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Ceiling Effect of the Combined Norwegian and Danish Knee Ligament Registers Limits Anterior 
Cruciate Ligament Reconstruction Outcome Prediction   



ABSTRACT 

Background: Clinical tools based on machine learning analysis now exist for outcome prediction 

following primary anterior cruciate ligament reconstruction (ACLR). Relying partly on data 

volume, a general principle is that more data may lead to improved model accuracy.  

Purpose/Hypothesis: To apply machine learning to a combined dataset comprised of the 

Norwegian and Danish knee ligament registers (KLR) with the aim of producing an algorithm 

that can predict subsequent revision surgery with improved accuracy relative to a previously 

published model developed using only the Norwegian register (NKLR). The hypothesis was that 

the additional patient data would result in an algorithm that is more accurate. 

Study Design: Level IV retrospective review of a prospective cohort registry  

Methods:  Machine learning analysis was performed on the combined KLR. The primary 

outcome was the probability of revision ACLR within 1, 2, and 5 years. Data were split 

randomly into training sets (75%) and test sets (25%). Four machine learning models were 

tested: Cox Lasso, survival random forest, gradient boosted regression, and super learner. 

Concordance and calibration were calculated for all four models. 

Results: The data set included 62,955 patients, where 5.1% underwent a revision surgical 

procedure during a mean follow-up of 7.6 ± 4.5 years. The three nonparametric models (random 

survival forest, gradient boosted regression, and super learner) performed best, demonstrating 

concordance in the moderate range (0.67, 95% CI 0.64-0.70) and were well calibrated at 1 and 2 

years. Model performance was similar to the previously published model (concordance 0.67-

0.69; well calibrated).   

Conclusion: Machine learning analysis of the combined Norwegian and Danish knee ligament 

registers enabled prediction of revision ACLR risk with moderate accuracy. However, the 



resulting algorithms were less user-friendly and did not demonstrate superior accuracy in 

comparison to the previously developed model based on patients from the NKLR, despite the 

analysis of nearly 63,000 patients. This ceiling effect suggests that simply adding more patients 

to the current national knee ligament registers is unlikely to improve predictive capability and 

may prompt future changes to increase variable inclusion.  

Clinical Relevance: For an improvement in the ability to predict outcome based on knee ligament 

registry data, an evolution in the variables recorded by the registers is required and the present 

study may prompt changes to increase variable collection.  

Key Terms: ACL revision; outcome prediction; machine learning; artificial intelligence 

What is known about the subject: Knee ligament registers enable estimation of a patient’s 

specific risk of subsequent revision surgery.  

What this study adds to existing knowledge: A ceiling effect has been reached and evolution of 

the registers (adding or changing recorded variables) is required to improve predictive capability.  



INTRODUCTION 

 There has been an increased focus on outcome prediction using machine learning in 

orthopaedic surgery recently22. The primary goal of these early clinical predictive models is to 

enable patient-specific risk estimation to guide management discussions and expectations. 

Clinical tools based on machine learning analysis now exist for outcome prediction following 

anterior cruciate ligament (ACL) reconstruction (ACLR) including subsequent revision surgery32 

and inferior patient reported outcome33. These models were developed from analysis of the 

Norwegian Knee Ligament Register (NKLR) and the revision prediction model has also been 

externally validated using the Danish Knee Ligament Register (DKLR)31.  

 Accurate prediction of outcome following ACLR holds value for both the patient and 

surgeon. However, with so many interrelated variables contributing to the risk of a poor 

outcome, it can be challenging for a clinician to quantify that risk for the patient in the office, 

regardless of experience level. Machine learning represents a novel approach to this problem and 

can facilitate patient-specific risk quantification through the analysis and interpretation of large 

volumes of data in ways that were previously unrealistic. 

Relying partly on data volume to develop the predictive algorithms, a general principle is 

that more data may lead to improved model accuracy. The rationale for this is that more data 

presents more opportunity for the models to “learn” the association between predictors and 

outcome. Therefore, the purpose of this study was to apply machine learning to a combined 

NKLR and DKLR dataset with the aim of predicting subsequent revision surgery with improved 

accuracy relative to the previously published model32. The original NKLR model was developed 

through machine learning analysis of approximately 25,000 patients while the combined NKLR 



and DKLR dataset approaches 65,000 patients. The hypothesis was that the additional patient 

data would result in more accurate prediction of revision ACLR risk.  

MATERIALS AND METHODS 

This manuscript was written in accordance with the Transparent Reporting of a 

multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD) statement6. The 

statement includes a 22-item checklist with the goal of improving the transparency of prediction 

model studies through full and clear reporting. 

Ethics 

All patients provide informed consent for the NKLR and the Norwegian Data 

Inspectorate grants permission for the register to collect, analyze, and publish on health data. 

Data registration was performed confidentially according to European Union (EU) data 

protection rules, with all data de-identified prior to retrieval. The Regional Ethics Committee 

(REK) states that it is not necessary to obtain further ethical approval11. Similarly, the DKLR 

obtains informed consent at the time of enrollment and patient data was de-identified prior to 

retrieval with no further ethical approval required. 

Data preparation 

Patients with primary ACLR surgery dates from June 2004 through December 2020 were 

included. Patients missing values for graft choice, those with graft choice recorded as “direct 

suture”, and those missing values for the indicator of revision surgery were excluded. Variables 

considered for analysis are shown in Table 1.  

Table 1: Demographics and Included Variables 

Variable 
Combined data 

N = 62,955 
Revision† 3,205 (5.1%) 
Follow-up time or time to revision* 7.6 (4.5) 
Age at surgery‡ 26 (20, 36) 



Age at injury‡ 24 (18, 34) 
Missing 1,870 

Sex†  
Male 36,509 (58%) 
Female 26,446 (42%) 

Pre-surgery KOOS QOL score (out of 10)* 3.63 (1.80) 
Missing 29,512 

Pre-surgery KOOS Sports score (out of 10)* 4.12 (2.69) 
Missing 29,708 

Below median on all pre-surgery KOOS† 6,372 (19%) 
Missing 29,323 

Activity that led to injury†  
Non-pivoting 20,391 (33%) 
Pivoting 35,851 (57%) 
Other 6,162 (9.9%) 
Missing 551 

Meniscus injury†  
Injury without repair 20,328 (32%) 
Injury with repair 10,554 (17%) 
None 32,061 (51%) 
Missing 12 

Cartilage injury†  
Grade 1-2 8,766 (14%) 
Grade 3-4 3,223 (5.1%) 
None 50,878 (81%) 
Missing 88 

Graft choice†  
Bone Patellar Tendon Bone 15,639 (25%) 
Hamstring 43,518 (69%) 
Quadriceps Tendon 2,520 (4.0%) 
Other 1,278 (2.0%) 

Tibia fixation device†  
Interference screw 55,792 (90%) 
Suspension/cortical device 3,643 (5.9%) 
Other 2,356 (3.8%) 
Missing 1,164 

Femur fixation device†  
Interference screw 16,434 (27%) 
Suspension/cortical device 39,742 (65%) 
Other 4,822 (7.9%) 
Missing 1,957 



Fixation device combination†  
Interference screw x2 15,865 (26%) 
Interference/Suspension 236 (0.4%) 
Suspension/cortical device x2 2,994 (4.9%) 
Suspension/Interference 34,895 (58%) 
Other 6,529 (11%) 
Missing 2,436 

Injured side†  
Right 32,147 (51%) 
Left 30,807 (49%) 
Missing 1 

Previous surgery on opposite knee† 4,839 (8.1%) 
Missing 2,946 

Previous surgery on same knee† 10,312 (17%) 
Missing 673 

Time injury to surgery (years)‡ 0.61 (0.33, 1.32) 
Missing 2,083 

Registry†  
DKLR 34,554 (55%) 
NKLR 28,401 (45%) 

