Vis enkel innførsel

dc.contributor.authorSkattebo, Øyvind
dc.contributor.authorCalbet, Jose Antonio Lopez
dc.contributor.authorRud, Bjarne
dc.contributor.authorCapelli, Carlo
dc.contributor.authorHallén, Jostein
dc.date.accessioned2021-02-10T09:00:26Z
dc.date.available2021-02-10T09:00:26Z
dc.date.created2020-10-30T10:24:06Z
dc.date.issued2020
dc.identifier.citationActa Physiologica. 2020, 230(2), Artikkel e13486.en_US
dc.identifier.issn1748-1708
dc.identifier.urihttps://hdl.handle.net/11250/2727072
dc.descriptionThis is an open access article under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.en_US
dc.description.abstractWe analysed the importance of systemic and peripheral arteriovenous O2 difference (a-vO2 difference and a-vfO2 difference, respectively) and O2 extraction fraction for maximal oxygen uptake (VO2max). Fick law of diffusion and the Piiper and Scheid model were applied to investigate whether diffusion versus perfusion limitations vary with VO2max. Articles (n=17) publishing individual data (n=154) on VO2max, maximal cardiac output (Qmax; indicator-dilution or the Fick method), a-vO2 difference (catheters or the Fick equation) and systemic O2 extraction fraction were identified. For the peripheral responses, group-mean data (articles: n=27; subjects: n=234) on leg blood flow (LBF; thermodilution), a-vfO2 difference and O2 extraction fraction (arterial and femoral venous catheters) were obtained. Qmax and two-LBF increased linearly by 4.9-6.0 L · min–1 per 1 L · min–1 increase in VO2max (R2=.73 and R2=.67, respectively; both P<.001). The a-vO2 difference increased from 118-168mL · L–1 from a VO2max of 2-4.5 L · min–1 followed by a reduction (second-order polynomial: R2=.27). After accounting for a hypoxemia-induced de-crease in arterial O2 content with increasing VO2max (R2=.17; P<.001), systemic O2 extraction fraction increased up to ~90% (VO2max: 4.5 L · min–1) with no further change (exponential decay model: R2=.42). Likewise, leg O2 extraction fraction increased with VO2max to approach a maximal value of ~90-95% (R2=.83). Muscle O2 diffusing capacity and the equilibration index Y increased linearly with VO2max (R2=.77 and R2=.31, respectively; both P<.01), reflecting decreasing O2 diffusional limitations and accentuating O2 delivery limitations. In conclusion, although O2 delivery is the main limiting factor to VO2max, enhanced O2 extraction fraction (90%) contributes to the remarkably high VO2max in endurance-trained individuals.en_US
dc.language.isoengen_US
dc.subjectarteriovenous oxygen differenceen_US
dc.subjectcardiac outputen_US
dc.subjectexerciseen_US
dc.subjectleg blood flowen_US
dc.subjectlimiting factorsen_US
dc.subjectmaximal oxygen uptakeen_US
dc.subjectoxygen diffusionen_US
dc.subjectstroke volumeen_US
dc.titleContribution of oxygen extraction fraction to maximal oxygen uptake in healthy young menen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.rights.holder© 2020 The Authors.en_US
dc.source.pagenumber19en_US
dc.source.volume230en_US
dc.source.journalActa Physiologicaen_US
dc.source.issue2en_US
dc.identifier.doi10.1111/apha.13486
dc.identifier.cristin1843524
dc.description.localcodeInstitutt for fysisk prestasjonsevne / Department of Physical Performanceen_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel