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Abstract 

Background  To study deep learning segmentation of knee anatomy with 13 anatomical classes by using a magnetic 
resonance (MR) protocol of four three-dimensional (3D) pulse sequences, and evaluate possible clinical usefulness.

Methods  The sample selection involved 40 healthy right knee volumes from adult participants. Further, a recently 
injured single left knee with previous known ACL reconstruction was included as a test subject. The MR protocol con‑
sisted of the following 3D pulse sequences: T1 TSE, PD TSE, PD FS TSE, and Angio GE. The DenseVNet neural network 
was considered for these experiments. Five input combinations of sequences (i) T1, (ii) T1 and FS, (iii) PD and FS, (iv) T1, 
PD, and FS and (v) T1, PD, FS and Angio were trained using the deep learning algorithm. The Dice similarity coefficient 
(DSC), Jaccard index and Hausdorff were used to compare the performance of the networks.

Results  Combining all sequences collectively performed significantly better than other alternatives. The following 
DSCs (±standard deviation) were obtained for the test dataset: Bone medulla 0.997 (±0.002), PCL 0.973 (±0.015), ACL 
0.964 (±0.022), muscle 0.998 (±0.001), cartilage 0.966 (±0.018), bone cortex 0.980 (±0.010), arteries 0.943 (±0.038), 
collateral ligaments 0.919 (± 0.069), tendons 0.982 (±0.005), meniscus 0.955 (±0.032), adipose tissue 0.998 (±0.001), 
veins 0.980 (±0.010) and nerves 0.921 (±0.071). The deep learning network correctly identified the anterior cruciate 
ligament (ACL) tear of the left knee, thus indicating a future aid to orthopaedics.

Conclusions  The convolutional neural network proves highly capable of correctly labeling all anatomical structures 
of the knee joint when applied to 3D MR sequences. We have demonstrated that this deep learning model is capa‑
ble of automatized segmentation that may give 3D models and discover pathology. Both useful for a preoperative 
evaluation.
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Background
Digital image segmentation involves the labeling of each 
pixel or voxel into different regions which exhibit the 
same set of attributes. When applied to medical images, 
these segmentations may support surgical planning, pro-
mote patient empowerment, aid students in education 
through augmented or virtual reality visualization, pro-
vide input for three-dimensional (3D) printing and be the 
initial step to achieve surgical simulators using personal 
data [1–3]. Furthermore, it may be implemented as a tool 
for diagnostic interpretation, allowing precise volume 
estimation and tissue localization in three spatial dimen-
sions [4–6].

The diagnosis of knee injuries relies on a summary of 
the information collected through injury history, imag-
ing and clinical examination. However, the most specific 
knee instability tests require numerous repetitions and 
training in order to achieve the skills warranted and there 
are numerous examples in the clinical world that some of 
these knee injuries are diagnosed years after the original 
knee incident [7]. Recent research has identified artificial 
intelligence (AI) as a tool to predict the need for over-
night hospital stays in ligament surgery and total knee 
arthroplasty (TKA) [8]. AI has also contributed to new 
advanced treatments of meniscus injuries [9]. Orthope-
dic surgery has made significant progress by adapting 
new techniques as arthroscopy in the last century and 
machine learning possess another potential for a ground 
breaking shift towards optimal treatment. The first step 
is to delineate normal anatomy and explore the potential 
of this tool to reveal knee pathology in order to initiate 
therapeutic handling as early as possible.

Most commonly, the annotation of MR images involves 
manual labeling of gray scale image data. Although estab-
lished semi-automated methods such as region-growing, 
intensity thresholding, and logical operators contribute 
to manual annotation efficiency, it is time-consuming 
and labor expensive. With the advancement of artificial 
intelligence and machine learning methods, the possibil-
ity of rapidly yielding accurate automatic segmentations 
of medical images is introduced [4, 10]. In radiology, 
convolutional neural network (CNN) algorithms have 
proven to be a technique ideally suited for image-based 
tasks such as segmentation, object detection, classifica-
tion, and image generation, among others [10–13].

