Vis enkel innførsel

dc.contributor.authorCully, Tanya R.
dc.contributor.authorMurphy, Robyn M.
dc.contributor.authorRoberts, Llion A.
dc.contributor.authorRaastad, Truls
dc.contributor.authorFassett, Robert G.
dc.contributor.authorCoombes, Jeff S.
dc.contributor.authorJayasinghe, Isuru D.
dc.contributor.authorLaunikonis, Bradley S.
dc.date.accessioned2018-04-16T12:20:13Z
dc.date.available2018-04-16T12:20:13Z
dc.date.created2017-06-28T10:23:09Z
dc.date.issued2017
dc.identifier.citationNature Communications. 2017, 8, 14266.nb_NO
dc.identifier.issn2041-1723
dc.identifier.urihttp://hdl.handle.net/11250/2494259
dc.descriptionThis work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/nb_NO
dc.description.abstractHigh-force eccentric exercise results in sustained increases in cytoplasmic Ca2+ levels ([Ca2+]cyto), which can cause damage to the muscle. Here we report that a heavy-load strength training bout greatly alters the structure of the membrane network inside the fibres, the tubular (t-) system, causing the loss of its predominantly transverse organization and an increase in vacuolation of its longitudinal tubules across adjacent sarcomeres. The transverse tubules and vacuoles displayed distinct Ca2+-handling properties. Both t-system components could take up Ca2+ from the cytoplasm but only transverse tubules supported store-operated Ca2+ entry. The retention of significant amounts of Ca2+ within vacuoles provides an effective mechanism to reduce the total content of Ca2+ within the fibre cytoplasm. We propose this ability can reduce or limit resistance exercise-induced, Ca2+-dependent damage to the fibre by the reduction of [Ca2+]cyto to help maintain fibre viability during the period associated with delayed onset muscle soreness.nb_NO
dc.language.isoengnb_NO
dc.subjectmembrane biophysicsnb_NO
dc.subjectphysiologynb_NO
dc.titleHuman skeletal muscle plasmalemma alters its structure to change its Ca2+-handling following heavy-load resistance exercisenb_NO
dc.typeJournal articlenb_NO
dc.typePeer reviewednb_NO
dc.description.versionpublishedVersionnb_NO
dc.rights.holder© The Author(s) 2017nb_NO
dc.source.volume8nb_NO
dc.source.journalNature Communicationsnb_NO
dc.identifier.doi10.1038/ncomms14266
dc.identifier.cristin1479408
dc.description.localcodeSeksjon for fysisk prestasjonsevne / Department of Physical Performancenb_NO
cristin.unitcode150,31,0,0
cristin.unitnameSeksjon for fysisk prestasjonsevne
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode2


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel