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a b s t r a c t 

Quantification methods based on the acquisition of diffusion magnetic resonance imaging (dMRI) with multiple diffusion weightings (e.g., multi-shell) are becoming 
increasingly applied to study the in-vivo brain. Compared to single-shell data for diffusion tensor imaging (DTI), multi-shell data allows to apply more complex 
models such as diffusion kurtosis imaging (DKI), which attempts to capture both diffusion hindrance and restriction effects, or biophysical models such as NODDI, 
which attempt to increase specificity by separating biophysical components. Because of the strong dependence of the dMRI signal on the measurement hardware, DKI 
and NODDI metrics show scanner and site differences, much like other dMRI metrics. These effects limit the implementation of multi-shell approaches in multicenter 
studies, which are needed to collect large sample sizes for robust analyses. Recently, a post-processing technique based on rotation invariant spherical harmonics 
(RISH) features was introduced to mitigate cross-scanner differences in DTI metrics. Unlike statistical harmonization methods, which require repeated application to 
every dMRI metric of choice, RISH harmonization is applied once on the raw data, and can be followed by any analysis. RISH features harmonization has been tested 
on DTI features but not its generalizability to harmonize multi-shell dMRI. In this work, we investigated whether performing the RISH features harmonization of 
multi-shell dMRI data removes cross-site differences in DKI and NODDI metrics while retaining longitudinal effects. To this end, 46 subjects underwent a longitudinal 
(up to 3 time points) two-shell dMRI protocol at 3 imaging sites. DKI and NODDI metrics were derived before and after harmonization and compared both at the whole 
brain level and at the voxel level. Then, the harmonization effects on cross-sectional and on longitudinal group differences were evaluated. RISH features averaged 
for each of the 3 sites exhibited prominent between-site differences in the frontal and posterior part of the brain. Statistically significant differences in fractional 
anisotropy, mean diffusivity and mean kurtosis were observed both at the whole brain and voxel level between all the acquisition sites before harmonization, 
but not after. The RISH method also proved effective to harmonize NODDI metrics, particularly in white matter. The RISH based harmonization maintained the 
magnitude and variance of longitudinal changes as compared to the non-harmonized data of all considered metrics. In conclusion, the application of RISH feature 
based harmonization to multi-shell dMRI data can be used to remove cross-site differences in DKI metrics and NODDI analyses, while retaining inherent relations 
between longitudinal acquisitions. 
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Diffusion magnetic resonance imaging (dMRI) is an important tool
o non-invasively probe the in-vivo organization of the human brain.
MRI metrics such as mean diffusivity (MD) and fractional anisotropy
FA) derived from diffusion tensor imaging ( Basser and Pierpaoli, 1996 )
DTI) can capture subtle properties of white matter (WM) microstruc-
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ure, such as changes during neurodevelopment ( Girault et al., 2019 ),
ging ( Cole, 2020 ), neurodegeneration ( Gyebnár et al., 2018 ) and in
ocal insults ( Arfanakis et al., 2002 ). 

Most dMRI studies to date are based on a modest sample size, in the
rder of tens of subjects. However, studies with moderate to low effect
izes ( Smith and Nichols, 2018 ), e.g., imaging-genetics experiments or
arly pre-symptomatic microstructural changes in traumatic brain in-
ury, require larger sample sizes. The importance of large sample sizes
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o confirm explorative findings of small sample studies or to study rare
onditions is increasingly recognized in neuroimaging ( de Luca and Bies-
els, 2021 ; Turner et al., 2018 ). This is also demonstrated by the impact
f recent large cohort studies such as the UK Biobank ( Allen et al., 2012 )
r the Human Connectome Project ( Van Essen et al., 2013 ). Achieving
arge sample sizes in a single acquisition site is, however, challenging.
 common alternative is to collect data across multiple sites. Neverthe-

ess, multi-site acquisition has limited usability for dMRI, because of
arked inter-site variability. Differences in gradients hardware, receive

nd transmission coils, magnetic field inhomogeneity and reconstruc-
ion software contribute to offsets in the dMRI measurements, introduc-
ng complicated and non-linear site differences in dMRI derived metrics,
ven when identical scanners and acquisition protocols are employed
 Mirzaalian et al., 2016 ). 

Recently, a cross-site harmonization method based on rotational
nvariant spherical harmonics (RISH) ( Cetin Karayumak et al., 2019 ;
irzaalian et al., 2016 ) was proposed, among others, to retrospectively

armonize dMRI data collected at multiple sites. In the RISH features
armonization method, data from multiple diffusion directions with the
ame b-value (single-shell) are deconstructed into a set of spherical har-
onics up to a given order. Then, a RISH feature is computed for each

ven harmonic order as the squared sum of the corresponding harmonic
oefficients. The RISH features are calculated for each voxel, or can be
veraged across regions of interest. Given dMRI data of matched con-
rol groups that have been collected at two different acquisition sites,
he method assumes that any group difference in the RISH features is
ntirely due to scanner-related effects. Accordingly, harmonization is
rained by learning the spatially varying mapping of the average RISH
eatures from one site to another, which can be then applied to harmo-
ize data of any given subject. Because the harmonization can be per-
ormed at the voxel-level, the RISH method can potentially model bulk
nter-scanner differences, but also scanner differences stemming from
patial inhomogeneities that might be due to differences in gradients,
oil sensitivity, B0 and B1 fields, among others. Unlike methods such as
omBat ( Fortin et al., 2018 ) that perform harmonization at the statisti-
al inference stage for each derived measure of interest, the RISH-based
ethod harmonizes the dMRI data once as part of the pre-processing.
his allows for the subsequent derivation of any harmonized measure of

nterest and for the application of any analysis method of choice across
he harmonized subjects, including whole brain statistics, region of in-
erest based analysis, tract based spatial statistics or voxel-wise analyses.

Thanks to the advent of novel acceleration techniques such as si-
ultaneous multi slice ( Setsompop et al., 2018 ), compressed sensing

 Ning et al., 2015 ), and other recent hardware improvements, the im-
lementation of dMRI protocols beyond the single-shell is becoming in-
reasingly popular even in clinical settings. The most common acqui-
ition is of a set of spherically distributed gradient directions at multi-
le diffusion weightings (i.e., multi-shell ). Multi-shell data allows fitting
ore complex models than DTI, such as higher-order models that ex-
lore the non-Gaussian and multi-exponential nature of the dMRI signal,
roviding complementary and / or additional information to DTI metrics
 De Luca, 2021 ). A popular higher-order model is the diffusion kurtosis
maging (DKI) ( Jensen et al., 2005 ; Jensen and Helpern, 2010 ) method,
hich extends the DTI formalism to the second order cumulants. DKI
odels 3D diffusion processes that deviate from Gaussianity due to,

or instance, the presence of membrane restrictions ( Fieremans et al.,
011 ) or intra-voxel incoherent motion effects ( De Luca et al., 2017 ).
he non-Gaussian behavior is quantified as excess kurtosis of the dif-
usion process and has been shown to provide complementary infor-
ation to DTI. For example, DKI has provided useful information about

he aging brain ( Falangola et al., 2008 ), and has also been able to detect
athological changes with higher sensitivity than DTI in patients with
lzheimer’s disease ( Arab et al., 2018 ), among others. Another family
f methods leveraging multi-shell acquisitions are biophysical models.
uch models are often based on assumptions on the tissue microstruc-
ure, and aim to quantify metrics that directly relate to specific bio-
2 
hysical processes. A popular example hereof is the “neurite orientation
ispersion and density imaging ” (NODDI) model, which over time has
ound widespread application to characterize the healthy and pathologic
rain ( Calabrese et al., 2017 ; Colon-Perez et al., 2019 ; De Luca et al.,
020 ; Parvathaneni et al., 2017 ; Wen et al., 2019 ). 

In this work, we investigate whether the RISH-based harmonization
ethod ( Cetin Karayumak et al., 2019 ), which was previously applied

o harmonize single-shell dMRI data, could be effectively generalized
o multi-shell dMRI. We tested the effect of the multi-site harmoniza-
ion on metrics such as the mean kurtosis (MK), FA, and MD derived
rom the DKI fit, and orientation dispersion index (ODI), neurite den-
ity index (NDI) and isotropic signal fraction (ISO) maps from NODDI.
 recent work ( Tax et al., 2019 ) provided proof-of-concept that this
ethod can be applied to harmonize MK across sites. However, this was
emonstrated on a small group of subjects ( “traveling heads ”) scanned
n a number of MRI scanners. Here, we study the application of the
ISH features harmonization on multi-shell dMRI data from matching
roups of healthy controls acquired at 3 different sites at multiple time
oints (TP). Taking advantage of a longitudinal study design, we aimed
o verify the effectiveness of the RISH harmonization procedure at i) re-
oving baseline cross-site differences in DKI and NODDI values while

i) not altering longitudinal changes in metrics over TPs, which are ex-
ected to occur in light of our study sample including teenagers between
4 and 16 years, when rapid structural brain changes occur ( Das et al.,
017 ; Falangola et al., 2008 ). This effect of harmonization on longitu-
inal changes in DKI and NODDI metrics was compared between the
ISH-based and ComBat harmonization approaches. 

ethods 

RI acquisitions 

The dMRI data used in this study were acquired in three acquisition
ites located in Norway (Oslo, S1), Belgium (Leuven, S2) and Germany
Munich, S3). All the sites were equipped with 3T scanners (Philips
ealthcare, Best, the Netherlands) equipped with the standard 32 chan-
els head coil. The MRI at S1 was an Ingenia CX equipped with a CDAS
pectrometer, and a gradient system with maximum amplitude equal
o 40mT/m. The MRI at S2 was an Achieva dStream equipped with
DAS spectrometer, and a gradient system with maximum amplitude
qual to 65mT/m. The MRI at S3 was an Ingenia equipped with a CDAS
pectrometer, and a gradient system with maximum amplitude equal to
0mT/m. While all scanners were running on software R5.3 at the be-
inning of the data acquisition process, Site1 and Site2 were respectively
pdated to R5.4.1 and R5.4, before acquisition was completed. 

The dMRI acquisition was performed at a resolution of 2 × 2 × 2mm 

3 .
n S2 and S3, the sequence was accelerated with multi-band factor 2 and
arallel acceleration SENSE 1.5, resulting in echo time 113 ms and repe-
ition time 7.2 s. S1 did not have multi-band functionality, and therefore
he repetition time was changed to 12 s and SENSE to 2 to match the res-
lution of Sites 1 and 3, while achieving the same echo time (113 ms).
he dMRI acquisition of all the three sites included the same gradient
able which included 20 x b = 1000s/mm 

2 and 30 x b = 2500s/mm 

2 in
ddition to 7 non-weighted images. Additionally, 4 non-weighted im-
ges with identical imaging parameters but reversed phase encoding
anterior-posterior) were acquired in each site to correct for EPI-related
eometrical distortions. Additional shells that included less than 15 gra-
ient directions, required to derive RISH features of order 4 or above,
ere omitted from this proof-of-concept demonstration. 

tudy participants 

The participants of this study were young male teenagers recruited
s part of the longitudinal REPIMPACT study ( Koerte et al., 2021 ). A
otal of 46 unique subjects were included in this study. Each subject
nderwent 1 to 3 MRI sessions, for a total of 79 datasets ( Table 1 ).
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Table 1 

The second column reports the number (#) of subjects acquired at each site and their 
distribution per number of timepoints (TP) available between brackets (1/2/3). The last 
3 columns report the number of datasets available at each site and timepoint, and the 
corresponding average age ± standard deviation (std) in years between brackets. 

Site Subjects # (1/2/3 TP) TP1 # (age ± std) TP2 # (age ± std) TP3 # (age ± std) 

S1 28 (5/9/14) 22 (14.7 ± 0.6) 22 (15.5 ± 0.6) 21 (15.8 ± 0.6) 
S2 17 (4/4/9) 15 (14.5 ± 0.5) 11 (15.2 ± 0.6) 13 (15.5 ± 0.6) 
S3 7 (1/1/5) 5 (14.8 ± 0.7) 6 (15.3 ± 0.7) 7 (15.4 ± 0.7) 
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thical approvals were obtained from the ethical review boards of the
outh-Eastern Norwegian Regional Committee for Research Ethics (S1),
U Leuven (S2) and LMU Munich (S3), in addition to written consent

rom the legal representatives of the participants. 

ata processing and harmonization 

The dMRI data were corrected for signal drift ( Vos et al., 2016 ) using
xploreDTI ( Leemans et al., 2009 ) v4.8.6. A brain mask was derived for
ach subject using FSL BET ( Smith, 2002 ). To remove EPI distortions,
SL TOPUP ( Andersson et al., 2003 ) was applied on the mask, together
ith the non-weighted images of both phase encodings. Subsequently,
SL EDDY ( Andersson and Sotiropoulos, 2016 ) 5.11 was used to cor-
ect for subject motion, eddy currents and EPI distortions in a single
tep. 

The data corresponding to the b = 1000s/mm 

2 shell (20 gradient
irections) and to the b = 2500s/mm 

2 (30 gradient directions) were
tted with spherical harmonics of order 4 (L4) and 6 (L6), respec-
ively. To perform the harmonization, S1 was chosen as a reference
ite, since it included the largest number of subjects. For each site to
e harmonized, a study-specific template was generated with ANTS
 Avants et al., 2014 ) using selected training subjects of the reference
nd other site. Specifically, the study template was created following
he script “antsMultivariateTemplateConstruction2.sh ” of ANTS ( https:
/github.com/ANTsX/ANTs ), running an iterative registration proce-
ure based on the FA and L0 images, using the b-spline SyN transfor-
ation, and cross correlation as a cost function. The data of the other

ites were transformed to RISH features and transformed to the com-
on space to derive the average scale maps needed to remove site ef-

ects. The scaling maps were back-projected to the individual space of
ach subject and used to harmonize its dMRI data. The dMRI data of
1 were also transformed to RISH features but without any scaling of
he RISH features. This step was performed to ensure consistency be-
ween harmonized and not harmonized data, given that the spherical
ecomposition might remove signal components in higher order than L4
r L6. 

The training of the harmonization between S1 and S2 was performed
sing TP1 and TP2 of a subgroup of age-matched subjects for both sites
14 unique subjects at TP1 + 1 repeated scan at TP2 for a total of 15
atasets for both sites). For the harmonization of S3, the same subjects
rom S1 were used as reference. Due to the lower number of partici-
ants available at this site, scans obtained at multiple TPs at S3 were
sed for training harmonization. The training set of S3 consisted of 11
atasets from 7 unique subjects. Subsequently, the DKI model was fit
o the data before and after harmonization using FSL DTIFIT and the
rdinary least squares approach. This resulted in FA and MD maps, cor-
ected for Kurtosis effects, and MK maps. Physiologically implausible
K values, i.e. MK < 0 or MK < 3 were set to 0. To derive NODDI met-

ics, we employed the “microstructure diffusion toolbox ” ( Harms, 2017 )
 https://github.com/robbert-harms/MDT ) running on Python 3.8, and
UDA 10. The fit procedure was accelerated to less than 1 min per
ataset by employing a Titan XP GPU kindly donated to ADL from
VIDIA Corporation. From the NODDI fit, we considered the ODI, NDI
nd ISO maps. 
3 
tatistical analyses 

The harmonization performance in S2 and S3 were analyzed by cre-
ting a study specific template with the FSL TBSS ( Smith et al., 2006 )
egistration pipeline. Briefly, the FA maps of each subject were reg-
stered to a common space using a combination of FSL “FLIRT ” and
FNIRT ”, then MD, MK, ODI, NDI and ISO were co-registered accord-
ngly. Subsequent analyses included data of subjects not involved in
he harmonization step, allowing to evaluate the generalizability of the
ISH method beyond the unseen data. To qualitatively verify the effec-

iveness of the RISH harmonization procedure on the complete dataset,
he average RISH features of S1, S2 and S3 were derived for the two
hells individually. Next, the scaling between the RISH features of the
armonized and reference sites were evaluated before and after harmo-
ization, and their average value evaluated in a white matter mask (de-
ned as FA ≥ 0.2). To evaluate the similarity between the RISH scaling
etermined for the two data shells ( b = 1000, 2500s/mm 

2 ), the Pear-
on’s correlation between the corresponding scaling was determined. 

The effectiveness of the harmonization procedure at removing inter-
ite biases in FA, MD,MK, ODI and NDI was visualized with boxplots
f their average value in the whole brain mask. Two-sided t-tests were
sed to assess the significance of differences in DKI and NODDI metrics
etween subjects acquired at corresponding TPs at S1, S2 and S3 before
nd after harmonization. The t-tests were considered significant when
-values < 0.05 were observed (uncorrected). This analysis was also
epeated by considering the white and gray matter separately, and can
e found in the Supporting Information. 

Subsequently, voxel-level differences in FA, MD, MK, ODI and NDI
etween corresponding TPs of S1 and S2/S3 were assessed by means of
wo-sided t-tests with FSL randomize using 5000 permutations and the
hreshold-free cluster enhancement correction for multiple comparisons.
his analysis was not performed for the ISO map because it assumed very

ow values in the brain parenchyma. 
To investigate whether dMRI harmonization affects the magnitude of

ongitudinal changes in DKI metrics, data of S2 was registered to MNI
sing the same transformations derived to perform voxel-wise statis-
ics. Voxel-wise differences between corresponding scans at TP2 and
P1 were computed, averaged across all subjects of S2 and smoothed
ith a 5-voxels moving average to mitigate residual mis-registrations.
ubsequently, the longitudinal changes of FA, MD, MK, ODI and NDI be-
ore and after harmonization were compared by means of the Cohen’s d.
n addition to the RISH features harmonization, in this step we also con-
idered an additional harmonization method based on post-hoc statistics
Combat ( Fortin et al., 2018 )). 

esults 

The RISH features were computed independently for the data at
 = 1000s/mm 

2 and b = 2500s/mm 

2 . Fig. 1 shows the average RISH fea-
ures of the data acquired in each site with b = 1000s/mm 

2 before and
fter harmonization and their relative scaling against the reference site,
1. Before harmonization, the average cross-site scaling in white matter
s in the interval 0.99 – 1.02 for S2, and 0.82 – 0.93 for S3. Differences
p to ± 70% can be observed between S2 and S1 in L0 in the ventricles
nd the medial temporal area, in L2 at the interface between gray matter

https://github.com/ANTsX/ANTs
https://github.com/robbert-harms/MDT
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Fig. 1. Harmonization of data at b = 1000s/mm 

2 . Images on the left show the RISH features of all three sites before and after harmonization (H[]). Images on the 
right side show the voxel-wise scaling between the RISH features of the S2 or S3 site and the reference site, S1. A value of 1 (white color) indicates being identical 
to the reference site. Before harmonization, large scaling can be observed for L0 in periventricular regions, and in L2 and L4 in frontal and occipital regions. 
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GM) and cerebrospinal fluid (CSF), and in L4 in the inferior frontal lobe
nd occipital lobe. Similar patterns were observed also between S3 and
1 but with larger magnitude. After harmonization, the average cross-
ite scaling in white matter remains close to 1 for S2 (1.01 – 1.04), and
s consistently closer to 1 for S3 (0.94 – 1.00), and most scaling differ-
nces in RISH features were removed, especially for L0 and L4. Residual
arge differences can be spotted in the average L2 ratio maps, but mostly
n GM and CSF areas. When looking at whole brain histograms of the
ISH features corresponding to b = 1000s/mm 

2 , which are reported in
upporting Information Figure S1, it can be clearly observed that the
istributions of RISH features across-sites are more similar after harmo-
ization, albeit some residual differences can be observed in L0 and L4
f S3. 

The results of the same comparison for the shell at b = 2500s/mm 

2 

re visualized in Fig. 2 . Before harmonization, inter-site scaling patterns
hat are similar to those in Fig. 1 can be observed, with average values
n WM in the interval 1.00 – 1.05 for S2, and 0.89 – 0.97 for S3. In
omparison to the results shown in Fig. 1 , the harmonization procedure
ffectively removed most of the inter-site differences in RISH features
ncluding L6, despite suboptimal results in L2 for S3 in CSF and GM re-
ions. After harmonization, the average cross-site scaling in white mat-
er at TP1 is close to 1 (1.03–1.04 for S2, 0.98–1.07 for S3). Average
istograms of RISH features at b = 2500s/mm2, shown in Supporting
nformation Figure S2, confirm that the distribution shape and average
alues of RISH features across-sites are closer after harmonization. 

Overall, very similar patterns were observed when comparing the
caling of the RISH features of the b = 1000s/mm 

2 shell to those of
he data shell at b = 2500s/mm 

2 . The Pearson correlation coefficients
etween the RISH features scaling of the b = 2500s/mm 

2 shell and of
he b = 1000s/mm 

2 shell of S2 were 0.71 for L0, 0.71 for L2 and 0.74
or L4, respectively. For S3, Pearson correlation coefficients were 0.72
or L0, 0.85 for L2 and 0.86 for L4, respectively. 

Having established that the individual shells are effectively harmo-
ized using the RISH method, we investigated how harmonization af-
ects the comparability of DKI and NODDI metrics across sites. Fig. 3
hows the FA, MD, MK, ODI and NDI values averaged across a whole
rain mask before and after harmonization at each of the TPs. Signifi-
4 
ant differences were observed before harmonization for all TPs in FA,
D,MK and ODI between S1 and S2 ( p ≤ 0.005) and between S1 and S3

 p ≤ 0.005), and NDI at TP2 ( p ≤ 0.05). After harmonization, most statis-
ical differences were no longer significant ( p ≥ 0.05) except for residual
ifferences at TP1 between S1 and S3 for FA and MD, although, as the
gures show, the harmonized values were closer to the values of S1 than
he non-harmonized values. On the contrary, harmonization seemed less
ffective on NDI at TP3, for which differences between S1 and S2/S3
ere only observed after harmonization ( p ≤ 0.05). When looking at
M and GM separately (Supporting Information Fig. S3 and S4), sig-

ificant differences in both DKI and NODDI metrics were successfully
emoved in WM, whereas residual differences can be observed in GM. 

The results of the voxel-wise comparison of FA, MD, MK, ODI and
DI between S1 and S2 are shown in Fig. 4 . Before harmonization, FA
alues of S1 were statistically lower than that of S2 in several clusters
hroughout the brain at all TPs, both in GM and in WM regions such as
he corpus callosum and the internal capsule. A cluster with lower MD
alues of S1 was observed in the left internal capsule at TP1 only. Re-
arding MK, larger values of S1 were observed in the left corticospinal
ract and temporal WM. Differences were also observed in NODDI met-
ics, particularly lower values of ODI and NDI for S1 as compared to S2
t TP1, especially in the right corticospinal tract and temporal WM. After
armonization, differences in FA and MD were completely removed for
P1 and TP2, and reduced by 98.7% and 97.5%, respectively, at TP3.
he number of voxels exhibiting statistically different MK values was
educed after harmonization by 100% at TP1, 79.9% at TP2, and 91.9%
t TP3. Regarding NODDI metrics, the best results were observed for
DI, for which no significant voxels were observed after harmonization.
hen looking at ODI, originally observed significant results (S2 > S1)
ere completely removed from harmonization at all TPs. However, the
pposite effect (S1 > S2) could be observed at TP2 and TP3, although
ostly in the corpus callosum next to the ventricles, or in areas affected

y susceptibility artefacts. 
Fig. 5 reports the results of the same voxel-wise analysis, only now

omparing between S1 and S3. Before harmonization, statistically lower
A values, higher MD values, higher MK values, higher ODI values and
ower NDI values of S1 were observed in 27.2%, 17.3%, 6.3%, 22.7%
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Fig. 2. Harmonization of data at b = 2500s/mm 

2 . Images on the left show the RISH features of all three sites before and after harmonization (H[]). Images on the 
right side show the voxel-wise scaling between the RISH features of the S2 or S3 site and the reference site. In analogy to Fig. 1 , harmonization effectively removes 
the large scaling observed in frontal and occipital regions of both S2 and S3. 
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Table 2 

The effect of RISH and ComBat harmonization on the average FA, MD,MK, 
ODI and NDI values of S2 ± standard deviation at TP1 and TP2 determined 
in a WM mask (FA ≥ 0.2). The third and fourth columns show the relative 
percentage change between TP2 and TP1 ( ΔTP) and the corresponding ef- 
fect size (Cohen’s d). 

TP1 TP2 𝚫TP [%] Cohen’s d 

FA 

Original 0.298 ± 0.023 0.290 ± 0.021 − 2.7 − 0.084 ± 0.333 
RISH 0.280 ± 0.012 0.273 ± 0.013 − 2.5 − 0.085 ± 0.341 
ComBat 0.287 ± 0.012 0.279 ± 0.012 − 2.8 − 0.088 ± 0.346 
MD 

Original 8.87 ± 0.04 8.97 ± 0.04 1.1 0.042 ± 0.348 
RISH 9.00 ± 0.02 9.12 ± 0.03 1.3 0.052 ± 0.366 
ComBat 8.99 ± 0.02 9.10 ± 0.03 1.2 0.044 ± 0.367 
MK 

Original 0.82 ± 0.03 0.83 ± 0.02 1.2 0.064 ± 0.359 
RISH 0.83 ± 0.02 0.84 ± 0.02 1.2 0.058 ± 0.363 
ComBat 0.83 ± 0.02 0.84 ± 0.02 1.2 0.067 ± 0.368 
ODI 

Original 0.26 ± 0.01 0.27 ± 0.01 3.3 0.102 ± 0.326 
RISH 0.27 ± 0.01 0.28 ± 0.01 3.5 0.108 ± 0.329 
ComBat 0.27 ± 0.01 0.28 ± 0.01 3.3 0.106 ± 0.335 
NDI 

Original 0.58 ± 0.02 0.59 ± 0.02 1.8 0.098 ± 0.345 
RISH 0.58 ± 0.02 0.59 ± 0.02 2.1 0.108 ± 0.356 
ComBat 0.58 ± 0.02 0.59 ± 0.02 1.7 0.101 ± 0.357 

d  

o
 

s  

a  

b  

fi  
nd 2.2% of the brain voxels at TP1, 25.2%, 17.9%, 10.3%, 16.9% and
.9% at TP2, and 27.4%, 18.0%, 15.0%, 24.7% and 3.9% at TP3, re-
pectively. Most differences in FA were located in WM in the superior
arietal lobe, corticospinal tract, frontal and occipital WM, as well as at
he WM/GM interface. Regarding MD, most differences were observed
n the corticospinal tract and in both frontal and occipital WM. After har-
onization, most of the statistically significant differences in FA, MD,
K, ODI and NDI disappeared, reducing the percentage of significantly

ifferent brain voxels at TP1/TP2/TP3 to 0.1%/0.1%/0.1% for FA,
.2%/0.2%/0.2% for MD, 0.1%/0.4%/0.7% for MK, 0.9%/0.2%/0.4%
or ODI, and 0.1%/0.2%/0.1% respectively. On the other hand, harmo-
ization seemed to introduce some differences in opposite direction in
DI at TP2 (0.5% of brain voxels) and TP3 (0.1% of brain voxels), and
DI at TP3 (2.7% of brain voxels). 

Taking advantage of the presence of multiple TPs in the acquired
ataset, we investigated the impact of the RISH based, and ComBat har-
onization approaches on longitudinal changes of FA, MD, MK, ODI

nd NDI of S2 at the voxel level ( Fig. 6 ). Spatially varying patterns of
oth increase and decrease in all considered metrics were observed be-
ore harmonization, and remained mostly unchanged after harmoniza-
ion with both the RISH and ComBat methods as shown in Table 2 . 

iscussion 

In this manuscript, we investigated the effectiveness of the recently
roposed RISH features based harmonization method ( Cetin Karayumak
t al., 2019 ) when applied to a multi-shell dMRI acquisition scheme. By
valuating DKI metrics before and after harmonization, we show that the
armonization of individual shells based on the RISH method effectively
armonizes MD, FA and MK across datasets acquired in 3 different sites.
urthermore, the method seems also promising to harmonize NODDI
etrics across sites, although less effectively than DKI metrics. We also
5 
emonstrate that harmonization preserves the magnitude and variance
f changes in DKI and NODDI metrics between timepoints. 

The results of this manuscript have several implications for the de-
ign and analysis of studies based on multi-site dMRI acquisitions, which
re becoming increasingly important to perform robust inference or test
iological hypotheses with subtle effects on the diffusion metrics. Our
ndings support previous studies suggesting that both DKI and DTI met-
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Fig. 3. The boxplots of fractional anisotropy (FA), mean diffusivity (MD), mean kurtosis (MK), orientation dispersion index (ODI) neurite density index (NDI) and 
isotopic volume fraction (ISO) for S1, S2 and S3 at TP1, TP2 and TP3 before and after harmonization (H[S2] and H[S3]). The black dashed line indicates the average 
value of S1 for reference. Yellow, blue and green dots represent the average value of the considered diffusion metrics for S1, S2 and S3, respectively. The red dots 
indicate the average value of each site. The asterisks indicate significant differences between sites: ∗ = p ≤ 0.05; ∗ ∗ = p ≤ 0.005. After harmonization, most significant 
cross-site differences are effectively removed, except for small residual differences for FA and MD of S3 at TP1, ODI at TP1 and NDI at TP3. 
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ics exhibit moderate to large inter-site differences. Here, we add that
ite differences in metrics are significant even when using MRI scanners
rom the same vendor and with an almost identical acquisition proto-
ol, and that cross-site differences also affect NODDI quantifications. We
ound differences in scaling up to more than 70% between the RISH fea-
ures of S2/S3 and S1, especially in the frontal and posterior region of
he brain, and at tissue interfaces ( Fig. 1 and Fig. 2 ). This pattern of dif-
erences, which likely originates from a combination of site-dependent
oil sensitivity properties and inhomogeneities in the receive and trans-
it field, hardware differences in gradient systems and / or spectrom-

ters, causes regional differences in DKI metrics across sites ( Fig. 4 ,
ig. 5 ). Such differences are likely to confound whole brain analyses if
ot accounted for with a voxel-based harmonization method. In a voxel-
ise analysis, inter-site differences might be taken into account as an
dditional explicit regressor, but will inevitably affect statistical power.
nterestingly, the RISH scaling factors determined for b = 1000s/mm 

2 
6 
 Fig. 1 ) and b = 2500s/mm 

2 ( Fig. 2 ) exhibited remarkable similarity
ith Pearson’s correlation values up to 0.84, supporting the idea that

he RISH-based method effectively captures acquisition-hardware re-
ated differences. In practice, our result suggests that the RISH harmo-
ization method might be beneficial not only for retrospective studies,
ut also for prospective studies where residual inter-scanner differences
ight manifest despite harmonized acquisition protocols. For this rea-

on, we believe this method is relevant to the analysis of data acquired
n large multi-site cohorts as the UK BioBank or ADNI, among others. 

The RISH-based harmonization method effectively addresses the site-
ependence of multi-shell dMRI, reducing the inter-site differences in
ISH features between 3 sites ( Fig. 1 , Fig. 2 ). Before harmonization,
ross-site differences in RISH features increased with the considered
ISH order, being minimal with L0 and maximal with L6. The higher or-
er RISH features capture high frequency fluctuations of the signal, such
s diffusion anisotropy and noise. The larger site differences in L6 might
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Fig. 4. Voxel-wise analysis of group differences between S1 and S2, before and after harmonization. The different rows present voxels with significant site-difference 
( p < 0.05 in a voxel-wise t -test with threshold free cluster correction) when comparing FA, MD, MK, ODI and NDI of S1 to those of S2 before harmonization (in red), 
and after harmonization (in blue). After harmonization, most significant cross-site differences are removed. Clusters of residual significant voxels (highlighted with 
blue arrows) can be observed for FA at TP3 in the occipital gray matter, for MK at TP2 and TP3 mostly in the centrum semi-ovale and temporal WM, and for ODI 
mostly in the ventricles and in temporal WM. 
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herefore suggest cross-site differences to be driven by differences in dif-
usion sensitization (e.g., diffusion time) due to, for example, different
radient hardware. This may lead to different sensitivity to diffusion
nisotropy and restriction effects, in addition to cross-site differences in
ffective signal to noise ratio. Integrating denoising strategies in the data
re-processing may provide further insights into the relative contribu-
ions of noise to cross-site differences, and deserves further attention in
uture works as a potential means to remove some of the site differences
rior to harmonization. 

The RISH method can be considered as part of the dMRI pre-
rocessing steps and only needs to be applied once for each diffusion
eighted shell. The RISH method learns cross-site differences only us-

ng data of matched controls, and can then be used to harmonize data
7 
f target groups (e.g., patients) without any further requirements on the
ize, demographics or clinical characterization of the target group. This
s an important advantage compared to other multi-site harmonization
pproaches such as meta-analysis or ComBat, which must be applied
eparately for every statistical inference and for every dMRI measure.
oreover, these methods are sensitive to differences (e.g., demographic)

etween groups of interest ( de Brito Robalo et al., 2021 ) (e.g., patients
s controls). Unlike the RISH based technique, such methods harmonize
ach dMRI metric independently not considering the intrinsic mathe-
atical relation between different dMRI metrics. These methods also
o not account for spatially varying inter-site differences but rather for
ulk effects only, and can be technically challenging to apply at the voxel
evel in large datasets due to large memory requirements. Another point
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Fig. 5. Voxel-wise analysis comparing S1 and S3 before and after harmonization. The different rows present voxels with significant site-difference ( p < 0.05 in a 
voxel-wise t -test with threshold free cluster correction) when comparing the FA, MD, MK, ODI and NDI of S1 to those of S3 before harmonization in red, and after 
harmonization in blue. After harmonization, most significant cross-site differences are removed. Clusters of significant voxels can be observed for FA at TP3 in the 
bilateral hippocampi and temporal GM, for MK at TP3 in the left frontal WM, for ODI in temporal WM, and for NDI in frontal and parietal WM. Residual differences 
are highlighted with blue arrows. 
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o be considered when comparing harmonization methods, is that sta-
istical harmonization methods need to be reapplied every time a new
atapoint is added or removed from a study. Should a new subject be
dded to (or discarded from) the study, the DKI metrics of the remaining
ubjects would not change with the RISH-based harmonization, whereas
hey would require recalculation and would change with ComBat to cal-
ulate the new site average, which is then matched across sites. 

An important desired feature of any harmonization method is that
t should not alter the relation between the collected dMRI data and
otential effects of interest. To date, most studies on dMRI harmoniza-
ion focused on showing the removal of inter-site biases in DTI metrics
 Cetin Karayumak et al., 2019 ; Dewey et al., 2019 ; Mirzaalian et al.,
8 
016 ; Ning et al., 2020 ; Pomponio et al., 2020 ; St ‐Jean et al., 2020 ),
ut this does not guarantee that the abovementioned condition is ful-
lled. Recently, we have shown that the RISH method can effectively
armonize data of patients with cerebral small vessel disease while not
ltering intra-site differences between patients and matched controls
 de Brito Robalo et al., 2021 ). The design of this study offers an op-
ortunity to investigate this aspect in the context of multi-shell harmo-
ization, because it involves participants acquired longitudinally in a
ifespan characterized by rapid changes in DKI metrics. In Fig. 6 and
able 2 , we reported changes in DKI metrics between consecutive time-
oints of the data acquired in S2. With the non-harmonized data, we
bserve that TP2 is characterized by higher MK values than TP1 in the
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Fig. 6. The average FA, MD, MK, ODI and NDI maps for S2 at TP1 and the overlay of their effect sizes when comparing TP2 to TP1 before harmonization (Original, 
first row), after RISH harmonization (second row) and after ComBat harmonization (third row). The effect size was determined voxel-wise, smoothed and only effects 
with absolute value above 0.2 were shown. Both harmonization methods performed similarly and did not generally influence the patterns of longitudinal changes in 
diffusion metrics. Some differences between the RISH method and data before harmonization can be observed for MK in the frontal part of the corpus callosum. 
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orpus callosum and thalamus, and lower MK values in the internal cap-
ule and frontal WM. Interestingly, we observed opposite changes in FA
regardless of harmonization or site effects), which is different from pre-
ious literature ( Lebel et al., 2008 ; Tamnes et al., 2018 ). This discrep-
ncy might be explained by the fact that FA derived with the DKI fit is
ensitive to slightly different physiological mechanisms than the FA de-
ived with the DTI fit 36 . The harmonization with the tested RISH-based
ethod did not alter the sign and patterns of longitudinal intra-subject

hanges, which demonstrates preservation of the longitudinal relations
etween DKI metrics and biological effects. In this analysis, the RISH-
ased method performed remarkably similar to ComBat. Of note, how-
ver, the first was trained on a small subset of subjects mostly from TP1,
hereas the latter used all available data from all TPs for harmonization.
ome changes of longitudinal effects can be observed in the anterior part
f the corpus callosum for both FA and MK, which suggests a potential
ffect of susceptibility artefacts on the performance of the RISH-based
ethod, although on average this effect can be deemed minor ( Table 2 ).

The harmonization of individual dMRI shells with the RISH method
as been previously proven to harmonize DTI metrics when fitting each
hell separately 15 . The method has also been shown promising to har-
onize DKI metrics derived from a multi-shell fit 13 , but only in a group

f subjects repeatedly acquired with different MRI scanners. Conversely,
n this work we investigated this concept on a broader dataset including
ifferent subjects acquired in 3 sites with very similar dMRI protocols
except for the multi-band and SENSE acceleration), which is arguably a
ore challenging task and closer to expected application. Furthermore,
e evaluated the effectiveness of the RISH method to also harmonize
etrics derived with the popular NODDI model. On average, cross-site
ifferences are effectively removed by the RISH harmonization method,
9 
s shown in Fig. 3 . This further generalizes at the voxel level, as shown
n Fig. 4 and Fig. 5 , although some clusters of residual statistical dif-
erent voxels can be observed after harmonization for the MK of S2 at
P2 and TP3, and for the MK of S3 at TP3, as well as for ODI of S2
t TP2 and TP3, and NDI of S3 at TP3. Given that TP2 and TP3 were
ot included in the training of the harmonization of S2, and taking into
ccount the relatively long time between TP1 and TP3 (approximately
ne year), this result supports that the RISH training can be performed
nly once when the aim is to derive DKI metrics, provided no major
ardware changes occurred, posing the basis for large multi-site data
ooling to perform robust statistics of DKI metrics. At the same time,
he performance of the method seems to degrade when comparing re-
ults at TP1 with TP3, which might be due to subtle changes in the ac-
uisition hardware in the one year between the scanning sessions (e.g.,
oftware updates, recalibrations). This seems particularly the case for
he NODDI model, and might be due to increased sensitivity to such
ardware changes, or to higher scan-rescan variability of NODDI met-
ics as compared to DKI ( Chung et al., 2016 ; Konieczny et al., 2021 ;
ehmann et al., 2021 ), perhaps due to its reliance on a relatively com-
lex fit procedure and on fit constraints that might not be appropriate
or all brain tissues ( Lampinen et al., 2019 ). Notably, residual differ-
nces in NODDI metrics post-harmonization were mostly observed for
he site with the least training subjects and the lowest data quality (S3),
nd might thus be more the result of limitations in study design than of
he RISH method itself. Accordingly, future work should further investi-
ate whether harmonization needs to be trained only once for each site,
r whether the training should be periodically repeated to account for
ossible changes of data quality over time. An alternative explanation
or the observed residual differences would be that subjects from differ-
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nt sites follow different development trajectories. However, this seems
nlikely given that participants were closely age matched across sites at
ll timepoints, reason why we believe a change in image quality across
imepoints to be the most likely explanation for the observed residual
ifferences. 

Some limitations of this study should be acknowledged. The three
ncluded scanners were similar, but differed in gradient systems, gener-
tion of spectrometers, software versions and capabilities (e.g., multi-
and), allowing us to showcase the need for harmonization even when
sing hardware from a single vendor and almost identical acquisition
arameters. On the other hand, however, this design did not allow us
o evaluate the effectiveness of our method to harmonize multi-shell
MRI across different vendors. The effectiveness of the RISH method
ssentially depends on the maximum order of spherical harmonics that
an be fitted to the data. The acquisition of at least 15 unique direc-
ions per-shell is needed to fit spherical harmonics of order 4, which
s the minimum requirement to capture anisotropy details beyond the
iffusion tensor. In this study, for example, we have discarded 10 out
f 13 data shells originally acquired in the REPIMPACT study featur-
ng less than 15 directions, although their inclusion would have likely
een beneficial to improve the quality of fit. On the other hand, fu-
ure studies should investigate which order of spherical harmonics is
eeded to effectively represent data acquired at small diffusion weight-
ng, given that the angular resolution of dMRI data decreases with the
iffusion weighting. Should harmonics of order 0 or 2 prove sufficient,
his would be beneficial for the application of methods such as spec-
ral intra-voxel incoherent motion ( De Luca et al., 2018 ) and free-water
 Pasternak et al., 2009 ) relying on the acquisition of a small number
f directions at multiple diffusion weightings. The minimum number of
irections to acquire per shell essentially depends on the desired appli-
ation. In this work, spherical harmonics of order 4 ( b = 1000s/mm 

2 )
nd 6 ( b = 2500s/mm 

2 ) have proven sufficient to preserve the qual-
ty of the DKI fit, but these values would have been likely suboptimal
o further apply methods such as spherical deconvolution. For this rea-
on, we suggest to acquire at least 45 unique directions per shell to
t spherical harmonics of at least order 8 ( Tournier et al., 2007 ). Of
ote, DKI, NODDI or even some methods to quantity fiber orientations
 Baete et al., 2019 ; Guo et al., 2020 ; Morez et al., 2021 ; Yeh et al., 2010 )
an also be applied to data acquired with non-shelled protocols, e.g., ac-
uiring many diffusion weightings along few directions, similar to MAP-
RI ( Özarslan et al., 2013 ) or CHARMED ( Assaf and Basser, 2005 ), but

hese schemes are not compatible with the RISH method at this stage. An
spect which remains unclear is to which extent the RISH method can
olerate differences in acquisition protocols while still effectively harmo-
izing multi-shell data. In a recent study in patients with small vessel
isease, we have shown that the RISH method could well harmonize
TI metrics derived from dMRI data collected in 5 centers with differ-
nt MRI vendors, echo time, imaging resolution and diffusion weighting
 de Brito Robalo et al., 2021 ). However, this is unlikely to be directly
ranslatable to multi-shell protocols, given methods such as DKI and
ODDI are likely more sensitive than DTI to differences in SNR, com-
artment weighting due to different echo times, and in how diffusion
s effectively weighted (e.g., long weak gradients vs short strong gradi-
nts). 

Despite the use of research dedicated MRI scanners, the data of
ne of the acquisition sites were characterized by the presence of non-
egligible artefacts (S3). This represents, however, a real use case for
he harmonization procedure, which overall performed remarkably well
espite these limitations. Another aspect to be considered is the num-
er of subjects needed to properly train the harmonization in order to
verage out individual trainings and only remove hardware related dif-
erences. Previous work has shown that at least 16 healthy controls –
atched for age, sex and any other relevant covariate – should be used

or this step. Given the nature of our study sample, we did not consider
ex or education as additional covariates during harmonization train-
ng, but these and other relevant factors should be properly balanced
10 
n the training groups when studying broader populations to ensure no
iases are introduced in subsequent analyses. Furthermore, we used 15
atasets including multiple acquisitions of some subjects to train the
armonization of S1, but only 11 datasets from 4 subjects to train the
armonization of S3. While this approach is arguably suboptimal, our
esults suggest that including data from multiple time points in the train-
ng might be a reasonable compromise to achieve proper harmonization
hen a limited number of unique subjects is available. Such scenarios
ay also arise, for example, when harmonizing data of retrospective

tudies where there is only a partial overlap in demographic character-
stics of controls such as age and sex across sites. Of note, this approach
eemed particularly suited to the harmonization of DKI metrics, whereas
esidual differences in NODDI metrics post-harmonization of S3 but not
f S2 suggest the need for a larger number of unique subjects during
raining to effectively harmonize NODDI metrics. Finally, in this study
e employed a linear least-squares fit for the kurtosis tensor, which

s sensitive to the presence of outliers and artefacts in the data. The
se of more advanced fitting methods based on weighted least squares
 Veraart et al., 2013 ) or outlier rejection ( Tax et al., 2015 ; Zhang et al.,
019 ) might further improve the comparability of inter-site data. 

In conclusion, in this work we have shown that harmonizing individ-
al diffusion weighted shells effectively attenuates inter-site offsets in
KI and NODDI metrics, yet does not alter their changes over longitu-
inal acquisitions. Altogether, our results suggest that the RISH harmo-
ization method is suitable to pool multi-center dMRI data to increase
ample sizes for multi-shell analyses, provided the data were acquired
ith comparable acquisition protocols. 
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