 
* Mean (SD) 
‡ Median (Interquartile range) 
† n (%) 
KOOS: Knee Injury and Osteoarthritis Outcome Score 
QOL: Quality of Life 
DKLR: Danish Knee Ligament Register 
NKLR: Norwegian Knee Ligament Register 
 

A predictor indicating if a patient was below the median score in the respective registry on all 

pre-surgery KOOS variables was created. Patients undergoing a revision ACLR prior to the 

follow-up time were considered to have experienced the event. 

Machine learning modeling 

The NKLR and DKLR data were combined then randomly split into training (75%) and 

test (25%) sets used to fit and evaluate the models, respectively. The primary outcome was 

probability of revision ACLR within 1, 2, and 5 years. R (version: 4.1.1, R Core Team 2021) was 



used to fit machine learning models that are adapted for censored, time-to-event data. 

“Censoring” refers to the fact that patients who have not yet reached a given follow-up time 

point may still contribute partial information toward that end point. For example, a patient who 

has been revision-free for four years has not yet reached the five-year selected outcome time-

point, but their revision-free time can still be considered in the analysis for the five-year revision 

risk. Censoring also accounts for the fact that patients who have not yet had a revision may 

ultimately undergo a revision surgery in the future.  

Four models intended for this type of data were used: Cox lasso, random survival forest, 

gradient boosted regression (GBM), and super learner. These models represent a range of 

approaches regarding flexibility of model fit and the number of variables incorporated. The Cox 

lasso is a semiparametric, penalized regression model that selects a subset of the most important 

predictor variables for inclusion42. The random survival forest is a nonparametric model, 

meaning that it does not require pre-specification of a model structure, and uses all available 

variables. This model is an adaptation of the widely used tree-based random forest method for 

censored data17. The GBM is also tree-based, nonparametric, and adapted for censored data; this 

model iteratively updates to improve the fit using all available variables9. The super learner 

model is an “ensemble” model that creates a weighted average of other machine learning 

techniques, combining them into one overall fit and thereby providing an even more flexible 

approach23. The super learner model combined random survival forest and GBM models. Further 

description of each model is included in Appendix A. 

 Variables with non-zero coefficients were selected using the L1-regularized Cox model 

(“Cox lasso”, package glmnet, lambda value selected via cross-validation), retaining the 

variables shown in the top panel of Figure 1.  



 

Figure 1: Feature importance 
The four plots show relative feature importance in each of the machine learning models. The 
highlighted bars indicate features selected into the Cox Lasso model. Random forest, gradient 
boosted, and super learner plots show features in the top half by importance score, for 
readability. Feature importance is measured on a different scale for each model, and thus only 
rankings of features, rather than scores, should be compared among the models. The Cox Lasso 
measures feature importance by absolute effect size. The random forest and super learner models 
use permutation-based importance, which measures the relative change in model performance 



upon randomly permuting values of the given feature. The GBM uses difference in error rate 
were the feature to be removed, normalized to sum to 100.  
 

For the random survival forest, GBM, and super learner models, a grid search method was used 

to determine hyperparameters (package MachineShop). This method compares all combinations 

of a range of possible hyperparameter values and chooses the optimal combination based on a 

performance metric, in this case the C-index, described below. A random survival forest 

(package randomForestSRC) was trained using the selected hyperparameters: node size 300, 10 

variables per split, and 500 trees. A GBM (package gbm) was trained with a shrinkage parameter 

of 0.01, interaction depth of 3, minimum node size 100, and 1000 trees. The super learner model 

was trained using the same hyperparameter values for the random survival forest and GBM and 

using the SuperModel function (package MachineShop) to determine, via cross-validation, the 

optimal weighting of the component models. All four models were restricted to patients with 

complete data for the predictors used (see Table 1 and Missing Data section below). 

Model evaluation 

Model performance was evaluated by calculating survival probabilities with each model 

for observations in the hold-out test set. Concordance and calibration were then calculated using 

methods adapted for censored data. Concordance was measured using Harrell’s C-Index at 1,2, 

and 5-year follow-up times. The C-Index is a generalization of the common area under the 

receiver operator characteristic curve (AUC) metric. As with AUC, it ranges from 0 to 1 with 1 

indicating perfect concordance. The C-Index measures the proportion of pairs of observations in 

which predicted ranking of survival probabilities corresponds to actual ranking14. Further, the C-

index calculation is limited to pairs of patients with sufficient information to determine the true 

ordering – either both patients must have known times-to-revision, or one has had revision 



surgery while the other is censored (no revision yet, with time-since-surgery at least as long as 

the other patient’s time-to-revision). For example, a concordance of 0.80 would mean that for a 

random pair of patients, risk estimates match the true ordering of times-to-revision 

approximately 80% of the time.  

Calibration is a measure of the accuracy of predicted probabilities that compares expected 

to actual outcomes. We calculated calibration using a version of the Hosmer-Lemeshow statistic 

that accounts for censoring47. This statistic sums average misclassification in each predicted risk 

quintile and converts the sum into a chi-squared statistic. Larger values of the calibration statistic 

indicate worse accuracy and correspond to smaller p-values, with statistical significance 

indicating rejection of the null hypothesis of perfect calibration.  

Missing data 

Models were trained using observations from the training set with complete data on all 

variables. The models were then evaluated using observations from the test set with complete 

data on all variables needed for a given model. To assess the impact of restricting data to 

complete cases, the models were re-trained and re-evaluated using multiple imputation. This is a 

common technique for dealing with missing data that fills in incomplete values based on patterns 

in the data. Multiple imputation allowed the assessment of the reasonableness of restricting the 

analysis to complete cases. Multivariate imputation by chained equations (MICE) was conducted 

with five imputations on training and test data (package mice). The variables with non-zero 

coefficients on the complete case Cox lasso were used to re-fit the model with each imputed 

training data set, averaging predictions over the five imputations. The random survival forest, 

GBM, and super learner models were similarly refit. A bootstrap procedure was used to compare 

the calibration statistics between the complete case and imputed models. 



RESULTS 

Data characteristics 

Table 1 describes characteristics of the population at the time of surgery and shows all 

variables included for analysis. After data cleaning, the combined registry population consisted 

of 62,955 patients, 55% from the DKLR and 45% from the NKLR. The primary outcome, 

revision surgery, occurred in 5.1% of patients during an average follow-up time of 7.6 years (SD 

4.5). The population was 55% male with a median age at primary injury of 24 years (IQR 18, 34) 

and median age at surgery of 26 years (IQR 20, 36).  

Model performance 

The three nonparametric models – random survival forest, GBM, and super learner – had 

concordance in the moderate range (0.67) at all follow-up times with 95% confidence intervals 

ranging from (0.64, 0.69) to (0.65, 0.70) (Table 2).  

Table 2: Model performance, complete-case training data 
 
Outcome Model Concordance 

 
Concordance 

95% CI 
Calibration 

statistic 
Calibration 

p-value 
1 year Cox model (lasso) 0.59 (0.56, 0.61) 7.19 0.066 
 Random survival forest 0.67 (0.64, 0.69) 5.54 0.136 
 Gradient boosted 

regression 
0.67 (0.65, 0.70) 7.48 0.058 

 Super learner 0.67 (0.65, 0.69) 8.67 0.034 
2 years Cox model (lasso) 0.58 (0.56, 0.61) 8.17 0.043 
 Random survival forest 0.67 (0.64, 0.69) 6.42 0.093 
 Gradient boosted 

regression 
0.67 (0.64, 0.69) 4.53 0.210 

 Super learner 0.67 (0.64, 0.69) 4.10 0.250 
5 years Cox model (lasso) 0.58 (0.56, 0.61) 11.37 0.010 
 Random survival forest 0.67 (0.65, 0.69) 9.27 0.026 
 Gradient boosted 

regression 
0.67 (0.64, 0.69) 11.07 0.011 

 Super learner 0.67 (0.64, 0.69) 11.82 0.008 
 



The Cox lasso performed more poorly with concordance of 0.58. The Cox lasso showed 

moderate evidence of mis-calibration (p-value 0.01-0.05) at 2 and 5 years. The other three 

models were better calibrated, with the exception of the super learner at 1 (p=0.034) and 5 years 

(p=0.008). The random survival forest and gradient boosted regression models also demonstrated 

moderate evidence of mis-calibration at 5 years.   

Model performance with imputation is presented in Table 3.  

Table 3: Model performance, multiply imputed training data 
Outcome Model Concordance 

 
Concordance 

95% CI 
Calibration 

statistic 
Calibration 

p-value 
1 year Cox model (lasso) 0.59 (0.56, 0.61) 8.35 0.039 
 Random survival forest 0.66 (0.64, 0.69) 4.17 0.244 
 Gradient boosted 

regression 
0.68 (0.65, 0.70) 7.57 0.056 

 Super learner 0.67 (0.65, 0.70) 7.99 0.046 
2 years Cox model (lasso) 0.59 (0.56, 0.61) 8.81 0.032 
 Random survival forest 0.67 (0.65, 0.70) 8.96 0.030 
 Gradient boosted 

regression 
0.67 (0.65, 0.70) 8.98 0.030 

 Super learner 0.67 (0.65, 0.70) 8.34 0.039 
5 years Cox model (lasso) 0.58 (0.56, 0.61) 8.30 0.040 
 Random survival forest 0.67 (0.65, 0.70) 8.95 0.030 
 Gradient boosted 

regression 
0.67 (0.65, 0.69) 11.53 0.009 

 Super learner 0.67 (0.65, 0.69) 14.05 0.003 
 

Multiply imputed data did not show notable differences from the complete case analysis. The 

concordance confidence intervals were nearly identical in all cases. Observed calibration ratios 

from all four models were compared to the bootstrap distribution, and all the observed ratios 

were within a 95% confidence interval. This suggests that there is no significant difference in 

calibration between the complete case and imputed models.  

Factors predicting outcome 



 The most important factors predicting revision surgery, according to the three best-

performing models, included age at surgery and injury, years between injury and surgery, graft 

choice, and pre-surgery KOOS Quality of Life and Sports scores.  Variables in approximately the 

top half by feature importance in the random survival forest, GBM, and super learner models are 

shown in the bottom three panels of Figure 1. Variables with non-zero coefficients in the Cox 

lasso model are shown in the top panel of Figure 1. The Cox lasso model quantifies feature 

importance in terms of absolute value of the associated effect size. The GBM uses difference in 

error rate were the feature to be removed. The random survival forest and super learner models 

use permutation-based variable importance, measuring the relative change in model performance 

upon randomly permuting values of the given variable. 

DISCUSSION 

Machine learning analysis of the combined NKLR and DKLR enabled the prediction of 

subsequent revision surgery risk after primary ACLR with moderate accuracy. The most 

important finding of this study, however, was that this analysis of nearly 63,000 patients yielded 

similar prediction accuracy as a previous study of approximately 25,000 patients31,32. This 

suggests a so-called ceiling effect of the registries has been reached, and the addition of more 

patients is unlikely to appreciably improve prediction accuracy. This information can be used to 

inform further evolution of the national ACL registries regarding variable inclusion and data 

collection. 