The performance of CNNs is not only related to the 
algorithms themselves but also depends on the avail-
ability of image features and contextual information in 
the datasets applied [14, 15]. The quality and quantity 
of the grayscale images and of the manually annotated 
ground truth definitions are therefore strongly related 

[16, 17]. The majority of studies regarding deep learn-
ing segmentation of joints are based on datasets com-
prising protocols of either single or multiple channels of 
two-dimensional (2D) MR sequences [18–23]. The slice 
thickness in MRI is usually in the range of 1 - 3 mm. In 
addition, most datasets possess a limited number of 
anatomical classes defined in the ground truth, often 
narrowed down to bone, meniscus, and cartilage. Seg-
menting multiple tissues is important for a more com-
plete anatomical visualization [20, 24]. For virtual and 
augmented surgical simulators, the benefit of a complete 
knee segmentation furnishes realism and may aid in navi-
gating anatomical landmarks [25–29]. Segmenting all the 
different tissues is often a demanding task due to mor-
phological complexity, homogeneous intensities and class 
imbalance of data [30].

The rendering of an anisotropic multislice 2D MR scan 
has the disadvantage of a decreased through-plane reso-
lution [31]. For a more realistic spatial representation of 
all anatomical structures in three dimensions, it is rec-
ommended to operate with isotropic voxels of reasonably 
high resolutions [32, 33]. The hypothesis is that, in rela-
tion to neural networks, implementing a protocol con-
sisting of multiple MRI weightings exhibiting superior 
resolution will leverage the capacity of image features, 
leading to better results with more precise 3D models [1, 
4, 10, 14, 15, 34]. To further extend the contextual data 
availability, the ground truth extraction ought to be as 
complete as possible.

The main purpose of this work was to determine the 
performance of a convolutional neural network as a deep 
learning method to automatically segment musculoskele-
tal anatomy of the human knee for visualization. The ulti-
mate aim will be to use these models to make 3D models 
for preoperative planning, and use the model to detect 
pathology.

Materials and Methods
Magnetic Resonance Imaging
The study design involved retrospective interpretation of 
prospectively acquired data. Imaging was performed on 
a 1.5 Tesla whole-body MR system Philips Achieva soft-
ware release 3 (Philips), fitted with maximum strength 
gradients of 33 mT/m and a maximum slew rate of 160 
T m −1 s −1 (Nova gradients). A dedicated eight-channel 
knee coil was applied. The MR imaging protocol consists 
of four pulse sequences: T1 TSE, PD TSE, PD FS TSE 
and Angio GE, and all sequences following a 3D sam-
pling pattern. In comparison with the standard clinical 
knee protocol applied daily at the imaging center, the seg-
mentation protocol acquires four times the data points 
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(voxels) per examination. The essential imaging param-
eters of the sequences are presented in Table 1.

The gradient echo-based angio sequence [35] was 
scanned in the transversal plane for maximum inflow 
effects. This sequence was subsequently reconstructed 
into 400 slices in the sagittal orientation to match the 
exact geometrical features of the 3D TSE sequences. This 
specialized protocol requires approximately 40 minutes 
compared to the routine examination protocol, which is 
15-20 minutes. The imaging sequences T1, PD, FS and 
Angio are presented as axial projections in Fig. 1.

Sample selection and dataset
The right knee of 46 participants were scanned exclu-
sively for this study. The sample size was derived from 
experiences gained empirically during a preliminary pilot 
study prior to the commencement of this work [36]. An 
informed and written consent agreement regarding the 
handling of data was signed by all participants, along 
with the standard MRI safety sheet. The inclusion crite-
ria were adults with fused growth plates and without any 
known damage to the knee joint such as fractures, carti-
laginous wear, ligamentous tears, and meniscal damage. 
We excluded two subjects due to excessive movement 
during the scan. Also, three subjects revealed some 
apparent pathology and were thus removed. One subject 
was discarded due to significant wrap-around artifacts.

The included participants were divided into independ-
ent subgroups of 20, 5, and 15 for training, validation, 
and test dataset, respectively. The mean age of the volun-
teering participants in these subgroups were 36.7, 37.2, 
and 28.8 years (range: 21 - 75 years) and the ratio of men 
and women were 13:7, 2:3, and 2:3, respectively. The sin-
gle pathology case was female age 27. The research was 
approved by the Norwegian Regional Committee for 
Medical and Health Research Ethics (REK nr. 61225). The 
study is performed in accordance with the ethical stand-
ards of the 1964 Helsinki declaration and its later amend-
ments or comparable ethical standards.

The DICOM images were initially anonymized and 
converted to the NIfTI format. For the network to oper-
ate correctly, it is imperative that each individual scan 
has all four input channels co-registered. The ITK-SNAP 
[37] and NordicICE 4.2.0 (NordicNeuroLab) software 
packages were used to create the manual ground truth 
of the 40 healthy participants. The manual segmenta-
tions (ground truth) consists of 13 classes including bone 
medulla, posterior cruciate ligament (PCL) anterior cru-
ciate ligament (ACL), cartilage, meniscus, cortical bone, 
collateral ligament, tendon, adipose tissue, artery, vein, 
nerve, and muscle, shown in Fig. 1e. The manual ground 
truth annotation was performed using selected images 
from each of the four MR sequences depending on which 
tissue to annotate, taking advantage of the inherent 

Table 1  MR protocol imaging parameters. PD = Proton Density, FOV = Field of View, TSE = Turbo Spin Echo, TR = Repetition Time, TE 
= Echo Time, NSA = Number of Signal Averages, Refoc. ctrl = Refocusing control

Parameter T1 TSE PD TSE PD FS TSE Angio GE [25]

Scan mode 3D 3D 3D 3D

Imaging plane Sagittal Sagittal Sagittal Transversal

FOV 160 mm in 3D 160 mm in 3D 160 mm in 3D 160 mm in 3D

Acquisition voxel size 0.5×0.6×0.4 0.5×0.6×0.4 0.5×0.6×0.4 0.8×0.8×0.4

Recon voxel size 0.4×0.4×0.4 0.4×0.4×0.4 0.4×0.4×0.4 0.4×0.4×0.4

Slices 400 400 400 400

Sense factor 2.5 (AP), 2 (RL) 2.5 (AP), 2 (RL) 2.5 (AP), 2 (RL) 4 (AP)

TSE factor 30 100 100 NA

TFE factor NA NA NA 256

Shot interval NA NA NA 3233 ms

Profile order NA NA NA Low-high

Turbo direction NA NA NA Radial

Flip angle 60 refoc. ctrl 60 refoc. ctrl 60 refoc. ctrl 90

TR 600 ms 3000 ms 3000 ms 5.4 ms

TE 30 ms 30 ms 30 ms 2.7 ms

NSA 3 2 2 3

Fat suppression No No SPAIR SPIR

Scan time 10:10 min 10:09 min 10:09 min 06:06 min
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intensity and contrast characteristics of each sequence. 
For example the PD FS sequence allowed easier annota-
tion of cartilage, while the Angio sequence was mainly 
used for vessels. A feature of the annotation software uti-
lized allowed for making a final multiple tissue ground 
truth by merging the individual tissue ground truths, 
which in turn reduced the overall manual annotation 
time. Ground truth annotation of all tissues segmented in 
this work can be performed using the T1 TSE sequence 

exclusively, but with considerably longer time spent for 
the manual annotation. These annotations were crafted 
by a clinical medical physicist, and validated by a radi-
ologist, both holding over 25 years of experience in their 
respective fields of work.

Neural network
Over the recent years, several platforms facilitating 
the development of deep learning neural networks for 

Fig. 1  (a) Axial T1 TSE, (b) Axial PD TSE, (c) Axial PD FS TSE (d) Axial Angio GE, (e) Manually annotated ground truth, (f) Volume view of the 3D 
imaging planes (TSE = Turbo Spin Echo. FS = Fat Saturated)

Fig. 2  The neural network architecture
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medical imaging have emerged from the artificial intel-
ligence community [10, 38]. One of these is NiftyNet 
[39]-an open-source neural networks platform based on 
the Tensorflow framework. We have used the DenseVNet 
convolutional neural network (CNN) for automated knee 
MR image segmentation, and the network architecture is 
presented in Fig. 2.

We present the network hyper parameters for train-
ing and inference in Table  2. These parameters are 
detailed in the configuration manual of NiftyNet [40]. 
The requirement of spatial window size for DenseVNet 
is set equally divisible by 2 * dilation rates [41]. The 
dilation rate variable was set to the default value 4, 
resulting in a mandatory patch size equally divisible 
by 8. The image patch 320× 320× 320 is taken from 
each image with batch size one as the input for the 
network. The image volume is down sampled using 
convolution with stride 2, and an average pooling to 

160× 160× 160 from the input. At the decoder level, 
there were three dense feature stack (DFS) blocks that 
outputs a skip connection with a convolution with 
stride 1, and a convolution with stride 2 for down-
sampling the spatial size. Finally, the skip connection 
channels of the second DFS block and the bottle-neck 
layer channels were up-scaled to the half spatial size of 
the input shape. All the output channels (average pool-
ing and skip connections) were concatenated and con-
voluted to get a single channel output. The Parametric 
rectified linear unit (PReLU) [42] was chosen as acti-
vation function. A combination of dice loss with cross 
entropy loss (DicePlusXEnt) [43] was applied as the 
loss function. A constant learning rate [44] of 0.0001 
was utilized throughout the training. Data augmenta-
tion was achieved through random flipping axes, elas-
tic transformations and random scaling [45]. In order 
to maximize network quality performance, the patch 
size was kept as large as possible without exceeding 
system video memory.

The following computer hardware components were 
acquired for training the network: AMD Ryzen 3900X 
12-core CPU, Corsair 128 GB DDR4 memory, and a 
single NVIDIA TITAN RTX 24GB GPU.

Validation metrics
The correctness of deep learning segmentation out-
puts can be measured using the confusion matrix 
which consists of true positive (TP), false positive (FP), 
false negative (FN), and true negative (TN). One of 
the most commonly used metrics is the Dice similar-
ity coefficient (DSC) [46, 47]. DSC measures similari-
ties between the manually segmented ground truth and 
the automated deep learning predicted segmentation, 
defined by

Table 2  Selected hyper parameters for training and inference

Parameter Training Inference

Window size 320, 320, 320 400, 400, 400

Activation function PRelu

Loss type DicePlusXEnt

Normalization Histogram Histogram

Window sampling Weighted Weighted

Volume padding 24, 24, 24 0, 0, 0

Learning rate 0.0001

Random flipping axes (0, 2)

Elastic transformation True

Rotation angle (-10, 10)

Scaling percentage (-10, 10)

Fig. 3  Evaluation of validation dataset by training different combinations of respective image channels ( T1 PDFS, T1PDFS, T1FS,
T1PDFSAngio)
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Fig. 4  The Dice score evaluation distribution of T1PDFSAngio by 15 subjects of the test dataset (a) Different combinations of MRI input data 
channels of I:T1, II:T1FS, III:PDFS, IV:T1PDFS, V:T1PDFSAngio versus averages of all classes of the test dataset (b) the individual anatomical classes 1. 
Bone medulla, 2. PCL, 3.ACL, 4.Muscle, 5.Cartilage, 6.Cortical bone, 7.Artery, 8.Collateral ligament, 9.Tendon, 10.Meniscus, 11.Adipose tissue, 12.Vein, 
13.Nerve
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The Jaccard index is defined as the intersection of AI pre-
diction and the manual segmentation over their union, 
that is

Hausdorff distance (HD) measures the distance between 
the manual segmentation and AI predicted segmentation 
surfaces. The Hausdorff distance defined by

where A and B are two surfaces, sup and inf represent the 
supremum and infimum, respectively [48].

We trained the deep learning network with different 
combinations of image channels to determine the effect 
of multiple MR weightings on segmentation results. The 
network was trained for approximately 14 days and ter-
minated at 25,000 iterations for each combination of 
input channels. The objective of the validation dataset 
was to determine the optimal iteration in which training 
should be terminated to avoid network overfitting. The 
mean Dice score of all label classes were determined for 
the validation dataset at intervals of one thousand itera-
tions. The iteration corresponding to the highest Dice 
score for each image channel combination was used to 
evaluate the test dataset. The results obtained from vali-
dating the individual combinations are shown as Supple-
mentary Fig. 1 in the Supplementary materials.

Results
Deep learning results
Our experiments indicate that the learning of the neu-
ral network varies depending on the combination of 
image channels, shown in Fig. 3. The input image chan-
nels T1PDFS and T1FS performs better than the T1 and 
PDFS sequence combinations. We recognize T1PDFSAn-
gio as the best performing model in comparison with the 
other combinations of sequences. The T1PDFSAngio 
model attained optimal learning at 21,000 iterations with 
the mean Dice score of 0.967 (±0.032) averaged across 
all 13 classes. The results of the remaining image channel 
combinations can be found in Supplementary Table 1 of 
the Supplementary materials.

The test dataset was evaluated at the optimal itera-
tion corresponding to the different image channel com-
bination models. We observed that the beneficial effect 
of combining image channels during validation is rein-
forced by the test dataset. The outcome is particularly 

DSC =
2TP

2TP+FP+FN
.

Jaccard =
TP

TP+ FP+ FN
.

HD(A,B) = max sup
a∈A

inf
b∈B

d(a, b), sup
b∈B

inf
a∈A

d(a, b) ,

pronounced when training all MR weightings, and the 
correlation between training different image channels 
collectively are presented in Fig.  4a. For example, the 
hypo-intense vascular tissue typically seen in T1 images 
were ineffective for the network to learn arteries and 
veins. However, we noticed that adding Angio GE with 
other sequences to the network elevated the scores of 
vascular tissue.

The evaluation of test dataset metric for each of the 13 
classes is summarized in Fig. 4b and Table 3. The scores 
are averaged across all classes, resulting in a mean DSC 
(±standard deviation) of 0.967 (±0.040). The achieved 
Dice scores were higher and more stable for larger 
structures such as bone medulla, muscle, and fat, while 
the scores appeared less for the minor structures. This 
is believed to be partly due to the class imbalance of 
the data. Also, the common low intensities of the liga-
ments, tendons and meniscus might cause these con-
nective tissues to be indistinguishable for the network. 
Another argument is that some subjects may have more 
or less degenerative changes to tissues, resulting in false 
predictions.

Pathology case
We chose the trained deep learning network model 
from the T1PDFSAngio input sequence combination, 
and inferred the left knee image volume of a post-sur-
gical ACL reconstruction of an adolescent patient. The 
patient had a complicated displacement of the intra-
articular graft preventing full extension, resulting in a 
mechanically locked knee [49]. The network prediction 
correctly revealed that the ACL was missing, along with 

Table 3  The average Dice scores, Jaccard Index and Haursdorff 
distances (±standard deviation) of the test dataset evaluated at 
21,000 iterations by the neural network model trained with all 
image channels combined

Class DSC Jaccard Hausdorff Distance

Bone medulla 0.997±0.002 0.994±0.004 42.63±24.79

PCL 0.973±0.015 0.947±0.028 98.30±55.61

ACL 0.964±0.022 0.931±0.042 107.00±71.58

Muscle 0.998±0.001 0.997±0.002 66.94±42.77

Cartilage 0.966±0.018 0.934±0.034 111.90±18.25

Cortical bone 0.980±0.010 0.961±0.019 53.43±28.26

Artery 0.943±0.038 0.894±0.065 68.50±43.88

Collateral ligament 0.919±0.069 0.856±0.109 114.27±39.07

Tendon 0.982±0.005 0.965±0.009 81.40±21.66

Meniscus 0.955±0.032 0.916±0.057 185.60±53.54

Adipose tissue 0.998±0.010 0.997±0.003 16.568±6.685

Vein 0.980±0.010 0.962±0.018 30.36±8.00

Nerve 0.921±0.071 0.860±0.106 114.11±46.61

Average 0.967±0.040 0.940±0.068 83.92±58.15
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visualization of the tunnel left after drilling the femoral 
and tibial bone, shown as segmentations and hologram in 
Fig. 5. The surgical graft visualized in the hologram was 
annotated manually directly to the neural network infer-
ence output.

Discussion
Generally, neural network performance depends on the 
algorithms applied and the input data, both quantita-
tively and qualitatively. In our study, 1600 slices were 
scanned divided into four pulse sequences per knee. This 
is considerably more detailed anatomical coverage than 
most standard clinical protocols. The total protocol scan 
time used in this study was just shy of 40 min. The scan 
time reflects that the main objective for this study was 
detailed anatomic visualization and segmentation based 
on isotropic data, and not disease detection.

Other relevant research focusing on deep learning of 
MRI images of the knee joint has been carried out. Most 
of which are focused on cartilage segmentation and 
lesion classifications [19–23]. The quantitative evaluation 
scores obtained in our study cannot be directly compared 
to the studies listed in Table  4, mainly because differ-
ent data sets were used. These data sets contain subjects 
whose images demonstrate pathology which is likely to 
significantly affect the result. One possible reason for 
the improved evaluation metrics of the method used in 
this work could, however, be explained by respecting the 
fact that the dataset described in the study is based on 
higher resolution 3D scans of multiple weightings and a 
more complete annotation of the entire knee anatomy. 
This reasoning is justified given that both the quality and 
the quantity of input data affects the performance of this 
neural network configuration. The very high DSC could 

Fig. 5  Pathology case: (a) Post-surgical proton density fat suppressed TSE (FS TSE) sagittal plane image showing the torn anterior cruciate ligament. 
(b) Predicted output by the neural network. The tibial drill hole and the intra-articular graft from the reconstructive surgery is visible. (c) 3D render of 
the segmentation. (d) Holographic 3D model representation
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also be explained given that the initial starting point for 
the ground truths were generated using a neural network, 
and then thoroughly corrected by manually removing 
false positive voxels and adding voxels where the network 
had made mistakes. However, because the same ground 
truths were used to evaluate all different channel combi-
nations, the means to find the best fitting model would 
not be affected by this approach. The mean DSC calcu-
lated across all tissue classes might have a very high DSC 
owing to the fact that the larger structures such as bone, 
muscle and adipose tissue will increase the average DSC, 
even if the smaller structures score lower.

This study had some noteworthy limitations. The net-
work has been tested using images acquired by a sin-
gle vendor 1.5T scanner. The training dataset volume is 
limited to 20 subjects; a larger quantity for training is 
believed to benefit the neural network in terms of per-
formance. Furthermore, the pathology case was a post-
surgical knee and the ability to differentiate between 
normal anatomy and injured pathology will likely be 
more sensitive and specific with a broader spectrum of 
injured knees added to the training data set. External 
validity may be reduced as is it only tested on a lim-
ited number of healthy participants. Evaluation based 
on matching the predicted output against a validated 
ground truth is one of the most common methods of 
evaluating the accuracy of a neural network. However, 

the method may be debatable as the result is strongly 
dependent of the validated ground truth definition. A 
poorly defined validated ground truth consequently 
causes statistical uncertainty, mainly related to errors 
of omission and commission. Structures labeled cor-
rectly by the neural network might not be defined in 
the validated ground truth. In other words, a false-pos-
itive voxel during validation might be true positive. Dif-
ferential classification of a given tissue while exerting 
manual annotation may in some instances be difficult 
and is prone to individual subjectivity, particularly in 
anatomical regions occupied by overlapping isointense 
voxels.

