Manuscript Title: Pulmonary ventilation and gas exchange during prolonged exercise in humans: influence of dehydration, hyperthermia and sympathoadrenal activity

Authors: José González-Alonso, Ricardo Mora-Rodríguez and Pascale Kippelen
Underlying hypotheses: We hypothesised that (1) compensatory adjustments in pulmonary gas exchange would occur during prolonged intense exercise in the heat, such that arterial blood gases and acid-base balance disturbances are minimised, (2) hyperthermia, but not dehydration, independently would increase ventilation during prolonged intense exercise, and (3) adrenaline infusion during prolonged exercise in the heat would significantly increase ventilation

Abbreviations

ABE, actual base excess; $\mathbf{a -}-\mathrm{v}_{2}$ diff, arterial mixed-venous oxygen content difference; $\mathrm{C}_{\mathbf{a}} \mathrm{O}_{2}$, arterial oxygen content; $\mathrm{C} \overline{\mathrm{v}} \mathrm{O}_{2}$, mixed-venous oxygen content; $\mathrm{C}_{\mathrm{fv}} \mathrm{O}_{2}$, femoral venous oxygen content; $\mathbf{C} \overline{\mathrm{C}} \mathrm{CO}_{2}$, mixed-venous carbon dioxide content; $\mathrm{C}_{\mathrm{fv}} \mathrm{CO}_{2}$, femoral venous carbon dioxide content; f_{b}, breathing frequency; $[\mathrm{Hb}]_{\mathrm{a}}$, arterial blood haemoglobin concentration; $[\mathrm{NA}]_{\mathrm{a}}$, arterial noradrenaline concentration; $[\mathrm{A}]_{\mathrm{a}}$, arterial adrenaline concentration; $\mathrm{P}_{\mathrm{a}} \mathbf{O}_{2}$, arterial partial pressure of oxygen; $\mathrm{P}_{\mathrm{a}} \mathrm{CO}_{2}$, arterial partial pressure of carbon dioxide; $\mathrm{P} \overline{\mathrm{v} C O} \mathbf{O}_{2}$, mixedvenous partial pressure of carbon dioxide; $\dot{\mathbf{Q}}$, cardiac output; $\mathbf{S}_{\mathbf{a}} \mathbf{O}_{2}$, arterial oxygen saturation; $\mathbf{T}_{\mathbf{c}}$, core (oesophageal) temperature; $\mathbf{T}_{\mathbf{s k}}$, mean skin temperature; $\mathbf{V}_{\mathbf{D}}$, anatomical dead space; $\dot{\boldsymbol{V}}_{\mathbf{E}}$, pulmonary ventilation; $\boldsymbol{V}_{\mathrm{A}}$, alveolar ventilation; $\dot{\boldsymbol{V}}_{\mathbf{A}} / \dot{\mathbf{Q}}$, ventilation-perfusion ratio; $\mathbf{V}_{\mathbf{T}}$, tidal volume; \dot{V}_{2}, oxygen consumption; $\dot{\boldsymbol{V}} \mathrm{CO}_{2}$, carbon dioxide output; $\overline{\mathbf{v}}-\mathrm{aCO} \mathbf{O}_{2}$ diff, mixed-venous arterial CO_{2} content difference.

Definitions of ' n '

Question 1: $\mathrm{n}=$ number of ventilatory and systemic blood flow responses across time, hydration conditions and total comparisons
Question 2: $n=$ number of blood gases and acid-base balance responses across time, hydration conditions and total comparisons
Question 3: $\mathrm{n}=$ number of blood contents, a- $\overline{\mathrm{v}}$ differences, $\dot{\mathrm{V}} \mathrm{O}_{2}$ and $\dot{\mathrm{V}} \mathrm{CO}_{2}$ across time, hydration conditions and total comparisons
Question 4: $\mathrm{n}=$ number of systemic and leg blood gas contents, $\dot{V} \mathrm{CO}_{2}$ and $\dot{\mathrm{V}} \mathrm{O}_{2}$ across time, hydration conditions and total comparisons
Question 5: $\mathrm{n}=$ number of data points compared in the regression analysis
Question 6: $\mathrm{n}=$ number of participants per comparison
Question 7: $\mathrm{n}=$ number of ventilatory responses across time, infusion type (adrenaline vs. saline) and total comparisons
Question 8: $\mathrm{n}=$ number of data points compared in the regression analysis

Experimental

Physiology Statistical Summary Document

Question 9: n = number of temperature responses across time, hydration conditions and total comparisons
Question 10: $\mathrm{n}=$ number of blood volume and osmolality responses across time, hydration conditions and total comparisons
Question 11: $\mathrm{n}=$ number of expiratory and mixed venous gases responses across time, hydration conditions and total comparisons
Question 12: $\mathrm{n}=$ number of catecholamine responses across time, hydration conditions and total comparisons
Question 13: $n=$ number of data points in the regression analysis
Question 14: $n=$ number of participants per comparison
Question 15: $n=$ number of participants per comparison
Question 16: $n=$ number of participants per comparison
Question 17: $\mathrm{n}=$ number of participants per comparison
Question 18: $\mathrm{n}=$ number of participants per comparison
Question 19: $n=$ number of participants per comparison
Question 20: $n=$ number of participants per comparison
Question 21: $n=$ number of participants per comparison
Question 22: $\mathrm{n}=$ number of participants per comparison
Question 23: $n=$ number of participants per comparison
Question 24: $\mathrm{n}=$ number of participants per comparison
Question 25: $\mathrm{n}=$ number of participants per comparison
Question 26: $\mathrm{n}=$ number of participants per comparison
Question 27: $\mathrm{n}=$ number of participants per comparison
Question 28: $\mathrm{n}=$ number of participants per comparison
Question 29: n = number of temperature responses across time, infusion type (adrenaline vs. saline) and total comparisons
Question 30: $\mathrm{n}=$ number of $\dot{\mathrm{V}} \mathrm{O}_{2}$ and $\dot{\mathrm{V}} \mathrm{CO}_{2}$ responses across time, infusion type (adrenaline vs. saline) and total comparisons
Question 31: $\mathrm{n}=$ number of $\mathrm{P}_{\mathrm{ET}} \mathrm{CO}_{2}$ responses across time, infusion type (adrenaline vs. saline) and total comparisons
Question 32: $\mathrm{n}=$ number of catecholamine responses across time, infusion type (adrenaline vs. saline) and total comparisons

Experimental question \#	Finding/ conclusion	Experimental variable \& units	Statistical test	Mean value	SD	n	Data comparisons		Post-hoc results $\mathbf{P}^{* *}$	Figure/ table comments
1. What are the ventilatory and systemic blood flow responses to prolonged exercise with progressive dehydration and hyperthermia and maintained euhydration control?	$\mathrm{V}_{\mathrm{E}, \mathrm{f}_{\mathrm{b}}, \mathrm{V}_{\mathrm{T}}, \mathrm{VA},}$ Q and VA/Q exhibited significant differences overtime in the dehydration and hyperthermia condition (DH) and in very few cases in the euhydration control condition. There were significant interactions between time and hydration conditions in all variables (Time x Hydration	$\mathrm{V}_{\mathrm{E}}, \mathrm{l} / \mathrm{min}$	Two-way ANOVA (time x condition) with repeated measures with Bonferroni post-hoc analysis	n/a	n/a	5 2 10	Time	0.0204 <0.0001 0.0030	Time vs. 20 min - DH (*) 60, 90, 120 \& 134 min: 0.0113; 0.0072; 0.0473; 0.0060 Time vs 20 min Control (*) 90, 120, 134 min : 0.0008; 0.0114; 0.0033 DH vs control (\dagger) 134 min: 0.0042	Figure 1 $N=7$ participants , except for VA and VA/Q N = 6 participants Overtime differences were compared to 20 min of exercise.
		$f_{\text {b }}$, breaths/min				5	Time	0.0001	Time vs 20 min - DH (*) 90, 120 \& 134 min : 0.0049; 0.0569; 0.0025 Time vs 20 min - Control (*) $90 \mathrm{~min} \mathbf{0 . 0 4 4 5}$ DH vs control (\dagger) 134 min: 0.0042	
						2	Hydration	0.0874		
						10	Time x Hydration	0.0035		
		$\mathrm{V}_{\mathrm{T}}, \mathrm{l}$				5	Time	0.8225	```Time vs 20 min - DH (*) NS```	
						2	Hydration	0.0599		
						10	Time \times Hydration	0.1334		

Statistical Summary Document

Statistical Summary Document

						10	Time x Hydration	>0.0001	$\begin{aligned} & \text { 90, } 120 \text { \& } 134 \text { min: } \\ & 0.0176 ; 0.028 ; 0.0002 \end{aligned}$ Time vs 20 min Control (*) NS DH vs control (\dagger) 90, 120 \& 134 min : 0.0302; 0.0045; >0.0001	
2. What are the blood gases and acid-base balance responses to prolonged exercise with progressive dehydration and hyperthermia and maintained euhydration control?	PaO_{2}, PaCO_{2}, $[\mathrm{Hb}]_{\mathrm{a}}, \mathrm{pH}_{\mathrm{a}}$ and $\left[\mathrm{HCO}_{3}-\right]_{a}$ exhibited significant differences overtime in the dehydration and hyperthermia condition (DH) and in very few cases in the euhydration control condition. Yet, SaO_{2} and $\mathrm{ABE}_{\mathrm{a}}$ were unchanged.	$\mathrm{PaO}_{2}, \mathrm{mmHg}$	Two-way ANOVA (time x condition) with repeated measures with Bonferroni post-hoc analysis	n/a	n/a	5	Time	0.0154	Time vs 20 min - DH	Figure
						2	Hydration	0.0046	(*)120 \& 134 min :	
						10	Time x Hydration	0.0064	0.0086; 0.0074	$N=7$
									Time vs 20 min	
									Control (*)	Overtime
									NS	differences
									DH vs control (\dagger)	were compared
									120 \& 134 min:	to 20 min of
		$\mathrm{PaCO}_{2}, \mathrm{mmHg}$				5	Time	<0.0001	Time vs 20 min - DH	
						2	Hydration	<0.0031	(*)120 \& 134 min :	
						10	Time x Hydration	0.0270	0.0017; 0.0004	
									Time vs 20 min -	
									Control (*)	
									NS	
									DH vs control (\dagger)	
									60, 90, 120 \& 134 min :	
									0.0384; 0.0092;	
									0.01022; 0.0057	
		$\mathrm{SaO}_{2}, \%$				5	Time	0.1490	Time vs 20 min - DH NS	
						2	Hydration	0.0228		

Statistical Summary Document

Statistical Summary Document

									Time vs 20 min Control (*) NS DH vs control (\dagger) NS	
3. What are the blood gas contents, a-v difference, VO_{2} and VCO_{2} responses to prolonged exercise with progressive dehydration and hyperthermia and maintained euhydration control?	CaCO_{2}, $\mathrm{C}_{\mathrm{V} C O_{2}}, \overline{\mathrm{v}}-$ aCO_{2} diff, $\mathrm{VCO}_{2}, \mathrm{CaO}_{2}$, $\mathrm{C} \mathrm{vO}_{2}, \mathrm{a}-\mathrm{vO}_{2}$ diff and VO_{2} exhibited significant differences overtime in the dehydration and hyperthermia condition (DH) and in very few cases in the euhydration control condition. There were significant interactions between time and hydration conditions in all variables (Time x	$\mathrm{CaCO}_{2}, \mathrm{ml} / \mathrm{l}$	Two-way ANOVA (time x condition) with repeated measures with Bonferroni post-hoc analysis	n/a	n/a	5	Time	0.0141	Time vs 20 min - DH (*) 134 min 0.0485 Time vs 20 min Control (*) NS DH vs control (\dagger) 120 \& 134 min : 0.0021; 0.0035	Figure 3 $N=7$ participants Overtime differences were compared to 20 min of exercise.
						2	Hydration	0.0163		
						10	Time x Hydration	0.0062		
		$\mathrm{CvCO}_{2}, \mathrm{ml} / \mathrm{l}$				5	Time	0.0142	Time vs 20 min - DH	
						2	Hydration	0.6321	(*) NS	
						10	Time x Hydration	0.1518		
									Time vs 20 min -	
									Control (*) NS	
									DH vs control (\dagger) NS	
		$\overline{\mathrm{v}} \mathrm{aCO}_{2}$ diff,				5	Time	0.0006	Time vs 20 min - DH	
		ml / l				2	Hydration	0.0032	(*) 120 \& 134 min	
						10	Time x Hydration	<0.0001	0.0187; 0.0017	
									Time vs 20 min Control (*) NS	
									DH vs control (\dagger)	
									$90,120 \text { \& } 134 \text { min: }$	
									$\begin{aligned} & \text { 0.0440; 0.0025; } \\ & <0.0001 \end{aligned}$	
		$\mathrm{VCO}_{2}, \mathrm{l} / \mathrm{min}$				5	Time	0.0006	Time vs 20 min - DH	
						2	Hydration	0.0365	(*) NS	
						10	Time x Hydration	0.0058		

Statistical Summary Document

Statistical Summary Document

Statistical Summary Document

Statistical Summary Document

Statistical Summary Document

									Time vs 10 min - S infusion (*) NS A vs S control (\dagger) NS		
8. What are the relationships between VE and f_{b} vs. core temperature and arterial catecholamine s with adrenaline (A) and saline (S) infusion during prolonged exercise with dehydration \& hyperthermia?	There were significant direct $\quad$$\mathrm{V}_{\mathrm{E}} \mathrm{vs} . \mathrm{T}_{\mathrm{c}}$, $\mathrm{I} / \mathrm{min} \&{ }^{\circ} \mathrm{C}$ relationships between $f_{\mathrm{b}} \mathrm{vs} . \mathrm{Tc}$, ${ }^{\circ} \mathrm{C}$		Regression analysis	n/a	n/a	4	Adrenaline	$\mathrm{R}^{2}=0.990$	$\mathrm{P}=0.004$	Figure 8 $N=7$ participants	
			4			Saline	$\mathrm{R}^{2}=0.996$	$\mathrm{P}=0.001$			
			4			Adrenaline	$\mathrm{R}^{2}=0.983$	$\mathrm{P}=0.008$			
			4			Saline	$\mathrm{R}^{2}=0.970$	$\mathrm{P}=0.014$			
	increases in V_{E} and fb with the increases in core temperature and combined catecholamin es	V_{E} Vs. arterial catecholamine $\mathrm{s}, \mathrm{l} / \mathrm{min}$ \& mmol/l				4	Adrenaline	$\mathrm{R}^{2}=0.986$	$\mathrm{P}=0.006$		
						4	Saline	$\mathrm{R}^{2}=0.932$	$\mathrm{P}=0.034$		
		f_{b} vs. arterial catecholamine s , breaths/min \& mmol/l				4	Adrenaline	$\mathrm{R}^{2}=0.950$	$P=0.024$		
						4	Saline	$\mathrm{R}^{2}=0.969$	$P=0.015$		
9. What are the effects of dehydration on core and skin temperature during prolonged exercise compared to euhydration control?	Dehydration significantly increase T_{c} after 90 min of exercise while $\mathrm{T}_{\text {sk }}$ remained unchanged.	$\mathrm{T}_{\mathrm{c}},{ }^{\circ} \mathrm{C}$		Two-way (time x condition) ANOVA with repeated measures with Bonferroni post-hoc analysis	n/a	n/a	5	Time	<0.0001	$\begin{aligned} & \text { Time vs } 20 \mathrm{~min}-\mathrm{DH} \\ & \text { (*) } 90,120 ~ \& ~ 134 ~ \mathrm{~min} ;_{0.0531 ; ~ 0.0047 ; ~}^{0.0005} \\ & \\ & \text { Time vs } 20 \mathrm{~min}- \\ & \text { Control (*) NS } \\ & \\ & \text { DH vs control (} \dagger \text {) } \\ & 90,120 \& 134 \mathrm{~min}: \\ & \mathbf{0 . 0 0 8 4 ; ~} \mathbf{0 . 0 0 0 5 ;} \\ & \mathbf{0 . 0 0 0 2} \end{aligned}$	Table 2 $N=7$ participants Overtime differences were compared to 20 min of exercise.
							2	Hydration	0.0021		
							10	Time x Hydration	<0.0001		
		T ${ }_{\text {sk, }}{ }^{\circ} \mathrm{C}$	5				Time	0.0003	Time vs 20 min - DH (*) NS		

Statistical Summary Document

						2	Hydration	0.0365		
						10	Time x Hydration	0.8446	Control (*) NS DH vs control (\dagger) NS	
10. What are the effects of dehydration on blood volume and osmolality during prolonged exercise compared to euhydration control?	 osmolality exhibited significant differences overtime in the dehydration and hyperthermia condition (DH) and some in the control condition. Time (min) x condition (DH vs. control) interactions. There were significant interactions between time and conditions in both variables	Blood volume, I	Two-way (time x condition) ANOVA with repeated measures with Bonferroni post-hoc analysis	n/a	n/a	5 2 10	Time Hydration Time x Hydration	0.0065 0.0027 0.0004	Time vs 20 min - DH (*) $134 \mathrm{~min} ; 0.0487$ Time vs 20 min Control (*) NS DH vs control (\dagger) 60, 90, 120 \& 134 min : 0.0306; 0.0018; 0.0006; 0.0004	Table 2 $N=7$ participants Overtime differences were compared to 20 min of
		Osmolality, $\mathrm{mOsm} / \mathrm{kg}$				5 2	Time ${ }^{\text {Hydration }}$	0.5785 0.0003	$\begin{aligned} & \text { Time vs } 20 \text { min - DH } \\ & \text { (*) } 60,90,120 \& 134 \\ & \text { min: } 0.0075 ; 0.0168 ; \\ & 0.0015 ; 0.0035 \end{aligned}$	exercise.
						10	Time x Hydration	<0.0001	Time vs 20 min Control (*) 134 min: 0.0059 DH vs control (\dagger) 60, 90, 120 \& 134 min : 0.0043; 0.0002; 0.0002; 0.0001	

Statistical Summary Document

11. What are the effects of dehydration and hyperthermia (DH) on endtidal gases during prolonged exercise compared to euhydration control?	PetCO_{2}, $\mathrm{P}_{\mathrm{V}}^{2} 2$ \& $\mathrm{P}_{\mathrm{ET}} \mathrm{O}_{2}$ exhibited significant differences overtime in the dehydration and hyperthermia condition (DH) and some in the control condition. Time (min) x condition (DH vs. control) interactions. There were significant interactions between time and conditions in $\mathrm{P}_{\mathrm{ET}} \mathrm{CO}_{2}$ and PetO_{2} but not in $\mathrm{Pv}_{\mathrm{V}}^{2}$.	$\mathrm{P}_{\mathrm{ET}} \mathrm{CO}_{2},$ mmHg	Two-way (time x condition) ANOVA with repeated measures with Bonferroni post-hoc analysis	n/a	n/a	5	Time	0.0013	$\begin{aligned} & \text { Time vs } 20 \text { min - DH } \\ & \text { (*) 60, } 90,120 \text { \& } 134 \\ & \text { min: } 0.0300 ; 0.0003 ; \\ & 0.0067 ; 0.0253 \\ & \\ & \text { Time vs } 20 \text { min - } \\ & \text { Control (*) } 60,90,120 \\ & \& 134 \text { min: } 0.0299 ; \\ & 0.0096 ; 0.0043 ; \\ & 0.0040 \\ & \\ & \text { DH vs control (} \dagger \text {) } \\ & 120 \& 134 \text { min: } \\ & 0.0043 ; 0.0040 \\ & \hline \end{aligned}$	Table 2 $N=7$ participants Overtime differences were compared to 20 min of exercise.
						2	Hydration	0.0320		
						10	Time x Hydration	0.0054		
		$\mathrm{P} \overline{\mathrm{V}} \mathrm{O}_{2}, \mathrm{mmHg}$				5	Time	0.0029	Time vs 20 min - DH (*) 120 \& 134 min : 0.0114; 0.0315 Time vs 20 min - Control (*) 120 \& 134 min: 0.0015; 0.0484 DH vs control (\dagger) NS	
						2	Hydration	0.0318		
						10	Time x Hydration	0.2565		
		$\mathrm{P}_{\mathrm{ET}} \mathrm{O}_{2}, \mathrm{mmHg}$				5	Time	0.0031	$\begin{aligned} & \text { Time vs } 20 \text { min - DH } \\ & \text { (*) 60, } 90,120 \& 134 \\ & \text { min: 0.0028; 0.0043; } \\ & \mathbf{0 . 0 1 5 6 ; ~ 0 . 0 5 0 0 ~} \end{aligned}$	
						2	Hydration	0.0618		
						10	Time x Hydration	0.0448	Time vs 20 min Control (*) NS	
									DH vs control (\dagger) 134 min: 0.0311	
12. What are the effects of	Plasma catecholamin	[NA], mmol/l	Two-way (time x condition)	n/a	n/a	5	Time	<0.0001	Time vs 20 min - DH (*) 60, 90,120 \& 134	Table 2

Statistical Summary Document

Statistical Summary Document

during prolonged exercise compared to euhydration control?										
14. What are the effects of combined dehydration and hyperthermia (DH) on \% body mass loss, haemoglobin and blood osmolality during prolonged exercise compared to euhydration control? 15. What are the effects of combined dehydration and hyperthermia (DH) on metabolism during prolonged exercise compared to	DH induced significant increases in \%BM loss, [Hb] and osmolality compared to control.	\%BM loss control	One-way ANOVA (condition) with repeated measures with Bonferroni post-hoc analysis	-0.5	0.3	22	DH vs control	<0.0001	n/a	Table 3 DH vs. control, 22 participants
		\%BM loss DH		-4.6	0.5	22				
		[Hb] control, g / l		159	8	22		<0.0001		
		[Hb] DH, g/l		168	10	22				
		Osmolality control, $\mathrm{mOsm} / \mathrm{kg}$		278	4	22		<0.0001		
		Osmolality DH, mOsm/kg		298	4	22				
	DH did not significantly alter VO_{2} or VCO_{2} compared to control.	VO_{2} control, $\mathrm{l} / \mathrm{min}$	One-way ANOVA (condition) with repeated measures with Bonferroni post-hoc analysis	3.09	0.25	22	DH vs control	0.1925	n/a	Table 3 DH vs. control, 22 participants
		$\mathrm{VO}_{2} \mathrm{DH}, \mathrm{l} / \mathrm{min}$		3.10	0.26	22				
		VCO_{2} control, $1 / \mathrm{min}$		2.94	0.26	22		0.0895		
		$\mathrm{VCO}_{2} \mathrm{DH},$ $\mathrm{I} / \mathrm{min}$		2.97	0.26	22				

Statistical Summary Document

euhydration control?										
16. What are the effects of combined dehydration and hyperthermia (DH) on the ventilatory responses during prolonged exercise compared to euhydration control?	DH significantly increased V_{E}, f_{b} and V_{T}, and tended to increase $\mathrm{P}_{\mathrm{ET}} \mathrm{CO}_{2}$ compared to control.	$\mathrm{V}_{\mathrm{E}} \text { control, }$	One-way ANOVA (condition) with repeated measures with Bonferroni post-hoc analysis	68.6	6.2	22	DH vs control	<0.0001	n/a	Table 3 DH vs. control, 22 participants
		$\mathrm{V}_{\mathrm{E}} \mathrm{DH}, \mathrm{l} / \mathrm{min}$		73.5	6.9	22				
		f_{b} control, breaths/min		34	6	22		<0.0001		
		$f_{\mathrm{b}} \mathrm{DH},$ breaths/min		38	7	22				
		$\mathrm{V}_{\text {T }}$ control, I		2.05	0.24	22		0.0086		
		$\mathrm{V}_{\mathrm{T}} \mathrm{DH}, \mathrm{l}$		1.96	0.26	22				
		$\begin{aligned} & \mathrm{P}_{\mathrm{ET}} \mathrm{CO}_{2} \\ & \text { control, } \mathrm{mmHg} \end{aligned}$		37	4	22		0.0605		
		$\begin{aligned} & \mathrm{P}_{\mathrm{ET}} \mathrm{CO}_{2} \mathrm{DH}, \\ & \mathrm{mmHg} \end{aligned}$		35	4	22				
17. What are the effects of	As per design, H	T ${ }_{\text {c }}$ control, ${ }^{\circ} \mathrm{C}$	One-way ANOVA	38.3	0.2	7	H vs control	0.0001	n/a	Table 3
isolated hyperthermia	induced significant	$\mathrm{T}_{\mathrm{c}} \mathrm{H},{ }^{\circ} \mathrm{C}$	(condition) with repeated	39.2	0.3	7				H vs. control, 7
(H) on body temperature	increases in T_{c} with	T ${ }_{\text {sk }}$ control, ${ }^{\circ} \mathrm{C}$	measures with Bonferroni	34.0	0.6	7		0.0260		participants
responses during prolonged exercise compared to euhydration control?	smaller increases in T_{sk} compared to control.	$\mathrm{T}_{\text {sk }} \mathrm{H},{ }^{\circ} \mathrm{C}$	post-hoc analysis	34.6	0.8	7				
18. What are the effects of	As per design, H did	\%BM loss control	One-way ANOVA	-0.5	0.3	7	H vs control	0.0707	n/a	Table 3
isolated	not	\%BM loss H	(condition)	-4.6	0.5	7				H vs.
(H) on \% body	change \%BM	[Hb] control, g/l	measures with	159	8	7		0.0488		participants

Statistical Summary Document

mass loss, haemoglobin and blood osmolality responses during prolonged exercise compared to euhydration control?	loss or osmolality compared to control.	[Hb] H, g/l	Bonferroni post-hoc analysis	168	10	7			n	
		Osmolality control, mOsm/kg		278	4	7		0.2140		
		Osmolality H, mOsm/kg		298	4	7				
19. What are the effects of isolated hyperthermia (H) on metabolism during prolonged exercise compared to euhydration control?	H did not alter VO_{2} but reduced VCO_{2} compared to control.	VO_{2} control, I/min	One-way ANOVA (condition) with repeated measures with Bonferroni post-hoc analysis	3.15	0.28	7 7	H vs control	0.3955	n/a	Table 3 DH vs. control, 22 participants
		VCO_{2} control, I/min		3.05	0.29	7		0.0222		
		$\mathrm{VCO}_{2} \mathrm{H}, \mathrm{I} / \mathrm{min}$		2.93	0.21	7				
20. What are the effects of isolated hyperthermia (H) on the ventilatory responses during prolonged exercise compared to euhydration control?	DH significantly increased V_{E}, f_{b} and $\mathrm{P}_{\mathrm{ET}} \mathrm{CO}_{2}$ while V_{T} remained unchanged compared to control.	$\mathrm{V}_{\mathrm{E}} \text { control, }$ $\mathrm{I} / \mathrm{min}$	One-way ANOVA (condition) with repeated measures with Bonferroni post-hoc analysis	68.5	4.9	7	H vs control	0.0007	n/a	Table 3 DH vs. control, 22 participants
		$\mathrm{V}_{\mathrm{E}} \mathrm{H}, \mathrm{l} / \mathrm{min}$		74.2	6.6	7				
		f_{b} control, breaths/min		35	6	7		0.0066		
		$f_{\mathrm{b}} \mathrm{H}$ breaths/min		38	6	7				
		$\mathrm{V}_{\text {T }}$ control, l		2.00	0.25	7		0.7933		
		$\mathrm{V}_{\mathrm{T}} \mathrm{H}, \mathrm{l}$		1.99	0.24	7				
		$\begin{aligned} & \mathrm{P}_{\mathrm{ET}} \mathrm{CO}_{2} \\ & \text { control, } \mathrm{mmHg} \end{aligned}$		38	4	7		0.0056		
		$\mathrm{P}_{\mathrm{ET}} \mathrm{CO}_{2} \mathrm{DH},$ mmHg		35	3	7				

Statistical Summary Document

21. What are the effects of isolated dehydration (D) on body temperature responses during prolonged exercise compared to euhydration control?	As per design, D did not increase T_{c} or T_{sk} compared to control.	Tc control, ${ }^{\circ} \mathrm{C}$	One-way ANOVA (condition) with repeated measures with Bonferroni post-hoc analysis	38.1	0.4	8	D vs control	0.0656	$\begin{aligned} & \hline \text { n/a } \\ & \mathrm{n} / \mathrm{a} \end{aligned}$	Table 3 D vs. control, 8 participants
		$\mathrm{T}_{\mathrm{c}} \mathrm{D},{ }^{\circ} \mathrm{C}$		38.2	0.3	8				
		T ${ }_{\text {sk }}$ control, ${ }^{\circ} \mathrm{C}$		21.2	1.3	8		0.1266		
		Tsk $\mathrm{D},{ }^{\circ} \mathrm{C}$		20.4	1.2	8				
22. What are the effects of isolated hyperthermia (D) on \% body mass loss, haemoglobin and blood osmolality responses during prolonged exercise compared to euhydration control?	As per design, D reduced \%BM loss and increased [Hb] and osmolality compared to control.	\%BM loss control	One-way ANOVA (condition) with repeated measures with Bonferroni post-hoc analysis	-0.1	0.2	8	D vs control	<0.0001	n/a	Table 3 D vs. control, 8 participants
		\%BM loss D		-4.2	0.3	8				
		[Hb] control, g/l		156	8	8		<0.0001		
		[Hb] D, g/l		164	7	8				
		Osmolality control, mOsm/kg		281	3	8		<0.0001		
		Osmolality D, mOsm/kg		296	5	8				
23. What are the effects of isolated dehydration (D) on metabolism during	D did not alter either VO_{2} or VCO_{2} compared to control.	VO_{2} control, $\mathrm{l} / \mathrm{min}$	One-way ANOVA (condition) with repeated measures with Bonferroni	3.22	0.34	8	D vs control	0.2662	n/a	Table 3 D vs. control, 8 participants
		$\mathrm{VO}_{2} \mathrm{D}, \mathrm{l} / \mathrm{min}$		3.20	0.34	8				
		VCO_{2} control, $\mathrm{I} / \mathrm{min}$		3.04	0.34	8		0.2337		
		$\mathrm{VCO}_{2} \mathrm{D}, \mathrm{I} / \mathrm{min}$		2.99	0.31	8				

Statistical Summary Document

26. What are the effects of	As per design, D + BV restoration reduced \%BM loss and [Hb] increased [Hb] while osmolality remained elevated compared to control.	\%BM loss control	One-way ANOVA (condition) with repeated measures with Bonferroni post-hoc analysis	-0.3	0.2	8	D+BV restoration vs control	<0.0001	n/a	Table 3 D+BV vs. control, 8 participants
isolated dehydration and BV		\%BM loss D+BV restoration		-4.2	0.4	8				
restoration (D+BV		[Hb] control, g/l		156	8	8		0.0221		
restoration) on \% body mass		[Hb] D+BV restoration, g / l		153	9	8				
loss, haemoglobin and blood		Osmolality control, mOsm/kg		281	3	8		0.0001		
osmolality responses during prolonged exercise compared to euhydration control?		Osmolality D+BV restoration, $\mathrm{mOsm} / \mathrm{kg}$		296	5	8				
27. What are the effects of	$\overline{\mathrm{D}+\mathrm{BV}}$ restoration	VO_{2} control, $\mathrm{l} / \mathrm{min}$	One-way ANOVA	3.21	0.34	8	D+BV restoration vs control	0.7560	n/a	Table 3
isolated dehydration and BV	did not alter VO_{2} but reduced	$\mathrm{VO}_{2} \mathrm{D}+\mathrm{BV}$ restoration, $\mathrm{l} / \mathrm{min}$	(condition) with repeated measures with	3.22	0.33	8				D+BV vs. control, 8 participants
restoration (D+BV	VCO_{2} compared to	VCO_{2} control, $\mathrm{l} / \mathrm{min}$	Bonferroni post-hoc	3.00	0.33	8		0.0065		
restoration) on metabolism during prolonged exercise compared to euhydration control?	control.	$\begin{aligned} & \mathrm{VCO}_{2} \mathrm{D}+\mathrm{BV} \\ & \text { restoration, } \\ & \mathrm{l} / \mathrm{min} \end{aligned}$	analysis	2.95	0.31	8				

Statistical Summary Document

28. What are the effects of isolated dehydration and BV restoration (D+BV restoration) on the ventilatory responses during prolonged exercise compared to euhydration control?	D+BV restoration did not alter V_{E} or $\mathrm{P}_{\mathrm{ET}} \mathrm{CO}_{2}$, but increased f_{b} and reduced V_{T} compared to control.	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{E}} \text { Control, } \\ & \mathrm{I} / \mathrm{min} \\ & \hline \end{aligned}$	One-way ANOVA (condition) with repeated measures with Bonferroni post-hoc analysis	65.5	6.0	8	D+BV restoration vs control	0.3689	n/a	Table 3 D+BV vs. control, 8 participants
		$\mathrm{V}_{\mathrm{E}} \mathrm{D}+\mathrm{BV}$ restoration, $\mathrm{l} / \mathrm{min}$		66.6	4.9	8				
		f_{b} control, breaths/min		30	5	8		0.0385		
		$f_{\mathrm{b}} \mathrm{D}+\mathrm{BV}$ restoration, breaths/min		33	3	8				
		V_{T} control, I		2.25	0.46	8		0.0133		
		$\mathrm{V}_{\mathrm{T}} \mathrm{D}+\mathrm{BV}$ restoration, I		2.08	0.37	8				
		$\begin{aligned} & \mathrm{P}_{\mathrm{ET}} \mathrm{CO}_{2} \\ & \text { control, } \mathrm{mmHg} \\ & \hline \end{aligned}$		39	4	8		0.8357		
		$\begin{aligned} & \mathrm{P}_{\mathrm{ET}} \mathrm{CO}_{2} \mathrm{D}+\mathrm{BV} \\ & \text { restoration, } \\ & \text { mmHg } \end{aligned}$		39	3	8				
29. What are the effects of adrenaline (A) infusion on body temperature responses during prolonged exercise compared to saline (S) infusion control?	T_{c} exhibited significant differences overtime in the A and S , but $\mathrm{T}_{\text {sk }}$ remained unchanged.	$\mathrm{T}_{\mathrm{c}},{ }^{\circ} \mathrm{C}$	Two-way ANOVA with repeated measures with Bonferroni post-hoc analysis	n/a	n/a	4	Time	<0.0001	$\begin{aligned} & \text { Time vs } \mathbf{1 0 - 3 0} \mathbf{~ m i n}- \\ & \text { DH (*) } 40-60,85-90 \& \\ & 120 \mathrm{~min}:<0.0001 ; \\ & 0.0013 ; 0.0001 \end{aligned}$	Table 4 $N=7$ participants Overtime differences were compared to 10 min of exercise.
						2	Infusion	0.0029		
						8	Time x Infusion	0.0007	Time vs $\mathbf{1 0 - 3 0} \mathbf{~ m i n}-$ Control (*) 40-60, 8590 \& $120 \mathrm{~min}: ~ 0.0026 ;$ 0.0001; 0.0002	
	Time (min) x condition (A vs. S) interactions. There were								A vs S control (\dagger) 40-60, 85-90 \& 120 min: 0.0009; 0.0127; 0.0066	
	significant interactions between time	$\mathrm{T}_{\text {sk, }}{ }^{\circ} \mathrm{C}$				4	Time	0.0014	Time vs 10-30 min DH (*) NS	
	and					2	Infusion	0.0303		

Statistical Summary Document

Statistical Summary Document