Machine learning applications within orthopaedic surgery have been increasing at an 

exponential rate in recent years22. These advanced statistical techniques can evaluate large 

datasets and realize complex interactions between variables29. “Learning” from these 



interactions, machine learning models can create algorithms capable of predicting outcome for 

future patients, often at a level of accuracy superior to expert humans3,8,38,40,41,46,50.  

Similar to how humans learn through repetition and experience, machine learning 

algorithms often require large volumes of data to optimize model accuracy. Data volume, 

however, is not the only factor contributing to the accuracy of the model. Just as important is the 

quality of the data. If the dataset used for model creation does not consider variables that are 

associated with the outcome of interest, then the full potential of the model may not be reached. 

Poor data quality can also manifest as substantial missing or incomplete data, which impacts the 

ability of the model to learn and form accurate associations between predictors and outcome. 

Techniques such as imputation can address some data quality inadequacies, but there are limits 

to what may be overcome2.  

After nearly 20 years of data collection by the Norwegian and Danish knee ligament 

registers, the data quantity is superb with satisfactory completeness and data accuracy7,35–37. 

However, the present study suggests that for an improvement in our ability to predict outcome 

based on the registry data, an evolution in the variables collected is required. This represents a 

significant challenge as the balance between optimal variable collection and surgeon compliance 

is a delicate one11,30. Data collection must be streamlined to avoid survey fatigue, and the 

addition of variables to the registry must be carefully considered, weighing the added value 

against the additional onus on the surgeons which may affect compliance.  

Factors that may improve prediction accuracy and could be considered for addition to the 

national registers include data regarding radiographic findings4,12,13,18,24,34,48, adjunctive surgical 

procedures, clinical examination, rehabilitation details39, and alternative patient reported 

outcome measures including psychological factors5. Pre- and post-operative radiographic indices 



could be manually captured, for example tibial slope and coronal alignment, or included as raw 

image files which could then be evaluated through computer vision machine learning 

techniques21. The recording of additional surgical details such as graft diameter/size, ligament 

augmentation, lateral extra articular tenodesis, or anterolateral ligament reconstruction may also 

be of value given their recent association with outcome1,10,15,16,25,27,43,52. Clinical examination and 

rehabilitation information such as pre-operative knee laxity grade26,44 could be obtained through 

third party sources such as physiotherapists or via natural language processing of patient chart 

notes49. Finally, the KOOS may not reflect the most appropriate patient reported outcome tool 

for the patient population and an alternative measurement of patient function, such as baseline 

Marx activity level, could be considered for inclusion in the registries moving forward19,28.   

It is worth mentioning that an algorithm for the prediction of revision surgery after 

primary ACLR will likely never achieve perfect or even excellent performance in the traditional 

sense. There are two main reasons for this. First, re-injury events leading to revision surgery may 

occur randomly such as after a slip on the ice or collision on the playing field. That randomness, 

combined with the variance related to uncollected variables, limits the predictive capability of 

ACLR failure models. The second reason is that the outcome, in this case revision surgery, is 

itself imperfect. That is, not everyone who has experienced a failure will undergo revision 

surgery. This is a major consideration for most clinical predictive models which are limited by 

the chosen endpoint.  While discrimination has often been interpreted as performance greater 

than 0.9 being excellent, 0.8-0.9 good, 0.7-0.8 fair, and less than 0.7 poor45, most clinically 

useful algorithms demonstrate performance in the 0.65-0.8 range51. In fact, discrimination 

greater than 0.8 for clinical predictive models may represent data mismanagement or model 

overfitting20.  



Modeling using the combined DKLR and NKLR data revealed some notable differences 

between the two registries. The poor performance of the Cox lasso model is due in part to the 

fact that, when modeled separately, the two registry populations led to selection of different 

variables and different effect sizes for the selected variables. The model fit to the combined data 

therefore is unable to achieve either of these individually optimal fits and thus performs more 

poorly. The nonparametric models did not have this limitation since they were able to fit the data 

with more flexibility. This observation helps explain the fact that although the Cox lasso was the 

best model in the previous study of the NKLR32, here the more flexible models performed better. 

The present study has some limitations. First, while several machine learning methods 

were considered, it is possible that another model may have performed differently. Second, there 

was a high proportion of missing pre-operative KOOS data (47%) and most patients with this 

missing variable were from the DKLR. Since the pre-operative KOOS data has been important in 

predicting outcome based on previous studies, this substantial missingness likely contributed to 

the limited improvement in outcome prediction accuracy. In addition, patients were pooled 

across the entire time period, from 2004 through 2020. Therefore, this analysis may inherit bias 

related to temporal changes in revision surgery risk as the surgical indications, techniques, and 

trends have evolved over time. These changes were not directly accounted for in the present 

study but likely represent low risk of bias given the stable revision surgery rate observed in the 

registries.  

Regarding clinical limitations of this study, more variables are required for revision 

prediction using this algorithm than the previously published NKLR calculator which only 

required the input of five variables. This means the present algorithms are more onerous to use in 

the office setting with no appreciable improvement in prediction accuracy compared with the 



NKLR model. It therefore is likely of limited clinical value unless future external validation 

demonstrates superiority with different patient populations.  

CONCLUSION 

 Machine learning analysis of the combined Norwegian and Danish knee ligament 

registers enabled prediction of revision ACLR risk with moderate accuracy. However, the 

resulting algorithms were less user-friendly and did not demonstrate superior accuracy in 

comparison to the previously developed model based on patients from the NKLR, despite the 

analysis of nearly 63,000 patients. This ceiling effect suggests that simply adding more patients 

to the current national knee ligament registers is unlikely to improve predictive capability and 

may prompt future changes to increase variable inclusion.  
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APPENDIX A 
 
Cox Lasso1 
The Cox Lasso applies Lasso (L1) regularization to the Cox proportional hazards model for 
regression on right-censored time-to-event outcomes. The method performs variable selection by 
applying a penalty during model fitting that sets less important predictor coefficients to zero. The 
remaining (non-zero) coefficients comprise the selected predictors. A tuning parameter controls 
the extent of this shrinkage: larger values of the tuning parameter correspond to more shrinkage 
and thus the selection of fewer predictors. We fit the Cox Lasso using the glmnet package in R, 
with the tuning parameter selected via cross-validation to balance model simplicity and fit. 
 
Survival Random Forest2 
The survival random forest, as implemented in the randomForestSRC R package, uses an 
ensemble tree method designed for right-censored time-to-event data. A log-rank split rule is 
used, and the estimates associated with each terminal node are computed using the Kaplan-Meier 
estimator (survival estimate) and the Nelson-Aalen estimator (cumulative hazard estimate). 
Estimates for an individual are averaged over all bootstrap samples for which the individual is 
out of bag (OOB). Prediction error for the forest is measured by 1-C, where C is Harrell’s 
concordance index, a measure of accuracy in ranking pairs in terms of their predicted and actual 
survival. 
 
Gradient boosted regression3,4 
Gradient boosting uses an iterative method to fit a regression function to the data. At each 
iteration, the gradient, or the derivative of the loss function with respect to the current regression 
function, is calculated. The regression function is then updated in the direction of this gradient, 
improving the fit. Gradient boosted regression as implemented in the R package gbm, which we 
used for our model, uses regression trees as the functions. To accommodate right-censored time-
to-event data, the model uses the negative log partial likelihood under the Cox proportional 
hazards model as the loss function. 
 
Super learner5 
The super learner is an ensemble method that combines other machine learning models to 
increase flexibility. The super learner produces a weighted average of its component models by 
using cross-validation to obtain predictions for each component model, and then training the 
overall weighted average model to minimize prediction error. The user may specify many 
different machine learning models as components for the super learner. In this analysis, the super 
learner combined random survival forest and gradient boosted regression models. 
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