The obtained spatially realistic segmentations may be 
of clinical value for surgical planning, patient empower-
ment, and student education. Moreover, neural network-
labeled outputs based on healthy subjects may further be 
annotated using appropriate software. These extended 
datasets including labels mimicking pathological lesions 
may be reintroduced to the neural network and trained 
progressively. The segmented structures, as shown in 
Fig.  6, can easily be imported into into a 3D-printing 
environment. Additionally, they can be made viewable 
through augmented or virtual reality as inputs to a surgi-
cal simulator.

Table 4  Other work relevant to automated segmentation of knee structures [19–23]. DSC = Dice Score Coefficient, OAI = 
Osteoarthritis Initiative, DESS = Double Echo Steady State

Study Sequences Subjects Neural network Results (DSC ± Standard deviation) Comment

F. Liu et al. [19] T2 FS FSE PD 
FSE T2 Map‑
ping

175 2D encoder-decoder VGG16 Femur (0.96 ± 0.03) Tibia (0.95 ± 0.03) 
Femoral cartilage (0.81 ± 0.04) Tibial carti‑
lage (0.82 ± 0.04)

Z. Zhou et al. [20] PD FS FSE 20 2D encoder-decoder VGG16 Femur (0.970 ± 0.010) Femoral cartilage 
(0.806 ± 0.062) Tibia (0.962 ± 0.015) Tibial 
cartilage (0.801 ± 0.052) Patella (0.898 ± 
0.033) Patellar cartilage (0.807 ± 0.101) 
Meniscus (0.831 ± 0.031) Quadriceps and 
patellar tendon (0.815 ± 0.029) Muscle 
(0.932 ± 0.024) Joint effusion and Baker’s 
cyst (0.736 ± 0.069) Infrapatellar fat pad 
(0.882 ± 0.040) Other non-specified tissues 
(0.913 ± 0.017)

All subjects had various 
degrees of Osteoar‑
thritis

A. Tack et al. [21] DESS 88 3D U-Net Medial menisci (83.8) Lateral menisci (88.9) OAI Imorphics dataset

F. Ambellan et al. [22] DESS 88 3D U-Net Femoral cartilage (0.89 ± 2.41) Medial tibial 
cartilage (86.1 ± 5.33) Lateral tibial cartilage 
(90.4 ± 2.42)

OAI Imorphics dataset

DESS 507 3D U-Net Femoral bone (98.5 ± 3.02) Femoral carti‑
lage (89.9 ± 3.25) Tibial bone (98.5 ± 3.25) 
Tibial cartilage (85.6 ± 4.54)

OAI ZIB dataset

E. Panfilov et al. [23] DESS 88 U-Net Femoral cartilage (0.907 ± 0.019) Tibial 
cartilage (0.897 ± 0.028) Patellar cartilage 
(0.871 ± 0.046) Meniscus (0.863 ± 0.034)

OAI Imorphics dataset

DESS 44 U-Net Femoral cartilage (0.827 ± 0.024) Tibial 
cartilage (0.816 ± 0.029)
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Conclusion
By introducing an optimized MR imaging protocol for 
depicting human knee anatomy, our study demonstrates 
that a convolutional neural network can achieve auto-
matic semantic segmentation with high performance. 
The prediction of the neural network represents spa-
tially realistic representations of the entire knee joint in 
three dimensions, which are well suited for visualization 
purposes.

Figures 5 and 6 are examples of the three-dimensional 
anatomic outlay of the knee. We may predict that the 
future will give orthopedists the possibility of having such 
models available before an operation either 3D printed or 
as holograms. We also predict that the capability of the 
model to detect pathology may become a useful tool for 
both radiologists and orthopedists.
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