78 of 100 splits; d = 0.28 to 

0.29; figure 1; table 3). 

Table 3. Median (interquartile range [IQR]) and findings when comparing the no previous or 

future ACL injury (No Injury) and future first ACL injury (1st ACL) group as well as No 

Injury and future ACL injury (FACL). The measure: “n split” refers to the number of 

differences observed during the shuffle split analysis. 

The future injury rate (incidence proportion) across the entire sample was 6.7%. When examining 

arbitrary proportion across selected ranges of the healthy score, athletes with healthy scores below 

0.33 had a future ACL injury incidence proportion of 7.6% (n = 408; 5th to 95th percentile; 5.9 to 

12.1%). Athletes with healthy scores between 0.33 and 0.66 had an ACL injury incidence 

proportion of 6.1% (n = 161; 3.0 to 12.1%), while athletes with healthy scores above 0.66 

demonstrated an ACL injury incidence proportion of 5.5% (n = 253; 3.5 to 9.5%; table 3; figure 

1). 

The ability to predict future ACL injuries was poor in the average and maximal analysis (AUC = 

0.57 and AUC = 0.59; figure 2), with average precisions slightly over baseline (+2% and +3%). 

The sensitivity was 0.58 in the average and 0.56 in the maximal analysis, while specificity was 

0.53 and 0.53, respectively. 

Figure 2. Illustrated on the left side are precision and recall curves (and the resulting confusion 

matrix) for the classification tasks and on the right side are the receiver operation curve 

curves for the maximal scores. The red line displays the sensitivity and specificity for the 

classification between the groups: no previous or future ACL injury (No Injury) and previous 

ACL injury (PACL), while the black line displays: No Injury and future ACL injury (FACL). 

 

Discussion and Implication 

Main Findings 



 

 

This study cross-validated a classification algorithm previously developed to identify athletes in 

male rugby, football and Gaelic games with previous ACL reconstruction using a 

countermovement jump without arm-swing, in a different sample of female elite handball and 

football players that performed a countermovement jump with arm-swing. Additionally, we 

examined if the outcome measures of classification algorithm (class probability scores) could 

identify players with increased risk for a future ACL injury. The results demonstrated that athletes 

in the cross-validation cohort with either a previous (PACL) or a future injury (FACL) had lower 

healthy scores than athletes without previous or future injury (No Injury). However, the 

classification accuracy was poor in both cases. The poor classification performance was caused to 

a large portion by a misclassification of samples from the No Injury group (classified into ACL 

class), a high number of cases [50 %] demonstrating a healthy score > .50 (binominal distribution 

peak at 0.1 and 0.8), while misclassifications in the PACL and FACL cohort (classified into 

Healthy class) were fewer. In the PACL and FACL cohort, about 30 % of the samples 

demonstrated a score > .50 (unimodal skewed distribution peak at > 0.1). This is similar to findings 

of Richter et al. (2019) where the No Injury cohort was also more often misclassified than the 

PACL group. Findings suggests that a low score might represent an increase in injury risk on a 

group level but does not predict a future injury on the individual level. To predict future cases of 

a multi-factorial injury like an ACL it is possible that a multi-factorial dataset (multiple exercises, 

anthropometric data and so on) / a complex system model (Bittencourt et al., 2016) is needed as 

information from different domains need to be interlinked. Also, adding other factors such as 

exposure / training load may improve the efficacy of these methods. 

Comparing effect sizes observed during the average and maximal analysis to the range of effect 

sizes observed in the shuffle split analysis, suggests that there is an impact of utilizing the average 

value of a measure and the maximal performance trial of n-trails to an analysis. When considering 

the shuffle split as “truth”, the No Injury and PACL comparison overestimated the effect of the 

differences in the average analysis, while in the No Injury and FACL comparison the maximal 

comparisons seemed to have overestimated the effect of difference between the groups. 

Previous ACL Injuries 

The observed difference in the healthy score between the No Injury and PACL group was of 

medium effect (average analysis d = 0.53; maximal analysis = 0.45). As such, the classification 

model tested can be seen as relatively robust because the validation cohort differed from the 



 

 

original cohort, which was the basis for the movement model, in both sex (female vs male), test 

execution (vertical drop jump with arm swing) and partly in the type of sport (football and handball 

vs. rugby, football and Gaelic games). Considering that players with existing ACL injury will have 

a much higher risk (up to 15 times) for a new ACL injury (Paterno et al., 2014; Wiggins et al., 

2016), it is possible that there are similar underlying movement characteristics that can predispose 

athletes for the first or second ACL injury. The classification model, which was purely data driven, 

identified asymmetries as key factors that separated the movement characteristics of ACL injured 

and healthy players. This suggests that movement characteristics displayed in a vertical drop jump 

might be associated with injury risk in players with or without a previous injury and that movement 

asymmetry seems to be relevant for injury risk, supporting what has been suggested in previous 

risk factor studies (Paterno, Rauh, Schmitt, Ford, & Hewett, 2012; Paterno et al., 2011; Webster 

& Gribble, 2010), and what is considered best practice for return to sport (Grindem, Snyder-

Mackler, Moksnes, Engebretsen, & Risberg, 2016; King et al., 2019; Kyritsis, Bahr, Landreau, 

Miladi, & Witvrouw, 2016), 

However, although significant differences were observed in healthy score between the healthy and 

PACL group in this validation study, the classification accuracy was much lower compared with 

the accuracy previously observed in the original cohort (AUC = 0.94 vs 0.53; Richter et al. [2019]). 

One explanation for the poor classification accuracy is that the cohort used for the Krosshaug et 

al. (2016) data contained only athletes that were fully rehabilitated and back in normal game play, 

whereas the cohort used to build the classification algorithm (rugby and football Gaelic games 9 

months after ACL surgery) had just returned or were about to return to play.  

Future ACL Injuries 

When comparing the healthy score (max. jump) between the No Injury and FACL group, a 

significant difference with a small effect size (average analysis d = 0.28; maximal analysis = 0.36) 

was found between the two groups. The ability to identify individual athletes with increased risk 

for a new injury was poor, meaning that the developed classification algorithm cannot be used for 

to identify athletes who are at higher risk for sustaining future ACL injuries. The poor predictive 

ability of the algorithm for identifying new injuries is not surprising, considering that the algorithm 

was not trained for this purpose. The observed prediction ability is not much better than guessing, 

which is in line with previous studies that investigate the risk of sustaining injury in players without 

a previous injury (.51 < AUC < .70; Krosshaug et al., 2016; Leppänen et al., 2017; Smith et al., 



 

 

2012). Although small a pilot study by Hewett et al. (2005) reported a high specificity (0.73) and 

sensitivity (0.78) using dynamic valgus angles or moments – these findings have not been 

replicated in later, much larger cohorts (Krosshaug et al., 2016; Leppänen et al., 2017).  

Still, it should be noted that, in contrast to the traditional analysis approach of Krosshaug et al. 

[14], the classification model was able to detect small differences (on a group level) in the jump 

biomechanics between healthy players and those who went on to sustain an ACL injury. Further, 

it demonstrated an injury incidence proportion higher than the sample average (6.7%) for athletes 

with a healthy score below 0.33 (p < 0.001; 7.6%) and an injury incidence proportion lower than 

the sample average for athletes with a healthy score above 0.66 (p < 0.001; 5.5%).  

This suggests that differences can be discovered by a framework that utilizes a mathematical 

approach to reduce waveforms and machine learning techniques (e.g., regression to neural 

networks) that may not be found using a classical discrete point analysis. It is also important to 

note, that the accuracy measures reported here are likely to underestimate the “true” ability of a 

classification algorithm, since it was not trained for this purpose.  

Interestingly, the algorithm did not include features suggested to be important based on the current 

literature (e.g. peak knee abduction moment; Bates et al., 2018), nor did features capture the early 

movement cycle/impact phase, which correspond to the critical time period where ACL injuries 

occur (Koga et al., 2011, 2010). This makes the comparison to previous published injury studies 

difficult, highlights that the classification model should be reworked, but also highlights that 

alternative variables should be considered in future studies (as the classification model was able 

to find differences, which wasn’t the case in previous analysis). 

Classification models of future studies should seek to combine expert-knowledge-driven and data-

driven features extraction and utilize a variety of movement task to enable the “learning” of the 

underlying function a multiple injury / injury pre-disposing pattern. 

This study did not perform any adjustments for multiple comparisons. To estimate the impact of 

alpha 1 errors to findings, a shuffle split analysis was performed demonstrating the frequency of 

significant findings within random selections of the examined dataset. 

 

Conclusions  

We observed lower healthy scores in athletes with previous ACL injuries compared to healthy 

players in the validation cohort. Healthy scores were also significantly lower, on a group-level, in 



 

 

athletes who went on to sustain a future injury compared with uninjured athletes. This suggests 

that a low healthy score might represent an increase in injury risk on a group level but does not 

predict a future injury on the individual level. Utilized features indicate that limb symmetry and 

jump ability may be linked to increased ACL injury risk. However, the ability to identify elite 

female athletes with either an existing or a future injury was poor, meaning that the tested 

classification algorithm cannot be used for this purpose.  
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