dc.contributor.author | Losnegard, Thomas | |
dc.contributor.author | Myklebust, Håvard | |
dc.contributor.author | Skattebo, Øyvind | |
dc.contributor.author | Stadheim, Hans Kristian | |
dc.contributor.author | Sandbakk, Øyvind | |
dc.contributor.author | Hallén, Jostein | |
dc.date.accessioned | 2017-02-28T12:43:55Z | |
dc.date.available | 2017-02-28T12:43:55Z | |
dc.date.issued | 2016-04-27 | |
dc.identifier.citation | International Journal of Sports Physiology and Performance. 2016, under utgivelse. doi: 10.1123/ijspp.2015-0754 | nb_NO |
dc.identifier.uri | http://hdl.handle.net/11250/2432358 | |
dc.description | I Brage finner du siste tekst-versjon av artikkelen, og den kan inneholde ubetydelige forskjeller fra forlagets pdf-versjon. Forlagets pdf-versjon finner du på journals.humankinetics.com / In Brage you'll find the final text version of the article, and it may contain insignificant differences from the journal's pdf version. The definitive version is available at journals.humankinetics.com | nb_NO |
dc.description.abstract | Purpose: In the double poling cross-country skiing technique, the propulsive forces are transferred solely through the poles. The aim of the present study was to investigate how pole length influences double poling performance, O2-cost and kinematics during treadmill roller skiing. Methods: Nine male competitive cross-country skiers (24±3 yrs, 180±5 cm, 72±5 kg, VO2max running: 76±6 mL·kg-1·min-1) completed two identical test protocols using self-selected (84±1% of body height) and long poles (self-selected + 7.5 cm; 88±1% of body height) in a counter-balanced fashion. Each test protocol included a 5-minute warm-up (2.5 m·s-1; 2.5°), three 5-min submaximal sessions (3.0, 3.5 and 4.0 m·s-1; 2.5°) for assessment of O2-cost, followed by a self-paced 1000-m time trial (~3 min, >5.0 m·s-1; 2.5°). Temporal patterns and kinematics were assessed using accelerometers and 2D video. Results: Long poles reduced 1000-m time (mean±90% confidence interval; -1.0±0.7%, P=0.054) and submaximal O2-cost (-2.7±1.0%, P=0.002) compared to self-selected poles. The center of mass vertical range of displacement tended to be smaller for long than for self-selected poles (23.3±3.0 vs. 24.3±3.0 cm, P=0.07). Cycle and reposition time did not differ between pole lengths at any speeds tested, whereas poling time tended to be shorter for self-selected than for long poles at the lower speeds (≤ 3.5 m·s-1, P≤0.10), but not at the higher speeds (≥4.0 m·s-1, P≥0.23). Conclusion: Double poling 1000-m time, submaximal O2-cost and center of mass vertical range of displacement were reduced in competitive cross-country skiers using poles 7.5 cm longer than self-selected ones. | nb_NO |
dc.language.iso | eng | nb_NO |
dc.publisher | Human Kinetics | nb_NO |
dc.subject | center of mass | nb_NO |
dc.subject | cross-country skiers | nb_NO |
dc.subject | elite | nb_NO |
dc.subject | equipment | nb_NO |
dc.subject | exercise economy | nb_NO |
dc.title | The influence of pole length on performance, O2-cost and kinematics in double poling | nb_NO |
dc.type | Journal article | nb_NO |
dc.type | Peer reviewed | nb_NO |
dc.subject.nsi | VDP::Samfunnsvitenskap: 200::Samfunnsvitenskapelige idrettsfag: 330::Andre idrettsfag: 339 | nb_NO |
dc.source.journal | International Journal of Sports Physiology and Performance (IJSPP) | nb_NO |
dc.identifier.doi | 10.1123/ijspp.2015-0754 | |
dc.description.localcode | Seksjon for fysisk prestasjonsevne / Department of Physical Performance | nb_NO |