Vis enkel innførsel

dc.contributor.authorHearris, Mark A.
dc.contributor.authorOwens, Daniel J.
dc.contributor.authorStrauss, Juliette A.
dc.contributor.authorShepherd, Sam O.
dc.contributor.authorSharples, Adam
dc.contributor.authorMorton, James P.
dc.contributor.authorLouis, Julien
dc.date.accessioned2021-02-01T10:48:06Z
dc.date.available2021-02-01T10:48:06Z
dc.date.created2020-10-14T12:01:39Z
dc.date.issued2020
dc.identifier.citationExperimental Physiology. 2020, 105(11), 1882-1894.en_US
dc.identifier.issn0958-0670
dc.identifier.urihttps://hdl.handle.net/11250/2725534
dc.descriptionThis is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.en_US
dc.description.abstractWe examined the effects of graded muscle glycogen on the subcellular location and protein content of AMP‐activated protein kinase (AMPK) and peroxisome proliferator‐activated receptor γ coactivator 1α (PGC‐1α) and mRNA expression of genes associated with the regulation of mitochondrial biogenesis and substrate utilisation in human skeletal muscle. In a repeated measures design, eight trained male cyclists completed acute high‐intensity interval (HIT) cycling (8 × 5 min at 80% peak power output) with graded concentrations of pre‐exercise muscle glycogen. Following initial glycogen‐depleting exercise, subjects ingested 2 g kg−1 (L‐CHO), 6 g kg−1 (M‐CHO) or 14 g kg−1 (H‐CHO) of carbohydrate during a 36 h period, such that exercise was commenced with graded (P < 0.05) muscle glycogen concentrations (mmol (kg dw)−1: H‐CHO, 531 ± 83; M‐CHO, 332 ± 88; L‐CHO, 208 ± 79). Exercise depleted muscle glycogen to <300 mmol (kg dw)−1 in all trials (mmol (kg dw)−1: H‐CHO, 270 ± 88; M‐CHO, 173 ± 74; L‐CHO, 100 ± 42) and induced comparable increases in nuclear AMPK protein content (∼2‐fold) and PGC‐1α (∼5‐fold), p53 (∼1.5‐fold) and carnitine palmitoyltransferase 1 (∼2‐fold) mRNA between trials (all P < 0.05). The magnitude of increase in PGC‐1α mRNA was also positively correlated with post‐exercise glycogen concentration (P < 0.05). In contrast, neither exercise nor carbohydrate availability affected the subcellular location of PGC‐1α protein or PPAR, SCO2, SIRT1, DRP1, MFN2 or CD36 mRNA. Using a sleep‐low, train‐low model with a high‐intensity endurance exercise stimulus, we conclude that pre‐exercise muscle glycogen does not modulate skeletal muscle cell signalling.en_US
dc.language.isoengen_US
dc.subjectCHO restrictionen_US
dc.subjecttrain-lowen_US
dc.subjectvastus lateralisen_US
dc.titleGraded reductions in pre-exercise glycogen concentration do not augment exercise-induced nuclear AMPK and PGC-1α protein content in human muscleen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.rights.holder© 2020 The Authors.en_US
dc.source.pagenumber13en_US
dc.source.journalExperimental Physiologyen_US
dc.identifier.doi10.1113/EP088866
dc.identifier.cristin1839487
dc.description.localcodeInstitutt for fysisk prestasjonsevne / Department of Physical Performanceen_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel