• norsk
    • English
  • English 
    • norsk
    • English
  • Login
View Item 
  •   Home
  • Norges idrettshøgskole
  • Publikasjoner fra Cristin
  • View Item
  •   Home
  • Norges idrettshøgskole
  • Publikasjoner fra Cristin
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Mechanical and material tendon properties in patients with proximal patellar tendinopathy

Wiesinger, Hans-Peter; Seynnes, Olivier R.; Kösters, Alexander; Müller, Erich; Rieder, Florian
Peer reviewed, Journal article
Published version
Thumbnail
View/Open
Seynnes Frontiers in Physiology 2020.pdf (1.214Mb)
URI
https://hdl.handle.net/11250/2682646
Date
2020
Metadata
Show full item record
Collections
  • Artikler / Articles [2385]
  • Publikasjoner fra Cristin [1374]
Original version
Frontiers in Physiology. 2020, 11, 704.   10.3389/fphys.2020.00704
Abstract
Introduction: The effect of chronic patellar tendinopathy on tissue function and integrity is currently unclear and underinvestigated. The aim of this cohort comparison was to examine morphological, material, and mechanical properties of the patellar tendon and to extend earlier findings by measuring the ability to store and return elastic energy in symptomatic tendons.

Methods: Seventeen patients with chronic (>3 months, VISA-P < 80), inferior pole patellar tendinopathy (24 ± 4 years; male = 12, female = 5) were carefully matched to controls (25 ± 3 years) for training status, pattern, and history of loading of the patellar tendon. Individual knee extension force, patellar tendon stiffness, stress, strain, Young’s modulus, hysteresis, and energy storage capacity, were obtained with combined dynamometry, ultrasonography, magnetic resonance imaging, and electromyography.

Results: Anthropometric parameters did not differ between groups. VISA-P scores ranged from 28 to 78 points, and symptoms had lasted from 10 to 120 months before testing. Tendon proximal cross-sectional area was 61% larger in the patellar tendinopathy group than in the control group. There were no differences between groups in maximal voluntary isometric knee extension torque (p = 0.216; d < −0.31) nor in tensile tendon force produced during isometric ramp contractions (p = 0.185; d < −0.34). Similarly, tendon strain (p = 0.634; d < 0.12), hysteresis (p = 0.461; d < 0.18), and strain energy storage (p = 0.656; d < 0.36) did not differ between groups. However, patellar tendon stiffness (−19%; p = 0.007; d < −0.74), stress (−27%; p< 0.002; d < −0.90) and Young’s modulus (−32%; p = 0.001; d < −0.94) were significantly lower in tendinopathic patients compared to healthy controls.

Discussion: In this study, we observed lower stiffness in affected tendons. However, despite the substantial structural and histological changes occurring with tendinopathy, the tendon capacity to store and dissipate energy did not differ significantly.
Description
This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
Journal
Frontiers in Physiology
Copyright
© 2020 Wiesinger, Seynnes, Kösters, Müller and Rieder

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit
 

 

Browse

ArchiveCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDocument TypesJournalsThis CollectionBy Issue DateAuthorsTitlesSubjectsDocument TypesJournals

My Account

Login

Statistics

View Usage Statistics

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit